1
|
Li T, Yang C, Zhang L. Novel comprehensive perspective on Amadori compounds: preparation, multiple roles and interaction with other compounds. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40269616 DOI: 10.1080/10408398.2025.2494059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Amadori compounds are pivotal intermediates in the Maillard reaction. Amadori compounds serve as flavor enhancers, browning precursors and bioactive components, so they are promising versatile food additives. Comprehensive reviews on multiple roles of Amadori compounds are scarce. Furthermore, there is a lack of reviews on green, efficient and commercially prospective preparation techniques of Amadori compounds and their interactions with other components. This paper reviewed preparation, multiple roles and interactions with other components in foods. Spray drying, microwave heating, natural deep eutectic solvents and vacuum dewatering were deemed as green, efficient and commercially prospective preparation techniques for Amadori compounds. Amadori compounds broadened the application field of Maillard reaction-obtained additives compared to final-products, enabling their uses not only in dark-colored foodstuffs but also in light-colored. Peptide-derived Amadori compounds showed greater potency for flavor generation compared to amino acid-derived. Amadori compounds presented eleven physiological activities. Amadori compounds exerted synergistic effect with essential nutrients (lipids, exogenous amino acids and carbohydrates), functional ingredients (polyphenols, carotenoids, glycosides) as well as several drugs. More preparation approaches of Amadori compounds and their synergistic effects with other ingredients await investigation. This review provided comprehensive theoretical guidance for industrial preparation and application of Amadori compounds as versatile additives.
Collapse
Affiliation(s)
- Tingting Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lianfu Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Murai T, Naeve S, Annor GA. Regional Variability in Sugar and Amino Acid Content of U.S. Soybeans and the Impact of Autoclaving on Reducing Sugars and Free Lysine. Foods 2024; 13:1884. [PMID: 38928825 PMCID: PMC11202694 DOI: 10.3390/foods13121884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Exploring the sugar and amino acid content variability and the influence of thermal processing on these in soybeans can help optimize their utilization in animal feed. This study examined 209 samples harvested in 2020 and 55 samples harvested in 2021 from across the U.S. to assess their sugar variability and amino acid variability. Harvest regions included the East Corn Belt, West Corn Belt, Mid-South, East Coast, and the Southeast of the U.S. In addition to the sugar and amino acid contents, protein, oil, and seed size were also analyzed. Samples from 2021 were evaluated for their sugar and amino acid contents before and after autoclaving the seeds at 105-110 °C for 15 min. For the samples harvested in 2020, sucrose (4.45 g 100 g-1) and stachyose (1.34 g 100 g-1) were the most prevalent sugars. For the samples harvested in 2021, L-arginine (9.82 g 100 g-1), leucine (5.29 g 100 g-1), and glutamate (4.90 g 100 g-1) were the most prevalent amino acids. Heat treatment resulted in an 8.47%, 20.88%, 11.18%, and 1.46% median loss of free lysine, sucrose, glucose, and fructose. This study's insights into the variability in sugar and amino acid content and the heat-induced changes in the nutritional composition of soybeans provide a reference for improving soybean quality assessment and optimizing its use in animal feed formulations in the U.S.
Collapse
Affiliation(s)
- Takehiro Murai
- Department of Food Science and Nutrition, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA;
| | - Seth Naeve
- Department of Agronomy and Plant Genetics, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, 411 Borlaug Hall 1991 Upper Buford Circle, St. Paul, MN 55108, USA;
| | - George A. Annor
- Department of Food Science and Nutrition, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA;
| |
Collapse
|
3
|
Li J, Ma Z, Dai H, Li H, Qiu J, Pang X. Application of PLSR in correlating sensory and chemical properties of middle flue-cured tobacco leaves with honey-sweet and burnt flavour. Heliyon 2024; 10:e29547. [PMID: 38655300 PMCID: PMC11035049 DOI: 10.1016/j.heliyon.2024.e29547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Among the eight types of aroma and flavour characteristics of Chinese flue-cured tobacco (FCT), tobacco grown in Shandong is classified as having a honey-sweet and burnt aroma. To elucidate the key chemical components that determine the characteristics of the honey-sweet and burnt aroma styles of Shandong FCT, we qualitatively and quantitatively evaluated the smoke flavour quality and five categories of flavour-related chemical components (routine components, water-soluble sugars, free amino acids, Amadori compounds and key aroma-active compounds) in Shandong middle FCT leaves using sensory analysis and modern instrumental analysis techniques. The association between the chemical components and sensory quality was analysed. Our results showed that the total sugars, reducing sugars (fructose, glucose, and psicose), total sugar-nicotine ratio, proline-total amino acid ratio, sulphur-containing amino acid-total amino acid ratio and fructosyl-proline (Fru-Pro) were high in premium FCT leaves. The aroma-active compounds associated with the honey-sweet burnt flavour style of the Shandong Middle FCT included sweet-scented 2,3-pentanedione, 2,3-butanedione, butyrolactone, 2-furanmethanol, roasted-like 2-pentylfura, and green-like 1-penten-3-one. Partial least squares regression (PLSR) analysis revealed that 29 aroma precursors were positively correlated with the sensory quality characteristics of Shandong FCT. The results of our study can provide guidance for the targeted improvement and precise regulation of the flavour-style characteristics of Shandong FCT.
Collapse
Affiliation(s)
- Jing Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhiyuan Ma
- Shandong Zibo Tobacco Co., Ltd, Zibo City, Shandong Province, 255035, China
| | - Huawei Dai
- Shandong Zibo Tobacco Co., Ltd, Zibo City, Shandong Province, 255035, China
| | - Hu Li
- Shandong Zibo Tobacco Co., Ltd, Zibo City, Shandong Province, 255035, China
| | - Jun Qiu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xueli Pang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| |
Collapse
|
4
|
Abstract
The rates of dietary protein digestion and absorption can be significantly increased or decreased by food processing treatments such as heating, gelling and enzymatic hydrolysis, with subsequent metabolic impacts, e.g. on muscle synthesis and glucose homeostasis.This review examines in vivo evidence that industrial and domestic food processing modify the kinetics of amino acid release and absorption following a protein-rich meal. It focuses on studies that used compositionally-matched test meals processed in different ways.Food processing at extremely high temperature at alkaline pH and/or in the presence of reducing sugars can modify amino acid sidechains, leading to loss of bioavailability. Some protein-rich food ingredients are deliberately aggregated, gelled or hydrolysed during manufacture. Hydrolysis accelerates protein digestion/absorption and increases splanchnic utilisation. Aggregation and gelation may slow or accelerate proteolysis in the gut, depending on the aggregate/gel microstructure.Milk, beef and eggs are heat processed prior to consumption to eliminate pathogens and improve palatability. The temperature and time of heating affect protein digestion and absorption rates, and effects are sometimes non-linear. In light of a dietary transition away from animal proteins, more research is needed on how food processing affects digestion and absorption of non-animal proteins.Food processing modifies the microstructure of protein-rich foods, and thereby alters protein digestion and absorption kinetics in the stomach and small intestine. Exploiting this principle to optimise metabolic outcomes requires more human clinical trials in which amino acid absorption rates are measured and food microstructure is explicitly considered, measured and manipulated.
Collapse
Affiliation(s)
- Simon M Loveday
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore138673, Singapore
- Riddet Institute Centre of Research Excellence, Massey University, Private Bag 11 222, Palmerston North4442, New Zealand
| |
Collapse
|
5
|
Zheng L, She M, Ai B, Yang Y, Zheng X, Wang S, Xiao D, Jiang Z, Sheng Z. Construction and properties of an amyloid fiber ferulic acid chitosan double network hydrogel and its inhibition of AGEs activity. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Scieuzo C, Franco A, Salvia R, Triunfo M, Addeo NF, Vozzo S, Piccolo G, Bovera F, Ritieni A, Francia AD, Laginestra A, Schmitt E, Falabella P. Enhancement of fruit byproducts through bioconversion by Hermetia illucens (Diptera: Stratiomyidae). INSECT SCIENCE 2022. [PMID: 36433821 DOI: 10.1111/1744-7917.13155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Bioconversion is a biological process by which organic materials are converted into products with higher biological and commercial value. During its larval stage the black soldier fly Hermetia illucens is extremely voracious and can feed on a wide variety of organic materials. To study the impact of different fruit byproducts on the insect's growth, final larval biomass, substrate reduction, bioconversion parameters, and larval nutritional composition, 10 000 black soldier fly larvae (BSFL) were reared on 7.0 kg of one of three substrates (strawberry, tangerine, or orange) or on a standard diet as a control. The results highlight that BSFL can successfully feed and grow on each of these diets, though their development time, growth rate, and final biomass were differently impacted by the substrates, with strawberry being the most suitable. The lipid and protein contents of BSFL were similar among larvae fed on different substrates; however, major differences were detected in ash, micronutrient, fiber, fatty acid, and amino acid contents. Overall, the results indicate that fruit waste management through the BSFL bioconversion process represents a commercially promising resource for regional and national agrifood companies. Our study offers new perspectives for sustainable and environmentally friendly industrial development by which fruit byproducts or waste might be disposed of or unconventionally enhanced to create secondary products of high biological and economic value, including BSFL biomass as animal feed or, in perspective, as alternative protein source for human nutrition.
Collapse
Affiliation(s)
- Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | - Antonio Franco
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | - Micaela Triunfo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Nicola Francesco Addeo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Simone Vozzo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Di Francia
- Department of Agriculture, University of Naples Federico II, Portici, Italy
| | - Ambrogio Laginestra
- Department of Relations with the Territory, TotalEnergies EP Italia S.p.A, Potenza, Italy
| | | | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| |
Collapse
|
7
|
Effect of Adding Bifidobacterium animalis BZ25 on the Flavor, Functional Components and Biogenic Amines of Natto by Bacillus subtilis GUTU09. Foods 2022; 11:foods11172674. [PMID: 36076859 PMCID: PMC9455604 DOI: 10.3390/foods11172674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Natto is a high-value fermented soybean produced by B. subtilis. However, B. subtilis produces a pungent amine odor. This study compared the volatile organic compounds (VOCs), free amino acids (FAAs) and biogenic amines (BAs), nattokinase (NK) of natto made by two-strain fermentation with Bifidobacterium animalis BZ25 and Bacillus subtilis GUTU09 (NMBB) and that of natto made by single-strain fermentation with Bacillus subtilis GUTU09 (NMB). Compared with NMB, volatile amine substances disappeared, ketones and aldehydes of NMBB were reduced, and alcohols increased. Besides that, the taste activity value of other bitter amino acids was lowered, and BA content was decreased from 255.88 mg/kg to 238.35 mg/kg but increased NK activity from 143.89 FU/g to 151.05 FU/g. Correlation analysis showed that the addition of BZ25 reduced the correlation between GUTU09 and BAs from 0.878 to 0.808, and pH was changed from a positive correlation to a negative one. All these results showed that the quality of natto was improved by two-strain co-fermentation, which laid a foundation for its potential industrial application.
Collapse
|
8
|
Yan S, Wang X, Wu Y, Wang K, Shan J, Xue X. A metabolomics approach revealed an Amadori compound distinguishes artificially heated and naturally matured acacia honey. Food Chem 2022; 385:132631. [DOI: 10.1016/j.foodchem.2022.132631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023]
|
9
|
Deng S, Cui H, Hayat K, Zhai Y, Zhang Q, Zhang X, Ho CT. Comparison of pyrazines formation in methionine/glucose and corresponding Amadori rearrangement product model. Food Chem 2022; 382:132500. [PMID: 35245757 DOI: 10.1016/j.foodchem.2022.132500] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
The generation of pyrazines in a binary methionine/glucose (Met/Glc) mixture and corresponding methionine/glucose-derived Amadori rearrangement product (MG-ARP) was studied. Quantitative analyses of pyrazines and methional revealed that MG-ARP generated more methional compared to Met/Glc, whereas lower content and fewer species of pyrazines were observed in the MG-ARP model. Comparing the availability of α-dicarbonyl compounds generated from the Met/Glc model, methylglyoxal (MGO) was a considerably effective α-dicarbonyl compound for the formation of pyrazines during MG-ARP degradation, but glyoxal (GO) produced from MG-ARP did not effectively participate in the corresponding formation of pyrazines due to the asynchrony on the formation of GO and recovered Met. Diacetyl (DA) content was not high enough to form corresponding pyrazines in the MG-ARP model. The insufficient interaction of precursors and rapid drops in pH limited the formation of pyrazines during MG-ARP degradation. Increasing reaction temperature could reduce the negative inhibitory effect by promoting the content of precursors.
Collapse
Affiliation(s)
- Shibin Deng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, PR China; Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, PR China.
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, USA.
| | - Yun Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| | - Qiang Zhang
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Flavouring Food Co., LTD, No. 1 Shengli Road, Jieshou, Anhui 236500, PR China.
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
10
|
Kaspchak E, Toci AT, Menezes LRA, Igarashi-Mafra L, Mafra MR. Effect of phytic acid, tannic acid and saponin on asparagine-glucose Maillard reaction. Food Chem 2022; 394:133518. [PMID: 35749878 DOI: 10.1016/j.foodchem.2022.133518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/07/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Antinutrients (ANs) interact with proteins changing its behavior and may affect Maillard reaction (MR). This work aimed to study the effect of phytic acid, tannic acid, and saponin on asparagine-glucose MR. The effect of AN concentration (0-1 mM) and reaction time (3-30 min at 150 °C) on the formation of melanoidins and acrylamide was determined. Other MR compounds were analyzed by gas chromatography and nuclear magnetic resonance. The ANs effect on asparagine-glucose thermal behavior was studied by differential scanning calorimetry. Results showed that ANs increase the melanoidins formation. Acrylamide content increased in saponin and phytic acid presence. The volatile profile was similar among the samples and formed mainly by pyrazines (>50%). ANs affect glucose's melting point, however, only phytic acid and saponin affect asparagine and glucose thermal behavior. The results presented in this work are important for food science and the industry to control MR in processed foods.
Collapse
Affiliation(s)
- Elaine Kaspchak
- Department of Chemical Engineering, Federal University of Paraná (UFPR), Polytechnic Center, 81531-990 Curitiba, PR, Brazil.
| | - Aline Theodoro Toci
- Environmental and Food Interdisciplinary Studies Laboratory (LEIMAA), Latin American Institute of Life and Nature Sciences (ILACVN), Federal University of Latin American Integration (UNILA), 85867-970 Foz do Iguaçú, PR, Brazil
| | - Leociley Rocha Alencar Menezes
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Polytechnic Center, 81531-990 Curitiba, PR, Brazil
| | - Luciana Igarashi-Mafra
- Department of Chemical Engineering, Federal University of Paraná (UFPR), Polytechnic Center, 81531-990 Curitiba, PR, Brazil
| | - Marcos R Mafra
- Department of Chemical Engineering, Federal University of Paraná (UFPR), Polytechnic Center, 81531-990 Curitiba, PR, Brazil
| |
Collapse
|
11
|
Shimasaki T, Masuda S, Garrido-Oter R, Kawasaki T, Aoki Y, Shibata A, Suda W, Shirasu K, Yazaki K, Nakano RT, Sugiyama A. Tobacco Root Endophytic Arthrobacter Harbors Genomic Features Enabling the Catabolism of Host-Specific Plant Specialized Metabolites. mBio 2021; 12:e0084621. [PMID: 34044592 PMCID: PMC8262997 DOI: 10.1128/mbio.00846-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 01/04/2023] Open
Abstract
Plant roots constitute the primary interface between plants and soilborne microorganisms and harbor microbial communities called the root microbiota. Recent studies have demonstrated a significant contribution of plant specialized metabolites (PSMs) to the assembly of root microbiota. However, the mechanistic and evolutionary details underlying the PSM-mediated microbiota assembly and its contribution to host specificity remain elusive. Here, we show that the bacterial genus Arthrobacter is predominant specifically in the tobacco endosphere and that its enrichment in the tobacco endosphere is partially mediated by a combination of two unrelated classes of tobacco-specific PSMs, santhopine and nicotine. We isolated and sequenced Arthrobacter strains from tobacco roots as well as soils treated with these PSMs and identified genomic features, including but not limited to genes for santhopine and nicotine catabolism, that are associated with the ability to colonize tobacco roots. Phylogenomic and comparative analyses suggest that these genes were gained in multiple independent acquisition events, each of which was possibly triggered by adaptation to particular soil environments. Taken together, our findings illustrate a cooperative role of a combination of PSMs in mediating plant species-specific root bacterial microbiota assembly and suggest that the observed interaction between tobacco and Arthrobacter may be a consequence of an ecological fitting process. IMPORTANCE Host secondary metabolites have a crucial effect on the taxonomic composition of its associated microbiota. It is estimated that a single plant species produces hundreds of secondary metabolites; however, whether different classes of metabolites have distinctive or common roles in the microbiota assembly remains unclear. Here, we show that two unrelated classes of secondary metabolites in tobacco play a cooperative role in the formation of tobacco-specific compositions of the root bacterial microbiota, which has been established as a consequence of independent evolutionary events in plants and bacteria triggered by different ecological effects. Our findings illustrate mechanistic and evolutionary aspects of the microbiota assembly that are mediated by an arsenal of plant secondary metabolites.
Collapse
Affiliation(s)
- Tomohisa Shimasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Takashi Kawasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Ryohei Thomas Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| |
Collapse
|
12
|
He W, Tian L, Zhang S, Pan S. A novel method to prepare protein-polysaccharide conjugates with high grafting and low browning: Application in encapsulating curcumin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Bottiroli R, Troise AD, Aprea E, Fogliano V, Gasperi F, Vitaglione P. Understanding the effect of storage temperature on the quality of semi-skimmed UHT hydrolyzed-lactose milk: an insight on release of free amino acids, formation of volatiles organic compounds and browning. Food Res Int 2021; 141:110120. [PMID: 33641987 DOI: 10.1016/j.foodres.2021.110120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022]
Abstract
Proteolytic side activity of the lactase preparations (LPs) intended for ultra-high temperature hydrolyzed-lactose milk (UHLM) production induces changes in the product quality during shelf-life. The problem is particularly relevant when the enzyme is added aseptically in the packaging ("in pack" process), while the negative quality effects can be mitigated following the "in batch" process adding the LP before thermal sterilization. In this study, we monitored the quality over time of UHLM produced "in batch" and stored at 4, 20, 30 and 40 °C focusing on proteolysis, volatiles organic compounds (VOCs) formation and color changes. The goal was to identify the key reactions and compounds relevant for the product quality. An increase in storage temperature determined significant changes in the free amino acids profile increasing Strecker aldehydes and methyl ketones formation. At 30 and 40 °C, Maillard reaction and lipid oxidation ended up in a modification of the milk color, whereas at 4 and 20 °C no significant alteration was observed. Altogether, the results suggested a coordinate involvement of Maillard reaction, protein and lipid oxidation to milk browning and off-flavors formation in UHLM.
Collapse
Affiliation(s)
- Riccardo Bottiroli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, TN, Italy; Department of Agriculture and Food Science, University of Naples, Federico II, 80055 Portici, NA, Italy.
| | - Antonio Dario Troise
- Department of Agriculture and Food Science, University of Naples, Federico II, 80055 Portici, NA, Italy; Proteomics & Mass Spectrometry Laboratory, ISPAAM - CNR, 80055 Portici, NA, Italy.
| | - Eugenio Aprea
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, TN, Italy; Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, TN, Italy.
| | - Vincenzo Fogliano
- Food Quality & Design Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, the Netherlands.
| | - Flavia Gasperi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, TN, Italy; Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, TN, Italy.
| | - Paola Vitaglione
- Department of Agriculture and Food Science, University of Naples, Federico II, 80055 Portici, NA, Italy.
| |
Collapse
|
14
|
Adeboyejo FO, Aderibigbe OR, Obarayi MT, Sturm B. Comparative evaluation of instant 'poundo' cocoyam (
Colocasia esculenta
) and yam (
Dioscorea rotundata
) flours produced by flash and cabinet drying. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Barbara Sturm
- Faculty of Organic Agriculture Section of Agricultural and Biosystems Engineering University of Kassel Kassel Germany
| |
Collapse
|
15
|
Liu X, Xia B, Hu L, Ni Z, Thakur K, Wei Z. Maillard conjugates and their potential in food and nutritional industries: A review. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.43] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Xiang Liu
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Bing Xia
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Long‐Teng Hu
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Zhi‐Jing Ni
- School of Food and Biological Engineering Hefei University of Technology Hefei China
- School of Biological Science and Engineering North Minzu University Yinchuan China
- Anhui Province Key Laboratory of Functional Compound Seasoning Anhui Qiangwang Seasoning Food Co. Ltd. Jieshou China
| | - Kiran Thakur
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Zhao‐Jun Wei
- School of Food and Biological Engineering Hefei University of Technology Hefei China
- School of Biological Science and Engineering North Minzu University Yinchuan China
- Anhui Province Key Laboratory of Functional Compound Seasoning Anhui Qiangwang Seasoning Food Co. Ltd. Jieshou China
| |
Collapse
|
16
|
Chemical and sensory changes during shelf-life of UHT hydrolyzed-lactose milk produced by "in batch" system employing different commercial lactase preparations. Food Res Int 2020; 136:109552. [PMID: 32846602 DOI: 10.1016/j.foodres.2020.109552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/06/2023]
Abstract
Manufacturing shelf-stable Ultra-high temperature hydrolyzed-lactose milk (UHLM) is a challenge for dairy producers, as the product undergoes chemical changes during storage due to both reducing sugars reactivity and proteolysis arising from the impurity of the lactase preparations. In the present study, the "in batch" production system, which includes the addition of the lactase before the thermal treatment, was demonstrated a valuable alternative to the more popular "in pack" system, where lactase is added directly into each milk package after thermal sterilization. The features of the technology were investigated by monitoring the changes in free amino acids, volatile organic compounds, color and sensory properties of UHLMs produced with three different lactase preparations (LPs), up to 120 days at 20 °C. Upon UHT processing, the proteolytic side activity of lactases was minimized, so minimum breakdown of milk protein was achieved. The release of free amino acids was dependent on the lactase purity only in the early production phases, whereas it did not change over time. The Strecker aldehydes benzaldehyde and 2-methylbutanal resulted as effective markers to correlate with the initial lactase purity during storage. Color and sensory slightly changed during storage but were poorly correlated with the different lactases, resembling to phenomena typical of milk aging. This latter result suggested that production costs might be lowered by opting for less-purified lactases when considering the "in batch" technology, supporting the application of this production system for the design of UHLM with high-quality standards and low risk of alterations during shelf-life.
Collapse
|
17
|
Intestinimonas-like bacteria are important butyrate producers that utilize Nε-fructosyllysine and lysine in formula-fed infants and adults. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103974] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
18
|
Wu L, Zhang W, Liu C, Foda MF, Zhu Y. Strawberry-like SiO 2/Ag nanocomposites immersed filter paper as SERS substrate for acrylamide detection. Food Chem 2020; 328:127106. [PMID: 32485584 DOI: 10.1016/j.foodchem.2020.127106] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/12/2023]
Abstract
In this work, based on the strawberry-like SiO2/Ag nanocomposites (SANC) immersed filter paper, a newly surface-enhanced Raman scattering (SERS) substrate was constructed for the detection of acrylamide (AAm) in food products. To construct filter paper-based SANC (F-SANC) SERS substrates, SiO2 nanoparticles (SNP) were firstly synthesized and acted as carriers. After that, the in-situ preparation of silver nanoparticles (Ag NP) on SNP surface was carried out to form the strawberry-like three-dimensional (3D) structure of SANC. Finally, SANC were entangled into the filter paper to produce nanoarchitecture, thus providing enhanced plasmon resonance between SANC with strong SERS signal. Under the optimized conditions, the method exhibited good performance toward AAm with a vast linear response from 0.1 nM to 50 μM (R = 0.9935), limit of detection (LOD) of 0.02 nM (S/N = 3), and the recoveries of 80.5%~105.6% for practical samples. This strategy showed good robustness in the rapid and sensitive detection of AAm, which could be a promising strategy in food analysis and verification.
Collapse
Affiliation(s)
- Long Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Weimin Zhang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Chen Liu
- Leibniz Institute of Photonic Technology, Jena-Member of the Research Alliance Leibniz Health Technologies, Albert-Einstein-Street 9, 07745 Jena, Germany
| | - Mohamed F Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Yongheng Zhu
- College of Food Science and Technology, and Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (hanghai), Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
19
|
Troise AD, Berton-Carabin CC, Vitaglione P, Fogliano V. Formation of Taste-Active Pyridinium Betaine Derivatives Is Promoted in Thermally Treated Oil-in-Water Emulsions and Alkaline pH. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5180-5188. [PMID: 32307992 DOI: 10.1021/acs.jafc.0c01446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oil-water interface can be used as an efficient reaction controller in foods by carrying specific reactants and products in either the hydrophobic or hydrophilic phase. The formation of the taste-active compounds N-(1-carboxyethyl)-6-hydroxymethyl-pyridinium-3-ol inner salt (alapyridaine) and 1-(1-carboxyethyl)-3-hydroxy-pyridinium inner salt is influenced by the presence of a dispersed saturated triglyceride oil phase and by the pH of the aqueous phase. At pH 6.5, the formation of both betaines was 1.24 and 6 times higher in emulsions than in aqueous solution after 4 min at 140 °C. In alkaline emulsions (pH = 9.5, 4 min), the concentrations of alapyridaine and 1-(1-carboxyethyl)-3-hydroxy-pyridinium ion were 6.2 and 3.8 times higher, respectively, than in unbuffered emulsions as a result of the interaction between the polar head group of the surfactant and pyridinium rings. Here, we reported for the first time the effects of multiphase systems on the formation of nonvolatile, taste-active end products.
Collapse
Affiliation(s)
- Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples 80147, Italy
| | | | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University, Wageningen 6708 WG, The Netherlands
| |
Collapse
|
20
|
Troise AD, Colantuono A, Fiore A. Spray-dried olive mill wastewater reduces Maillard reaction in cookies model system. Food Chem 2020; 323:126793. [PMID: 32334301 DOI: 10.1016/j.foodchem.2020.126793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
The network of the Maillard reaction can be influenced by the presence of polyphenols. In this paper, we evaluated the ability of secoiridoids to interact with asparagine and lysine tuning the formation of dietary advanced glycation end-products (d-AGEs), dicarbonyls and acrylamide. Olive oil mill wastewater polyphenol powders (OMWP) were added to glucose and lysine or asparagine in silica model systems to mimic water activity present in cookies. Results revealed that acrylamide, Amadori compounds and N-ε-carboxyethyllysine (CEL) were reduced to 50%, after 13 min at 180 °C; for the reduction of N-ε-carboxymethyllysine (CML), secoiridoids were effective only in model systems with the addition of acacia fiber and maltodextrin as coating agents. In cookies, OMWP at three different concentrations decreased the concentration of protein bound Amadori compounds, CML, CEL and dicarbonyls. Acrylamide and 5-hydroxymethylfurfural were reduced to 60% and 76% respectively, highlighting the ability of secoiridoids-based functional ingredients in controlling d-AGEs formation.
Collapse
Affiliation(s)
- Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples, "Federico II", 80055 Portici, Italy; Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Antonio Colantuono
- Department of Agricultural Sciences, University of Naples, "Federico II", 80055 Portici, Italy; Arterra Bioscience S.p.A., 80142 Naples, Italy
| | - Alberto Fiore
- Division of Engineering and Food Science, School of Applied Science, Abertay University, Dundee DD1 1HG, UK.
| |
Collapse
|
21
|
Yu J, Cui H, Tang W, Hayat K, Hussain S, Tahir MU, Gao Y, Zhang X, Ho CT. Interaction of (-)-Epigallocatechin Gallate and Deoxyosones Blocking the Subsequent Maillard Reaction and Improving the Yield of N-(1-Deoxy-d-xylulos-1-yl)alanine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1714-1724. [PMID: 31957424 DOI: 10.1021/acs.jafc.0c00200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
(-)-Epigallocatechin gallate (EGCG) had a significant effect on Maillard reaction intermediate formation in the xylose/alanine model system. A trapping effect of EGCG on the reactive deoxyosones was observed to change the reaction pathways. The rate constant of Amadori rearrangement product (ARP) conversion to deoxyosones was decreased with EGCG addition, indicating an inhibition of ARP degradation. Dehydration improved the ARP formation during the thermal reaction and synergistically improved the yield of ARP with the EGCG trapping effect on the deoxyosones. Additionally, EGCG decreased the activation energy for the conversion of xylose/alanine to ARP (from 77.8 to 62.8 kJ/mol) and in turn accelerated the ARP formation. The effect of EGCG was further facilitated at the optimal conditions of 90 °C, at pH 7.5, and a molar ratio of xylose to alanine of 2:1, which improved the yield of ARP (N-(1-deoxy-d-xylulos-1-yl)alanine) from 2 to 95%.
Collapse
Affiliation(s)
- Junhe Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Wei Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Khizar Hayat
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences , King Saud University , P. O. Box 2460, Riyadh 11451 , Saudi Arabia
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences , King Saud University , P. O. Box 2460, Riyadh 11451 , Saudi Arabia
| | - Muhammad Usman Tahir
- Department of Plant Production, College of Food and Agricultural Sciences , King Saud University , P. O. Box 2460, Riyadh 11451 , Saudi Arabia
| | - Yahui Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Chi-Tang Ho
- Department of Food Science , Rutgers University , 65 Dudley Road , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
22
|
Zanfardino A, Confetto S, Curto S, Cocca A, Rollato AS, Zanfardino F, Troise AD, Testa V, Bologna O, Stanco M, Piscopo A, Cohen O, Miraglia Del Giudice E, Vitaglione P, Iafusco D. Demystifying the Pizza Bolus: The Effect of Dough Fermentation on Glycemic Response-A Sensor-Augmented Pump Intervention Trial in Children with Type 1 Diabetes Mellitus. Diabetes Technol Ther 2019; 21:721-726. [PMID: 31335171 DOI: 10.1089/dia.2019.0191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Glycemia following pizza consumption is typically managed with a dual-wave insulin bolus. This study evaluated the effect of a simple bolus on glycemia following consumption of traditionally prepared pizzas with long (24 h) or short (8 h) dough fermentation periods. Research Design and Methods: On two separate evenings, children with type 1 diabetes (n = 38) receiving sensor-integrated pump therapy consumed traditionally prepared pizza with either short (pizza A) or long (pizza B) dough fermentation, and blood glucose was monitored over 11 h. A simple insulin bolus was administered 15 min preprandially. The carbohydrate and amino acid contents of the two types of pizza were analyzed by liquid chromatography and high-resolution mass spectrometry (LC-HRMS). Results: The mean (±standard deviation) time in range 3.9-10.0 mmol/L was 73.2% ± 23.2%, and 50.8% ± 26.7% of glucose measurements were within the range 3.9-7.8 mmol/L. However, during the 2 h after bolus administration, the mean time in range 3.9-7.8 mmol/L was significantly greater with pizza B than with pizza A (73.3% ± 31.5% vs. 51.8% ± 37.4%, respectively, P = 0.009), and the time in hyperglycemia (>10 mmol/L) was significantly shorter (mean percentage 6.1% ± 19.0% vs. 17.7% ± 29.8%, respectively, P = 0.019). LC-HRMS analysis showed that long fermentation was associated with a lower carbohydrate content in the pizza, and a higher amino acid content. Conclusions: Glycemia following consumption of traditionally prepared pizza can be managed using a simple bolus 15 min before eating. Glycemic control can be further improved by increasing the dough fermentation time. Study registration: NCT03748251, Clinicaltrials.gov.
Collapse
Affiliation(s)
- Angela Zanfardino
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Santino Confetto
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Stefano Curto
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Alessandra Cocca
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Assunta Serena Rollato
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Francesco Zanfardino
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples "Federico II," Portici, Italy
| | - Veronica Testa
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Oriana Bologna
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Michela Stanco
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Alessia Piscopo
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Ohad Cohen
- Institute of Endocrinology, Ch. Sheba Medical Center, Tel Aviv University Sackler School of Medicine, Tel Aviv, Israel
| | - Emanuele Miraglia Del Giudice
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples "Federico II," Portici, Italy
| | - Dario Iafusco
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| |
Collapse
|
23
|
Birch CS, Bonwick GA. Advanced Glycation Endproducts (AGEs) in Food: Health Implications and Mitigation Strategies. MITIGATING CONTAMINATION FROM FOOD PROCESSING 2019:191-220. [DOI: 10.1039/9781788016438-00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Controversy remains over the impact of advanced glycation endproducts (AGEs), not only in their formation, but also whether they actually come directly from food products or are generated by the body in response to ingestion of certain foods. This final chapter will take a different approach to food contaminants and look at the health impact of AGEs, regardless of whether they are directly ingested from food, autogenerated by the body as a consequence of underlying disease conditions or contribute to the aetiology of disease. AGEs are formed from food components or as a consequence of some disease states, such as type II diabetes or cardiovascular disease (CVD). As such these compounds are inextricably linked to the Maillard reaction and cooking conditions. Furthermore, processing-derived chemical contaminants in cooked foods are of concern to consumers. This chapter examines new research into naturally derived plant extracts as inhibitory agents on new dietary AGE (dAGE) formation and introduces practical approaches for the reduction of dAGE consumption in the daily diet. Understanding the pathogenic mechanisms of AGEs is paramount to developing strategies against diabetic and cardiovascular complications.
Collapse
|
24
|
Zhang Y, Wang Y, Jiang F, Jin H. Sensory characteristics of Maillard reaction products from chicken protein hydrolysates with different degrees of hydrolysis. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1575907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yongsheng Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Fang Jiang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Huihui Jin
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
25
|
Csongová M, Renczés E, Šarayová V, Mihalovičová L, Janko J, Gurecká R, Troise AD, Vitaglione P, Šebeková K. Maternal Consumption of a Diet Rich in Maillard Reaction Products Accelerates Neurodevelopment in F1 and Sex-Dependently Affects Behavioral Phenotype in F2 Rat Offspring. Foods 2019; 8:foods8050168. [PMID: 31108957 PMCID: PMC6560437 DOI: 10.3390/foods8050168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Thermal processing of foods at temperatures > 100 °C introduces considerable amounts of advanced glycation end-products (AGEs) into the diet. Maternal dietary exposure might affect the offspring early development and behavioral phenotype in later life. In a rat model, we examined the influence of maternal (F0) dietary challenge with AGEs-rich diet (AGE-RD) during puberty, pregnancy and lactation on early development, a manifestation of physiological reflexes, and behavioral phenotype of F1 and F2 offspring. Mean postnatal day of auditory conduit and eye opening, or incisor eruption was not affected by F0 diet significantly. F1 AGE-RD offspring outperformed their control counterparts in hind limb placing, in grasp tests and surface righting; grandsons of AGE-RD dams outperformed their control counterparts in hind limb placing and granddaughters in surface righting. In a Morris water maze, female AGE-RD F1 and F2 offspring presented better working memory compared with a control group of female offspring. Furthermore, male F2 AGE-RD offspring manifested anxiolysis-like behavior in a light dark test. Mean grooming time in response to sucrose splash did not differ between dietary groups. Our findings indicate that long-term maternal intake of AGE-RD intergenerationally and sex-specifically affects development and behavioral traits of offspring which have never come into direct contact with AGE-RD.
Collapse
Affiliation(s)
- Melinda Csongová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
| | - Emese Renczés
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
| | - Veronika Šarayová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
- Department of Biology, Faculty of Medicine, Slovak Medical University, 83303 Bratislava, Slovakia.
| | - Lucia Mihalovičová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
| | - Jakub Janko
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
| | - Radana Gurecká
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia.
| | - Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
| |
Collapse
|
26
|
|
27
|
|