1
|
Xu J, Lu J, Fu S, Li N, Zhao Y, Wang K, Liu Z, Chen T, Huang J, Zhu M. Simultaneous detection of amino acids and short-chain fatty acids in tea using rapid pre-column derivatization coupled with GC-MS: Exploring their spatial distribution in tea trees and the impact of processing techniques on their content. Food Chem 2025; 480:143800. [PMID: 40117814 DOI: 10.1016/j.foodchem.2025.143800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
Amino acids (AAs) and short-chain fatty acids (SCFAs) are key to tea's flavor and health benefits. This study developed a novel GC-MS and GC-FID method using rapid (3 min), high-sensitivity (0.00062 μg mL-1 < LOD < 0.04964 μg mL-1) pre-column derivatization with propyl chloroformate to simultaneously measure 17 AAs and 9 SCFAs. The spatial distribution analysis revealed total AAs and theanine were enriched in tender stems, buds, and tender leaves, while mature and older leaves had lower concentrations. Within the same leaf, theanine, glutamic acid, and acetic acid are primarily located near the leaf veins. Six teas from the same raw material were analyzed for processing impacts, showing green, white, yellow, and oolong teas had higher AA and theanine levels than black and dark teas. Certain dark teas exhibited elevated acetic acid levels compared to other teas. This study enhances our understanding of AA and SCFA profiles, providing valuable insights for tea research.
Collapse
Affiliation(s)
- Junren Xu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Jing Lu
- Technology Center of Changsha Customs, Hunan Key Laboratory of Food Safety Science & Technology, Changsha 410004, PR China
| | - Shanliang Fu
- Technology Center of Changsha Customs, Hunan Key Laboratory of Food Safety Science & Technology, Changsha 410004, PR China
| | - Na Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Yiqiao Zhao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Taolin Chen
- Tea College of Guizhou University, Guiyang 550025, China.
| | - Jianan Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China.
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China.
| |
Collapse
|
2
|
Mao M, Zhang Y, Lin X, Li B, Chen Z. The CIN-like transcription factor CsTCP2 positively regulates the theanine biosynthesis in Camellia sinensis. Int J Biol Macromol 2025; 306:141619. [PMID: 40049498 DOI: 10.1016/j.ijbiomac.2025.141619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Theanine is a non-protein amino acid that accumulates only in the tea plant and has high economic value and unique health benefits. Recently some theanine synthases have been identified, but the transcriptional regulatory mechanism of theanine anabolism remains largely unclear. In this work, transcription factor CsTCP2, which belonged to the CIN subclass of the TCP gene family, was cloned from cDNA of Yinghong 9,and found that the CsTCP2 localized in nucleus and exhibited transcriptional activation activity in tobacco and yeast cells. Moreover, Dual luciferase, Y1H, and EMSA analysis revealed that CsTCP2 can promote CsGS1b expression by binding to the MeJA-responsive cis-acting element of proCsGS1b. Overexpression or knockdown of CsTCP2 significantly increased or decreased the expression of CsGS1b and the accumulation of theanine in callus, respectively. In addition, it was found that CsTCP2 is involved in the photosynthesis pathway and various free amino acid synthesis pathways, which can regulate theanine synthesis by influencing the photosynthesis, as well as the accumulation of free amino acids can positively determine the quality of tea plants.
Collapse
Affiliation(s)
- Miaomiao Mao
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China.
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China.
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China.
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
3
|
Wang Y, Cao X, Ma J, Liu S, Jin X, Liu B. Unveiling the Longevity Potential of Natural Phytochemicals: A Comprehensive Review of Active Ingredients in Dietary Plants and Herbs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24908-24927. [PMID: 39480905 PMCID: PMC11565747 DOI: 10.1021/acs.jafc.4c07756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Ancient humans used dietary plants and herbs to treat disease and to pursue eternal life. Today, phytochemicals in dietary plants and herbs have been shown to be the active ingredients, some of which have antiaging and longevity-promoting effects. Here, we summarize 210 antiaging phytochemicals in dietary plants and herbs, systematically classify them into 8 groups. We found that all groups of phytochemicals can be categorized into six areas that regulate organism longevity: ROS levels, nutrient sensing network, mitochondria, autophagy, gut microbiota, and lipid metabolism. We review the role of these processes in aging and the molecular mechanism of the health benefits through phytochemical-mediated regulation. Among these, how phytochemicals promote longevity through the gut microbiota and lipid metabolism is rarely highlighted in the field. Our understanding of the mechanisms of phytochemicals based on the above six aspects may provide a theoretical basis for the further development of antiaging drugs and new insights into the promotion of human longevity.
Collapse
Affiliation(s)
- Yu Wang
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin Ma
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41390, Sweden
| |
Collapse
|
4
|
Yao W, Huang X, Xie N, Yan H, Li J, Wang K. Acetylation participation in theanine biosynthesis: Insights from transcriptomics, proteomics, and acetylomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109134. [PMID: 39341181 DOI: 10.1016/j.plaphy.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Acetylation, a crucial post-translational modification, regulates transcriptional activation, enzymatic activity, and protein interactions, playing vital roles in plant physiology and metabolism. However, the regulatory mechanism of acetylation in the biosynthesis of theanine remains unexplored. This study aims to elucidate the regulatory role of acetylation on the biosynthesis of theanine using transcriptomics, proteomics, and acetylomics in tea leaves from three tea plant cultivars with markedly different theanine content. Nineteen theanine biosynthesis-related genes were identified in the transcriptome, with ten showing significant correlation with theanine content. Proteomic analysis revealed elevated expression levels of proteins associated with the biosynthesis of theanine precursor glutamate in leaves with high theanine content, such as GOGAT and GDH. Unexpectedly, the expression level of TS was inversely correlated with the theanine content in leaves. Several highly expressed acetylated proteins and sites, such as TS, GS, and GOGAT, were found in the acetylome of leaves with high theanine content. Acetylation at lysine 304 (K304) of the TS protein may significantly contribute to the abundant accumulation of theanine in leaves. Our findings indicate that acetylation modification may play a pivotal role in theanine biosynthesis, thereby offering novel insights into the development of high-theanine tea plant germplasm resources.
Collapse
Affiliation(s)
- Wenyuan Yao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Nianci Xie
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Hao Yan
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Juan Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
5
|
Fan C, Qi J, Cong Y, Zhang C. Enhanced L-theanine production through semi-rational design of γ-glutamylmethylamide synthetase from Methylovorus mays. Enzyme Microb Technol 2024; 180:110481. [PMID: 39047348 DOI: 10.1016/j.enzmictec.2024.110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
The thermal instability of γ-glutamylmethylamide synthetase (GMAS) from Methylovorus mays has imposed limitations on its industrial applications, affecting both stability and activity at reaction temperatures. In this study, disulfide bridges were introduced through a combination of directed evolution and rational design to enhance GMAS stability. Among the variants that we generated, M12 exhibited a 1.46-fold improvement in relative enzyme activity and a 6.23-fold increase in half-life at 40℃ compared to the wild-type GMAS. Employing variant M12 under optimal conditions, we achieved the production of 645.7 mM (112.49 g/L) L-theanine with a productivity of 29.3 mM/h, from 800 mM substrate in an ATP regeneration system. Our strategy significantly enhances the biosynthesis efficiency of L-theanine by preserving the structural stability of the enzyme during the catalysis process.
Collapse
Affiliation(s)
- Chao Fan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China.
| | - Jiakun Qi
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China.
| | - Yunhan Cong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China.
| | - Chunzhi Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Qi D, Shi Y, Lu M, Ma C, Dong C. Effect of withering/spreading on the physical and chemical properties of tea: A review. Compr Rev Food Sci Food Saf 2024; 23:e70010. [PMID: 39267185 DOI: 10.1111/1541-4337.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Withering and spreading, though slightly differing in their parameters, share the same aim of moisture reduction in tea leaves, and they have a strong impact on the physical and chemical properties of tea. Even though researchers tend to pay close attention to the characteristic crafts of different teas, increasing investigations begin to focus on the withering process due to its profound effects on the composition and content of quality-related compounds. This review provides an overview of tea withering process to address questions comprehensively during withering. Hence, it is expected in this review to figure out factors that affect withering results, the way withering influences the physical and chemical properties of withered leaves and tea quality, and intelligent technologies and devices targeted at withering processes to promote the modernization of the tea industry. Herein, several key withering parameters, including duration, temperature, humidity, light irradiation, airflow, and more, are tailored to different tea types, demanding further exploration of advanced withering devices and real-time monitoring systems. The development of real-time monitoring technology enables objective and real-time adjustment of withering status in order to optimize withering results. Tea quality, including taste, aroma, and color quality, is first shaped during withering due to the change of composition and content of quality-related metabolites through (non)enzymatic reactions, which are easily influenced by the factors above. A thorough understanding of withering is key to improving tea quality effectively and scientifically.
Collapse
Affiliation(s)
- Dandan Qi
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yali Shi
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Min Lu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chengying Ma
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, Guangdong, China
| | - Chunwang Dong
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
7
|
He M, Tang CY, Wang T, Xiao MJ, Li YL, Li XZ. Analysis of Metabolic Profiles and Antioxidant Activity of Chinese Cordyceps, Ophiocordyceps sinensis, and Paecilomyces hepiali Based on Untargeted Metabolomics. BIOLOGY 2024; 13:683. [PMID: 39336110 PMCID: PMC11428516 DOI: 10.3390/biology13090683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
Chinese cordyceps (GL) is a traditional medicinal fungus, with Ophiocordyceps sinensis (O. sinensis, BL) and Paecilomyces hepiali (P. hepiali, JSB) being fungi isolated from wild Chinese cordyceps. These three species share similar chemical composition and pharmacological effects. Existing studies have primarily compared the metabolites of Chinese cordyceps and O. sinensis, overlooking the assessment of antioxidant capacity in Chinese cordyceps, P. hepiali, and O. sinensis. In this study, LC-MS/MS was employed to analyze metabolites in GL, JSB, and BL. Utilizing principal component analysis (PCA), supervised orthogonal partial least squares discriminant analysis (OPLS-DA), and hierarchical cluster analysis (HCA), it was observed that the majority of differential metabolites (DMs) primarily accumulated in organic acids and derivatives, lipids and lipid-like molecules, and organoheterocyclic compounds. Antioxidant activity analysis indicated that GL exhibited the higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability (DPPH•, scavenging rate is 81.87 ± 0.97%), hydroxyl free radical scavenging capacity (•OH, scavenging rate is 98.10 ± 0.60%), and superoxide anion radical scavenging capacity (O2•-, scavenging rate is 69.74 ± 4.36%), while JSB demonstrated the higher FRAP total antioxidant capacity of 8.26 μmol Trolox/g (p < 0.05). Correlation analysis revealed a positive correlation between DMs (fatty acyls and amino acids) and DPPH•, FRAP, •OH, and O2•- (p < 0.05). Additionally, glycerophospholipid DMs were found to be positively correlated with FRAP (p < 0.05). Through KEGG pathway analysis, it was determined that the accumulation of DMs in pathways such as cutin, suberine and wax biosynthesis has a higher impact on influencing the antioxidant activity of the samples. These results shed light on the antioxidant capacity and metabolic characteristics of Chinese cordyceps and its substitutes and offer valuable insights into how different DMs impact the strength of antioxidant activity, aiding in the advancement and application of Chinese cordyceps and its substitutes.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (C.-Y.T.); (T.W.); (M.-J.X.); (Y.-L.L.)
| |
Collapse
|
8
|
Chen L, Chen G, Gai T, Zhou X, Zhu J, Wang R, Wang X, Guo Y, Wang Y, Xie Z. L-Theanine Prolongs the Lifespan by Activating Multiple Molecular Pathways in Ultraviolet C-Exposed Caenorhabditis elegans. Molecules 2024; 29:2691. [PMID: 38893565 PMCID: PMC11173996 DOI: 10.3390/molecules29112691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
L-theanine, a unique non-protein amino acid, is an important bioactive component of green tea. Previous studies have shown that L-theanine has many potent health benefits, such as anti-anxiety effects, regulation of the immune response, relaxing neural tension, and reducing oxidative damage. However, little is known concerning whether L-theanine can improve the clearance of mitochondrial DNA (mtDNA) damage in organisms. Here, we reported that L-theanine treatment increased ATP production and improved mitochondrial morphology to extend the lifespan of UVC-exposed nematodes. Mechanistic investigations showed that L-theanine treatment enhanced the removal of mtDNA damage and extended lifespan by activating autophagy, mitophagy, mitochondrial dynamics, and mitochondrial unfolded protein response (UPRmt) in UVC-exposed nematodes. In addition, L-theanine treatment also upregulated the expression of genes related to mitochondrial energy metabolism in UVC-exposed nematodes. Our study provides a theoretical basis for the possibility that tea drinking may prevent mitochondrial-related diseases.
Collapse
Affiliation(s)
- Liangwen Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
| | - Tingting Gai
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Xiuhong Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
| | - Jinchi Zhu
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Ruiyi Wang
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Xuemei Wang
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Yujie Guo
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Yun Wang
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
| |
Collapse
|
9
|
Wang H, Feng X, Blank I, Zhu Y, Liu Z, Ni L, Lin CC, Zhang Y, Liu Y. Differences of Typical Wuyi Rock Tea in Taste and Nonvolatiles Profile Revealed by Multisensory Analysis and LC-MS-Based Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8715-8730. [PMID: 38564531 DOI: 10.1021/acs.jafc.3c08694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Wuyi Rock tea, specifically Shuixian and Rougui, exhibits distinct sensory characteristics. In this study, we investigated the sensory and metabolite differences between Shuixian and Rougui. Quantitative description analysis revealed that Rougui exhibited higher intensity in bitter, thick, harsh, and numb tastes, while Shuixian had stronger salty and umami tastes. Nontargeted metabolomics identified 151 compounds with 66 compounds identified as key differential metabolites responsible for metabolic discrimination. Most of the catechins and flavonoids were enriched in Rougui tea, while epigallocatechin-3,3'-di-O-gallate, epigallocatechin-3,5-di-O-gallate, gallocatechin-3,5-di-O-gallate, isovitexin, and theaflavanoside I were enriched in Shuixian tea. Catechins, kaempferol, quercetin, and myricetin derivatives were positively correlated with bitter taste and numb sensation. Sour taste was positively correlated to organic acids. Amino acids potentially contributed to salty and umami tastes. These results provide further insights into the taste characteristics and the relationship between taste attributes and specific metabolites in Wuyi Rock tea.
Collapse
Affiliation(s)
- Haoli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Imre Blank
- IBK Food & Beverage Consultancy Sàrl, 1073 Savigny, Switzerland
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhibin Liu
- Institute of Food Science &Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Li Ni
- Institute of Food Science &Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan 30015, China
| | - Yin Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Xu W, Xiang X, Lin L, Gong ZH, Xiao WJ. l-Theanine delays d-galactose-induced senescence by regulating the cell cycle and inhibiting apoptosis in rat intestinal cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2073-2084. [PMID: 37919877 DOI: 10.1002/jsfa.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Intestinal senescence is associated with several aging-related diseases. l-Theanine (LTA) has demonstrated strong potential as an antioxidant and antisenescence agent. This study investigated the regulatory effect of LTA on cellular senescence using an in vitro model of d-galactose (D-Gal)-induced senescence in the rat epithelial cell line, intestinal epithelioid cell-6 (IEC-6). RESULTS Treatment of IEC-6 cells with 40 mg/mL D-Gal for 48 h resulted in the successful development of the senescent cell model. Compared with D-Gal alone, both LTA preventive and delayed intervention increased cell viability and the ratio of JC-1 monomers to aggregates, increased the antioxidant capacity, and decreased the advanced glycation end product (AGE) levels and the overall number of senescent cells. Preventive and delayed intervention with 1000 μM LTA alleviated the D-Gal-induced cell cycle arrest by regulating p38, p53, CDK4, and CDK6 expression at the mRNA and protein levels, and further induced CycD1 proteins. Moreover, LTA preventive intervention reduced apoptosis to a greater degree than delayed intervention by upregulating the expression of the receptors of AGEs, Bax, Bcl-2, and NF-κB at the mRNA and protein levels. CONCLUSION Our findings indicate that LTA intervention could attenuate senescence in IEC-6 cells by regulating the cell cycle and inhibiting apoptosis. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Xi Xiang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Zhi-Hua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Wen-Jun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Peng Y, Du Z, Wang X, Wu R, Zheng C, Han W, Liu L, Gao F, Liu G, Liu B, Hao Z, Yu X. From heat to flavor: Unlocking new chemical signatures to discriminate Wuyi rock tea under light and moderate roasting. Food Chem 2024; 431:137148. [PMID: 37598651 DOI: 10.1016/j.foodchem.2023.137148] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Roasting is crucial for the distinct flavor of Wuyi rock tea (WRT). This study applied untargeted metabolomics to investigate the effects of roasting on 139 WRT samples roasted at light fire (LF) or moderate fire (MF) intensities. Compared to LF, MF roasting led to a decrease in the cis/trans flavanol ratio by 56% and theanine by 85%, while increasing the levels of N-ethyl-2-pyrrolidione-substituted flavanols (EPSFs), flavonol aglycones and flavone C-glycosides. Two new roast markers, 3-p-coumaroyl 1,5-lactone and 4-p-coumaroyl 1,5-lactone, were identified in WRT and their formation increased with roasting temperature. MF roasting facilitated the formation of diverse heterocycles (e.g., pyrazines) and aldehydes (e.g., (Z)-4-heptenal and (E,E)-2.4-decadienal) that contributed to the augmented roasted and fatty odors in WRT. Additionally, the Maillard product furfuryl methyl ether was solely detected in MF samples. These findings provide novel insights into roast markers in WRT with implications for improving quality control measures during tea roasting.
Collapse
Affiliation(s)
- Yifei Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenghua Du
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaxia Wang
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruimei Wu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zheng
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Han
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Gao
- Fujian Farming Technology Extension Center, Fuzhou 350003, China
| | - Guoying Liu
- Wuyishan Institute of Agricultural Sciences, Wuyishan 354300, China
| | | | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaomin Yu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Liu Z, Li Z, Zheng Z, Li N, Mu S, Ma Y, Zhou Z, Yan J, Lu C, Wang W, Zhang H. Effects of L-theanine on intestinal morphology, barrier function, and MAPK signaling pathways in diquat-challenged piglets. Anim Biotechnol 2023; 34:1112-1119. [PMID: 34904512 DOI: 10.1080/10495398.2021.2013857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study aimed to explore the protective effects of L-theanine supplementation on the diquat-challenged weaned piglets. A total of 160 weaned piglets were randomly divided into 4 groups using a 2 × 2 two-factor design, there were 4 replicates per group and 10 pigs per replicate. Piglets were fed diets (with 1000 mg/kg L-theanine addition or not), then challenged with diquat or saline on day 7. 21 days after challenge, two pigs from each replicate were selected for sample collection. Results showed that supplement with 1000 mg/kg L-theanine down-regulated the diarrhea rate, serum D-lactate level, tumor necrosis factor-α, and phosphorylation of extracellular regulated protein kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) signaling in pigs without diquat challenge (p < 0.05). While for diquat-challenged piglets, L-theanine addition increased average daily gain, jejunum villus height, and interferon-γ level (p < 0.05). Meanwhile, L-theanine addition decreased the diarrhea rates and mortality, serum D-lactate level, and phosphorylation of ERK and JNK in diquat-challenged pigs (p < 0.05). These results demonstrate that L-theanine pretreatment could alleviate diquat-induced oxidative stress and improve intestinal barrier function in diquat-challenged weaned piglets, which can be attributed to suppression of MAPK phosphorylation signaling pathways.
Collapse
Affiliation(s)
- Zhengqun Liu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zeqing Li
- Tianjin Agricultural Development Service Center, Tianjin, China
| | - Zi Zheng
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Ning Li
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Shuqin Mu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Yong Ma
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Zhijiang Zhou
- College of Chemical Engineering, Tianjin University, Tianjin, China
| | - Jun Yan
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Chemical Engineering, Tianjin University, Tianjin, China
| | - Chunlian Lu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenjie Wang
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Deng H, Liu J, Xiao Y, Wu JL, Jiao R. Possible Mechanisms of Dark Tea in Cancer Prevention and Management: A Comprehensive Review. Nutrients 2023; 15:3903. [PMID: 37764687 PMCID: PMC10534731 DOI: 10.3390/nu15183903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is one of the most popular drinks in the world. Dark tea is a kind of post-fermented tea with unique sensory characteristics that is produced by the special fermentation of microorganisms. It contains many bioactive substances, such as tea polyphenols, theabrownin, tea polysaccharides, etc., which have been reported to be beneficial to human health. This paper reviewed the latest research on dark tea's potential in preventing and managing cancer, and the mechanisms mainly involved anti-oxidation, anti-inflammation, inhibiting cancer cell proliferation, inducing cancer cell apoptosis, inhibiting tumor metastasis, and regulating intestinal flora. The purpose of this review is to accumulate evidence on the anti-cancer effects of dark tea, the corresponding mechanisms and limitations of dark tea for cancer prevention and management, the future prospects, and demanding questions about dark tea's possible contributions as an anti-cancer adjuvant.
Collapse
Affiliation(s)
- Huilin Deng
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Jia Liu
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau, China;
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China;
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| |
Collapse
|
14
|
Hersant H, He S, Maliha P, Grossberg G. Over the Counter Supplements for Memory: A Review of Available Evidence. CNS Drugs 2023; 37:797-817. [PMID: 37603263 DOI: 10.1007/s40263-023-01031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
In 2021, the Global Brain Health Supplement Industry Market size was valued at US$7.6 billion. It is predicted to increase to US$15.59 billion by 2030. Memory and its enhancement are a segment of the market that comprised the highest global revenue share in 2021. In the USA alone, dietary supplement sales reached US$18 billion in 2018. The US Food and Drug Administration (FDA) does not have the authority to approve dietary supplements' safety, effectiveness, or labeling before products go on the market. The FDA often does not even review supplements before they go to market. Supplement manufacturers are thus responsible for ensuring their products are safe and that their claims are truthful. An extensive review of current supplements on the market was performed by surveying memory products for sale at local and national pharmacies and grocery stores. A list of 103 supplements was compiled and the ingredients in these memory supplements were reviewed. The 18 most common ingredients in these supplements were identified. Each of the supplements included at least one of the 18 most common ingredients. Scientific data relative to these ingredients and their effect on memory was searched using PubMed and Cochrane library databases. Currently, there is no compelling evidence for use of apoaequorin, coenzyme Q10, coffee extracts, L-theanine, omega-3 fatty acids, vitamin B6, vitamin B9, or vitamin B12 supplementation for memory. On the other hand, there is some current evidence for memory benefit from supplementation with ashwagandha, choline, curcumin, ginger, Lion's Mane, polyphenols, phosphatidylserine, and turmeric. There are current studies with mixed results regarding the benefit of carnitine, gingko biloba, Huperzine A, vitamin D, and vitamin E supplementation for memory. Dietary supplements geared toward improving cognition are a billion-dollar industry that continues to grow despite lacking a solid scientific foundation for their marketing claims. More rigorous studies are needed relative to the long-term use of these supplements in homogenous populations with standardized measurements of cognition. Health care providers need to be aware of any and all supplements their older adult patients may be consuming and be educated about their side effects and interactions with prescription medications. Lastly, the FDA needs to take an active position relative to monitoring marketed supplements regarding safety, purity and claims of efficacy.
Collapse
Affiliation(s)
- Haley Hersant
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA.
| | - Sean He
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| | - Peter Maliha
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| | - George Grossberg
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| |
Collapse
|
15
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
16
|
Qi D, Lu M, Li J, Ma C. Metabolomics Reveals Distinctive Metabolic Profiles and Marker Compounds of Camellia ( Camellia sinensis L.) Bee Pollen. Foods 2023; 12:2661. [PMID: 37509753 PMCID: PMC10378613 DOI: 10.3390/foods12142661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Camellia bee pollen (CBP) is a major kind of bee product which is collected by honeybees from tea tree (Camellia sinensis L.) flowers and agglutinated into pellets via oral secretion. Due to its special healthcare value, the authenticity of its botanical origin is of great interest. This study aimed at distinguishing CBP from other bee pollen, including rose, apricot, lotus, rape, and wuweizi bee pollen, based on a non-targeted metabolomics approach using ultra-high performance liquid chromatography-mass spectrometry. Among the bee pollen groups, 54 differential compounds were identified, including flavonol glycosides and flavone glycosides, catechins, amino acids, and organic acids. A clear separation between CBP and all other samples was observed in the score plots of the principal component analysis, indicating distinctive metabolic profiles of CBP. Notably, L-theanine (864.83-2204.26 mg/kg) and epicatechin gallate (94.08-401.82 mg/kg) were identified exclusively in all CBP and were proposed as marker compounds of CBP. Our study unravels the distinctive metabolic profiles of CBP and provides specific and quantified metabolite indicators for the assessment of authentic CBP.
Collapse
Affiliation(s)
- Dandan Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Tea Research Institute, Shangdong Academy of Agricultural Sciences, Jinan 250000, China
| | - Meiling Lu
- Agilent Technologies (China) Co., Ltd., Beijing 100102, China
| | - Jianke Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
17
|
Chang M, Ma J, Sun Y, Tian L, Liu L, Chen Q, Zhang Z, Wan X, Sun J. γ-Glutamyl-transpeptidase CsGGT2 functions as light-activated theanine hydrolase in tea plant (Camellia sinensis L.). PLANT, CELL & ENVIRONMENT 2023; 46:1596-1609. [PMID: 36757089 DOI: 10.1111/pce.14561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Theanine is an important secondary metabolite endowing tea with umami taste and health effects. It is essential to explore the metabolic pathway and regulatory mechanism of theanine to improve tea quality. Here, we demonstrated that the expression patterns of CsGGT2 (γ-glutamyl-transpeptidase), participated in theanine synthesis in vitro in our previous research, are significantly different in the aboveground and underground tissues of tea plants and regulated by light. Light up-regulated the expression of CsHY5, directly binding to the promoter of CsGGT2 and acting as an activator of CsGGT2, with a negative correlation with theanine accumulation. The enzyme activity assays and transient expression in Nicotiana benthamiana showed that CsGGT2, acting as bifunctional protein, synthesize and degrade theanine in vitro and in planta. The results of enzyme kinetics, Surface plasmon resonance (SPR) assays and targeted gene-silencing assays showed that CsGGT2 had a higher substrate affinity of theanine than that of ethylamine, and performed a higher theanine degradation catalytic efficiency. Therefore, light mediates the degradation of theanine in different tissues by regulating the expression of the theanine hydrolase CsGGT2 in tea plants, and these results provide new insights into the degradation of theanine mediated by light in tea plants.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Liying Tian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
- College of Horticulture, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| |
Collapse
|
18
|
Robescu MS, Alcántara AR, Calvio C, Morelli CF, Speranza G, Ubiali D, Bavaro T. l-Theanine Goes Greener: A Highly Efficient Bioprocess Catalyzed by the Immobilized γ-Glutamyl Transferase from Bacillus subtilis. CHEMSUSCHEM 2023; 16:e202202108. [PMID: 36655933 DOI: 10.1002/cssc.202202108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Indexed: 06/17/2023]
Abstract
l-Theanine (l-Th) was synthesized by simply mixing the reactants (l-glutamine and ethylamine in water) at 25 °C and Bacillus subtilis γ-glutamyl transferase (BsGGT) covalently immobilized on glyoxyl-agarose according to a methodology previously reported by our research group; neither buffers, nor other additives were needed. Ratio of l-glutamine (donor) to ethylamine (acceptor), pH, enzymatic units (IU), and reaction time were optimized (molar ratio of donor/acceptor=1 : 8, pH 11.6, 1 IU mL-1 , 6 h), furnishing l-Th in 93 % isolated yield (485 mg, 32.3 g L-1 ) and high purity (99 %), after a simple filtration of the immobilized biocatalyst, distillation of the volatiles (unreacted ethylamine) and direct lyophilization. Immobilized BsGGT was re-used (four reaction cycles) with 100 % activity retention. This enzymatic synthesis represents a straightforward, fast, high-yielding, and easily scalable approach to l-Th preparation, besides having a favorable green chemistry metrics.
Collapse
Affiliation(s)
- Marina S Robescu
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia, Italy
| | - Andrés R Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, Plaza de Ramon y Cajal s/n, Madrid, Spain
| | - Cinzia Calvio
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 1, Pavia, Italy
| | - Carlo F Morelli
- Department of Chemistry, University of Milan, via Golgi 19, Milano, Italy
| | - Giovanna Speranza
- Department of Chemistry, University of Milan, via Golgi 19, Milano, Italy
| | - Daniela Ubiali
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia, Italy
| |
Collapse
|
19
|
Sharma E, Lal MK, Gulati A, Gulati A. Biochemical Characterization of γ-Glutamyl Transpeptidase from Bacillus altitudinis IHB B1644 and Its Application in the Synthesis of l-Theanine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5592-5599. [PMID: 36999937 DOI: 10.1021/acs.jafc.3c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An extracellular γ-glutamyl transpeptidase (GGT) produced from Bacillus altitudinis IHB B1644 was purified to homogeneity employing ion-exchange chromatography. GGT comprised two subunits of 40 and 22 kDa determined by SDS-PAGE. The maximum enzyme activity was optimal at pH 9 and 37 °C. The purified enzyme was stable from pH 5-10 and <50 °C. Steady-state kinetic studies revealed a Km value of 0.538 mM against γ-GpNA. For substrate specificity, GGT showed highest affinity for l-methionine. The inhibitors' effect demonstrated that serine or threonine and tryptophan residues are essential for enzyme activity. l-Theanine production was optimized by employing a one-variable-at-a-time approach with 60-65% conversion rate. The final reaction consisted of 20 mM l-glutamine, 200 mM ethylamine hydrochloride, and 10 U mL-1 enzyme concentration at 37 °C in Tris-Cl (50 mM, pH 9) for 5 h. l-Theanine was purified using a Dowex 50W X 8 hydrogen form resin and confirmed by HPLC and 1H NMR spectroscopies.
Collapse
Affiliation(s)
- Eshita Sharma
- Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Arvind Gulati
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Ashu Gulati
- Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| |
Collapse
|
20
|
Combined analysis of transcriptome and metabolome provides insights into nano-selenium foliar applications to improve summer tea quality (Camellia sinensis). Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Chen Y, Li Y, Shen C, Xiao L. Topics and trends in fresh tea ( Camellia sinensis) leaf research: A comprehensive bibliometric study. FRONTIERS IN PLANT SCIENCE 2023; 14:1092511. [PMID: 37089662 PMCID: PMC10118041 DOI: 10.3389/fpls.2023.1092511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Tea plant (Camellia sinensis) is a widely cultivated cash crop and tea is a favorite functional food in the world. Fresh tea leaves (FTLs) play a critical role in bridging the two fields closely related to tea cultivation and tea processing, those are, tea plant biology and tea biochemistry. To provide a comprehensive overview of the development stages, authorship collaboration, research topics, and hotspots and their temporal evolution trends in the field of FTLs research, we conducted a bibliometric analysis, based on 971 publications on FTLs-related research published during 2001-2021 from Web of Science Core Collection. CiteSpace, R package Bibliometrix, and VOSviewer were employed in this research. The results revealed that the development history can be roughly divided into three stages, namely initial stage, slow development stage and rapid development stage. Journal of Agricultural & Food Chemistry published most articles in this field, while Frontiers in Plant Science held the highest total citations and h-index. The most influential country, institution, and author in this field was identified as China, the Chinese Academy of Agricultural Sciences, and Xiaochun Wan, respectively. FTLs-related research can be categorized into three main topics: the regulation mechanism of key genes, the metabolism and features of essential compounds, and tea plants' growth and stress responses. The most concerning hotspots are the application of advanced technologies, essential metabolites, leaf color variants, and effective cultivation treatments. There has been a shift from basic biochemical and enzymatic studies to studies of molecular mechanisms that depend on multi-omics technologies. We also discussed the future development in this field. This study provides a comprehensive summary of the research field, making it easier for researchers to be informed about its development history, status, and trends.
Collapse
Affiliation(s)
- YiQin Chen
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - YunFei Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - ChengWen Shen
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
- *Correspondence: Chengwen Shen, ; Lizheng Xiao,
| | - LiZheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
- *Correspondence: Chengwen Shen, ; Lizheng Xiao,
| |
Collapse
|
22
|
Wang T, Wang Y, Zhao J, Kong J, Zhang L, Qi S, Chen J, Chen Z, Zeng W, Sun W. Identification, Characterization and Expression Profiling of the RS Gene Family during the Withering Process of White Tea in the Tea Plant ( Camellia sinensis) Reveal the Transcriptional Regulation of CsRS8. Int J Mol Sci 2022; 24:ijms24010202. [PMID: 36613645 PMCID: PMC9820808 DOI: 10.3390/ijms24010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Raffinose synthetase (RS) is a key enzyme in the process of raffinose (Raf) synthesis and is involved in plant development and stress responses through regulating Raf content. As a sweetener, Raf makes an important contribution to the sweet taste of white tea. However, studies on the identification, analysis and transcriptional regulation of CsRSs (Camellia sinensis RS genes) are still lacking. In this study, nine CsRSs were identified from the tea plant (Camellia sinensis) genome database. The CsRSs were classified into five groups in the phylogenetic tree. Expression level analysis showed that the CsRSs varied in different parts of the tea plant. Transcriptome data showed that CsRSs could respond to persistent drought and cold acclimation. Except for CsRS5 and CsRS9, the expression pattern of all CsRSs increased at 12 h and decreased at 30 h during the withering process of white tea, consistent with the change trend of the Raf content. Furthermore, combining yeast one-hybrid assays with expression analysis, we found that CsDBB could potentially regulate the expression of CsRS8. Our results provide a new perspective for further research into the characterization of CsRS genes and the formation of the white tea flavour.
Collapse
Affiliation(s)
- Tao Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqing Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamin Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiumei Kong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingzhi Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyu Qi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiajia Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhidan Chen
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362000, China
| | - Wen Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (W.Z.); (W.S.)
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (W.Z.); (W.S.)
| |
Collapse
|
23
|
Effects of dynamic extraction conditions on the chemical composition and sensory quality traits of green tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Xie X, Wan J, Zheng X, Pan W, Yuan J, Hu B, Feng M, Liu Z, Cai S. Synergistic effects of epigallocatechin gallate and l-theanine in nerve repair and regeneration by anti-amyloid damage, promoting metabolism, and nourishing nerve cells. Front Nutr 2022; 9:951415. [PMID: 36034895 PMCID: PMC9399931 DOI: 10.3389/fnut.2022.951415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Green tea has significant protective activity on nerve cells, but the mechanism of action is unclear. Epigallocatechin gallate (EGCG) and N-ethyl-L-glutamine (L-theanine) are the representative functional components of green tea (Camellia sinensis). In this study, an AD model of Aβ25–35-induced differentiated neural cell line PC12 cells was established to study the synergistic effect of EGCG and L-theanine in protecting neural cells. The results showed that under Aβ25–35 stress conditions, mitochondria and axons degenerated, and the expression of cyclins was up-regulated, showing the gene and protein characteristics of cellular hyperfunction. EGCG + L-theanine inhibited inflammation and aggregate formation pathways, significantly increased the percentage of G0/G1 in the cell cycle, downregulated the expression of proteins such as p-mTOR, Cyclin D1, and Cyclin B1, upregulated the expression of GAP43, Klotho, p-AMPK, and other proteins, promoted mitochondrial activity and energy metabolism, and had repair and regeneration effects on differentiated nerve cells. The synergistic mechanism study showed that under the premise that EGCG inhibits amyloid stress and inflammation and promotes metabolism, L-theanine could play a nourish nerve effect. EGCG + L-theanine keeps differentiated nerve cells in a quiescent state, which is beneficial to the repair and regeneration of nerve cells. In addition, EGCG + L-theanine maintains the high-fidelity structure of cellular proteins. This study revealed for the first time that the synergistic effect of EGCG with L-theanine may be an effective way to promote nerve cell repair and regeneration and slow down the progression of AD. Our findings provide a new scientific basis for the relationship between tea drinking and brain protection.
Collapse
Affiliation(s)
- Xinya Xie
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Juan Wan
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Xin Zheng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Wenjing Pan
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jiayi Yuan
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Baozhu Hu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Meiyan Feng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Shuxian Cai
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
25
|
Green Tea ( Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123909. [PMID: 35745040 PMCID: PMC9231383 DOI: 10.3390/molecules27123909] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/21/2022]
Abstract
Objectives Green tea (Camellia sinensis) is a kind of unfermented tea that retains the natural substance in fresh leaves to a great extent. It is regarded as the second most popular drink in the world besides water. In this paper, the phytochemistry, pharmacology, and toxicology of green tea are reviewed systematically and comprehensively. Key findings Green tea has been demonstrated to be good for human health. Nowadays, multiple pharmacologically active components have been isolated and identified from green tea, including tea polyphenols, alkaloids, amino acids, polysaccharides, and volatile components. Recent studies have demonstrated that green tea shows versatile pharmacological activities, such as antioxidant, anticancer, hypoglycemic, antibacterial, antiviral, and neuroprotective. Studies on the toxic effects of green tea extract and its main ingredients have also raised concerns including hepatotoxicity and DNA damage. Summary Green tea can be used to assist the treatment of diabetes, Alzheimer’s disease, oral cancer, and dermatitis. Consequently, green tea has shown promising practical prospects in health care and disease prevention.
Collapse
|
26
|
Huang Y, Wei Y, Xu J, Wei X. A comprehensive review on the prevention and regulation of Alzheimer's disease by tea and its active ingredients. Crit Rev Food Sci Nutr 2022; 63:10560-10584. [PMID: 35647742 DOI: 10.1080/10408398.2022.2081128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) has brought a heavy burden to society as a representative neurodegenerative disease. The etiology of AD combines multiple factors, concluding family, gender, head trauma, diseases and social psychology. There are multiple hypotheses explaining the pathogenesis of AD such as β-amyloid (Aβ) deposition and tau hyperphosphorylation, which lead to extracellular amyloid plaques and neurofibrillary tangles in neurons. The existing therapeutic drugs have several disadvantages including single target, poor curative effect, and obvious side effects. Tea contains many bioactive components, such as tea polyphenols (TPP), L-theanine (L-TH), tea pigment, tea polysaccharides and caffeine. The epidemiological investigations have shown that drinking tea can reduce the risk of AD. The mechanisms of tea active ingredients in the prevention and regulation of AD includes reducing the generation and aggregation of Aβ; inhibiting tau aggregation and hyperphosphorylation; inhibiting neuronal apoptosis and regulate neurotransmitters; relieving oxidative stress and neuroinflammation as well as the regulation of intestinal flora. This review summarizes the different signaling pathways that tea active ingredients regulate AD. Furthermore, we propose the main limitations of current research and future research directions, hoping to contribute to the development of natural functional foods based on tea active ingredients in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
27
|
L-theanine protects rat kidney from D-galactose-induced injury via inhibition of the AGEs/RAGE signaling pathway. Eur J Pharmacol 2022; 927:175072. [PMID: 35636523 DOI: 10.1016/j.ejphar.2022.175072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
As the irreversible products of the non-enzymatic reduction of sugars and the amino groups of proteins or peptides, advanced glycation end products (AGEs) are metabolized and excreted via the kidneys. However, if AGEs are not metabolized, they are deposited in the kidneys and bind to AGE receptors (RAGE), which can induce various pathological changes, including oxidative stress, apoptosis, and inflammation. This study used the D-galactose (DG)-induced rat model to explore the potential role and mechanism of L-theanine in inhibiting AGEs/RAGE-related signaling pathways in renal tissues. L-theanine increased the activities of glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) while downregulating the contents of malondialdehyde (MDA) and AGEs in renal tissues induced by DG (P < 0.05). By inhibiting the upregulation of RAGE protein expression attributed to AGEs accumulation (P < 0.05), L-theanine downregulated phosphorylated nuclear factor (p-NF-κB (p65)), Bax, and cleaved-caspase-3 expression and increased Bcl-2 protein expression (P < 0.05), thereby alleviating the oxidative stress damage and reducing the inflammation and cell injury induced by DG. In addition, the Congo red staining section of renal tissue also showed that the natural product L-theanine can protect against AGEs-induced renal damage in DG-induced rat model.
Collapse
|
28
|
Hu S, Luo L, Bian X, Liu RH, Zhao S, Chen Y, Sun K, Jiang J, Liu Z, Zeng L. Pu-erh Tea Restored Circadian Rhythm Disruption by Regulating Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5610-5623. [PMID: 35475616 DOI: 10.1021/acs.jafc.2c01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pu-erh tea is a healthy beverage rich in phytochemicals, and its effect on the risk of inducing circadian rhythm disorders (CRD) is unclear. In this study, healthy mice were given water or 0.25% (w/v) Pu-erh tea for 7 weeks, followed by a 40 day disruption of the light/dark cycle. CRD caused dysregulation of neurotransmitter secretion and clock gene oscillations, intestinal inflammation, and disruption of intestinal microbes and metabolites. Pu-erh tea boosted the indole and 5-hydroxytryptamine pathways of tryptophan metabolism via the gut-liver-brain axis. Furthermore, its metabolites (e.g., IAA, Indole, 5-HT) enhanced hepatic glycolipid metabolism and down-regulated intestinal oxidative stress by improving the brain hormone release. Tryptophan metabolites and bile acids also promoted liver lipid metabolism and inhibited intestinal inflammation (MyD88/NF-κB) via the enterohepatic circulation. Collectively, 0.25% (w/v) Pu-erh tea has the potential to prevent CRD by promoting indole and 5-HT pathways of tryptophan metabolism and signaling interactions in the gut-liver-brain axis.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine Chongqing Medical University, Chongqing 400016, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York 14850-7201, United States
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Jielin Jiang
- Menghai Tea Factory·TAETEA Group, Xishuangbanna Dai Autonomous Prefecture, Yunnan 666200, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
29
|
Li MY, Liu HY, Wu DT, Kenaan A, Geng F, Li HB, Gunaratne A, Li H, Gan RY. L-Theanine: A Unique Functional Amino Acid in Tea ( Camellia sinensis L.) With Multiple Health Benefits and Food Applications. Front Nutr 2022; 9:853846. [PMID: 35445053 PMCID: PMC9014247 DOI: 10.3389/fnut.2022.853846] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Tea (Camellia sinensis L.) is a very popular health drink and has attracted increasing attention in recent years due to its various bioactive substances. Among them, L-theanine, a unique free amino acid, is one of the most important substances in tea and endows tea with a special flavor. Moreover, L-theanine is also a bioactive compound with plenty of health benefits, including antioxidant, anti-inflammatory, neuroprotective, anticancer, metabolic regulatory, cardiovascular protective, liver and kidney protective, immune regulatory, and anti-obesity effects. Due to the unique characteristics and beneficial functions, L-theanine has potential applications in the development of functional foods. This review summarized the influencing factors of L-theanine content in teas, the main health benefits and related molecular mechanisms of L-theanine, and its applications in food, understanding of which can provide updated information for the further research of L-theanine.
Collapse
Affiliation(s)
- Ming-Yue Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ahmad Kenaan
- National Graphene Institute, The University of Manchester, Manchester, United Kingdom
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Anil Gunaratne
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Hang Li
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
30
|
Dasdelen MF, Er S, Kaplan B, Celik S, Beker MC, Orhan C, Tuzcu M, Sahin N, Mamedova H, Sylla S, Komorowski J, Ojalvo SP, Sahin K, Kilic E. A Novel Theanine Complex, Mg-L-Theanine Improves Sleep Quality via Regulating Brain Electrochemical Activity. Front Nutr 2022; 9:874254. [PMID: 35449538 PMCID: PMC9017334 DOI: 10.3389/fnut.2022.874254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
L-Theanine is commonly used to improve sleep quality through inhibitory neurotransmitters. On the other hand, Mg2+, a natural NMDA antagonist and GABA agonist, has a critical role in sleep regulation. Using the caffeine-induced brain electrical activity model, here we investigated the potency of L-theanine and two novel Mg-L-theanine compounds with different magnesium concentrations on electrocorticography (ECoG) patterns, GABAergic and serotonergic receptor expressions, dopamine, serotonin, and melatonin levels. Furthermore, we evaluated the sleep latency and duration in the pentobarbital induced sleep model. We herein showed that L-theanine, particularly its various complexes with magnesium increases the expression of GABAergic, serotonergic, and glutamatergic receptors, which were associated with decreased ECoG frequency, increased amplitude, and enhanced delta wave powers. Besides increased dopamine, serotonin, and melatonin; decreased MDA and increased antioxidant enzyme levels were also observed particularly with Mg-complexes. Protein expression analyses also showed that Mg-L-theanine complexes decrease inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) levels significantly. In accordance with these results, Mg complexes improved the sleep latency and duration even after caffeine administration. As a result, our data indicate that Mg-L-theanine compounds potentiate the effect of L-theanine on sleep by boosting slow-brain waves, regulating brain electrical activity, and increasing neurotransmitter and GABA receptor levels.
Collapse
Affiliation(s)
| | - Sezgin Er
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Berkan Kaplan
- Department of Neurology, Istanbul Medipol University, Istanbul, Turkey
| | - Suleyman Celik
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa Caglar Beker
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Havakhanum Mamedova
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Sarah Sylla
- Scientific and Regulatory Affairs, Nutrition21, LLC, Purchase, NY, United States
| | - James Komorowski
- Scientific and Regulatory Affairs, Nutrition21, LLC, Purchase, NY, United States
| | - Sara Perez Ojalvo
- Scientific and Regulatory Affairs, Nutrition21, LLC, Purchase, NY, United States
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey,*Correspondence: Ertugrul Kilic, ;
| |
Collapse
|
31
|
Zhu Y, He X, Huang R, Wang W, Yu Y, Zhou T. Screening Bacillus subtilis for Effective L-theanine Production from Tea Plant Rhizosphere Soil. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382202017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Wei Y, Xu J, Miao S, Wei K, Peng L, Wang Y, Wei X. Recent advances in the utilization of tea active ingredients to regulate sleep through neuroendocrine pathway, immune system and intestinal microbiota. Crit Rev Food Sci Nutr 2022; 63:7598-7626. [PMID: 35266837 DOI: 10.1080/10408398.2022.2048291] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep disorders have received widespread attention nowadays, which have been promoted by the accelerated pace of life, unhealthy diets and lack of exercise in modern society. The chemical medications to improve sleep has shown serious side effects and risks with high costs. Therefore, it is urgent to develop efficient nutraceuticals from natural sources to ensure sleep quality as a sustainable strategy. As the second most consumed beverage worldwide, the health-promoting effects of tea have long been widely recognized. However, the modulatory effect of teas on sleep disorders has received much less attention. Tea contains various natural sleep-modulating active ingredients such as L-theanine (LTA), caffeine, tea polyphenols (TPP), tea pigments, tea polysaccharides (TPS) and γ-aminobutyric acid (GABA). This review focuses on the potential influence and main regulating mechanisms of different tea active ingredients on sleep, including being absorbed by the small intestine and then cross the blood-brain barrier to act on neurons in the brain as neurotransmitters, manipulating the immune system and further affect sleep-wake cycle by regulating the levels of cytokines, and controlling the gut microbes to maintain the homeostasis of circadian rhythm. Current research progress and limitations are summarized and several future development directions are also proposed. This review hopes to provide new insights into the future elucidation of the sleep-regulating mechanisms of different teas and their natural active ingredients and the development of tea-based functional foods for alleviating sleep disorders. HighlightsNatural sleep-modulating active ingredients in tea have been summarized.Influences of drinking tea or tea active ingredients on sleep are reviewed.Three main regulating mechanisms of tea active ingredients on sleep are explained.The associations among nervous system, immune system and intestinal microbiota are investigated.The potential of developing delivery carriers for tea active ingredients is proposed.
Collapse
Affiliation(s)
- Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Siwei Miao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
33
|
Zhang R, Zheng S, Guo Z, Wang Y, Yang G, Yin Z, Luo L. L-Theanine inhibits melanoma cell growth and migration via regulating expression of the clock gene BMAL1. Eur J Nutr 2022; 61:763-777. [PMID: 34542664 DOI: 10.1007/s00394-021-02677-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE L-Theanine is a unique non-protein amino acid found in green tea, which has been identified as a safe dietary supplement. It has been reported that L-theanine exerts various biological activities. In this study, we explored the anti-cancer effects of L-theanine on melanoma cells. METHODS A375, B16-F10, and PIG1 cell lines were used in the present study. EdU labeling, TUNEL and Annexin V/PI staining, wound-healing, and transwell migration assay were performed to detect the effects of L-theanine on melanoma cell proliferation, apoptosis, and migration. Brain and muscle Arnt-like protein 1 (BMAL1) was knocked down in melanoma cells to evaluate if L-theanine plays the anti-cancer role through regulating circadian rhythm of melanoma cells. The western blot, qRT-PCR, and dual luciferase assay were performed to explore the mechanism involved in the effects of L-theanine on melanoma cells. RESULTS L-Theanine apparently reduced the viability of melanoma cells. Further experiments showed that L-theanine attenuated the proliferation and migration, and promoted apoptosis of melanoma cells. L-Theanine significantly enhanced the expression of BMAL1, a clock gene in melanoma cells. Down-regulation of BMAL1 suppressed the anti-cancer effects of L-theanine on melanoma cells. Further experiments indicated that the p53 transcriptional activity raised by L-theanine was dependent on BMAL1 expression in melanoma cells. CONCLUSION L-Theanine exerts the anti-cancer effect on melanoma cells through attenuating the proliferation and migration, and promoting apoptosis of them, which is dependent on the regulation of the clock gene Bmal1 in melanoma cells.
Collapse
Affiliation(s)
- Ruyi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Shuangning Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Zhen Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yanan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Guocui Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
34
|
Liu K, Liu E, Lin L, Hu Y, Yuan Y, Xiao W. L-Theanine mediates the p38MAPK signaling pathway to alleviate heat-induced oxidative stress and inflammation in mice. Food Funct 2022; 13:2120-2130. [PMID: 35112126 DOI: 10.1039/d1fo03077a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
L-Theanine, an active ingredient in the tea plant (Camellia sinensis) associated with calming, is widely used as a functional ingredient and dietary supplement. In this study, a heat stress mouse model was used to evaluate the anti-heat stress effect of L-theanine and its possible mechanism of action. Mice subjected to heat stress (40 °C) that were administered L-theanine at various doses (100, 200, and 400 mg kg-1 d-1) had reduced oxidative stress and inflammatory factors when L-theanine was administered both long-term and as a preventative treatment. Our L-theanine intervention countered the reduction in growth and feed intake of mice under heat stress and reversed liver and jejunum tissue damage. Moreover, L-theanine countered the increase in inflammatory factors TNF-α, IL-6, and IL-1β and antioxidant enzymes SOD and CAT; it also counteracted GSH-Px inactivation, the upregulation of AST and ALT enzyme activity, and MDA production. The mechanism of action may involve mediation of the P38 signaling pathway, inhibition of MK2 overexpression, and downregulation of p-P65/P65 caused by the overexpression of downstream HSP27. This would inhibit the heat stress-induced imbalance in oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Kehong Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Enshuo Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ling Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yuan Hu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yong Yuan
- Hunan Tea Group Co., Ltd, Changsha 410128, China
| | - Wenjun Xiao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
35
|
Cheng H, Wu W, Liu X, Wang Y, Xu P. Transcription factor CsWRKY40 regulates L-theanine hydrolysis by activating the CsPDX2.1 promoter in tea leaves during withering. HORTICULTURE RESEARCH 2022; 9:uhac025. [PMID: 35184176 PMCID: PMC9055099 DOI: 10.1093/hr/uhac025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 05/11/2023]
Abstract
L-Theanine is a crucial secondary metabolite in tea and positively determines the potential quality and health benefits of tea products. Previous work found the content of L-theanine decreased during withering process, while the specific mechanism is still unknown. Here, weighted gene co-expression network analysis (WGCNA) was performed based on the transcriptome data obtained previously. The key hydrolysis gene CsPDX2.1 in L-theanine metabolism and seven candidate transcription factors were screened out. Among those transcription factors, CsWRKY40 presented the strongest activation on the CsPDX2.1 promoter (373.18-fold) by binding to W box element based on the dual luciferase assay and EMSA results. Meanwhile, CsWRKY40 protein was located in the nucleoplasm, while CsPDX2.1 was found in both the nucleoplasm and cytoplasm. Furthermore, it was confirmed that the water loss of tea leaves was the critical factor affecting the contents of ABA and L-theanine by activating the expression of CsPDX2.1 and CsPDX2.1 based on the analysis of the withering model, water-retention model and water-loss model. Our results provide a new insight into revealing the regulation mechanism of L-theanine hydrolysis metabolism.
Collapse
Affiliation(s)
- Haiyan Cheng
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, Zhejiang, China
| | - Wei Wu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaofen Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, Zhejiang, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
36
|
Chong PH, Chen J, Yin D, Qin L. Tea compound-saliva interactions and their correlations with sweet aftertaste. NPJ Sci Food 2022; 6:13. [PMID: 35140228 PMCID: PMC8828886 DOI: 10.1038/s41538-022-00123-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
Huigan is an important sensory attribute which is commonly used as a quality indicator evaluation of tea products. Previous studies showed a strong correlation between the lubrication behavior of saliva-tea compound mixture and the sensory perception of Huigan from trained panelists. This work was further designed to investigate how the effect of tea consumption on the rate of saliva secretion and its functional properties including total protein content of saliva (TPC), salivary α-amylase (AMY) and lipase activity (LP). A quartz crystal microbalance with dissipation monitoring (QCM-D) was applied to reveal the adsorption behavior of human whole saliva and how the salivary film is affected by the presence of tea compounds. Results showed a significant positive correlation among TPC, LP and Huigan intensity for subjects who are Huigan-sensitive. Compared to the desorption of salivary film, the desorption of saliva-EC/EGC (epicatechin/epigallocatechin) mixture from the gold surface by QCM-D observation showed a significant effect on Huigan intensity in sensitive group when comparing to the salivary layer (blank).
Collapse
Affiliation(s)
- Pik Han Chong
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Jianshe Chen
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China.
| | - Danting Yin
- Firmenich Aromatics (China) Co., Ltd., No. 3901, Jindu Road, Minhang District, 201108, Shanghai, China
| | - Lanxi Qin
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
37
|
Feng L, Yu Y, Lin S, Yang T, Chen Q, Liu L, Sun J, Zheng P, Zhang Z, Wan X. Tonoplast-Localized Theanine Transporter CsCAT2 May Mediate Theanine Storage in the Root of Tea Plants ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:797854. [PMID: 34975988 PMCID: PMC8719441 DOI: 10.3389/fpls.2021.797854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Theanine is the component endowing tea infusion with "umami" taste and antidepression benefits. Theanine is primarily synthesized and stored in root in winter and is transported via vascular tissues to the new shoot in spring. However, the mechanism underlying theanine storage in the root of tea plants remains largely unknown. Cationic amino acid transporter 2 (CsCAT2) in tea plants is homologous to glutamine permease 1 (GNP1), the specific glutamine transporter in yeast. In this study, we identified CsCAT2 as an H+-dependent theanine transporter with medium affinity for theanine. The result of subcellular localization showed that CsCAT2 was a tonoplast-localized transporter. Importantly, CsCAT2 highly expressed in the root in winter during theanine storage and reduced its expression in the root during theanine transport from root-to-shoot in spring. In addition, CsCAT2 expression in the roots of 5 varieties at four time points during December and April was significant negatively correlated with the capacity of theanine root-to-shoot movement. Taken together, these results suggested that CsCAT2 may mediate theanine storage in the vacuole of root cells and may negatively modulate theanine transport from root to shoot.
Collapse
Affiliation(s)
- Lin Feng
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yongchao Yu
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Shijia Lin
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Qi Chen
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Linlin Liu
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Jun Sun
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Pengcheng Zheng
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| |
Collapse
|
38
|
Sun L, Wen S, Li Q, Lai X, Chen R, Zhang Z, Li D, Sun S. L-theanine relieves acute alcoholic liver injury by regulating the TNF-α/NF-κB signaling pathway in C57BL/6J mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
39
|
Exploring tea (Camellia sinensis) microbiome: Insights into the functional characteristics and their impact on tea growth promotion. Microbiol Res 2021; 254:126890. [PMID: 34689100 DOI: 10.1016/j.micres.2021.126890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
Tea (Camellia sinensis) is perhaps the most popular and economic beverage in the globe due to its distinctive fragrance and flavour generated by the leaves of commercially farmed tea plants. The tea microbiome has now become a prominent topic of attention for microbiologists in recent years as it can help the plant for soil nutrient acquisition as well as stress management. Tea roots are well known to be colonized by Arbuscular Mycorrhizal Fungi (AMF) and many other beneficial microorganisms that boost the growth of the tea which increases leaf amino acids, protein, caffeine, and polyphenols content. One of the primary goals of rhizosphere microbial biology is to aid in the establishment of agricultural systems that provide high quantities of the food supply while minimizing environmental effects and anthropogenic activities. The present review is aimed to highlight the importance of microbes (along with their phylogeny) derived from cultivated and natural tea rhizospheres to understand the role of AMF and rhizospheric bacterial population to improve plant growth, enhancement of tea quality, and protecting tea plants from pathogens. This review also summarizes recent advances in our understanding of the diversity and profile of tea-associated bacteria. The utilization of the tea microbiome as a "natural resource" could provide holistic development in tea cultivation to ensure sustainability, highlighting knowledge gaps and future microbiome research.
Collapse
|
40
|
Chen Y, Liu S, Ferreira JFDS, Xiao L, Gu M, Luo Y, Zhang T, Zhang X, Liu Z, Huang J, Tian N. Development and Application of a Fast Gas Chromatographic Method Offer New Insights into l-theanine Production Regulation in Camellia sinensis L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11142-11150. [PMID: 34514782 DOI: 10.1021/acs.jafc.1c04093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tea is the most consumed beverage worldwide, and l-theanine in tea leaves significantly affects their flavor and market quality. We have developed and validated a fast and reliable gas chromatographic method with flame ionization detection (GC-FID) to quantify l-theanine after its extraction from Camellia sinensis (tea plant) and derivatization. The procedure was completed in 40 min, from extraction to chromatographic analysis, with a recovery rate of more than 93% and allowing a high sample throughput. The GC-FID intraday precision was within 0.57-2.28%, while the interday precision ranged from 1.57 to 13.48%. The intraday accuracy ranged from -6.84 to 5.26%, while the interday accuracy ranged from -1.08 to 3.12%. The limit of detection was 2.28 μg/mL, and the limit of quantification was 6.47 μg/mL. The GC-FID method was validated by high-performance liquid chromatography with UV detection (HPLC-UV) and was used to investigate the biosynthesis and regulation of l-theanine in tea plants. We found that plants fed with ethylamine significantly increased l-theanine concentrations in roots, while exogenous supplementation of glutamic acid, carbamide, and glutamine did not significantly affect the l-theanine level in roots. Our results also indicated that roots were not indispensable for the biosynthesis of l-theanine, which was detected in undifferentiated embryonic calluses in concentrations (g/100 g dry weight) as high as in leaves of whole plants (1.67 and 1.57%, respectively) and without any exogenous theanine precursor supplementation.
Collapse
Affiliation(s)
- Yanni Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jorge Freire da Silva Ferreira
- United States Salinity Laboratory, United States Department of Agriculture-Agricultural Research Service, Riverside, California 92507, United States
| | - Lizheng Xiao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Meiyi Gu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yiping Luo
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Tiantian Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Xiangqin Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
41
|
|
42
|
Xu Y, Zhu J, Hu J, Zou Z, Zhao Y, Lai L, Xu P, Song Y, Cheng H. L-Theanine Alleviates IMQ-Induced Psoriasis Like Skin Inflammation by Downregulating the Production of IL-23 and Chemokines. Front Pharmacol 2021; 12:719842. [PMID: 34381369 PMCID: PMC8350042 DOI: 10.3389/fphar.2021.719842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Psoriasis, the most common skin inflammatory disease, is characterized by massive keratinocyte proliferation and immune cell infiltration into epidermis. L-Theanine (L-THE), a nonproteinogenic amino acid derived from green tea (Camellia sinensis), has been proved to possess the properties of anti-inflammatory, antidepressants and neuroprotective. However, whether L-THE has a therapeutic effect on psoriasis is still unknown. In this study, we found that the epidermal thickness and inflammatory response were significantly reduced in Imiquimod (IMQ)-induced psoriasis mice by applying with L-THE on mice skin. The expression of proliferation and inflammation associated genes such as keratin 17, IL-23 and CXCL1-3 was also downregulated by L-THE. Furthermore, L-THE inhibited the production of IL-23 in dendritic cells (DCs) after IMQ treatment, and decreased the levels of chemokines in keratinocytes treated with IL-17A by downregulating the expression of IL-17RA. RNA-seq and KEGG analysis revealed that L-THE significantly regulated the expression of IL-17A and NF-κB signaling pathway-associated genes. Metabolomics analysis displayed that L-THE promoted propanoate metabolism which has been reported to inhibit the activity of TH17 cells. Therefore, our results demonstrated that L-THE significantly decreases the levels of IL-23 and chemokines, and attenuates IMQ-induced psoriasis like skin inflammation by inhibiting the activation of NF-κB and IL-17A signaling pathways, and promoting the propanoate metabolism. Our findings suggest that topical applied L-THE can be used as a topical drug candidate for the treatment of psoriasis or as an adjuvant treatment of ustekinumab or secukinumab to prevent the relapse of psoriasis.
Collapse
Affiliation(s)
- Yaohan Xu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Zhu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyi Hu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Zou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueling Zhao
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Xu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
l-Theanine Ameliorates d-Galactose-Induced Brain Damage in Rats via Inhibiting AGE Formation and Regulating Sirtuin1 and BDNF Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8850112. [PMID: 34336115 PMCID: PMC8315880 DOI: 10.1155/2021/8850112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
The maintenance of homeostasis is essential for mitigating stress and delaying degenerative diseases such as Alzheimer's disease (AD). AD is generally defined as the abnormal production of β-amyloid (Aβ) and advanced glycation end products (AGEs). The effects of l-theanine on Aβ and AGE generation were investigated in this study. Decreased AGEs and Aβ1-42 levels were reflected by increased acetylcholine (ACh) concentration and acetylcholinesterase (AChE) activity inhibition compared to model rats. l-Theanine also inhibited nuclear factor-κB (p65) protein expression by activating sirtuin1 (SIRT1), reducing inflammatory factor expression, and downregulating the mRNA and protein expression of AGE receptors (RAGE). Superoxide dismutase 2 and catalase protein expressions were markedly upregulated by l-theanine, whereas oxidative stress-related injury was alleviated. The expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) was also found to be increased. H&E staining showed that the apoptosis of hippocampal neurons was mitigated by decreased Bax and cleaved-caspase-3 protein expression and the increase of Bcl-2 protein expression. Moreover, l-theanine increased the gene and protein expression of brain-derived neurotrophic factor (BDNF). These findings suggest that the potential preventive effects of l-theanine against AD may be attributed to its regulation of SIRT1 and BDNF proteins and its mitigation of AGEs/RAGE signaling pathways in the brain tissue of AD model rats.
Collapse
|
44
|
Lu Y, Wang J, Soladoye OP, Aluko RE, Fu Y, Zhang Y. Preparation, receptors, bioactivity and bioavailability of γ-glutamyl peptides: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Li W, Xiang F, Su Y, Luo Z, Luo W, Zhou L, Liu H, Xiao L. Gibberellin Increases the Bud Yield and Theanine Accumulation in Camellia sinensis (L.) Kuntze. Molecules 2021; 26:molecules26113290. [PMID: 34072521 PMCID: PMC8198828 DOI: 10.3390/molecules26113290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022] Open
Abstract
Tea (Camellia sinensis) is one of the most important cash crops in the world. Theanine, as an important amino acid component in tea, is a key quality index for excellent tea quality and high economic value. People increase theanine accumulation in tea mainly through the application of nitrogen fertilizer, shading and pruning. However, these methods are not effective. In this study, we treated tea buds with a 100 μM solution of GA3 containing 1‰ tween-20, investigated the effects of GA3 on theanine accumulation, bud yield, chlorophyll fluorescence parameters and expression level of theanine biosynthesis pathway genes in tea plant by qPCR, LC-MS/MS etc. Results showed that change trends of theanine and GA3 was extremely positively correlated with each other. Exogenous GA3 upregulated the expression level of theanine biosynthesis pathway genes, caused an increase of theanine content (mg·g-1) by 27% in tea leaves compared with Mock, and accelerated the germination of buds and elongation of shoots, which lead to a significant increase of tea yield by 56% (w/w). Moreover, the decrease of chlorophyll contents, photochemical quenching coefficient (qP) and relative electron transport rate (rETR) under GA3 treatment suggested that GA3 reduced photosynthesis in the tender tea leaves, indicating that the decline of carbon assimilation in tea plants was conducive to the nitrogen metabolism, and it was beneficial to the accumulation of theanine. This study provided a new technical and theoretical support for the precise control of tea quality components and phenophase.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Fen Xiang
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
| | - Zhoufei Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
| | - Weigui Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
| | - Lingyun Zhou
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Hongyan Liu
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
- Correspondence: ; Tel.: +86-073-184-635-261
| |
Collapse
|
46
|
Yang T, Xie Y, Lu X, Yan X, Wang Y, Ma J, Cheng X, Lin S, Bao S, Wan X, Lucas WJ, Zhang Z. Shading Promoted Theanine Biosynthesis in the Roots and Allocation in the Shoots of the Tea Plant ( Camellia sinensis L.) Cultivar Shuchazao. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4795-4803. [PMID: 33861578 DOI: 10.1021/acs.jafc.1c00641] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Shading was thought as an effective approach to increase theanine in harvested tea shoots. Previous studies offered conflicting findings, perhaps since the integration of theanine metabolism and transport in different tissues was not considered. Theanine is synthesized primarily in the roots and is then transported, via the vascular system, to new vegetative tissues. Here, we found that theanine increased in the stem, was reduced in the leaf, and remained stable in the roots, under shading conditions. Notably, in tea roots, shading significantly increased ethylamine and activated the theanine biosynthesis pathway and theanine transporter genes. Furthermore, shading significantly increased the expression of theanine transporter genes, CsAAP2/4/5/8, in the stem, while decreasing the expression of CsAAP1/2/4/5/6 in the leaf, in accordance with shading effects on theanine levels in these tissues. These findings reveal that shading of tea plants promotes theanine biosynthesis and allocation in different tissues, processes which appear to involve the theanine biosynthesis pathway enzymes and AAP family of theanine transporters.
Collapse
Affiliation(s)
- Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunxia Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xin Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jingzhen Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xunmin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616, United States
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
47
|
Chen H, Wei L, Guo X, Hai C, Xu L, Zhang L, Lan W, Zhou C, She Y, Fu H. Determination of l-theanine in tea water using fluorescence-visualized paper-based sensors based on CdTe quantum dots/corn carbon dots and nano-porphyrin with chemometrics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2552-2560. [PMID: 33063338 DOI: 10.1002/jsfa.10882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The quality of tea is influenced by numerous factors, especially l-theanine, which is one of the important markers used to evaluate the sweetness and freshness of tea. Sensitive, rapid, and accurate detection of l-theanine is therefore useful to identify the grade and quality of tea. RESULTS A high-sensitivity, paper-based fluorescent sensor combined with chemometrics was established to detect l-theanine in tea water based on CdTe quantum dots / corn carbon dots and nano tetra pyridel-porphine zinc (ZnTPyP). To verify the reliability of this method, fluorescence spectra and fluorescence-visualized paper-based sensors were compared. The fluorescence spectrum method demonstrated a linear range of 1 to 10 000 nmol L-1 and a limit of detection (LOD) of 0.19 nmol L-1 . In the fluorescence-visualized paper-based sensors there was a linear range of 10-1000 nmol L-1 , and the LOD was 10 nmol L-1 . Partial least squares discriminant analysis (PLSDA) and partial least squares regression analysis (PLSR) were used successfully to determine l-theanine accurately in tea water with this approach. The accuracy of the PLSDA model was 100% both in the training set and the predicting set, and the correlation coefficient between the actual concentration and the predicted concentration was greater than 0.9997 in the PLSR model. CONCLUSION This fluorescence-visualized paper-based sensor, combined with chemometrics, could be applied efficiently to the practical analysis of tea water samples, which provides a new idea to ensure the flavor and quality of tea. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Liuna Wei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaoming Guo
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Chengying Hai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xu
- College of Material and Chemical Engineering, Tongren University, Tongren, China
| | - Lei Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Chunsong Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- International Environmental Protection City Technology Limited Company (IEPCT), Yixing, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
48
|
Chen Z, Lin S, Li J, Chen T, Gu Q, Yang T, Zhang Z. Theanine Improves Salt Stress Tolerance via Modulating Redox Homeostasis in Tea Plants ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:770398. [PMID: 34721495 PMCID: PMC8554060 DOI: 10.3389/fpls.2021.770398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 05/11/2023]
Abstract
Theanine, a unique non-proteinogenic amino acid, is one of the most abundant secondary metabolites in tea. Its content largely determines green tea quality and price. However, its physiological roles in tea plants remain largely unknown. Here, we showed that salt stress significantly increased the accumulation of glutamate, glutamine, alanine, proline, and γ-aminobutyric acid, as well as theanine, in the new shoots of tea plants. We further found that salt stress induced the expression of theanine biosynthetic genes, including CsGOGATs, CsAlaDC, and CsTSI, suggested that salt stress induced theanine biosynthesis. Importantly, applying theanine to the new shoots significantly enhanced the salt stress tolerance. Similar effects were also found in a model plant Arabidopsis. Notably, exogenous theanine application increased the antioxidant activity of the shoots under salt stress, suggested by reduced the reactive oxygen species accumulation and lipid peroxidation, as well as by the increased SOD, CAT, and APX activities and expression of the corresponding genes. Finally, genetic evidence supported that catalase-mediated antioxidant scavenging pathway is required for theanine-induced salt stress tolerance. Taken together, this study suggested that salt stress induces theanine biosynthesize in tea plants to enhance the salt stress tolerance through a CAT-dependent redox homeostasis pathway.
Collapse
Affiliation(s)
- Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Juan Li
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Quan Gu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Zhaoliang Zhang,
| |
Collapse
|
49
|
Maritim TK, Seth R, Parmar R, Sharma RK. Multiple-genotypes transcriptional analysis revealed candidates genes and nucleotide variants for improvement of quality characteristics in tea (Camellia sinensis (L.) O. Kuntze). Genomics 2020; 113:305-316. [PMID: 33321202 DOI: 10.1016/j.ygeno.2020.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/18/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Tea quality is a polygenic trait that exhibits tremendous genetic variability due to accumulation of array of secondary metabolites. To elucidate global molecular insights controlling quality attributes, metabolite profiling and transcriptome sequencing of twelve diverse tea cultivars was performed in tea shoots harvested during quality season. RP-HPLC-DAD analysis of quality parameters revealed significant difference in catechins, theanine and caffeine contents. Transcriptome sequencing resulted into 50,107 non-redundant transcripts with functional annotations of 81.6% (40,847) of the transcripts. Interestingly, 2872 differentially expressed transcripts exhibited significant enrichment in 38 pathways (FDR ≤ 0.05) including secondary metabolism, amino acid and carbon metabolism. Thirty-eight key candidates reportedly involved in biosynthesis of fatty acid derived volatiles, volatile terpenes, glycoside hydrolysis and key quality related pathways (flavonoid, caffeine and theanine-biosynthesis) were highly expressed in catechins-rich tea cultivars. Furthermore, enrichment of candidates involved in flavonoid biosynthesis, transcriptional regulation, volatile terpene and biosynthesis of fatty acid derived volatile in Protein-Protein Interactome network revealed well-coordinated regulation of quality characteristics in tea. Additionally, ascertainment of 23,649 non-synonymous SNPs and validation of candidate SNPs present in quality related genes suggests their potential utility in genome-wide mapping and marker development for expediting breeding of elite compound-rich tea cultivars.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh- 201 002, India; Tea Breeding and Genetic Improvement Division, KALRO-Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
| | - Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh- 201 002, India.
| |
Collapse
|
50
|
Reinventing the nutraceutical value of gluten: The case of l-theanine-gluten as a potential alternative to the gluten exclusion diet in celiac disease. Food Chem 2020; 324:126840. [DOI: 10.1016/j.foodchem.2020.126840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/08/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
|