1
|
Guedes M, Vieira de Castro J, Lima AC, M F Gonçalves V, Tiritan ME, L Reis R, Ferreira H, M Neves N. Fishroesomes show intrinsic anti-inflammatory bioactivity and ability as celecoxib carriers in vivo. Eur J Pharm Biopharm 2025; 207:114587. [PMID: 39645203 DOI: 10.1016/j.ejpb.2024.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
According to the World Health Organization (WHO), chronic inflammatory-related diseases represent the greatest threat to human health. Indeed, failure in the resolution of inflammation leads to serious pathological conditions, such as cardiovascular diseases, arthritis, cancer, diabetes, autoimmune diseases, and neurodegenerative disorders that are often associated with extremely high human suffering and societal and economic burdens. Despite the number and efficacy of available therapeutic agents have been increased, the serious side effects associated with some of them often create a very high risk/benefit ratio for patients. Therefore, herein, a drug delivery system was engineered to overcome important drawbacks of conventional therapies and to have a synergistic action with the incorporated drug. Indeed, it will have an added beneficial role in controlling inflammation. For that, sardine (Sardina pilchardus) roe was used as the lipidic source to produce bioactive liposomes, namely fishroesomes. These spherical vesicles with ≈326 nm in size and a significant negative surface charge (≈-31 mV) were able to encapsulate and control the release of the anti-inflammatory drug celecoxib. Moreover, fishroesomes were cytocompatible for different cell types (chondrocytes and macrophages), at concentrations in which they present anti-inflammatory properties. Importantly, fishroesomes were more effective in reducing pro-inflammatory mediators than the free drug. We also demonstrated that a single intra-articular injection of the fishroesomes encapsulating or not celecoxib in an experimental rat model of inflammatory arthritis was safe and more effective in controlling the pain and reducing the synovial inflammation compared to the free drug. Notably, as the celecoxib concentration in the sardine roe-derived liposomes was less than half of the amount of free drug, this study demonstrates the value of fishroesomes in counteracting inflammation. Therefore, the developed formulations may be considered a promising therapeutic option for inflammatory conditions.
Collapse
Affiliation(s)
- Marta Guedes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Vieira de Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Virgínia M F Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Gambardella C, Miroglio R, Trenti F, Guella G, Panevska A, Sbrana F, Grunder M, Garaventa F, Sepčić K. Assessing the toxicity of aegerolysin-based bioinsecticidal complexes using the sea urchin Paracentrotus lividus as model organism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106727. [PMID: 37866166 DOI: 10.1016/j.aquatox.2023.106727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/15/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
The use of alternative solutions for pest management to replace pesticides in agriculture is of great interest. Proteinaceous complexes deriving from edible oyster mushrooms were recently proposed as environmentally friendly bioinsecticides. Such complexes, composed of ostreolysin A6 (OlyA6) and pleurotolysin B (PlyB), target invertebrate-specific membrane sphingolipids in insect's midgut, causing death through the formation of transmembrane pores. In this work, the potential impact of OlyA6/PlyB complexes was tested in the Mediterranean sea urchin Paracentrotus lividus, as an indicator of environmental quality. The ability of the fluorescently tagged OlyA6 to bind sea urchin gametes (sperm, eggs), the lipidome of sea urchin gametes, and the potential toxic effects and developmental anomalies caused by OlyA6/PlyB complexes on P. lividus early development (embryo, larvae) were investigated. The binding of the fluorescently tagged OlyA6 could be observed only in sea urchin eggs, which harbor OlyA6 sphingolipid membrane receptors, conversely to sperm. High protein concentrations affected sea urchin fertilization (>750 µg/L) and early development (> 375 µg/L in embryos; >100 µg/L in larvae), by causing toxicity and morphological anomalies in embryos and larvae. The main anomalies consisted in delayed embryos and incorrect migration of the primary mesenchyme cells that caused larval skeletal anomalies. The classification of these anomalies indicated a slight environmental impact of OlyA6/PlyB complexes at concentrations higher than 750 µg/L. Such impact should not persist in the marine environment, due to the reversible anomalies observed in sea urchin embryos and larvae that may promote defense strategies. However, before promoting the use of OlyA6/PlyB complexes as bio-pesticides at low concentrations, further studies on other marine coastal species are needed.
Collapse
Affiliation(s)
- Chiara Gambardella
- National Research Council-Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy.
| | - Roberta Miroglio
- National Research Council-Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy
| | - Francesco Trenti
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Francesca Sbrana
- National Research Council- Institute of Biophysics (CNR-IBF), Genoa, Italy
| | - Maja Grunder
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Francesca Garaventa
- National Research Council-Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Caffrey C, Leamy A, O’Sullivan E, Zabetakis I, Lordan R, Nasopoulou C. Cardiovascular Diseases and Marine Oils: A Focus on Omega-3 Polyunsaturated Fatty Acids and Polar Lipids. Mar Drugs 2023; 21:549. [PMID: 37999373 PMCID: PMC10672651 DOI: 10.3390/md21110549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death across the globe, hence, establishing strategies to counteract CVD are imperative to reduce mortality and the burden on health systems. Dietary modification is an effective primary prevention strategy against CVD. Research regarding dietary supplementation has become increasingly popular. This review focuses on the current in vivo, in vitro, and epidemiological studies associated with that of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and polar lipids (PLs) and how they play a role against CVD. Furthermore, this review focuses on the results of several major clinical trials examining n-3 PUFAs regarding both primary and secondary prevention of CVD. Notably, we place a lens on the REDUCE-IT and STRENGTH trials. Finally, supplementation of PLs has recently been suggested as a potential alternative avenue for the reduction of CVD incidence versus neutral forms of n-3 PUFAs. However, the clinical evidence for this argument is currently rather limited. Therefore, we draw on the current literature to suggest future clinical trials for PL supplementation. We conclude that despite conflicting evidence, future human trials must be completed to confirm whether PL supplementation may be more effective than n-3 PUFA supplementation to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Cliodhna Caffrey
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Anna Leamy
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Ellen O’Sullivan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantina Nasopoulou
- Laboratory of Food Chemistry—Technology and Quality of Food of Animal Origin, Department of Food Science and Nutrition, University of the Aegean, 814 00 Lemnos, Greece
| |
Collapse
|
4
|
Fouzai C, Trabelsi W, Bejaoui S, Marengo M, Ghribi F, Chetoui I, Mili S, Soudani N. Dual oxidative stress and fatty acid profile impacts in Paracentrotus lividus exposed to lambda-cyhalothrin: biochemical and histopathological responses. Toxicol Res 2023; 39:429-441. [PMID: 37398571 PMCID: PMC10313587 DOI: 10.1007/s43188-023-00174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 07/04/2023] Open
Abstract
Lambda-cyhalothrin (λ-cyh) is a potential pyrethroid insecticide widely used in pest control. The presence of pyrethroids in the aquatic ecosystem may induce adverse effects on non-target organisms such as the sea urchin. This study was conducted to assess the toxic effects of λ-cyh on the fatty acid profiles, redox status, and histopathological aspects of Paracentrotus lividus gonads following exposure to three concentrations of λ-cyh (100, 250 and 500 µg/L) for 72 h. The results showed a significant decrease in saturated fatty acid (SFAs) with an increase in monounsaturated fatty acid (MUFAs) and polyunsaturated fatty acid (PUFAs) levels in λ-cyh treated sea urchins. The highest levels in PUFAs were recorded in the eicosapentaenoic acids (C20:5n-3), docosahexaenoic acids (C22:6n-3) and arachidonic acids (C20:4n-6) levels. The λ-cyh intoxication promoted oxidative stress with an increase in hydrogen peroxide (H2O2), malondialdehyde (MDA) and advanced oxidation protein products (AOPP) levels. Furthermore, the enzymatic activities and non-enzymatic antioxidants levels were enhanced in all exposed sea urchins, while the vitamin C levels were decreased in 100 and 500 µg/L treated groups. Our biochemical results have been confirmed by the histopathological observations. Collectively, our findings offered valuable insights into the importance of assessing fatty acids' profiles as a relevant tool in aquatic ecotoxicological studies.
Collapse
Affiliation(s)
- Chaima Fouzai
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Wafa Trabelsi
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Safa Bejaoui
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Michel Marengo
- Station de Recherche Sous-marines et Océanographiques (STARESO), Calvi, France
| | - Feriel Ghribi
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Imen Chetoui
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Sami Mili
- Higher institute of fishing and aquaculture of Bizerte, Menzel Jemil Bizerte, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| |
Collapse
|
5
|
Hu X, Cong P, Song Y, Wang X, Zhang H, Meng N, Fan X, Xu J, Xue C. Comprehensive Lipid Profile of Eight Echinoderm Species by RPLC-Triple TOF-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8230-8240. [PMID: 37196222 DOI: 10.1021/acs.jafc.3c00823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Echinoderms are of broad interest for abundant bioactive lipids. The comprehensive lipid profiles in eight echinoderm species were obtained by UPLC-Triple TOF-MS/MS with characterization and semi-quantitative analysis of 961 lipid molecular species in 14 subclasses of 4 classes. Phospholipids (38.78-76.83%) and glycerolipids (6.85-42.82%) were the main classes in all investigated echinoderm species, with abundant ether phospholipids, whereas the proportion of sphingolipids was higher in sea cucumbers. Two sulfated lipid subclasses were detected in echinoderms for the first time; sterol sulfate was rich in sea cucumbers, whereas sulfoquinovosyldiacylglycerol existed in the sea star and sea urchins. Furthermore, PC(18:1/24:2), PE(16:0/14:0), and TAG(50:1e) could be used as lipid markers to distinguish eight echinoderm species. In this study, the differentiation of eight echinoderms was achieved by lipidomics and revealed the uniqueness of the natural biochemical fingerprints of echinoderms. The findings will help evaluate the nutritional value in the future.
Collapse
Affiliation(s)
- Xinxin Hu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs District, Qingdao, Shandong 266002, China
| | - Nan Meng
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xiaowei Fan
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
6
|
Sun Q, Wang Y, Cai Q, Pang T, Lan W, Li L. Comparative analysis of lipid components in fresh Crassostrea Hongkongensis (raw) and its dried products by using high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS). Front Nutr 2023; 10:1123636. [PMID: 36969805 PMCID: PMC10037998 DOI: 10.3389/fnut.2023.1123636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
The lipids of the oyster (Crassostrea hongkongensis) have a special physiological activity function, which is essential to maintain human health. However, comprehensive research on their lipids species and metabolism is not so common. In our study, based on the high-performance liquid chromatography/quadrupole time-of-flight mass spectrometer (HPLC/Q-TOF-MS), the non-targeted lipidomics research of Crassostrea hongkongensis fresh and dried products was determined. Meanwhile, we analyzed its lipid outline, screened the differences between the lipid molecules of Crassostrea hongkongensis fresh and dried products, and determined the lipid metabolic pathway. Results showed that 1,523 lipid molecules were detected, in which polyunsaturated fatty acids mostly existed in such lipids as phosphoglyceride. Through the multivariate statistical analysis, according to the conditions of P < 0.05, FC > 2 or FC < 0.05, and VIP > 1.2, 239 different lipid molecules were selected, including 37 fatty acids (FA), 60 glycerol phospholipids (GP), 20 glycerin (GL), 38 sheath lipids (SP), 31 steroid lipids (ST), 36 polyethylene (PK), and 17 progesterone lipids (PR). Combined with the Kyoto Encyclopedia of Genes and Genomes (KEGG), the differential lipid molecules were analyzed to mainly determine the role of the glycerin phospholipid metabolic pathway. As a whole, the results of this study provide the theoretical basis for the high-value utilization of oysters and are helpful to the development of oysters' physiological activity functions and deep utilization.
Collapse
Affiliation(s)
- Qunzhao Sun
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
- College of Marine Science, Beibu Gulf University, Qinzhou, China
| | - Yunru Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Qiuxing Cai
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Qiuxing Cai
| | - Tingcai Pang
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Weibing Lan
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Laihao Li
| |
Collapse
|
7
|
Investigation of the changes in the lipid profiles in hairtail (Trichiurus haumela) muscle during frozen storage using chemical and LC/MS-based lipidomics analysis. Food Chem 2022; 390:133140. [DOI: 10.1016/j.foodchem.2022.133140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022]
|
8
|
Structure elucidation and antitumor activity of a water soluble polysaccharide from Hemicentrotus pulcherrimus. Carbohydr Polym 2022; 292:119718. [PMID: 35725190 DOI: 10.1016/j.carbpol.2022.119718] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
Sea urchin nowadays serves as a delicacy around the world, and its gonads accumulate abundant polysaccharides before gametogenesis. However, the structure and bioactivity of these polysaccharides remain less well understood. Herein, a water soluble polysaccharide (HPP-1S) with a molecular weight of 2.996 × 107 Da was purified from the gonads of Hemicentrotus pulcherrimus. Chemical, spectroscopic and oligosaccharide sequencing analyses revealed that HPP-1S was a highly homogeneous polysaccharide featuring a linear backbone of 1,4-linked α-d-glucose with 1,6-α-d-glucose and 1,6-α-D-glucuronic acid side chains grafted on the backbone in an alternating pattern. In vitro, HPP-1S can arrest the cell cycle at G2/M and sub-G1 phases, and induce apoptosis in Hela cells potentially by increasing expression ratio of Bax/Bcl-2. In vivo, HPP-1S exhibited obvious antitumor efficacy in Hela xenograft-bearing nude mice with low toxicity. These findings indicated that HPP-1S might serve as a potential low toxic antitumor agent.
Collapse
|
9
|
Comparative Transcriptome Analysis of Differentially Expressed Genes in the Testis and Ovary of Sea Urchin (Strongylocentrotus intermedius). FISHES 2022. [DOI: 10.3390/fishes7040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The quality of sea urchin gonad is important to consumers with high standards for nutrition and taste. However, few studies have been conductedon the molecular mechanisms that determine the quality of male and female sea urchins. In this study, our goal was to understand the differences and characteristics of gonad quality between sea urchin (Strongylocentrotus intermedius) males and females. The transcriptomes of males and females were obtained, with totals of 43,797,146 and 56,222,782 raw reads, respectively, comprising 128,979 transcripts and 85,745 unigenes. After comparative transcriptome analysis, a total of 6736 differentially expressed genes (DEGs) between the males and females were identified, of which 2950 genes were up-regulated and 3786 genes were down-regulated in males. We compared the expression of twelve DEGs with significant differences their expression levels and functional annotations to confirm the reliability of the RNA-Seq data. Five DEGs related to gonadal quality were found through enrichment analysis of KEGG pathways: 17β-HSD8, PGDH, FAXDC2, C4MO, and PNPLA7. Our study analyzes genes related to the taste and flavor of sea urchin gonads among the sexes and provides reference sequences and fundamental information concerning the nutrition and taste of S. intermedius gonads.
Collapse
|
10
|
Detection and characterization of lipids in eleven species of fish by non-targeted liquid chromatography/mass spectrometry. Food Chem 2022; 393:133402. [DOI: 10.1016/j.foodchem.2022.133402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 12/18/2022]
|
11
|
Wang DH, Wang Z, Li X, Martinez S, James G, Rahman MS, Brenna JT. Unusual polymethylene-interrupted, Δ5 monounsaturated and omega-3 fatty acids in sea urchin (Arbacia punctulata) from the Gulf of Mexico identified by solvent mediated covalent adduct chemical ionization mass spectrometry. Food Chem 2022; 371:131131. [PMID: 34563966 DOI: 10.1016/j.foodchem.2021.131131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/15/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023]
Abstract
Sea urchin (class Echinoidea) gonads are a prized delicacy in Japan and many other world cultures. The complexity of its fatty acid (FA) profile, particularly minor FA, presents a formidable analytical challenge. We applied solvent mediated (SM) covalent adduct chemical ionization (CACI) tandem mass spectrometry to comprehensive de novo structural and quantitative characterization of the FA profile of Gulf of Mexico Atlantic sea urchin (Arbacia punctulata). >100 FA were detected including many with unusual double bond structure. Gulf sea urchin gonad lipids are rich in Δ5 monounsaturated FA 20:1(5Z) at 2.7% and the polymethylene-interrupted (PMI) diene 20:2(5Z,11Z) at 4.9%, as well as common omega-3 eicosapentaenoic acid (EPA; 5Z, 8Z, 11Z, 14Z, 17Z) at 9.8%±3.1% and arachidonic acid (AA; 5Z, 8Z, 11Z, 14Z) at 6.1%±2.1%. We propose plausible desaturation/elongation-based biochemical pathways for the endogenous production of unusual unsaturates. Unusual unsaturates may modify mammalian signaling and present novel bioactivities.
Collapse
Affiliation(s)
- Dong Hao Wang
- Dell Pediatric Research Institute, Depts of Pediatrics of Chemistry and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States; Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, NY 14850, United States
| | - Zhen Wang
- Dell Pediatric Research Institute, Depts of Pediatrics of Chemistry and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States; Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, NY 14850, United States
| | - Xu Li
- Dell Pediatric Research Institute, Depts of Pediatrics of Chemistry and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States; Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, NY 14850, United States
| | - Secilia Martinez
- Dell Pediatric Research Institute, Depts of Pediatrics of Chemistry and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States; State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Genevieve James
- Dell Pediatric Research Institute, Depts of Pediatrics of Chemistry and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, United States
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics of Chemistry and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States; Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, NY 14850, United States.
| |
Collapse
|
12
|
Rey F, Melo T, Lopes D, Couto D, Marques F, Domingues MDRM. Applications of lipidomics in marine organisms: Progresses, challenges and future perspectives. Mol Omics 2022; 18:357-386. [DOI: 10.1039/d2mo00012a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marine ecosystems comprise a high diversity of life forms, such as algae, invertebrates, and vertebrates. These organisms have adapted their physiology according to the conditions of the environments in which...
Collapse
|
13
|
Xia D, Qiu W, Wang X, Liu J. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals. Mar Drugs 2021; 19:703. [PMID: 34940702 PMCID: PMC8703604 DOI: 10.3390/md19120703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Microalgal cells serve as solar-powered factories that produce pharmaceuticals, recombinant proteins (vaccines and drugs), and valuable natural byproducts that possess medicinal properties. The main advantages of microalgae as cell factories can be summarized as follows: they are fueled by photosynthesis, are carbon dioxide-neutral, have rapid growth rates, are robust, have low-cost cultivation, are easily scalable, pose no risk of human pathogenic contamination, and their valuable natural byproducts can be further processed. Despite their potential, there are many technical hurdles that need to be overcome before the commercial production of microalgal pharmaceuticals, and extensive studies regarding their impact on human health must still be conducted and the results evaluated. Clearly, much work remains to be done before microalgae can be used in the large-scale commercial production of pharmaceuticals. This review focuses on recent advancements in microalgal biotechnology and its future perspectives.
Collapse
Affiliation(s)
- Donghua Xia
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
| | - Wen Qiu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Xianxian Wang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Junying Liu
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
- Pharmaceutical Manufacturing Technology Centre (PMTC), Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
14
|
Ma LX, Huang XH, Zheng J, Dong L, Chen JN, Dong XP, Zhou DY, Zhu BW, Qin L. Free amino acid, 5'-Nucleotide, and lipid distribution in different tissues of blue mussel (Mytilis edulis L.) determined by mass spectrometry based metabolomics. Food Chem 2021; 373:131435. [PMID: 34741971 DOI: 10.1016/j.foodchem.2021.131435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 11/25/2022]
Abstract
Blue mussel (Mytilus edulis L.) is a popular, nutritional, and tasty mollusk. To better understand the composition of nutrients and improve further processing of the mussels, metabolomic approaches were used to analyze the free amino acids, 5'-nucleotides, and lipid compositions of different tissues. Our results showed that the viscera and gonad were rich in glutamine and glycine. Adenosine 5'-monophosphate, uridine 5'-monophosphate, guanosine 5'-monophosphate, and inosine 5'-monophosphate were abundant in the mantle, foot, and adductor muscle. Three main types of lipids, phospholipids (PLs), glycerides, and fatty acids (FAs), were semi-quantified. PLs were mainly distributed in the gonad of male mussels and viscera, gonad, and mantles of female mussels. FAs were relatively high in the viscera of males and in the gonad and viscera of females. The viscera of females were rich in phosphatidylcholine, such as 16:0/22:6 and 16:0/20:5. Triglycerides were the key lipids for distinguishing different tissues, especially 16:0/18:1/18:3 and 16:0/18:4/20:5.
Collapse
Affiliation(s)
- Li-Xin Ma
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Zheng
- Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Liu Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jia-Nan Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiu-Ping Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Da-Yong Zhou
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Bei-Wei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Nutritional Value of Sea Urchin Roe (Strongylocentrotidae)—Study of Composition and Storage Conditions. SEPARATIONS 2021. [DOI: 10.3390/separations8100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although the roe of sea urchins inhabiting the Far Eastern seas possesses many healing properties and may be used as a dietary product, a reduction and deterioration in its nutritional quality during storage occurs. Therefore, in order to make sea urchin products widely accessible to the world population, it is very important to have appropriate technology to keep the roe from spoiling. To store sea urchin roe for a long time, methods of pre-processing sea urchin gonads before freezing were tested. In terms of preserving organoleptic properties and nutritional quality, the most adequate procedure consists of a short period (20 or 30 s) of heat (boiling water) treatment of sea urchin roe after removal from the shell. This procedure results in an inactivation of enzymes that catalyze the hydrolytic processes of lipids and proteins during storage. After blanching and cooling, the roe was packed, frozen and kept at a temperature of −18 °C and −25 °C. The quality of sea urchin roe did not change during storage at the temperature of −18 °C for 6 months, and at the temperature of −25 °C for 10 months.
Collapse
|
16
|
Wang H, Zhao W, Ding B, Zhang Y, Huang X, Liu X, Zuo R, Chang Y, Ding J. Comparative lipidomics profiling of the sea urchin, Strongylocentrotus intermedius. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100900. [PMID: 34418782 DOI: 10.1016/j.cbd.2021.100900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023]
Abstract
Strongylocentrotus intermedius is an edible sea urchin and well-known for its nutritional value, such as a high content of polyunsaturated fatty acids (PUFAs). We carried out an untargeted lipidomics via high-resolution ultra-high-performance liquid chromatography - mass spectrometry (UPLC-MS) to highlight the features of the lipids profile of sea urchin gonad, which allowed for a more detailed interpretation of the accumulation of PUFAs with different abundances among sea urchins. For the first time, lipidomics profiling of lipid abundances in S. intermedius was demonstrated. We detected 11 PUFAs in sea urchin gonads, which represented >54.13% of the total fatty acid content. A total of 1552 lipid molecular species belonging to 36 lipid classes were identified. Lipidomics profiles data were analyzed using orthogonal partial least squares discriminant analysis (OPLS-DA) model and distinguished the PUFA abundances in both sexes of sea urchins. The significant differences in lipid molecules were highlighted and the major lipid classes identified were phosphatidylcholine (PC [19 species]) among females and triglycerides (TG [11 species]) among males. PC (42: 11) may be used as a potential marker for distinguishing high levels of PUFAs in sea urchin individuals, which as the result of the high level of PC (42:11). These data enrich the lipid profile library of aquatic products and provide a more reliable and refined biomarkers for the further research on fatty acid synthesis and metabolism in aquatic animals.
Collapse
Affiliation(s)
- Heng Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Wenfei Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Beichen Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yang Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Xiaofang Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Xiaoyu Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Rantao Zuo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
17
|
Wang X, Chen Q, Wang X, Cong P, Xu J, Xue C. Lipidomics Approach in High-Fat-Diet-Induced Atherosclerosis Dyslipidemia Hamsters: Alleviation Using Ether-Phospholipids in Sea Urchin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9167-9177. [PMID: 33961420 DOI: 10.1021/acs.jafc.1c01161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ether-phospholipids (ether-PLs) in sea urchins, especially eicosapentaenoic-acid-enriched plasmenyl phosphatidylethanolamine (PE-P) and plasmanyl phosphatidylcholine (PC-O), exhibit potential lipid-regulating effects. However, their underlying regulatory mechanisms have not yet been elucidated. Herein, we integrated an untargeted lipidomics strategy and biochemical analysis to investigate these mechanisms in high-fat-induced atherosclerotic hamsters. Dietary supplementation with PE-P and PC-O decreased total cholesterol and low-density lipoprotein cholesterol concentrations in serum. The lipid regulatory effects of PE-P were superior to those of PC-O. Additionally, 20 lipid molecular species, including phosphatidylethanolamine, cholesteryl ester, triacylglycerol, and phosphatidylinositol, were identified as potential lipid biomarkers in the serum of hamsters with PC-O and PE-P treatment (95% confidence interval; p < 0.05). The variations of lipids may be attributed to downregulation of adipogenesis genes and upregulation of lipid β-oxidation genes and bile acid biosynthesis genes. The improved lipid homeostasis by ether-PLs in sea urchins might be a key pathway underlying the antiatherosclerosis effect.
Collapse
Affiliation(s)
- Xincen Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Qinsheng Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
18
|
Mahomoodally MF, Sanaa DA, Zengin G, Gallo M, Montesano D. Traditional Therapeutic Uses of Marine Animal Parts and Derived Products as Functional Foods – A Systematic Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Mauritius
| | - Dilmar Aniisah Sanaa
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Mauritius
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk Universtiy, Konya, Turkey
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Differences in lipid composition of Bigeye tuna (Thunnus obesus) during storage at 0 °C and 4 °C. Food Res Int 2021; 143:110233. [PMID: 33992346 DOI: 10.1016/j.foodres.2021.110233] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to investigate the lipid oxidation and distribution in Bigeye tuna stored at 0 °C and 4 °C for 6 days. Tuna were evaluated by determining the peroxide value (POV), acid value (AV), anisidine value (AnV), polyene index, fluorescence ratio (FR), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) content, and major glycerophospholipid molecular species. The value of lipid oxidation indexes (POV, AV, AnV, FR, PC, PE and PI) increased as the storage time increased. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) results indicated that the major types of lipids included diacylglycerol (DAG), monoacylglycerol (MAG), phospholipid (PL), and triacylglycerol (TAG). At least 136 PC and 64 PE molecular species were identified in Bigeye tuna. The results of the confocal laser scanning microscope analysis indicated the distribution of TAG and PL particles. In addition, principal component analysis showed that the contents of PI and TAG were positively correlated with PC, polyene index and lipid content but negatively correlated with PI, POV, FR, AOV, AnV, MAG, and DAG, which might be explained by distinguishing the lipid parameters affecting lipid oxidation. Therefore, this study may provide a novel method to evaluate lipid changes and contribute to the balanced nutritional value of aquatic foods during cold storage.
Collapse
|
20
|
Murzina SA, Dgebuadze PY, Pekkoeva SN, Voronin VP, Mekhova ES, Thanh NTH. Lipids and Fatty Acids of the Gonads of Sea Urchin
Diadema setosum
(Echinodermata) From the Coastal Area of the Nha Trang Bay, Central Vietnam. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Svetlana A. Murzina
- Laboratory of Environmental Biochemistry Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences 11 Pushkinskaya Street Petrozavodsk Karelia 185910 Russia
| | - Polina Yu. Dgebuadze
- Laboratory of Behavior of Lower Vertebrates A.N. Severtsov Institute of Ecology and Evolution Russian Academy of Sciences 33 Leninskiy prospekt Moscow Moscow 119071 Russia
| | - Svetlana N. Pekkoeva
- Laboratory of Environmental Biochemistry Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences 11 Pushkinskaya Street Petrozavodsk Karelia 185910 Russia
| | - Viktor P. Voronin
- Laboratory of Environmental Biochemistry Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences 11 Pushkinskaya Street Petrozavodsk Karelia 185910 Russia
| | - Elena S. Mekhova
- Laboratory of Morphology and Ecology of Marine Invertebrates A.N. Severtsov Institute of Ecology and Evolution Russian Academy of Sciences 33 Leninskiy prospekt Moscow Moscow 119071 Russia
| | - Nguyen T. H. Thanh
- Coastal Branch Russian‐Vietnamese Tropical Research and Technology Center 30 Nguyen Thien Thuat Nha Trang Khánh Hòa 650000 Vietnam
| |
Collapse
|
21
|
Integrated analytical workflow for chromatographic profiling and metabolite annotation of a cytotoxic Phorbas amaranthus extract. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122720. [PMID: 33957353 DOI: 10.1016/j.jchromb.2021.122720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Phorbas is a widely studied genus of marine sponge and produce structurally rich cytotoxic metabolites. Still, only few studies have assessed metabolites present in Brazilian species. To circumvent redundancy, in this work, we applied and herein report the use of a scouting liquid chromatographic system associate to the design of experiment produced by the DryLab® software to obtain a fast and efficient chromatographic separation of the active hexane fraction, further enabling untargeted high-resolution mass spectrometry (HRMS) data. To this end, a crude hydroalcoholic extract of the sponge Phorbas amaranthus collected in Brazilian coast was prepared and partitioned. The cytotoxicity of the crude extract and the fractions was evaluated using tumor cell culture models. Fragmentation pathways assembled from HRMS data allowed the annotation of 18 known Phorbas metabolites, while 17 metabolites were inferred based on Global Natural Product Social Molecular Networking (GNPS), matching with a further 29 metabolites annotated through molecular subnetwork. The workflow employed demonstrates that chromatographic method development can be accelerated by the use of automated scouting systems and DryLab®, which is useful for profiling natural product libraries, as well as data curation by molecular clusters and should be incorporated to the tools of natural product chemists.
Collapse
|
22
|
|
23
|
Characterizing the phospholipid composition of six edible sea cucumbers by NPLC-Triple TOF-MS/MS. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Shang WH, Yan JN, Du YN, Cui XF, Su SY, Han JR, Xu YS, Xue CF, Zhang TT, Wu HT, Zhu BW. Functional properties of gonad protein isolates from three species of sea urchin: a comparative study. J Food Sci 2020; 85:3679-3689. [PMID: 32990386 DOI: 10.1111/1750-3841.15464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/29/2022]
Abstract
Sea urchin Mesocentrotus nudus, Glyptocidaris crenularis, and Strongylocentrotus intermedius gonad protein isolates (mnGPIs, gcGPIs, and siGPIs) were extracted by isoelectric solubilization/precipitation (ISP) from the defatted gonads, and their functional properties were compared. Sodium dodecyl sulfate polyacrylamide gel electrophoresis results showed the similar protein pattern between each protein isolate and defatted gonad, indicating the high efficiency of ISP processing for protein recovery. Amino acid profileconfirmed that the mnGPIs and siGPIs could be potential sources of essential amino acid in nature. As regard to functional properties, mnGPIs showed higher water- and oil- holding capacities followed bysiGPIs and gcGPIs and all protein isolates presented great foaming property. As for emulsifying activity index (EAI), mnGPIs, gcGPIs, and siGPIs showed the minimum solubility and EAI at pH 5, 3, and 4, respectively, and behaved a pH-dependent manner. The gcGPIs revealed the highest EAI from pH 6 to 8 among the samples. In addition, circular dichroism showed increased content of β-sheet at the expense of α-helix and β-turn, suggesting the structure denaturation of the protein isolates. Indeed, no statistical difference was observed between secondary structure of mnGPIs and siGPIs. Moreover, ISP processing increased free sulfhydryl content of sea urchin protein isolates, but no difference was observed among the samples. Furthermore, siGPIs revealed the highest amount of total sulfhydryl and disulfide bonds, whereas both defatted gonads and protein isolates from G. crenularis presented the maximum surface hydrophobicity. These results suggest that gonad protein isolates from three species of sea urchin possess various functionalities and therefore can be potentially applied in food system. PRACTICAL APPLICATION: Sea urchin M. nudus, G. crenularis, and S. intermedius gonads are edible, whereas the functional properties of protein isolates from sea urchin gonad remain unknown. In this case, the extraction and comparison of three species of sea urchin gonad protein isolates will not only confirm functional properties but also screen food ingredients with suitable functions. In this study, functionalities of protein isolates derived from M. nudus, G. crenularis, and S. intermedius gonads would provide potential application in bakery food and meat products or as emulsifier candidates in food system.
Collapse
Affiliation(s)
- Wen-Hui Shang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P.R. China.,College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, 572022, P.R. China
| | - Jia-Nan Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P.R. China
| | - Yi-Nan Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P.R. China
| | - Xiao-Fan Cui
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P.R. China
| | - Sheng-Yi Su
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P.R. China
| | - Jia-Run Han
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P.R. China
| | - Yun-Sheng Xu
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, 572022, P.R. China
| | - Chang-Feng Xue
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, 572022, P.R. China
| | - Tie-Tao Zhang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, 572022, P.R. China
| | - Hai-Tao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P.R. China.,National Engineering Research Center of Seafood, Dalian, 116034, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, 116034, P.R. China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P.R. China.,National Engineering Research Center of Seafood, Dalian, 116034, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, 116034, P.R. China
| |
Collapse
|
25
|
Sun T, Wang X, Cong P, Xu J, Xue C. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2530-2558. [PMID: 33336980 DOI: 10.1111/1541-4337.12603] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
With the advance in science and technology as well as the improvement of living standards, the function of food is no longer just to meet the needs of survival. Food science and its associated nutritional health issues have been increasingly debated. Lipids, as complex metabolites, play a key role both in food and human health. Taking advantages of mass spectrometry (MS) by combining its high sensitivity and accuracy with extensive selective determination of all lipid classes, MS-based lipidomics has been employed to resolve the conundrum of addressing both qualitative and quantitative aspects of high-abundance and low-abundance lipids in complex food matrices. In this review, we systematically summarize current applications of MS-based lipidomics in food field. First, common MS-based lipidomics procedures are described. Second, the applications of MS-based lipidomics in food science, including lipid composition characterization, adulteration, traceability, and other issues, are discussed. Third, the application of MS-based lipidomics for nutritional health covering the influence of food on health and disease is introduced. Finally, future research trends and challenges are proposed. MS-based lipidomics plays an important role in the field of food science, promoting continuous development of food science and integration of food knowledge with other disciplines. New methods of MS-based lipidomics have been developed to improve accuracy and sensitivity of lipid analysis in food samples. These developments offer the possibility to fully characterize lipids in food samples, identify novel functional lipids, and better understand the role of food in promoting healt.
Collapse
Affiliation(s)
- Tong Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, China
| |
Collapse
|
26
|
Yang J, Zhao Z, Hu K, Zhou C, Wang Y, Song S, Zhao J, Gong Z. Strongylocentrotus nudus lipids induce apoptosis in HepG2 cells through the induction of oxidative stress. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Characterization of lipid composition in the muscle tissue of four shrimp species commonly consumed in China by UPLC−Triple TOF−MS/MS. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Wang H, Ding J, Ding S, Chang Y. Integrated metabolomic and transcriptomic analyses identify critical genes in eicosapentaenoic acid biosynthesis and metabolism in the sea urchin Strongylocentrotus intermedius. Sci Rep 2020; 10:1697. [PMID: 32015446 PMCID: PMC6997175 DOI: 10.1038/s41598-020-58643-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Gonads are the only edible part of the sea urchin and have great potential as a health-promoting food for human consumption. Polyunsaturated fatty acids (PUFAs) are important necessary nutrients that determine not only the nutritional value of sea urchins but guarantee their normal growth and reproduction. However, the information on the molecular mechanisms of PUFA biosynthesis and metabolism in this species remains elusive. In this study, we used Strongylocentrotus intermedius as our model species and conducted integrated metabolomic and transcriptomic analyses of potentially critical genes involved in PUFA biosynthesis and metabolism during gonad growth and development, mainly focusing on eicosapentaenoic acid (EPA). We found six differentially accumulated metabolites associated with PUFA in the metabolomic analysis. More differentially expressed genes (DEGs) were related to PUFA in testis than ovary (1823 DEGs in testis and 1499 DEGs in ovary). We verified 12 DEGs by RNA-Seq results and found that Aldh7a1, Ecm3, Fads2, and Hsd17b12 genes had similar expression patterns in EPA concentration during gonad growth and development. In contrast, the other DEGs were downregulated and we inferred that EPA or PUFA may be metabolized as energy during certain periods. Our metabolic and genetic data will facilitate a better understanding of PUFA regulation networks during gonad growth and development in S. intermedius.
Collapse
Affiliation(s)
- Heng Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| | - Siyu Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
29
|
Li H, Song Y, Zhang H, Wang X, Cong P, Xu J, Xue C. Comparative lipid profile of four edible shellfishes by UPLC-Triple TOF-MS/MS. Food Chem 2019; 310:125947. [PMID: 31841939 DOI: 10.1016/j.foodchem.2019.125947] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022]
Abstract
An ultra performance liquid chromatography-Triple time of flight mass spectrometry (UPLC-Triple TOF-MS/MS) method were established to characterize the lipid profiles in four shellfish species. More than 600 lipid molecular species belonging to 14 classes were detected. Phospholipids (PLs) were predominant in Chlamys farreri (54.9%) and glycerolipids (GLs) were dominant in Ostrea gigas (51.6%). PLs that contained polyunsaturated fatty acids (PUFAs) such as PC (16:0/20:5), PC (16:0/22:6) and PE (18:0/22:6) were the main molecular species. Especially, the percentage of sphingolipids (SLs) in four shellfishes is considerable (18.8-38.6%), the characterization of their special long-chain base (LCB) structure (mainly d19:3) and N-acyl group (mainly 16:0) was realized. Several SL subclasses with low abundance in four shellfish species, such as ceramide 2-aminoethylphosphonate (CAEP) and deoxy-ceramide (DeoxyCer), were also detected. These active lipids identified by this method have potential value in revealing the nutritional value of shellfishes and serving as biomarkers for distinguishing different shellfishes.
Collapse
Affiliation(s)
- He Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Hongwei Zhang
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutang Xia Road, Qingdao, Shandong Province 266500, China
| | - Xuesong Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China; Qingdao National Laboratory for Marine Science and Technology, No. 1, Wen Hai Road, Qingdao, Shandong Province 266235, China.
| |
Collapse
|
30
|
Wang H, Ding J, Ding S, Chang Y. Metabolomic changes and polyunsaturated fatty acid biosynthesis during gonadal growth and development in the sea urchin Strongylocentrotus intermedius. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100611. [PMID: 31376663 DOI: 10.1016/j.cbd.2019.100611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/10/2019] [Accepted: 07/24/2019] [Indexed: 01/20/2023]
Abstract
Strongylocentrotus intermedius is an important commercial species of sea urchin distributed in the coastal waters of China. However, the metabolomic changes that accompany its gonadal growth and development stages remain unclear. In this study, we have histologically observed gonad growth stages, analyzed the fatty acid composition, and employed an untargeted metabolomic approach to investigate the metabolites associated with the gonadal growth and development of S. intermedius, as well as the biosynthesis and metabolism of polyunsaturated fatty acids (PUFAs) at different stages and in different sexes. The gonad mass of sea urchin increased from 0.70 ± 0.18 g in January (at the recovering stage) to 8.78 ± 2.89 g in July (the reproductive stage), with the GSI increasing from 4.02 ± 0.88% to 16.86 ± 2.79%. We have analyzed 34 types of fatty acids, such as arachidonic acid, eicosapentaenoic acid, etc., of which PUFAs were the dominant fatty acid class in this species, accounting for >48.55% of the total. In the metabolomic analysis, linolelaidic acid, sciadonic acid, cis-8,11,14,17-eicosatetraenoic acid, adrenic acid, docosapentaenoic acid, and tetracosapentaenoic acid were detected in the differentially expressed metabolites of the unsaturated fatty acids biosynthesis pathway. We found that the most significant functional pathways during gonadal growth and development were "arachidonic acid metabolism", "alpha-linolenic acid metabolism" and "linoleic acid metabolism", which are all related to fatty acid metabolism. These results will provide valuable information on the possible presence of both exogenous and endogenous fatty acids in sea urchin gonads and the metabolomic changes in S. intermedius during gonadal growth periods, and will further our understanding of the intermediary metabolism and the molecular bases of growth traits in this species.
Collapse
Affiliation(s)
- Heng Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| | - Siyu Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
31
|
Quantitative Proteome Reveals Variation in the Condition Factor of Sea Urchin Strongylocentrotus nudus during the Fishing Season Using an iTRAQ-based Approach. Mar Drugs 2019; 17:md17070397. [PMID: 31284417 PMCID: PMC6669438 DOI: 10.3390/md17070397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
To investigate the variation in the condition factor of the sea urchin Strongylocentrotus nudus (S. nudus), gonads were collected in May (MAY), June (JUN), and July (JUL), at the beginning (AUG-b) and end of August (AUG-e). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) detection of the gonads revealed an obvious enhancement of the band at about 37 kDa from July, which was identified as transforming growth factor-beta-induced protein ig-h3 (TGFBI) by nanoLC-ESI-MS/MS. Gonadal proteins were identified by isobaric tagging for relative and absolute quantitation (iTRAQ), and regulation of the identified proteins in pairs of the collected groups was observed. A total of 174 differentially expressed proteins (DEPs) were identified. Seven of the DEPs showed significant correlations with both the gonad index (GI) and protein content. These correlations included 6-phosphogluconate dehydrogenase, decarboxylating isoform X2 (6PGD), CAD protein, myoferlin isoform X8, ribosomal protein L36 (RL36), isocitrate dehydrogenase [NADP], mitochondrial isoform X2 (IDH), multifunctional protein ADE2 isoform X3, sperm-activating peptides (SAPs) and aldehyde dehydrogenase, and mitochondrial (ALDH). However, TGFBI had no correlation with gonad index (GI) or protein content. 6PGD, IDH, multifunctional protein ADE2 isoform X3, and ALDH were shown to interact with each other and might play key roles in changing the condition factor of S. nudus gonads.
Collapse
|
32
|
Gao Y, Wu S. Comprehensive analysis of the phospholipids and phytosterols in Schisandra chinensis oil by UPLC-Q/TOF- MSE. Chem Phys Lipids 2019; 221:15-23. [DOI: 10.1016/j.chemphyslip.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/26/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023]
|
33
|
Rocha F, Rocha AC, Baião LF, Gadelha J, Camacho C, Carvalho ML, Arenas F, Oliveira A, Maia MRG, Cabrita AR, Pintado M, Nunes ML, Almeida CMR, Valente LMP. Seasonal effect in nutritional quality and safety of the wild sea urchin Paracentrotus lividus harvested in the European Atlantic shores. Food Chem 2019; 282:84-94. [PMID: 30711109 DOI: 10.1016/j.foodchem.2018.12.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Filipa Rocha
- CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Nórton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - A Cristina Rocha
- CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Nórton de Matos, S/N, 4450-208 Matosinhos, Portugal; MARE-UC, Incubadora de Empresas da Figueira da Foz, Parque Industrial e Empresarial da Figueira da Foz (Laboratório MAREFOZ), Rua das Acácias Lote 40A, 3090-380 Figueira da Foz, Portugal
| | - Luís F Baião
- CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Nórton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Juliana Gadelha
- CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Nórton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Carolina Camacho
- CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Nórton de Matos, S/N, 4450-208 Matosinhos, Portugal; Portuguese Institute of Sea and Atmosphere (IPMA, I.P.), Division of Aquaculture and Seafood Upgrading, Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal
| | - M Luísa Carvalho
- LIBPhys-UNL, Physics Department, Faculty of Sciences and Technology New University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Francisco Arenas
- CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Nórton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana Oliveira
- CBQF, Faculty of Biotechnology, Portuguese Catholic University, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Margarida R G Maia
- ICBAS, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; REQUIMTE, LAQV, ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Ana R Cabrita
- ICBAS, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; REQUIMTE, LAQV, ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Manuela Pintado
- CBQF, Faculty of Biotechnology, Portuguese Catholic University, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - M Leonor Nunes
- CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Nórton de Matos, S/N, 4450-208 Matosinhos, Portugal; Portuguese Institute of Sea and Atmosphere (IPMA, I.P.), Division of Aquaculture and Seafood Upgrading, Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal
| | - C Marisa R Almeida
- CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Nórton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Luisa M P Valente
- CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Nórton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|