1
|
Zhang D, Yu H, Gu M, Zhang S, Ma X, Zhang W, Zhu Y, Al-Wraikat M, Abubaker MA, Zhang R, Liu Y. Unveils key proteins in Xinjiang goat muscle linked to post-mortem meat quality: A TMT-based proteomic analysis. Food Chem X 2024; 24:101847. [PMID: 39398871 PMCID: PMC11470461 DOI: 10.1016/j.fochx.2024.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
An extensive proteomic analysis utilizing the tandem mass tag (TMT) method was conducted to investigate the changes in protein expression in the longissimus dorsi muscle of Xinjiang goats over various post-mortem intervals: immediately after death within 0 h, 12 h, 24 h and 48 h. The investigation carefully identified around 108 proteins that showed significant changes in expression during these intervals. Among these proteins, six were highlighted for their crucial roles in muscle growth and differentiation of muscle fibers post-mortem. These proteins, namely COL12A1, MRPL46, CTNNB1, MYH1, CAPZA1, and MYL9, have a direct effect on the meat's quality attributes, such as tenderness and color. Further discuss observed a progressive increase in the expression of proteins linked with oxidative metabolism (MSRB2, ENOX1, LOC102170282, GSTM1, and AOC3) as the post-mortem aging period extended, particularly between 24 h to 48 h. These proteins are instrumental in defining the color and flavor profiles of goat meat, underscoring the importance of precise processing and storage conditions to preserve meat quality during the critical aging phase. This enhanced understanding of protein expression dynamics offers significant implications for optimizing meat quality and provides a scientific basis for post-mortem handling practices in the goat meat industry.
Collapse
Affiliation(s)
- Duoduo Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| | - Hong Yu
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
| | - Minghui Gu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| | - Shiquan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| | - Xiaolin Ma
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
| | - Wei Zhang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
| | - Yanlei Zhu
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
| | - Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| | - Rui Zhang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 7101119, Shaanxi, China
| |
Collapse
|
2
|
Patinho I, Antonelo DS, Delgado EF, Alessandroni L, Balieiro JCC, Contreras Castillo CJ, Gagaoua M. In-depth exploration of the high and normal pH beef proteome: First insights emphasizing the dynamic protein changes in Longissimus thoracis muscle from pasture-finished Nellore bulls over different postmortem times. Meat Sci 2024; 216:109557. [PMID: 38852285 DOI: 10.1016/j.meatsci.2024.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
This study aimed to evaluate for the first time the temporal dynamic changes in early postmortem proteome of normal and high ultimate pH (pHu) beef samples from the same cattle using a shotgun proteomics approach. Ten selected carcasses classified as normal (pHu < 5.8; n = 5) or high (pHu ≥ 6.2; n = 5) pHu beef from pasture-finished Nellore (Bos taurus indicus) bulls were sampled from Longissimus thoracis muscle at 30 min, 9 h and 44 h postmortem for proteome comparison. The temporal proteomics profiling quantified 863 proteins, from which 251 were differentially abundant (DAPs) between high and normal pHu at 30 min (n = 33), 9 h (n = 181) and 44 h (n = 37). Among the myriad interconnected pathways regulating pH decline during postmortem metabolism, this study revealed the pivotal role of energy metabolism, cellular response to stress, oxidoreductase activity and muscle system process pathways throughout the early postmortem. Twenty-three proteins overlap among postmortem times and may be suggested as candidate biomarkers to the dark-cutting condition development. The study further evidenced for the first time the central role of ribosomal proteins and histones in the first minutes after animal bleeding. Moreover, this study revealed the disparity in the mechanisms underpinning the development of dark-cutting beef condition among postmortem times, emphasizing multiple dynamic changes in the muscle proteome. Therefore, this study revealed important insights regarding the temporal dynamic changes that occur in early postmortem of high and normal muscle pHu beef, proposing specific pathways to determine the biological mechanisms behind dark-cutting determination.
Collapse
Affiliation(s)
- Iliani Patinho
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Daniel S Antonelo
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - Eduardo F Delgado
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Laura Alessandroni
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Júlio C C Balieiro
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - Carmen J Contreras Castillo
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | | |
Collapse
|
3
|
Chacko Kaitholil SR, Mooney MH, Aubry A, Rezwan F, Shirali M. Insights into the influence of diet and genetics on feed efficiency and meat production in sheep. Anim Genet 2024; 55:20-46. [PMID: 38112204 PMCID: PMC10952161 DOI: 10.1111/age.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Feed costs and carcass yields affect the profitability and sustainability of sheep production. Therefore, it is crucial to select animals with a higher feed efficiency and high-quality meat production. This study focuses on the impact of dietary and genetic factors on production traits such as feed efficiency, carcass quality, and meat quality. Diets promote optimal sheep growth and development and provide sufficient protein can lead to higher-quality meat. However, establishing an optimized production system requires careful consideration and balance of dietary parameters. This includes ensuring adequate protein intake and feeding diets with higher intestinal absorption rates to enhance nutrient absorption in the gut. The study identifies specific genes, such as Callipyge, Calpastatin, and Myostatin, and the presence of causal mutations in these genes, as factors influencing animal growth rates, feed efficiency, and meat fatty acid profiles. Additionally, variants of other reported genes, including PIGY, UCP1, MEF2B, TNNC2, FABP4, SCD, FASN, ADCY8, ME1, CA1, GLIS1, IL1RAPL1, SOX5, SOX6, and IGF1, show potential as markers for sheep selection. A meta-analysis of reported heritability estimates reveals that residual feed intake (0.27 ± 0.07), hot carcass weight (0.26 ± 0.05), dressing percentage (0.23 ± 0.05), and intramuscular fat content (0.45 ± 0.04) are moderately to highly heritable traits. This suggests that these traits are less influenced by environmental factors and could be improved through genetic selection. Additionally, positive genetic correlations exist between body weight and hot carcass weight (0.91 ± 0.06), dressing percentage (0.35 ± 0.15), and shear force (0.27 ± 0.24), indicating that selecting for higher body weight could lead to favorable changes in carcass quality, and meat quality.
Collapse
Affiliation(s)
- Steffimol Rose Chacko Kaitholil
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
- Agri‐Food and Biosciences InstituteHillsboroughUK
| | - Mark H. Mooney
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | | | - Faisal Rezwan
- Department of Computer ScienceAberystwyth UniversityAberystwythUK
| | - Masoud Shirali
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
- Agri‐Food and Biosciences InstituteHillsboroughUK
| |
Collapse
|
4
|
Li H, Feng YH, Xia C, Chen Y, Lu XY, Wei Y, Qian LL, Zhu MY, Gao GY, Meng YF, You YL, Tian Q, Liang KQ, Li YT, Lv CT, Rui XY, Wei MY, Zhang B. Physiological and transcriptomic analysis dissects the molecular mechanism governing meat quality during postmortem aging in Hu sheep ( Ovis aries). Front Nutr 2024; 10:1321938. [PMID: 38249602 PMCID: PMC10799347 DOI: 10.3389/fnut.2023.1321938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Hu sheep, known for its high quality and productivity, lack fundamental scientific research in China. Methods This study focused on the effects of 24 h postmortem aging on the meat physiological and transcriptomic alteration in Hu sheep. Results The results showed that the 24 h aging process exerts a substantial influence on the mutton color, texture, and water content as compared to untreated group. Transcriptomic analysis identified 1,668 differentially expressed genes. Functional enrichment analysis highlighted the importance of glycolysis metabolism, protein processing in endoplasmic reticulum, and the FcγR-mediated phagocytosis pathway in mediating meat quality modification following postmortem aging. Furthermore, protein-protein interaction analysis uncovered complex regulatory networks involving glycolysis, the MAPK signaling pathway, protein metabolism, and the immune response. Discussion Collectively, these findings offer valuable insights into the molecular mechanisms underlying meat quality changes during postmortem aging in Hu sheep, emphasizing the potential for improving quality control strategies in mutton production.
Collapse
Affiliation(s)
- Huan Li
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Yan-Hui Feng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, Anhui, China
| | - Chao Xia
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Yu Chen
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Xin-Yi Lu
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Yue Wei
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Le-Le Qian
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Meng-Yao Zhu
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Guo-Yv Gao
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Ya-Fei Meng
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Yv-Le You
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Qi Tian
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Kun-Qi Liang
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Yun-Tao Li
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Chao-Tian Lv
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Xiang-Yun Rui
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Ming-Yue Wei
- School of Ecology, Resources and Environment, Dezhou University, Dezhou, Shandong, China
| | - Bin Zhang
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| |
Collapse
|
5
|
Zhu Y, Hamill RM, Mullen AM, Kelly AL, Gagaoua M. Molecular mechanisms contributing to the development of beef sensory texture and flavour traits and related biomarkers: Insights from early post-mortem muscle using label-free proteomics. J Proteomics 2023; 286:104953. [PMID: 37390894 DOI: 10.1016/j.jprot.2023.104953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Beef sensory quality comprises a suite of traits, each of which manifests its ultimate phenotype through interaction of muscle physiology with environment, both in vivo and post-mortem. Understanding variability in meat quality remains a persistent challenge, but omics studies to uncover biological connections between natural variability in proteome and phenotype could provide validation for exploratory studies and offer new insights. Multivariate analysis of proteome and meat quality data from Longissimus thoracis et lumborum muscle samples taken early post-mortem from 34 Limousin-sired bulls was conducted. Using for the first-time label-free shotgun proteomics combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), 85 proteins were found to be related with tenderness, chewiness, stringiness and flavour sensory traits. The putative biomarkers were classified in five interconnected biological pathways; i) muscle contraction, ii) energy metabolism, iii) heat shock proteins, iv) oxidative stress, v) regulation of cellular processes and binding. Among the proteins, PHKA1 and STBD1 correlated with all four traits, as did the GO biological process 'generation of precursor metabolites and energy'. Optimal regression models explained a high level (58-71%) of phenotypic variability with proteomic data for each quality trait. The results of this study propose several regression equations and biomarkers to explain the variability of multiple beef eating quality traits. Thanks to annotation and network analyses, they further suggest protein interactions and mechanisms underpinning the physiological processes regulating these key quality traits. SIGNIFICANCE: The proteomic profiles of animals with divergent quality profiles have been compared in numerous studies; however, a wide range of phenotypic variation is required to better understand the mechanisms underpinning the complex biological pathways correlated with beef quality and protein interactions. We used multivariate regression analyses and bioinformatics to analyse shotgun proteomics data to decipher the molecular signatures involved in beef texture and flavour variations with a focus on multiple quality traits. We developed multiple regression equations to explain beef texture and flavour. Additionally, potential candidate biomarkers correlated with multiple beef quality traits are suggested, which could have utility as indicators of beef overall sensory quality. This study explained the biological process responsible for determining key quality traits such as tenderness, chewiness, stringiness, and flavour in beef, which will provide support for future beef proteomics studies.
Collapse
Affiliation(s)
- Yao Zhu
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork T12 K8AF, Ireland
| | - Ruth M Hamill
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland.
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork T12 K8AF, Ireland
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland; PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France.
| |
Collapse
|
6
|
Lamri M, Della Malva A, Djenane D, López-Pedrouso M, Franco D, Albenzio M, Lorenzo JM, Gagaoua M. Towards the discovery of goat meat quality biomarkers using label-free proteomics. J Proteomics 2023; 278:104868. [PMID: 36871648 DOI: 10.1016/j.jprot.2023.104868] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
This study aimed to identify for the first time protein biomarkers of meat quality traits from Longissimus thoracis (LT) muscle of goats (Capra hircus). Male goats of similar age and weight reared under extensive rearing conditions were used to relate the LT muscle proteome with multiple meat quality traits. The early post-mortem muscle proteome analyzed using label-free proteomics was compared among three texture clusters built using hierarchical clustering analysis. Twenty-five proteins were differentially abundant and their mining using bioinformatics revealed three major biological pathways to be involved: 10 muscle structure proteins (MYL1, MYL4, MYLPF, MYL6B, MYH1, MYH2, ACTA1, ACTBL2, FHL1 and MYOZ1); 6 energy metabolism proteins (ALDOA, PGAM2, ATP5F1A, GAPDH, PGM1 and ATP5IF1), and two heat shock proteins: HSPB1 (small) and HSPA8 (large). Seven other miscellaneous proteins belonging to pathways such as regulation, proteolysis, apoptosis, transport and binding, tRNA processing or calmodulin-binding were further identified to play a role in the variability of goat meat quality. The differentially abundant proteins were correlated with the goat meat quality traits in addition to multivariate regression models built to propose the first regression equations of each quality trait. This study is the first to highlight in a multi-trait quality comparison the early post-mortem changes in the goat LT muscle proteome. It also evidenced the mechanisms underpinning the development of several quality traits of interest in goat meat production along the major biochemical pathways at interplay. SIGNIFICANCE: The discovery of protein biomarkers in the field of meat research is an emerging topic. In the case of goat meat quality, very few studies using proteomics have been conducted with the aim of proposing biomarkers. Therefore, this study is the first to quest for biomarkers of goat meat quality using label-free shotgun proteomics with a focus on multiple quality traits. We identified the molecular signatures underlying goat meat texture variation, which were found to belong to muscle structure and related proteins, energy metabolism and heat shock proteins along with other proteins involved in regulation, proteolysis, apoptosis, transport and binding, tRNA processing or calmodulin-binding. We further evaluated the potential of the candidate biomarkers to explain meat quality using the differentially abundant proteins by means of correlation and regression analyses. The results allowed the explanation of the variation in multiple traits such as pH, color, water-holding capacity, drip and cook losses traits and texture.
Collapse
Affiliation(s)
- Melisa Lamri
- Department of Food Science, Laboratory of Food Quality and Food Safety, Mouloud Mammeri University, P.O. Box. 17, Tizi-Ouzou 15000, Algeria
| | - Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 71121 Foggia, Italy
| | - Djamel Djenane
- Department of Food Science, Laboratory of Food Quality and Food Safety, Mouloud Mammeri University, P.O. Box. 17, Tizi-Ouzou 15000, Algeria
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Daniel Franco
- Department of Chemical Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 71121 Foggia, Italy
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; Facultade de Ciencias, Área de Tecnoloxía dos Alimentos, Universidade de Vigo, 32004 Ourense, Spain
| | | |
Collapse
|
7
|
Lamri M, Della Malva A, Djenane D, Albenzio M, Gagaoua M. First insights into the dynamic protein changes in goat Semitendinosus muscle during the post-mortem period using high-throughput proteomics. Meat Sci 2023; 202:109207. [PMID: 37150067 DOI: 10.1016/j.meatsci.2023.109207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/02/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Proteomics plays a key and insightful role in meat research in the post-genomic era. This study aimed to unveil using a shotgun proteomics approach the temporal dynamic changes in early post-mortem proteome of goat Semitendinosus muscle. Therefore, the evolution and comparison of the muscle proteome over three post-mortem times (1, 8, and 24 h) was assessed. The temporal proteomics profiling quantified 748 proteins, from which 174 were differentially abundant (DAPs): n = 55 between 1 h versus 8 h, n = 52 between 8 h versus 24 h, and n = 154 between 1 h versus 24 h. The DAPs belong to myriad interconnected pathways. Binding, transport and calcium homeostasis, as well as muscle contraction and structure, exhibited an equivalent contribution during post-mortem, demonstrating their central role. Catalytic, metabolism and ATP metabolic process, and proteolysis were active pathways from the first hours of animal bleeding. Conversely, oxidative stress, response to hypoxia and cell redox homeostasis along chaperones and heat shock proteins accounted for the large proportion of the biochemical processes, more importantly after 8 h post-mortem. Overall, the conversion of muscle into meat is largely orchestrated by energy production as well as mitochondrial metabolism and homeostasis through calcium and permeability transition regulation. The study further evidenced the role of ribosomal proteins in goat post-mortem muscle, signifying that several proteins experiencing changes during storage, also undergo splicing modifications, which is for instance a mechanism known for mitochondrial proteins. Overall, temporal proteomics profiling of early post-mortem muscle proteome offers an unparalleled view of the sophisticated post-mortem biochemical and proteolytic events associated with goat meat quality determination.
Collapse
Affiliation(s)
- Melisa Lamri
- Laboratoire de Qualité et Sécurité des Aliments, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria
| | - Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
| | - Djamel Djenane
- Laboratoire de Qualité et Sécurité des Aliments, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
| | | |
Collapse
|
8
|
Kumar P, Ahmed MA, Abubakar AA, Hayat MN, Kaka U, Ajat M, Goh YM, Sazili AQ. Improving animal welfare status and meat quality through assessment of stress biomarkers: A critical review. Meat Sci 2023; 197:109048. [PMID: 36469986 DOI: 10.1016/j.meatsci.2022.109048] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
Stress induces various physiological and biochemical alterations in the animal body, which are used to assess the stress status of animals. Blood profiles, serum hormones, enzymes, and physiological conditions such as body temperature, heart, and breathing rate of animals are the most commonly used stress biomarkers in the livestock sector. Previous exposure, genetics, stress adaptation, intensity, duration, and rearing practices result in wide intra- and inter-animal variations in the expression of various stress biomarkers. The use of meat proteomics by adequately analyzing the expression of various muscle proteins such as heat shock proteins (HSPs), acute phase proteins (APPs), texture, and tenderness biomarkers help predict meat quality and stress in animals before slaughter. Thus, there is a need to identify non-invasive, rapid, and accurate stress biomarkers that can objectively assess stress in animals. The present manuscript critically reviews various aspects of stress biomarkers in animals and their application in mitigating preslaughter stress in meat production.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Muideen Adewale Ahmed
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abubakar Ahmed Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yong Meng Goh
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Della Malva A, Santillo A, Priolo A, Marino R, Ciliberti MG, Sevi A, Albenzio M. Effect of hazelnut skin by-product supplementation in lambs' diets: Implications on plasma and muscle proteomes and first insights on the underlying mechanisms. J Proteomics 2023; 271:104757. [PMID: 36273509 DOI: 10.1016/j.jprot.2022.104757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the effect of hazelnut skin by-product supplementation on lamb meat quality characteristics and plasma and muscle proteomes. Twenty-two Valle del Belice male lambs were divided into two experimental groups: control (C), fed a maize-barley diet and hazelnut (H), fed hazelnut skin by-product as maize partial replacer in the concentrate diet. The meat of lambs fed hazelnut skin showed greater values of lightness, redness, yellowness, and chroma color parameters together with the highest myofibril fragmentation index. Two-dimensional electrophoresis and mass spectrometry applied on plasma proteome identified 20 protein spots corresponding to 18 unique gene names to be differently expressed due to hazelnut skin by-product substitution. For the early post-mortem muscle, 23 protein spots (42 unique gene names) were significantly up-regulated due to hazelnut skin by-product supplementation. Four proteins these being APOA1, PHB, ACTG1 and ALB, were found to be common to the two proteomes suggesting that these proteins could be candidate biomarkers to monitor in vita and post-mortem lamb meat quality traits. This study evidenced the main mechanisms involved in the supplementation of hazelnut skin by-product in lambs' diet and confirmed the possibility of using plasma proteome as a non-invasive way to predict lamb meat quality. SIGNIFICANCE: Maximizing the use of agro-industrial by-products as replacers of traditional feedstuff for improving animal products is one of the important challenges to preserving natural resources and guaranteeing environmental sustainability. Hazelnut (Corylus avellana L.) skin, obtained as a results of hazelnut roasting, represents a valuable by-products due to its high content in unsaturated fatty acids, tannins, and vitamins. Thus, including hazelnut skin by-product in small ruminant nutrition could reduce the costs of animal feedings for farmers as well as improve meat nutritional and sensorial characteristics. Additionally, monitoring the meat quality characteristics with fast, accurate, and non-invasive tools to find, before slaughter, animals with desired quality characteristics is of growing interest in the last years. In this regard, the objectives of this study were to assess i) the effect of hazelnut skin supplementation on lamb meat quality characteristics and plasma and muscle proteomes, and ii) whether analyzing plasma proteome by using a gel-based proteomic approach could effectively offer a more readily available option for determining lamb meat quality. Taken together, the proteomic approach applied to plasma and muscle proteomes, allowed us to reveal the pathways and the potential candidate plasma biomarkers to predict lamb meat production in the pre-slaughter phase.
Collapse
Affiliation(s)
- Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy.
| | - Antonella Santillo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Alessandro Priolo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Rosaria Marino
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Maria Giovanna Ciliberti
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| |
Collapse
|
10
|
Early postmortem muscle proteome and metabolome of beef longissimus thoracis muscle classified by pH at 6 hours postmortem. J Proteomics 2023; 271:104756. [PMID: 36273510 DOI: 10.1016/j.jprot.2022.104756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The objective was to identify metabolome and proteome differences at 1 h and 1 d postmortem between longissimus thoracis (LT) muscle classified based on 6 h pH values. Twenty beef LT rib sections were sorted based on 6 h postmortem pH values into low (LpH; pH < 5.55; n = 9) and high (HpH; pH > 5.84; n = 8) pH classifications. Warner-Bratzler shear force (WBSF), desmin degradation, and calpain-1 autolysis were measured. Two-dimensional difference in gel electrophoresis (3-10, 4-7, and 6-9 pH range) and Tandem mass tagging (TMT) protein analyses were employed to determine how the sarcoplasmic protein profile varied across pH classification. Non-targeted metabolomic analyses were conducted on extracts prepared at 1 h and 1 d postmortem. The LpH classification had a lower WBSF value at 1 d postmortem, which was explained by greater calpain-1 autolysis and desmin degradation at 1 d postmortem. Proteome and metabolome analysis revealed a phenotype that promotes more rapid energy metabolism in the LpH group. Proteome and metabolome analyses identified energy production, apoptotic, calcium homeostasis, and proteasome systems influencing pH classifications that could explain the observed pH, proteolysis, and beef tenderness differences. SIGNIFICANCE: This study is the first to identify proteomic and metabolomic variations early (1 h and 1 day) postmortem that are linked to differences in early (6 h) postmortem pH values and to tenderness differences at 1 day postmortem. This study integrates postmortem biochemical features (protein degradation, proteome, and metabolome variations) to postmortem pH decline and eating quality of beef steaks. Potential biomarkers of more rapid postmortem metabolism linked to earlier tenderization in beef are suggested. Identification of these biochemical features will assist in predicting the eating quality of beef products.
Collapse
|
11
|
Severino M, Gagaoua M, Baldassini W, Ribeiro R, Torrecilhas J, Pereira G, Curi R, Chardulo LA, Padilha P, Neto OM. Proteomics Unveils Post-Mortem Changes in Beef Muscle Proteins and Provides Insight into Variations in Meat Quality Traits of Crossbred Young Steers and Heifers Raised in Feedlot. Int J Mol Sci 2022; 23:ijms232012259. [PMID: 36293120 PMCID: PMC9603352 DOI: 10.3390/ijms232012259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Proteomics has been widely used to study muscle biology and meat quality traits from different species including beef. Beef proteomics studies allow a better understanding of the biological processes related to meat quality trait determination. This study aimed to decipher by means of two-dimensional electrophoresis (2D-PAGE), mass spectrometry and bioinformatics the changes in post-mortem muscle with a focus on proteins differentially expressed in the Longissimus thoracis (LT) muscle of immunocastrated young heifers and steers. Carcass traits, chemical composition, pH, instrumental color (L*, a*, b*), cooking loss and Warner-Bratzler shear force (WBSF) of meat from F1 Montana-Nellore cattle were also evaluated. Backfat thickness (BFT) and intramuscular fat content (IMF) were 46.8% and 63.6% higher in heifers (p < 0.05), respectively, while evaporation losses (EL) were 10.22% lower compared to steers. No differences (p > 0.05) were observed for tenderness evaluated by WBSF (3, 10, and 17 days post-mortem), pH, and color traits (L*, a* and b*) between the experimental groups. The study revealed several proteins to be differentially expressed proteins in heifers compared steers (p < 0.05). In heifers, proteins involved in nutrient transport (TF, ALB, and MB), energy metabolism (ALDOA, GAPDH, and PKM), and oxidative stress and response to stress (HSPA8 and CA3) were associated with a greater BFT and IMF deposition. The higher expression of these proteins indicated greater oxidative capacity and lower glycolytic activity in the LT muscle of heifers. In steers, there was greater abundance of protein expression related to muscle contraction and proteins of structure (ACTA1, TPM2 and TNNT3), energy metabolism (ENO1, ENO3, PYGM, PGM1 and TPI1) and ATP metabolism (ATP5F1B, PEBP1 and AK1), indicating greater glycogenolysis in LT muscle, suggesting a shift in the glycolytic/oxidative fibers of steers.
Collapse
Affiliation(s)
- Mariane Severino
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
- Physiologie, Environnement et Génétique Pour l’Animal et les Systèmes d’Élevage (PEGASE), INRAE, Institut Agro, 35590 Saint-Gilles, France
- Correspondence: or (M.G.); (O.M.N.)
| | - Welder Baldassini
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Richard Ribeiro
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Juliana Torrecilhas
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Guilherme Pereira
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Rogério Curi
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- Physiologie, Environnement et Génétique Pour l’Animal et les Systèmes d’Élevage (PEGASE), INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - Luis Artur Chardulo
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Pedro Padilha
- Institute of Bioscience (IB), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Otávio Machado Neto
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
- Correspondence: or (M.G.); (O.M.N.)
| |
Collapse
|
12
|
Bischof G, Witte F, Terjung N, Heinz V, Juadjur A, Gibis M. Metabolic, proteomic and microbial changes postmortem and during beef aging. Crit Rev Food Sci Nutr 2022; 64:1076-1109. [PMID: 36004604 DOI: 10.1080/10408398.2022.2113362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of this review is to provide an overview of the current knowledge about proteomic and metabolic changes in beef, the microbiological alteration postmortem and during aging, and observe the influence on beef quality parameters, such as tenderness, taste and flavor. This review will also focus on the different aging types (wet- and dry-aging), the aging or postmortem time of beef and their effect on the proteome and metabolome of beef. The Ca2+ homeostasis and adenosine 5'-triphosphate breakdown are the main reactions in the pre-rigor phase. After rigor mortis, the enzymatic degradation of connective tissues and breakdown of energy metabolism dominate molecular changes in beef. Important metabolic processes leading to the formation of saccharides, nucleotides, organic acids (e.g. lactic acid), creatine and fatty acids are considered in this context as possible flavor precursors or formers of beef flavor and taste. Flavor precursors are substrates for lipid oxidation, Strecker degradation and Maillard reaction during cooking or roasting. The findings presented should serve as a basis for a better understanding of beef aging and its molecular effects and are intended to contribute to meeting the challenges of improving beef quality.
Collapse
Affiliation(s)
- Greta Bischof
- Chemical Analytics, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Franziska Witte
- Product Innovation, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nino Terjung
- Product Innovation, DIL Technology GmbH, Quakenbrück, Germany
| | - Volker Heinz
- Research Directorate, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Andreas Juadjur
- Chemical Analytics, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
13
|
Song Y, Huang F, Li X, Zhang H, Liu J, Han D, Rui M, Wang J, Zhang C. DIA-based quantitative proteomic analysis on the meat quality of porcine Longissimus thoracis et lumborum cooked by different procedures. Food Chem 2022; 371:131206. [PMID: 34619635 DOI: 10.1016/j.foodchem.2021.131206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 12/23/2022]
Abstract
A DIA-based quantitative proteomic strategy was used to investigate the effects of different cooking procedures (steaming and boiling) on pork meat quality. Results showed that steamed meats had higher redness, cohesion, springiness, but lower lightness, yellowness, shear force, hardness, chewiness and cooking loss than boiled meats. In total of 1608 proteins were identified and 103 proteins exhibited significant difference (fold change > 1.5, P < 0.05). These DAPs mainly involved in protein structure, metabolic enzyme, protein turnover and oxidation stress. ALDOC, PVALB, PPP1R14C, AMPD1, CRYAB and SOD1 were validated as potential indicators of color variations in cooked meat. CFL1, COL1A1, COL3A1, RTN4, NRAP, NT5C3A, and SOD1 might be potential biomarker for texture changes of cooked meats. Moreover, these validated proteins exhibited significant (P < 0.05) correlation with cooking loss and could be serve as candidate predictors for cooking loss changes of meats in different cooking procedures.
Collapse
Affiliation(s)
- Yu Song
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Huang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiqian Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong Han
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Maoneng Rui
- Lijiang Sanchuan Industrial Group Co., Ltd., Lijiang, Yunnan Province 674200, China
| | - Jipeng Wang
- Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou, Fujian Province 363000, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
14
|
The Quality Changes and Proteomic Analysis of Cattle Muscle Postmortem during Rigor Mortis. Foods 2022; 11:foods11020217. [PMID: 35053949 PMCID: PMC8775072 DOI: 10.3390/foods11020217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/26/2021] [Accepted: 01/08/2022] [Indexed: 01/19/2023] Open
Abstract
Rigor mortis occurs in a relatively early postmortem period and is a complex biochemical process in the conversion of muscle to meat. Understanding the quality changes and biomarkers during rigor mortis can provide a theoretical basis for maintaining and improving meat quality. Herein, a tandem mass tag proteomic method is used to investigate the effects of differentially expressed proteins on the meat quality of cattle Longissimus lumborum muscle postmortem (0, 6, and 24 h). The pH, total sulfhydryl content and sarcomere length decrease significantly during storage. In contrast, meat color values (L*, a*, and b*) and the myofibril fragmentation index increase significantly. Altogether, 147 differentially expressed proteins are identified, most being categorized as metabolic enzymes, mitochondrial proteins, necroptosis and ferroptosis proteins and structural proteins. The results also reveal additional proteins that are potentially involved in rigor mortis, such as cardiac phospholamban, acetyl-coenzyme A acyltransferase, and ankyrin repeat domain 2. The current results provide proteomic insights into the changes in meat quality during rigor mortis.
Collapse
|
15
|
YAN Z, LU Z, LI W, HU R, MA Q. Differential proteomic analysis to identify proteins associated with Tenderness of Yak meat from different parts based on TMT Proteomic. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.58721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhongxin YAN
- Northwest A & F University, China; Qinghai University, China; Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, China
| | | | - Wei LI
- Qinghai University, China
| | | | - Qingmei MA
- Animal Husbandry and Veterinary Medicine Station of Haiyan County, China
| |
Collapse
|
16
|
Sierra V, González-Blanco L, Diñeiro Y, Díaz F, García-Espina MJ, Coto-Montes A, Gagaoua M, Oliván M. New Insights on the Impact of Cattle Handling on Post-Mortem Myofibrillar Muscle Proteome and Meat Tenderization. Foods 2021; 10:3115. [PMID: 34945666 PMCID: PMC8700955 DOI: 10.3390/foods10123115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effect of different cattle management strategies at farm (Intensive vs. Extensive) and during transport and lairage (mixing vs. non-mixing with unfamiliar animals) on the myofibrillar subproteome of Longissimus thoracis et lumborum (LTL) muscle of "Asturiana de los Valles" yearling bulls. It further aimed to study the relationships with beef quality traits including pH, color, and tenderness evaluated by Warner-Bratzler shear force (WBSF). Thus, comparative proteomics of the myofibrillar fraction along meat maturation (from 2 h to 14 days post-mortem) and different quality traits were analyzed. A total of 23 protein fragments corresponding to 21 unique proteins showed significant differences among the treatments (p < 0.05) due to any of the factors considered (Farm, Transport and Lairage, and post-mortem time ageing). The proteins belong to several biological pathways including three structural proteins (MYBPC2, TNNT3, and MYL1) and one metabolic enzyme (ALDOA) that were affected by both Farm and Transport/Lairage factors. ACTA1, LDB3, and FHL2 were affected by Farm factors, while TNNI2 and MYLPF (structural proteins), PKM (metabolic enzyme), and HSPB1 (small Heat shock protein) were affected by Transport/Lairage factors. Several correlations were found between the changing proteins (PKM, ALDOA, TNNI2, TNNT3, ACTA1, MYL1, and CRYAB) and color and tenderness beef quality traits, indicating their importance in the determination of meat quality and their possible use as putative biomarkers.
Collapse
Affiliation(s)
- Verónica Sierra
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Laura González-Blanco
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Yolanda Diñeiro
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Fernando Díaz
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
| | - María Josefa García-Espina
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Dublin 15, D15 KN3K Ashtown, Ireland
| | - Mamen Oliván
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| |
Collapse
|
17
|
Brandi J, Robotti E, Manfredi M, Barberis E, Marengo E, Novelli E, Cecconi D. Kohonen Artificial Neural Network and Multivariate Analysis in the Identification of Proteome Changes during Early and Long Aging of Bovine Longissimus dorsi Muscle Using SWATH Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11512-11522. [PMID: 34523341 PMCID: PMC8485349 DOI: 10.1021/acs.jafc.1c03578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 06/13/2023]
Abstract
To study proteomic changes involved in tenderization of Longissimus dorsi, Charolais heifers and bulls muscles were sampled after early and long aging (12 or 26 days). Sensory evaluation and instrumental tenderness measurement were performed. Proteins were analyzed by gel-free proteomics. By pattern recognition (principal component analysis and Kohonen's self-organizing maps) and classification (partial least squares-discriminant analysis) tools, 58 and 86 dysregulated proteins were detected after 12 and 26 days of aging, respectively. Tenderness was positively correlated mainly with metabolic enzymes (PYGM, PGAM2, TPI1, PGK1, and PFKM) and negatively with keratins. Downregulation in hemoglobin subunits and carbonic anhydrase 3 levels was relevant after 12 days of aging, while mimecan and collagen chains levels were reduced after 26 days of aging. Bioinformatics indicated that aging involves a prevalence of metabolic pathways after late and long periods. These findings provide a deeper understanding of changes involved in aging of beef and indicate a powerful method for future proteomics studies.
Collapse
Affiliation(s)
- Jessica Brandi
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, Verona 37134, Italy
| | - Elisa Robotti
- Department
of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria 15121, Italy
| | - Marcello Manfredi
- Department
of Translational Medicine and Center for Translational Research on
Autoimmune Diseases, University of Piemonte
Orientale, Novara 28100, Italy
- Department
of Translational Medicine, University of
Piemonte Orientale, Novara 28100, Italy
| | - Elettra Barberis
- Department
of Translational Medicine and Center for Translational Research on
Autoimmune Diseases, University of Piemonte
Orientale, Novara 28100, Italy
- Department
of Translational Medicine, University of
Piemonte Orientale, Novara 28100, Italy
| | - Emilio Marengo
- Department
of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria 15121, Italy
| | - Enrico Novelli
- Department
of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua 35122, Italy
| | - Daniela Cecconi
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, Verona 37134, Italy
| |
Collapse
|
18
|
Ellies-Oury MP, Durand D, Listrat A, Chavent M, Saracco J, Gruffat D. Certain relationships between Animal Performance, Sensory Quality and Nutritional Quality can be generalized between various experiments on animal of similar types. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Shi H, Shahidi F, Wang J, Huang Y, Zou Y, Xu W, Wang D. Techniques for postmortem tenderisation in meat processing: effectiveness, application and possible mechanisms. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00062-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Developing efficient and promising tenderising techniques for postmortem meat is a heavily researched topic among meat scientists as consumers are willing to pay more for guaranteed tender meat. However, emerging tenderising techniques are not broadly used in the meat industry and, to some degree, are controversial due to lack of theoretical support. Thus, understanding the mechanisms involved in postmortem tenderisation is essential. This article first provides an overview of the relationship of ageing tenderisation and calpain system, as well as proteomics applied to identify protein biomarkers characterizing tenderness. In general, the ageing tenderisation is mediated by multiple biochemical activities, and it can exhibit better palatability and commercial benefit by combining other interventions. The calpain system plays a key role in ageing tenderisation functions by rupturing myofibrils and regulating proteolysis, glycolysis, apoptosis and metabolic modification. Additionally, tenderising techniques from different aspects including exogenous enzymes, chemistry, physics and the combined methods are discussed in depth. Particularly, innovation of home cooking could be recommended to prepare relatively tender meat due to its convenience and ease of operation by consumers. Furthermore, the combined interventions provide better performance in controlled tenderness. Finally, future trends in developing new tenderising techniques, and applied consideration in the meat processing industry are proposed in order to improve meat quality with higher economical value.
Graphical abstract
Collapse
|
20
|
Briggs RK, Christensen RC, Quarnberg SM, Legako JF, Raymond RC, MacNeil MD, Thornton KJ. Relationship Between Meat Quality, Carcass Characteristics, and Protein Abundance of HSPβ1, HSPA, and DJ1 in Beef Longissimus thoracis Pre-Rigor or After 14 Days’ Aging. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study evaluated associations of heat shock proteins (HSP) and an oxidative stress protein, protein deglycase (DJ1), with beef quality and tenderness. Samples from the longissimus thoracis (N = 99) were collected pre-rigor (day 0) and after 14-d aging. Warner-Bratzler shear force (WBSF), myofibrillar fragmentation index (MFI), and a trained sensory panel were used to determine meat quality. Protein abundance of DJ1 and 2 HSP—HSPβ1 and HSPA—were assessed. Regression analyses demonstrated that DJ1 abundance after 14 d of aging is a predictor of WBSF (P < 0.001), MFI (P = 0.02), and sensory panel tenderness (P < 0.001). Abundance of HSPβ1 after 14 d of aging is also a predictor of MFI (P = 0.03). Additionally, abundance of both HSPβ1 and DJ1 pre-rigor are predictors of juiciness (P < 0.05). Abundance of HSPβ1 pre-rigor was correlated with WBSF (R = 0.67), sensory panel tenderness (R = −0.44), juiciness (R = −0.30), and umami (R = −0.20). Abundance of DJ1 pre-rigor was also correlated with WBSF (R = 0.72), sensory panel tenderness (R = −0.44), juiciness (R = − 0.24), and umami (R = −0.31). After 14-d aging, HSP β 1 abundance was cor- related with WBSF (R = 0.66), sensory panel tenderness (R = −0.34), juiciness (R = −0.34), umami (R = −0.33), and brown/ roasted (R = −0.30). Abundance of DJ1 after 14-d aging was also correlated with WBSF (R = 0.68), sensory panel tenderness (R = −0.41), juiciness (R = −0.21), and umami (R = −0.28). These results demonstrate that abundance of HSPβ1 and DJ1 both pre-rigor and after 14 d of aging are correlated with meat tenderness and end-product quality as assessed by a trained sensory panel. Regression analyses further reveal that abundance of DJ1 and HSPβ1 after 14 d of aging is causative in development of beef tenderness and juiciness, respectively. Taken together, these results suggest that abundance of DJ1 is a predictor of tenderness, whereas abundance of HSPβ1 is related to meat quality but cannot be used to predict tenderness.
Collapse
Affiliation(s)
- Reganne K. Briggs
- Utah State University Department of Animal, Dairy and Veterinary Sciences
| | | | | | | | | | | | - Kara J. Thornton
- Utah State University Department of Animal, Dairy and Veterinary Sciences
| |
Collapse
|
21
|
A Proteomic Study for the Discovery of Beef Tenderness Biomarkers and Prediction of Warner-Bratzler Shear Force Measured on Longissimus thoracis Muscles of Young Limousin-Sired Bulls. Foods 2021; 10:foods10050952. [PMID: 33925360 PMCID: PMC8145402 DOI: 10.3390/foods10050952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Beef tenderness is of central importance in determining consumers’ overall liking. To better understand the underlying mechanisms of tenderness and be able to predict it, this study aimed to apply a proteomics approach on the Longissimus thoracis (LT) muscle of young Limousin-sired bulls to identify candidate protein biomarkers. A total of 34 proteins showed differential abundance between the tender and tough groups. These proteins belong to biological pathways related to muscle structure, energy metabolism, heat shock proteins, response to oxidative stress, and apoptosis. Twenty-three putative protein biomarkers or their isoforms had previously been identified as beef tenderness biomarkers, while eleven were novel. Using regression analysis to predict shear force values, MYOZ3 (Myozenin 3), BIN1 (Bridging Integrator-1), and OGN (Mimecan) were the major proteins retained in the regression model, together explaining 79% of the variability. The results of this study confirmed the existing knowledge but also offered new insights enriching the previous biomarkers of tenderness proposed for Longissimus muscle.
Collapse
|
22
|
Huang C, Hou C, Ijaz M, Yan T, Li X, Li Y, Zhang D. Proteomics discovery of protein biomarkers linked to meat quality traits in post-mortem muscles: Current trends and future prospects: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Listrat A, Gagaoua M, Andueza D, Gruffat D, Normand J, Mairesse G, Picard B, Hocquette JF. What are the drivers of beef sensory quality using metadata of intramuscular connective tissue, fatty acids and muscle fiber characteristics? Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104209] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Gagaoua M, Terlouw EMC, Mullen AM, Franco D, Warner RD, Lorenzo JM, Purslow PP, Gerrard D, Hopkins DL, Troy D, Picard B. Molecular signatures of beef tenderness: Underlying mechanisms based on integromics of protein biomarkers from multi-platform proteomics studies. Meat Sci 2020; 172:108311. [PMID: 33002652 DOI: 10.1016/j.meatsci.2020.108311] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Over the last two decades, proteomics have been employed to decipher the underlying factors contributing to variation in the quality of muscle foods, including beef tenderness. One such approach is the application of high-throughput protein analytical platforms in the identification of meat quality biomarkers. To broaden our understanding about the biological mechanisms underpinning meat tenderization across a large number of studies, an integromics study was performed to review the current status of protein biomarker discovery targeting beef tenderness. This meta-analysis is the first to gather and propose a comprehensive list of 124 putative protein biomarkers derived from 28 independent proteomics-based experiments, from which 33 robust candidates were identified worthy of evaluation using targeted or untargeted data-independent acquisition proteomic methods. We further provide an overview of the interconnectedness of the main biological pathways impacting tenderness determination after multistep analyses including Gene Ontology annotations, pathway and process enrichment and literature mining, and specifically discuss the major proteins and pathways most often reported in proteomics research.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - E M Claudia Terlouw
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Peter P Purslow
- Centro de Investigacion Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7001BBO, Argentina
| | - David Gerrard
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - David L Hopkins
- NSW DPI, Centre for Red Meat and Sheep Development, Cowra, NSW 2794, Australia
| | - Declan Troy
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Brigitte Picard
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
25
|
Gagaoua M, Bonnet M, Picard B. Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction. Foods 2020; 9:foods9091180. [PMID: 32858893 PMCID: PMC7554754 DOI: 10.3390/foods9091180] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the potential of a panel of 20 protein biomarkers, quantified by Reverse Phase Protein Array (RPPA), to explain and predict two important meat quality traits, these being beef tenderness assessed by Warner-Bratzler shear force (WBSF) and the intramuscular fat (IMF) content (also termed marbling), in a large database of 188 Protected Designation of Origin (PDO) Maine-Anjou cows. Thus, the main objective was to move forward in the progression of biomarker-discovery for beef qualities by evaluating, at the same time for the two quality traits, a list of candidate proteins so far identified by proteomics and belonging to five interconnected biological pathways: (i) energy metabolic enzymes, (ii) heat shock proteins (HSPs), (iii) oxidative stress, (iv) structural proteins and (v) cell death and protein binding. Therefore, three statistical approaches were applied, these being Pearson correlations, unsupervised learning for the clustering of WBSF and IMF into quality classes, and Partial Least Squares regressions (PLS-R) to relate the phenotypes with the 20 biomarkers. Irrespective of the statistical method and quality trait, seven biomarkers were related with both WBSF and IMF, including three small HSPs (CRYAB, HSP20 and HSP27), two metabolic enzymes from the oxidative pathway (MDH1: Malate dehydrogenase and ALDH1A1: Retinal dehydrogenase 1), the structural protein MYH1 (Myosin heavy chain-IIx) and the multifunctional protein FHL1 (four and a half LIM domains 1). Further, three more proteins were retained for tenderness whatever the statistical method, among which two were structural proteins (MYL1: Myosin light chain 1/3 and TNNT1: Troponin T, slow skeletal muscle) and one was glycolytic enzyme (ENO3: β-enolase 3). For IMF, two proteins were, in this trial, specific for marbling whatever the statistical method: TRIM72 (Tripartite motif protein 72, negative) and PRDX6 (Peroxiredoxin 6, positive). From the 20 proteins, this trial allowed us to qualify 10 and 9 proteins respectively as strongly related with beef tenderness and marbling in PDO Maine-Anjou cows.
Collapse
|
26
|
Picard B, Gagaoua M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6021-6039. [PMID: 32374594 DOI: 10.1021/acs.jafc.0c02086] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of meat quality traits constitutes an important target for any farm animal production, including cattle. Therefore, better understanding of the biochemical properties that drive muscle development and final outcomes constitutes one of the main challenging topics of animal production and meat science. Accordingly, this review has focused on skeletal muscle fibers in cattle and their relationships with beef qualities. It aimed to describe the chemical and structural properties of muscle fibers as well as a comprehensive review of their contractile and metabolic characteristics during the life of the animal. The existing methods for the classification of muscle fibers were reviewed, compared, and discussed. Then, the different stages of myogenesis in cattle were defined. The main factors regulating fetal and postnatal growth and the plasticity of muscle fibers were evidenced, especially the role of myostatin growth factor and the impact of nutritional factors. This review highlights that the knowledge about muscle fibers is paramount for a better understanding of how to control the muscle properties throughout the life of the animal for better management of the final eating qualities of beef. Accordingly, the associations between bovine muscle fibers and different meat eating qualities such as tenderness, pH decline, and color traits were further presented.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
27
|
Melo AMP, López‐Pedrouso M, Costa RG, Franco D, Alencar Araripe Noronha Moura A, Silva TA, Moreno FBMB, Lima Júnior V, Oliveira Monteiro‐Moreira AC, Medeiros AN, Azevedo Moreira R, Lorenzo JM. Proteome changes in lamb
semimembranosus
muscles associated with the inclusion of sunflower cake in their diet. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - María López‐Pedrouso
- Department of Zoology, Genetics and Physical Anthropology University of Santiago de Compostela 15872 Santiago de Compostela Spain
| | | | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia Parque Tecnológico de Galicia Rúa Galicia No 4 32900 Ourense Spain
| | | | | | | | | | | | | | | | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia Parque Tecnológico de Galicia Rúa Galicia No 4 32900 Ourense Spain
| |
Collapse
|
28
|
Picard B, Gagaoua M. Meta-proteomics for the discovery of protein biomarkers of beef tenderness: An overview of integrated studies. Food Res Int 2020; 127:108739. [DOI: 10.1016/j.foodres.2019.108739] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 01/14/2023]
|
29
|
Gagaoua M, Terlouw C, Richardson I, Hocquette JF, Picard B. The associations between proteomic biomarkers and beef tenderness depend on the end-point cooking temperature, the country origin of the panelists and breed. Meat Sci 2019; 157:107871. [PMID: 31254803 DOI: 10.1016/j.meatsci.2019.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/21/2022]
Abstract
Steaks of 74 animals from 3 young bull breeds (Aberdeen Angus, Limousin and Blond d'Aquitaine) were cooked at two end-point cooking temperatures (55 and 74 °C) and evaluated for tenderness by trained panelists from France (FR) and the United Kingdom (UK). Using principal component regressions, the tenderness scores of each breed, country origin of the panelists and cooking temperature were linked with the abundances of 21 protein biomarkers belonging to five biological pathways. Twelve regression equations were built and explained 68 to 95% of tenderness variability. A high dissimilarity in the retained biomarkers was observed among the equations and differences exist among breeds, cooking temperatures and country origin of the panelists. Among the 21 biomarkers, 6 proteins including structural (MyHC-I, MyHC-IIa, MyHC-IIx), oxidative stress (DJ-1, PRDX6) and proteolysis (CAPN1) were retained robustly in positive or negative directions in the tenderization process of Longissimus thoracis, regardless the breed, the end-point cooking temperature or the country origin of the panelist.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Claudia Terlouw
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Ian Richardson
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Langford, Bristol, BS40 5DU, UK
| | - Jean-François Hocquette
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Brigitte Picard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
30
|
Picard B, Gagaoua M, Al Jammas M, Bonnet M. Beef tenderness and intramuscular fat proteomic biomarkers: Effect of gender and rearing practices. J Proteomics 2019; 200:1-10. [PMID: 30894324 DOI: 10.1016/j.jprot.2019.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
Abstract
This study analyzed the effect of gender on the abundances of 20 protein biomarkers of tenderness and/or intramuscular fat content in five muscles: Longissimus thoracis, previously identified as biomarkers of tenderness and/or intramuscular Semimembranosus, Rectus abdominis, Triceps brachii and Semitendinosus, from cows and steers of the Protected Designation Origin Maine Anjou. The protein abundances were quantified using Reverse Phase Protein Array with specific validated antibodies. Among the 20 studied proteins, the abundance of 8 biomarkers involved in energetic metabolism, contraction and cellular stress, was different according to gender. The gender effect was different depending on the muscle type with greater abundances in Semitendinosus, Rectus abdominis and Longissimus thoracis muscles. On the basis of animal characteristics and rearing factors, three rearing practices classes were identified for cows. Among the factors, fattening duration modified the abundance of 12 proteins mainly in Triceps brachii muscle. A positive correlation between the abundance of the small HSP20 and slaughter age was observed in the 5 muscles. Two proteins, Four and a half LIM domains 1 (FHL1) and Glycogen phosphorylase (PYGB) appeared to be muscle, gender and rearing practices independent. These results constitute valuable data to understand how to manage beef quality by controlling these different factors. SIGNIFICANCE: This study is the first to compare the relative abundance of 20 proteins previously identified as biomarkers of tenderness and/or intramuscular fat (IMF) content of beef meat between cows and steers among 5 different muscles. Its originality is in the use of Reverse Phase Protein Array for fast quantification of the proteins and the integration of data from rearing factors, carcass characteristics and biomarkers of meat qualities. The findings provide evidence for modulating biomarker levels by controlling the choice of animal type and rearing factors according to the type of muscle that would produce animals with the desired meat qualities.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France.
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France.
| | - Marwa Al Jammas
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
31
|
Gagaoua M, Monteils V, Picard B. Decision tree, a learning tool for the prediction of beef tenderness using rearing factors and carcass characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1275-1283. [PMID: 30073653 DOI: 10.1002/jsfa.9301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The present study explored the potential use of decision trees on rearing factors (q = 10) and carcass characteristics (q = 12) for the development of prediction model rules of beef tenderness prediction/categorization. Accordingly, 308 young bulls were used by a sensory panel to evaluate the tenderness potential of ribeye steaks grilled at 55 °C. A classification and regression tree method was implemented and allowed the prediction of tenderness using (i) rearing factors, (ii) carcass characteristics or (iii) both. RESULTS The resultant tree models yielded predictive accuracies of 70.78% (with four rearing factors: concentrate percentage; fattening duration; initial body weight and dry matter intake); 67.21% (with four carcass characteristics: fatness carcass score; carcass weight; dressing percentage and muscle carcass percentage) and 84.41% (with six rearing factors and carcass characteristics) compared to the k-means clustering of tenderness. In the final and robust regression tree, from the 22 attribute information, two carcass characteristics (fatness carcass score and muscle carcass percentage) and four rearing factors (fattening duration; concentrate percentage; dry matter intake and initial body weight) were retained as predictors. The first splitter of the 308 ribeye steaks in accordance with their tenderness scores was fatness carcass score, followed by fattening duration and concentrate percentage. CONCLUSION The trial in the preset study highlights the importance of thresholding approach for efficiently classifying ribeye steaks in accordance with their tenderness potential. The overall prediction model rule was: IF (fatness carcass score ≥ 2.88) AND (concentrate ≥ 82%) [AND (muscle carcass ≥ 71%)] THEN meat was [very] tender. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Valérie Monteils
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Brigitte Picard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
32
|
Gagaoua M, Monteils V, Picard B. Data from the Farmgate-to-Meat Continuum Including Omics-Based Biomarkers to Better Understand the Variability of Beef Tenderness: An Integromics Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13552-13563. [PMID: 30512949 DOI: 10.1021/acs.jafc.8b05744] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study is based on an integromic approach of 71 young bulls' data from the farmgate-to-meat continuum including omics-based biomarkers, to understand beef tenderness variability in two muscle cuts that differ by their contractile and metabolic properties. By the means of chemometrics using partial least-squares (PLS) and principal component regressions (PCR), important variables from a list of 49 that characterize four levels of the continuum (rearing factors-carcass-muscle-meat) were identified to explain tenderness of Longissimus thoracis (LT) and Semitendinosus (ST) muscles evaluated by a sensory panel and instrumental Warner-Bratzler shear force (WBSF). The PLS and PCR analyses validated 16 and 15 variables for LT and 12 and 14 for ST from the whole continuum to explain sensory tenderness and WBSF, respectively. Among the explanatory variables in the four models and in line with the role of apoptosis in tenderness determinism, HSP70-1A/B (a heat shock protein) was retained to explain beef tenderness irrespective of muscle and evaluation method. Similarly, dressing percentage from the carcass level was another robust predictor but in a muscle-dependent direction manner. HSP20, ENO3, and MyHC-I as three muscle protein biomarkers and dry matter intake (DMI) as a rearing factor were involved in three models to explain beef tenderness. This study highlighted also that several variables were muscle-specific irrespective of the evaluation method of tenderness. For LT muscle, six variables including three carcass traits (fatness score, fat carcass %, and muscle carcass %), two muscle biomarkers (HSP70-8 and MyHC-IIx/b), and one meat quality trait (pH3h) were found. For ST muscle, five variables were validated from two rearing factors (average daily gain and feed efficiency) and three structural protein biomarkers (α-actin, MyBP-H, and CapZ-β). Finally, for WBSF only, lactate dehydrogenase chain B (LDH-B) was retained positively for LT and negatively for ST muscles. Overall, this trial showed that tenderness of LT and ST muscle cuts is influenced by variables belonging to the whole continuum with relationships that depend on both the muscle type and the evaluation method. It further highlighted the potential of integromic/chemometric approaches on the farmgate-to-meat continuum data to better understand the sophisticated biological processes that orchestrate the conversion of muscle into meat and tenderness determinism.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Université Clermont Auvergne , INRA, VetAgro Sup, UMR Herbivores , F-63122 Saint-Genès-Champanelle , France
| | - Valérie Monteils
- Université Clermont Auvergne , INRA, VetAgro Sup, UMR Herbivores , F-63122 Saint-Genès-Champanelle , France
| | - Brigitte Picard
- Université Clermont Auvergne , INRA, VetAgro Sup, UMR Herbivores , F-63122 Saint-Genès-Champanelle , France
| |
Collapse
|
33
|
Gagaoua M, Bonnet M, De Koning L, Picard B. Reverse Phase Protein array for the quantification and validation of protein biomarkers of beef qualities: The case of meat color from Charolais breed. Meat Sci 2018; 145:308-319. [DOI: 10.1016/j.meatsci.2018.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
|
34
|
Picard B, Gagaoua M, Al-Jammas M, De Koning L, Valais A, Bonnet M. Beef tenderness and intramuscular fat proteomic biomarkers: muscle type effect. PeerJ 2018; 6:e4891. [PMID: 29892502 PMCID: PMC5994332 DOI: 10.7717/peerj.4891] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022] Open
Abstract
Tenderness and intramuscular fat content are key attributes for beef sensory qualities. Recently some proteomic analysis revealed several proteins which are considered as good biomarkers of these quality traits. This study focuses on the analysis of 20 of these proteins representative of several biological functions: muscle structure and ultrastructure, muscle energetic metabolism, cellular stress and apoptosis. The relative abundance of the proteins was measured by Reverse Phase Protein Array (RPPA) in five muscles known to have different tenderness and intramuscular lipid contents: Longissimus thoracis (LT), Semimembranosus (SM), Rectus abdominis (RA), Triceps brachii (TB) and Semitendinosus (ST). The main results showed a muscle type effect on 16 among the 20 analyzed proteins. They revealed differences in protein abundance depending on the contractile and metabolic properties of the muscles. The RA muscle was the most different by 11 proteins differentially abundant comparatively to the four other muscles. Among these 11 proteins, six were less abundant namely enolase 3 (ENO3), phosphoglucomutase 1 (PGK1), aldolase (ALDOA), myosin heavy chain IIX (MyHC-IIX), fast myosin light chain 1 (MLC1F), triosephosphate isomerase 1 (TPI1) and five more abundant: Heat shock protein (HSP27, HSP70-1A1, αB-crystallin (CRYAB), troponin T slow (TNNT1), and aldolase dehydrogenase 1 (ALDH1A1). Four proteins: HSP40, four and a half LIM domains protein 1 (FHL1), glycogen phosphorylase B (PYGB) and malate dehydrogenase (MDH1) showed the same abundance whatever the muscle. The correlations observed between the 20 proteins in all the five muscles were used to construct a correlation network. The proteins the most connected with the others were in the following order MyHC-IIX, CRYAB, TPI1, PGK1, ALDH1A1, HSP27 and TNNT1. This knowledge is important for understanding the biological functions related to beef tenderness and intramuscular fat content.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Marwa Al-Jammas
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Leanne De Koning
- Institut Curie Centre de Recherche, Université de recherche PSL, Plateforme RPPA, Paris, France
| | - Albéric Valais
- S.I.C.A. Rouge des Prés, Domaines des rues, Chenillé-Champteussé, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
35
|
Gagaoua M, Picard B, Monteils V. Associations among animal, carcass, muscle characteristics, and fresh meat color traits in Charolais cattle. Meat Sci 2018; 140:145-156. [PMID: 29571048 DOI: 10.1016/j.meatsci.2018.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 11/29/2022]
Abstract
This study investigated the effects of animal, carcass and muscle characteristics on initial color traits of steaks from 887 Charolais cattle. First, the fixed factors of year of birth, experiment and sex had strong impacts on color traits. From the covariates, increased age lead to intense color (low h*, -1.55 units) and darker and vivid meat (high a*, b* and C*: +4.56, +3.41 and +5.61, respectively). Increases in fatness score and carcass fat weight were associated with increases in a*, b* and C* (redness; +2.90 to +4.06 for a*; yellowness; +2.60 to +3.76 for b*; and vividness, +3.87 to +5.49 for C*) and a darker colored lean (L*; -1.56 to -3.23). As pH24h increased, a* (less red) and C* (less vivid) decreased (-3.06), whereas hue angle increased (+2.69) leading to poorer color. The selection of animals for high degree of muscularity or slaughter weight resulted in lighter and darker meat, respectively. The studied covariates could be used as indicators of Charolais beef color traits.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Brigitte Picard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Valérie Monteils
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|