1
|
Huyen NN, Ngo XD, Huong Mai VT, Lan Huong PT, Thang PD, Tuan LA. Green light-responsive photoelectrochemical sensing nanoplatform based on copper cobaltite nanorods for ultrasensitive detection of furazolidone antibiotic residue in food samples. RSC Adv 2025; 15:3122-3138. [PMID: 39885851 PMCID: PMC11780583 DOI: 10.1039/d4ra08497g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
In this research, the preparation of copper cobaltite (CuCo2O4) nanorods and its potential application in photoelectrochemical sensing platform towards ultrasensitive detection of furazolidone are reported. X-ray diffraction, Raman spectra, scanning electron microscopy, and UV-visible spectroscopy have been performed to confirm the formation, morphology, phase composition, and optical properties of CuCo2O4 synthesized by a microwave-assisted hydrothermal method. The electrochemical characteristic parameters were calculated via electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry, and chronoamperometry techniques in the absence and presence of laser light irradiation. The CuCo2O4-based photoelectrochemical sensing platform with laser light irradiation exhibited outstanding electrochemical performance compared to without laser light irradiation with sensitivity for furazolidone detection of 1.11 μA μM-1 cm-2 within the linear ranges of 0.25 to 200 μM, and detection limit of 0.03 μM, due to CuCo2O4 nanorods having a narrow energy gap, a low recombination ratio of electron-hole pairs, and multiple valence states (Co2+/Co3+ and Cu2+/Cu3+) structure. In addition, the proposed CuCo2O4-based photoelectrochemical sensor with light assistance showed good repeatability, anti-interfering capability, long-term stability, and real applicability in honey and milk samples.
Collapse
Affiliation(s)
- Nguyen Ngoc Huyen
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Xuan-Dinh Ngo
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Vu Thi Huong Mai
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Phung Thi Lan Huong
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Pham Duc Thang
- Faculty of Physics, VNU Hanoi University of Science, Vietnam National University Hanoi 11416 Vietnam
| | - Le-Anh Tuan
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering, PHENIKAA University Hanoi 12116 Vietnam
| |
Collapse
|
2
|
Cipa J, Endzelins E, Abols A, Romanchikova N, Line A, Jenster GW, Mozolevskis G, Rimsa R. Elucidating Extracellular Vesicle Isolation Kinetics via an Integrated Off-Stoichiometry Thiol-Ene and Cyclic Olefin Copolymer Microfluidic Device. Polymers (Basel) 2024; 16:3579. [PMID: 39771431 PMCID: PMC11678796 DOI: 10.3390/polym16243579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicles (EVs) are promising biomarkers for diagnosing complex diseases such as cancer and neurodegenerative disorders. Yet, their clinical application is hindered by challenges in isolating cancer-derived EVs efficiently due to their broad size distribution in biological samples. This study introduces a microfluidic device fabricated using off-stoichiometry thiol-ene and cyclic olefin copolymer, addressing the absorption limitations of polydimethylsiloxane (PDMS). The device streamlines a standard laboratory assay into a semi-automated microfluidic chip, integrating sample mixing and magnetic particle separation. Using the microfluidic device, the binding kinetics between EVs and anti-CD9 nanobodies were measured for the first time. Based on the binding kinetics, already after 10 min the EV capture was saturated and comparable to standard laboratory assays, offering a faster alternative to antibody-based immunomagnetic protocols. Furthermore, this study reveals the binding kinetics of EVs to anti-CD9 nanobodies for the first time. Our findings demonstrate the potential of the microfluidic device to enhance clinical diagnostics by offering speed and reducing manual labor without compromising accuracy.
Collapse
Affiliation(s)
- Janis Cipa
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia; (J.C.); (G.M.)
- Cellbox Labs LLC, 8 Kengaraga Str., LV-1063 Riga, Latvia;
| | - Edgars Endzelins
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, LV-1067 Riga, Latvia; (E.E.); (N.R.); (A.L.)
| | - Arturs Abols
- Cellbox Labs LLC, 8 Kengaraga Str., LV-1063 Riga, Latvia;
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, LV-1067 Riga, Latvia; (E.E.); (N.R.); (A.L.)
| | - Nadezda Romanchikova
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, LV-1067 Riga, Latvia; (E.E.); (N.R.); (A.L.)
| | - Aija Line
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, LV-1067 Riga, Latvia; (E.E.); (N.R.); (A.L.)
| | - Guido W. Jenster
- Department of Urology, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Gatis Mozolevskis
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia; (J.C.); (G.M.)
- Cellbox Labs LLC, 8 Kengaraga Str., LV-1063 Riga, Latvia;
| | - Roberts Rimsa
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia; (J.C.); (G.M.)
- Cellbox Labs LLC, 8 Kengaraga Str., LV-1063 Riga, Latvia;
| |
Collapse
|
3
|
R B R, Reddy S, Kumari D, K J A, G N, K J G, E N, K N H. Fmoc-Pro-Phe-OMe dipeptide carbon sensor for simultaneous detection of chloramphenicol (CP) and furazolidone (FZ) toxic residues in food samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 60:1-14. [PMID: 39673082 DOI: 10.1080/03601234.2024.2437925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
In this work, we fabricated the Fmoc-Pro-Phe-OMe modified carbon paste electrode (FPPO/MCPE) and used it for electrochemical detection of CP and FZ in a 0.1 M phosphate buffer solution (pH = 7). We characterized the Fmoc-Pro-Phe-OMe and applied it for the electrochemical detection of CP and FZ. The Mass spectroscopy, 1HNMR, and FTIR measurements confirm the Fmoc-Pro-Phe-OMe chemical structure. Studying electrochemical sensor characteristics, variation of scan rate parameters, and electrode surface area is crucial for understanding and optimizing the performance of modified and unmodified carbon paste electrodes. The FPPO/MCPE-modified carbon paste electrode has better sensing capabilities than the unmodified bare carbon paste electrode (BCPE). The FPPO/MCPE sensor has two linear ranges: 50-450 μM (CP) with a detection limit of 0.014 μM and 50-450 μM (FZ) with a detection limit of 0.015 μM. The FPPO/MCPE sensor is highly sensitive, measuring 4.25 µA/µM/cm2 for CP and 4.1 µA/µM/cm2 for FZ. Scan rate and concentration tests demonstrate that the oxidation of CP and FZ is a diffusion-controlled electrode process. The FPPO/MCPE sensor also demonstrates excellent repeatability, reproducibility, stability, and selectivity for detection of CP and FZ. The use of FPPO/MCPE-sensor is demonstrated for the detection of FZ and CP in milk and honey samples.
Collapse
Affiliation(s)
- Raghavendra R B
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, Karnataka, India
| | - Sathish Reddy
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, Karnataka, India
| | - Dalli Kumari
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, Karnataka, India
| | - Abhishek K J
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, Karnataka, India
| | - Nagendra G
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, Karnataka, India
| | - Gururaj K J
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India
| | - Nirajan E
- Department of Chemistry, S.J.M. Institute of Technology (SJMIT), Chitradurga, Karnataka, India
| | - Harish K N
- Department of Chemistry, B.M.S. College of Engineering, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Huang Q, Yang Y, Abbas MS, Pei S, Ro CU, Dong C, Geng H. Multifunctional magnetic tags with photocatalytic and enzyme-mimicking properties for constructing a sensitive dual-readout ELISA. Food Chem 2024; 457:140085. [PMID: 38908250 DOI: 10.1016/j.foodchem.2024.140085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
ELISA has become the gold standard for detecting harmful substances due to its specific antibody recognition and sensitive enzyme-catalyzed reactions. In this study, multifunctional magnetic Prussian blue nanolabels (MPBNs) were synthesized using a simple gentle two-step method to achieve a dual-readout mode. The MPBNs provide a sensitive colorimetric signal by efficiently catalyzing the oxidation of TMB and exhibit prominent photocatalytic degradation activity towards Rhodamine B (RhB). Supplemented by the quenching effect of oxTMB, the fluorescence was enabled to serve as a sensitive second signal. The magnetic property of the labels facilitates the separation and enrichment of the target, thereby improving sensitivity. Utilizing the versatile MPBNs, the visual limit of detection (vLOD) for Staphylococcus aureus is as low as 100 CFU/mL, with a quantitative analysis range of 102-108 CFU/mL. The introduction of photocatalytic reactions into immunoassay has opened up a new signal response system with strong momentum for development and application.
Collapse
Affiliation(s)
- Qiong Huang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yajuan Yang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | | | - Shiqi Pei
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Chul-Un Ro
- Department of Chemistry, Inha University, Incheon, 402-751, Republic of Korea
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Hong Geng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Yellow River Laboratory, Taiyuan 030031, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
5
|
Xu C, Zheng S, Xia X, Li J, Yu Q, Wang Y, Jin Q, Wang C, Gu B. Core-satellite-structured magnetic nanozyme enables the ultrasensitive colorimetric detection of multiple drug residues on lateral flow immunoassay. Anal Chim Acta 2024; 1325:343115. [PMID: 39244303 DOI: 10.1016/j.aca.2024.343115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Excessive use of veterinary drugs causes severely environmental pollution and agricultural pollution, and poses great threat to human health. A simple method for the rapid, highly sensitive, and on-site monitoring of veterinary drug residues in complex samples remains lacking. RESULTS In this study, we propose a catalytically enhanced colorimetric lateral flow immunoassay (LFA) based on a novel core-satellite-structured magnetic nanozyme (Fe-Au@Pt) that can simultaneously and quantitatively detect three common veterinary drugs, namely, gentamicin (GM), streptomycin (STR), and clenbuterol (CLE), within a short testing time (<30 min). The Fe-Au@Pt nanozyme was simply prepared through the self-assembly of numerous Au@Pt nanoparticles on a large Fe3O4 core via electrostatic adhesion, which exhibited the advantages of high peroxidase-like activity, strong magnetic responsiveness, and multiple catalytic sites. Under the dual-signal amplification effect of magnetic enrichment and catalytic enhancement, the proposed nanozyme-LFA allowed the multiplex detection of STR, CLE, and GM with detection limits of 10.1, 6.3, and 1.1 pg/mL, respectively. SIGNIFICANCE The developed Fe-Au@Pt-LFA achieves direct, simultaneous, and accurate detection of three target drugs in food samples (honey, milk, and pork). The proposed assay shows great potential for application in the real-time monitoring of small-molecule pollutants in complex environment.
Collapse
Affiliation(s)
- Changyue Xu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shuai Zheng
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Xuan Xia
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Qing Yu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yihong Wang
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Chongwen Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
6
|
An J, Yuan M, Han Y, Liu Y. Nano-immuno-conjugates inspired by hydrophilic perovskite fluorescent spheres and magnetic assisted for detection of hepatitis B surface antigen. Mikrochim Acta 2024; 191:473. [PMID: 39031251 DOI: 10.1007/s00604-024-06551-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
The rampant hepatitis B virus (HBV) seriously endangers human health, and hepatitis B surface antigen (HBsAg) is its early diagnostic marker. Therefore, it is crucial to construct a fast and highly sensitive HBsAg detection method. Based on high-efficiency magnetic separation technology and fluorescent composite material labelling technology, an accurate, fast and sensitive fluorescent immunosensing system for HBsAg detection was developed. Immunomagnetic beads constructed from carboxyl-functionalized Fe3O4 nanoparticles (Fe3O4-COOH) with excellent magnetic response performance were used as efficient capture carriers for HBsAg. Immunofluorescence composite microspheres constructed based on ultra-stable polystyrene-coated CsPbBr3 perovskite nanocrystals (CPB@PSAA) with high hydrophilic properties, were excellent fluorescent markers for HBsAg. Using this sensitive sandwich fluorescence sensing system a good linear relationship within the range of 0.2-15 ng/mL was established between HBsAg concentration and fluorescence intensity with a limit of detection (LOD) of 0.05 ng/mL. The system obtained satisfactory results when tested on real human serum samples. The magnetic-assisted fluorescence immune-sandwich sensor system has broad application prospects in biomedicine such as rapid and early diagnosis and effective prevention of infectious diseases.
Collapse
Affiliation(s)
- Jia An
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Mengdi Yuan
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China
- Center for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Yaqin Han
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China
- Center for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China.
- Center for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China.
- Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK.
| |
Collapse
|
7
|
Wang X, Yang T, Fang L, Yang Y, Zhang H, Yang J, Wang C, Fan L, Zang X, Meng S, Song C. Citizen science in action: Time-resolved immunofluorescence-based field detection of antibiotics with portable analytical kit. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173251. [PMID: 38750731 DOI: 10.1016/j.scitotenv.2024.173251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Citizen scientist-based environmental monitoring and public education are becoming increasingly popular. However, current technologies for antibiotic-based novel contaminant identification are still restricted to laboratory sample collection and analysis due to detection methodologies and apparatus limitations. This study developed a time-resolved immunofluorescence-based simultaneous field-based assay for ciprofloxacin (CIP) and enrofloxacin (ENR) that matches test results to geographic locations. The assay helps the public understand the potential levels of antibiotic exposures in their environments and helps them take appropriate action to reduce risk. The assay was developed using smartphones and social software in addition to rapid testing. The method uses a portable, low-cost analytical kit with a smartphone app to build a field-based detection platform for the detection and analysis of ENR and CIP in water and aquatic products. The methodological evaluation was good, with detection limits of 0.4 ng/mL and 0.5 ng/g for ENR in water and fish, and quantification limits of 1.2 ng/mL and 1.4 ng/g, with recoveries of 89.0 %-101.0 % and 78.0 %-97.0 %. For CIP in water and fish, the limits of detection were 0.3 ng/mL and 0.4 ng/g, the limits of quantification were 0.9 ng/mL and 1.2 ng/g, and the recoveries were 75.0 %-91.0 % and 72.0 %-89.0 %, both with coefficients of variation <15 %. These limits were sufficient to prevent the two antibiotics from crossing over during simultaneous detection. The assay was validated using real samples to assess the effectiveness of the assay platform in field deployments, and the results were consistent with those obtained through liquid chromatography-tandem mass spectrometry (LC-MS) and enzyme-linked immunoassay (ELISA) techniques. In addition, the TRFIA assay process requires less time, uses more portable instruments, and is less complex than traditional methods. This study provides a new scientific, accurate, and rapid detection method for antibiotic detection by citizen scientists, helping scientists to obtain a wider range of data and providing more opportunities to solve scientific problems.
Collapse
Affiliation(s)
- Xinchi Wang
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China
| | - Tingting Yang
- Jiangsu Su Wei Institute of Microbiology Co., Ltd., 214063 Wuxi, PR China
| | - Longxiang Fang
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000 Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Yong Yang
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China
| | - Haitao Zhang
- Jiangsu Su Wei Institute of Microbiology Co., Ltd., 214063 Wuxi, PR China
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing University Xianlin Campus, 163 Xianlin Avenue, 210023 Nanjing, PR China
| | - Changbo Wang
- Kunshan Aquatic Technology Promotion Station, 215300 Suzhou, PR China
| | - Limin Fan
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000 Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Xuelei Zang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, 100000 Beijing, PR China.
| | - Shunlong Meng
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000 Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China.
| | - Chao Song
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000 Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China.
| |
Collapse
|
8
|
Mei Q, Ma B, Li J, Deng X, Shuai J, Zhou Y, Zhang M. Simultaneous detection of three nitrofuran antibiotics by the lateral flow immunoassay based on europium nanoparticles in aquatic products. Food Chem 2024; 439:138171. [PMID: 38100875 DOI: 10.1016/j.foodchem.2023.138171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Nitrofuran (NF) antibiotics have been banned worldwide in aquaculture due to their potential carcinogenicity and mutagenicity. Because of the short half-life of NF antibiotics, an easy and sensitive multiple lateral flow immunoassay (mLFIA) based on europium nanoparticles (EuNPs) has been successfully established to simultaneously and quantitatively detect 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), 3-amino-2-oxazolidinone (AOZ) and sodium nifurstylenate (NFS) in aquatic products. The EuNP-mLFIA assay was accomplished within 10 min. The limits of detection (LODs) for AOZ, AMOZ and NFS were 0.013, 0.019 and 0.023 ng/mL, respectively. The average recoveries of AOZ, AMOZ and NFS were 98.0-104.4%, 96.0-102.6% and 98.0-102.8%, respectively. It showed satisfactory consistency, and the feasibility was validated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Briefly, this method will become a powerful tool for monitoring multiple NF antibiotics and provide promising applications in the field of food safety and environmental testing.
Collapse
Affiliation(s)
- Qing Mei
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China.
| | - Xin Deng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China.
| | - Yuxin Zhou
- College of Life Science, China Jiliang University, Hangzhou 310018, China.
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
9
|
He X, Hao T, Geng H, Li S, Ran C, Huo M, Shen Y. Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development. Int J Nanomedicine 2023; 18:7847-7863. [PMID: 38146466 PMCID: PMC10749510 DOI: 10.2147/ijn.s436379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Gold nanomaterials have become very attractive nanomaterials for biomedical research due to their unique physical and chemical properties, including size dependent optical, magnetic and catalytic properties, surface plasmon resonance (SPR), biological affinity and structural suitability. The performance of biosensing and biodiagnosis can be significantly improved in sensitivity, specificity, speed, contrast, resolution and so on by utilizing multiple optical properties of different gold nanostructures. Lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles (GNPs) has the advantages of simple, fast operation, stable technology, and low cost, making it one of the most widely used in vitro diagnostics (IVDs). However, the traditional colloidal gold (CG)-based LFIA can only achieve qualitative or semi-quantitative detection, and its low detection sensitivity cannot meet the current detection needs. Due to the strong dependence of the optical properties of gold nanomaterials on their shape and surface properties, gold-based nanomaterial modification has brought new possibilities to the IVDs: people have attempted to change the morphology and size of gold nanomaterials themselves or hybrid with other elements for application in LFIA. In this paper, many well-designed plasmonic gold nanostructures for further improving the sensitivity and signal output stability of LFIA have been summarized. In addition, some opportunities and challenges that gold-based LFIA may encounter at present or in the future are also mentioned in this paper. In summary, this paper will demonstrate some feasible strategies for the manufacture of potential gold-based nanobiosensors of post of care testing (POCT) for faster detection and more accurate disease diagnosis.
Collapse
Affiliation(s)
- Xingyue He
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tianjiao Hao
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai, 264005, People’s Republic of China
| | - Shengzhou Li
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chuanjiang Ran
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Meirong Huo
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
10
|
Chen Q, Yao L, Xu J, Qi Q, Tao S, Song X, Chen W. Stepwise Au decoration-assisted double signal amplified lateral flow strip for ultrasensitive detection of morphine in fingerprint sweat. Anal Chim Acta 2023; 1278:341684. [PMID: 37709439 DOI: 10.1016/j.aca.2023.341684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
Point-of-care testing (POCT) of morphine (MOP) without invasion of privacy is of critical importance for law-enforcement departments to realize on-site rapid screening. In this study, ultrasensitive and non-invasive screening of MOP residues in the fingerprint sweat was easily realized by stepwise Au decoration-assisted double signal amplification and antibody-saving strategies on lateral flow strip (LFS). The construction of LFS was not intrinsically changed compared with traditional LFS except the labeling material on conjugation pad for enhanced signal reporting. The gold nanoparticle-seeded SiO2 was adopted as the labeling materials in place of traditional gold nanoparticles, which acted as the first-round signal amplification and ready for second-round gold deposition-assisted amplification. And the second-round amplification could be completed in just 10 s, which did not alter the intrinsic simplicity of LFS for rapid and on-site screening. With the designed signal amplification principle of LFS, target MOP in the fingerprint sweat can be effectively transferred to the LFS for analysis without invasion of privacy. As low as 0.5 pg MOP in fingerprint sweat can be visually judged with this double signal amplified LFS, the sensitivity of which has been improved at least 10-fold compared with traditional Au-labeled LFS, guaranteeing accurate screening of trace MOP in the fingerprint sweat. Of great importance, the consumption of valuable antibody can be reduced to just 1/20, which greatly reduces the cost of high-throughput screening. This stepwise Au decoration-assisted double signal amplified LFS holds great potential in the ultrasensitive screening of trace analytes in various fields and further widens the application scope of lateral flow strips.
Collapse
Affiliation(s)
- Qi Chen
- Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Yao
- Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianguo Xu
- Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qiujing Qi
- Evidence Identification Center of Anhui Province Public Security Department, Hefei, 230061, China
| | - Sha Tao
- Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xin Song
- Criminal Police Detachment of Hefei Public Bureau, Hefei, 230051, China.
| | - Wei Chen
- Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
11
|
Li G, Sun J, Li J, Zhang Y, Huang J, Yue F, Dong H, Li F, Xu H, Guo Y, Guo Y, Sun X. Paper-based biosensors relying on core biological immune scaffolds for the detection of procymidone in vegetables. Talanta 2023; 265:124843. [PMID: 37399648 DOI: 10.1016/j.talanta.2023.124843] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
In order to achieve a highly sensitive detection of procymidone in vegetables, three paper-based biosensors based on a core biological immune scaffold (CBIS) were developed, which were time-resolved fluorescence immunochromatography strips with Europium (III) oxide (Eu-TRFICS). Goat anti-mouse IgG and europium oxide time-resolved fluorescent microspheres formed secondary fluorescent probes. CBIS was formed by secondary fluorescent probes and procymidone monoclonal antibody (PCM-Ab). The first type of Eu-TRFICS (Eu-TRFICS-(1)) fixed secondary fluorescent probes on a conjugate pad, and PCM-Ab was mixed with a sample solution. The second type of Eu-TRFICS (Eu-TRFICS-(2)) fixed CBIS on the conjugate pad. The third type of Eu-TRFICS (Eu-TRFICS-(3)) was directly mixed CBIS with the sample solution. They solved the problems of steric hindrance of antibody labeling, insufficient exposure of antigen recognition region and easy loss of activity in traditional methods. They realized multi-dimensional labeling and directional coupling. They replaced the loss of antibody activity. And the three types of Eu-TRFICS were compared, among which Eu-TRFICS-(1) was the best detection choice. Antibody usage was reduced by 25% and sensitivity was increased by 3 times. Its detection range was 1-800 ng/mL, the limit of detection (LOD) was 0.12 ng/mL with the visible LOD (vLOD) of 5 ng/mL.
Collapse
Affiliation(s)
- Gaozhen Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jiahuan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Yaoli Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Haowei Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Huihui Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| |
Collapse
|
12
|
Xu D, An X, Wang Y, Qian L, Qiu W, Zhang X, Liu G. Ultrasensitive lateral flow biosensor based on PtAu@CNTs nanocomposite catalytic chromogenic signal amplification strategy for the detection of nucleic acid. Anal Chim Acta 2023; 1260:341205. [PMID: 37121654 DOI: 10.1016/j.aca.2023.341205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
A rapid and ultrasensitive lateral flow biosensor was developed, which based on gold and platinum nanoparticles-decorated carbon nanotubes (PtAu@CNTs) nanocomposite catalytic chromogenic signal amplification strategy for the detection of nucleic acid. Independent platinum and gold nanoparticles modified functional carbon nanotubes (PtAu@CNTs) were prepared by in-situ reduction. Sandwich-type hybridization reaction occurred between PtAu@CNTs-labeled DNA probe, target DNA and Biotin-modified DNA probes, which was captured on test zone of the strip. Accumulation of PtAu@CNTs nano-labels formed a characteristic colored band. After systematic optimization and catalytic chromogen, the naked eye detection limit of PtAu@CNTs-LFA was about 2 pM, and the theoretical detection limit of target DNA is calculated to be 0.43 pM according to the standard curve. The results indicates a rapid, sensitive and specific methods for DNA detection in biological samples, showing great promise for biomedical diagnosis in some malignant diseases in clinical application.
Collapse
Affiliation(s)
- Dongqing Xu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Xue An
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Yuying Wang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Lisheng Qian
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Wanwei Qiu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| | - Xueji Zhang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China; School of Biomedical Engineering, Shenzhen University Healthy Science Center, Shenzhen, 518060, Guangdong, China.
| | - Guodong Liu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, 58105, ND, USA.
| |
Collapse
|
13
|
Mariappan S, Mutharani B, Kavitha T, Sarojini P, Chiu FC, Ranganathan P. Green synthesis of cyclodextrin-capped AuNPs decorated on polystyrene microspheres for a furazolidone-responsive electrode. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Nan X, Yang L, Cui Y. Lateral Flow Immunoassay for Proteins. Clin Chim Acta 2023; 544:117337. [PMID: 37044163 DOI: 10.1016/j.cca.2023.117337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Protein biomarkers are useful for disease diagnosis. Identification thereof using in vitro diagnostics such as lateral flow immunoassays (LFIAs) has attracted considerable attention due to their low cost and ease of use especially in the point of care setting. Current challenges, however, do remain with respect to material selection for each component in the device and the synergistic integration of these components to display detectable signals. This review explores the principle of LFIA for protein biomarkers, device components including biomaterials and labeling methods. Medical applications and commercial status are examined as well. This review highlights critical methodologies in the development of new LFIAs and their role in advancing healthcare worldwide.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China
| | - Li Yang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
15
|
Zheng T, Li X, Si Y, Wang M, Zhou Y, Yang Y, Liang N, Ying B, Wu P. Specific lateral flow detection of isothermal nucleic acid amplicons for accurate point-of-care testing. Biosens Bioelectron 2023; 222:114989. [PMID: 36538868 DOI: 10.1016/j.bios.2022.114989] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
For point-of-care testing (POCT), coupling isothermal nucleic acid amplification schemes (e.g., recombinase polymerase amplification, RPA) with lateral flow assay (LFA) readout is an ideal platform, since such integration offers both high sensitivity and deployability. However, isothermal schemes typically suffers from non-specific amplification, which is difficult to be differentiated by LFA and thus results in false-positives. Here, we proposed an accurate POCT platform by specific recognition of target amplicons with peptide nucleic acid (PNA, assisted by T7 Exonuclease), which could be directly plugged into the existing RPA kits and commercial LFA test strips. With SARS-CoV-2 as the model, the proposed method (RPA-TeaPNA-LFA) efficiently eliminated the false-positives, exhibiting a lowest detection concentration of 6.7 copies/μL of RNA and 90 copies/μL of virus. Using dual-gene (orf1ab and N genes of SARS-CoV-2) as the targets, RPA-TeaPNA-LFA offered a high specificity (100%) and sensitivity (RT-PCR Ct < 31, 100%; Ct < 40, 71.4%), and is valuable for on-site screening or self-testing during isolation. In addition, the dual test lines in the test strips were successfully explored for simultaneous detection of SARS-CoV-2 and H1N1, showing great potential in response to future pathogen-based pandemics.
Collapse
Affiliation(s)
- Ting Zheng
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xianming Li
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yanjun Si
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuzhen Zhou
- Chengdu Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Yusheng Yang
- Chengdu Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Na Liang
- Chengdu Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Peng Wu
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
16
|
Anupriya J, Karuppusamy N, Chen TW, Chen SM, Balamurugan K, Akilarasan M, Liu X, Yu J. Enhancing catalytic activity through the construction of praseodymium tungstate decorated on hierarchical three-dimensional porous biocarbon for determination of furazolidone in aquatic samples. CHEMOSPHERE 2023; 313:137553. [PMID: 36521748 DOI: 10.1016/j.chemosphere.2022.137553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Boosting catalytic performance as a vital role for an electrochemical sensor for monitoring various hazardous nitro drugs. Herein, an inexpensive, facile, and eco-friendly construction of praseodymium tungstate decorated on three dimensional porous biocarbon (PrW/3D-PBC) for electrochemical determination of carcinogenic residue furazolidone (FZ). The nanostructured PrW nanoparticles were prepared by solvent evaporation from peroxo-tungstic acid and 3D-PBC was prepared from biomass precursor under the carbonization method. Furthermore, the composite of PrW decorated on 3D-PBC was prepared by an ultrasonic-assisted wet chemical approach. Besides, the composite characterization of crystalline, functional group, degree of carbonization, chemical states, and morphology were utilized by theXRD, FTIR, RAMAN, XPS, and FESEM analysis. These 3D porous carbon decorated PrW nanoparticles facilitate the electrochemical anchoring sites, surface area, and ease of diffusion layers towards the detection of hazardous nitro pollutant FZ by using CV analysis. The low LOD and high sensitivity were achieved by FZ determination through using LSV and DPV techniques. The practical capability of the PrW/3D-PBC/GCE sensor was determined by using aquatic samples to achieve a good recovery result. These results instigate that the PrW/3D-PBC will be an efficient electrocatalytic material for FZ sensor in environmental aquatic samples.
Collapse
Affiliation(s)
- Jeyaraman Anupriya
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Naveen Karuppusamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Tse-Wei Chen
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan; Well Fore Special Wire Corporation, 10, Tzu-Chiang 7th., Chung-Li Industrial Park, Taoyuan, Taiwan; Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan.
| | - Karuppaiah Balamurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Muthumariappan Akilarasan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Xiaoheng Liu
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jaysan Yu
- Well Fore Special Wire Corporation, 10, Tzu-Chiang 7th., Chung-Li Industrial Park, Taoyuan, Taiwan
| |
Collapse
|
17
|
Han C, Yi W, Li Z, Dong C, Zhao H, Liu M. Single-atom Palladium anchored N-doped carbon enhanced electrochemical detection of Furazolidone. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
18
|
Jin Y, Aziz AUR, Wu B, Lv Y, Zhang H, Li N, Liu B, Zhang Z. The Road to Unconventional Detections: Paper-Based Microfluidic Chips. MICROMACHINES 2022; 13:1835. [PMID: 36363856 PMCID: PMC9696303 DOI: 10.3390/mi13111835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Conventional detectors are mostly made up of complicated structures that are hard to use. A paper-based microfluidic chip, however, combines the advantages of being small, efficient, easy to process, and environmentally friendly. The paper-based microfluidic chips for biomedical applications focus on efficiency, accuracy, integration, and innovation. Therefore, continuous progress is observed in the transition from single-channel detection to multi-channel detection and in the shift from qualitative detection to quantitative detection. These developments improved the efficiency and accuracy of single-cell substance detection. Paper-based microfluidic chips can provide insight into a variety of fields, including biomedicine and other related fields. This review looks at how paper-based microfluidic chips are prepared, analyzed, and used to help with both biomedical development and functional integration, ideally at the same time.
Collapse
Affiliation(s)
- Yuhang Jin
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- School of Life Science and Pharmacy, Dalian University of Technology, Dalian 116024, China
| | - Aziz ur Rehman Aziz
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bin Wu
- China Certification and Inspection Group Liaoning Co., Ltd., Dalian 116039, China
| | - Ying Lv
- China Certification and Inspection Group Liaoning Co., Ltd., Dalian 116039, China
| | - Hangyu Zhang
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Life Science and Pharmacy, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Yang B, Chen F, Wang Y, Deng T, Feng X, Li J. Colorimetric nano-beacon and magnetic separation-based rapid and visual assay for gram-negative bacteria. Anal Biochem 2022; 655:114824. [PMID: 35944695 DOI: 10.1016/j.ab.2022.114824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 12/29/2022]
Abstract
Food-borne diseases caused by pathogenic bacteria are one of the serious factors affecting human health. However, the most commonly used detection methods for pathogenic bacteria not only require expensive instruments, but also take a long time due to the complicated and cumbersome detection process. Therefore, the development of a fast, simple, and low-cost detection method for pathogenic bacteria is crucial for food safety and human health. In this work, based on the high binding ability of antimicrobial peptide (AMP) and polymyxin B (PMB) to bacteria, combined with magnetic separation technology, a new enzyme-free colorimetric strategy was constructed to achieve visual detection of Gram-negative bacteria in complex samples. The sensor system was divided into the following two parts: a colorimetric signal amplification nanoprobe, which was modified with AMP to enable effective binding of the colorimetric probe to the surface of bacteria, and a PMB-modified magnetic nanobead (MNB), which was used as the capture and enrichment unit of Gram-negative bacteria, as a result of which PMB could effectively distinguish Gram-negative bacteria from Gram-positive bacteria. Under optimized conditions, the detection limit of the method for Gram-negative bacteria (e.g. E. coli (G-)) was as low as 10 CFU/mL, and it was successfully applied to complex real samples. In addition, the developed colorimetric sensor offered advantages, such as fast response, less time consumption, high sensitivity, and low cost. It can be expected to become a new diagnostic tool for on-site detection of pathogenic bacteria in remote areas.
Collapse
Affiliation(s)
- Beibei Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fei Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yi Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
20
|
Cai P, Wang R, Ling S, Wang S. Rapid and sensitive detection of tenuazonic acid in agricultural by-products based on gold nano-flower lateral flow. Front Bioeng Biotechnol 2022; 10:1021758. [PMID: 36277402 PMCID: PMC9585153 DOI: 10.3389/fbioe.2022.1021758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Tenuazonic acid (TA) is a highly toxic mycotoxin mainly generated by the fungi of Alternaria genus and widely contaminates agricultural by-products. Given the threat of TA to food-security, it is very important to develop rapid and sensitive detection methods for TA monitoring. In this study, gold nano-particles (AuNP) with average diameter near 17.25 nm were prepared, and the developed AuNP-based strip has an assay time of 15 min with visual limit of detection (LOD) of 12.5 ng/ml and threshold of 100 ng/ml. To further improve sensitivity, multi-branched gold nano-flowers (AuNF) with average diameter near 50 nm were prepared and characterized by UV-VIS and TEM, and the established AuNF-based strip has visual LOD of 0.78 ng/ml and threshold of 50 ng/ml within 15 min. Both assays were applied to determine TA in apple juice and tomato ketchup, and the results were consistent with that of UHPLC-MS/MS. Thus, these assays could be applied for rapid determination of trace TA in real samples.
Collapse
Affiliation(s)
- Peiyuan Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, China
| | - Rongzhi Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sumei Ling
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
21
|
Zhang Y, Yang HJ, Xu Z, Liu X, Zhou J, Qu XF, Wang WL, Feng Y, Peng C. An ultra-sensitive photothermal lateral flow immunoassay for 17β-estradiol in food samples. Food Chem 2022; 404:134482. [DOI: 10.1016/j.foodchem.2022.134482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/06/2022]
|
22
|
Asghari S, Ekrami E, Barati F, Avatefi M, Mahmoudifard M. The role of the nanofibers in lateral flow assays enhancement: a critical review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
23
|
Jia J, Zhang H, Qu J, Wang Y, Xu N. Immunosensor of Nitrofuran Antibiotics and Their Metabolites in Animal-Derived Foods: A Review. Front Chem 2022; 10:813666. [PMID: 35721001 PMCID: PMC9198595 DOI: 10.3389/fchem.2022.813666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Nitrofuran antibiotics have been widely used in the prevention and treatment of animal diseases due to the bactericidal effect. However, the residual and accumulation of their metabolites in vivo can pose serious health hazards to both humans and animals. Although their usage in feeding and process of food-derived animals have been banned in many countries, their metabolic residues are still frequently detected in materials and products of animal-derived food. Many sensitive and effective detection methods have been developed to deal with the problem. In this work, we summarized various immunological methods for the detection of four nitrofuran metabolites based on different types of detection principles and signal molecules. Furthermore, the development trend of detection technology in animal-derived food is prospected.
Collapse
Affiliation(s)
| | | | | | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Science, Shanghai Normal Uniersity, Shanghai, China
| | - Naifeng Xu
- Institute of Engineering Food, College of Life Science, Shanghai Normal Uniersity, Shanghai, China
| |
Collapse
|
24
|
Ren J, Su L, Hu H, Yin X, Xu J, Liu S, Wang J, Wang Z, Zhang D. Expanded detection range of lateral flow immunoassay endowed with a third-stage amplifier indirect probe. Food Chem 2022; 377:131920. [PMID: 34979402 DOI: 10.1016/j.foodchem.2021.131920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/18/2022]
Abstract
Here, a third-stage amplifier indirect probe (TsAIP) based lateral flow immunoassay (LFIA) was proposed to detect furazolidone (FZD) with Prussian blue nanoparticles (PBNPs) as carrier to label the goat anti-mouse antibody-horseradish peroxidase conjugation [GAMA(HRP)]. In this strategy, owing to the fact that one monoclonal antibody (mAb) can combine several GAMA molecules simultaneously, the indirect probe can generate primary signal amplification, then realize second-stage amplification attributing to PBNPs, and finally achieve third-stage amplification because of the conjugated HRP. The TsAIP-based LFIA shows improved performance for FZD metabolite derivative with a detection limit of 1 ng mL-1. The detection range is expanded about 2-fold compared with the original outcome. Besides, the proposed sensor could be successfully applied in food samples. This method provides a platform for broadening the detection range and application of PBNPs based LFIAs.
Collapse
Affiliation(s)
- Jing Ren
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Lihong Su
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Huilan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jingke Xu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China.
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
25
|
Jesu Amalraj AJ, Wang SF. Synthesis of transition metal titanium oxide (MTiOx, M = Mn, Fe, Cu) and its application in furazolidone electrochemical sensor. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Nano-labeled materials as detection tags for signal amplification in immunochromatographic assay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Huang Q, Dang L. Graphene-labeled synthetic antigen as a novel probe for enhancing sensitivity and simplicity in lateral flow immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1155-1162. [PMID: 35225992 DOI: 10.1039/d1ay02158c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lateral flow immunoassay (LFIA), which combines immune-specific recognition properties with sensitive nano-signaling features, has emerged as an excellent tool for point-of-care testing (POCT) in food safety and clinical diagnosis. Exploring novel probes with a simple preparation process, improved signal intensity and good stability is conducive to the development and application of LFIA. Herein, a potent non-antibody probe, graphene-labeled synthetic antigen (G-Ag), was created for LFIA, in which graphene endowed a naked-eye visual colorimetric signal with high sensitivity, and the synthetic antigen competed with the target for binding to the antibody on the test line. During the G-Ag probe manufacturing process, only one simple mixing step was needed because graphene nanosheets presented a strong adsorption capacity toward the protein (BSA) on the synthetic antigen, significantly saving time, labor and cost. Especially, the synthetic antigen forms a fabulous probe element without the need for antibody, and thus the proposed LFIA avoids the destruction of antibody activity, and exhibits excellent sensitivity and stability. After optimization, LFIA was successfully applied to analyze clenbuterol; the lowest visually detectable concentration was 0.1 ng mL-1, and the probe could be well-applied in pork, mutton, sausage and bacon samples, demonstrating favorable specificity and repeatability. Owing to the advantages of simplicity, non-antibody probe, sensitivity and reliability, G-Ag probe-based LFIA has application potential for small-molecule target monitoring and rapid detection.
Collapse
Affiliation(s)
- Qiong Huang
- Shanxi Technology and Business College, 030006 Taiyuan, Shanxi Province, People's Republic of China.
| | - Ling Dang
- Shanxi Technology and Business College, 030006 Taiyuan, Shanxi Province, People's Republic of China.
| |
Collapse
|
28
|
Song D, Ji X, Chen S, Wang L, Wu S, Zhang Y, Ma Z, Gao E, Zhu M. A Luminescent Sensor based on a Cd2+ Complex for the Detection of Nitrofuran Antibiotics in Aqueous Solution. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Hu Y, Hou C, Shi Y, Wu J, Yang D, Huang Z, Wang Y, Liu Y. Freestanding Fe 3O 4/Ti 3C 2T xMXene/polyurethane composite film with efficient electromagnetic shielding and ultra-stretchable performance. NANOTECHNOLOGY 2022; 33:165603. [PMID: 34986469 DOI: 10.1088/1361-6528/ac4878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Electromagnetic pollution seriously affects the human reproductive system, cardiovascular system, people's visual system, and so on. A novel versatile stretchable and biocompatible electromagnetic interference (EMI) shielding film has been developed, which could effectively attenuate electromagnetic radiation. The EMI shielding film was fabricated with a convenient solution casting and steam annealing with 2D MXene, iron oxide nanoparticles, and soluble polyurethane. The EMI shielding effectiveness is about 30.63 dB at 8.2 GHz, based on its discretized interfacial scattering and high energy conversion efficiency. Meanwhile, the excellent tensile elongation is 30.5%, because of the sliding migration and gradient structure of the nanomaterials doped in a polymer matrix. In addition, the film also demonstrated wonderful biocompatibility and did not cause erythema and discomfort even after being attached to the arm skin over 12 h, which shows the great potential for attenuation of electromagnetic irradiation and protection of human health.
Collapse
Affiliation(s)
- Yongqin Hu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, People's Republic of China
- Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chen Hou
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, People's Republic of China
- Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuxia Shi
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, People's Republic of China
| | - Jiamei Wu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Da Yang
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, People's Republic of China
| | - Zhuili Huang
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, People's Republic of China
- Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, People's Republic of China
- Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
- Centre for Nano Health, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| |
Collapse
|
30
|
Wang J, Yang Q, Liu H, Chen Y, Jiang W, Wang Y, Zeng H. A nanomaterial-free and thionine labeling-based lateral flow immunoassay for rapid and visual detection of the transgenic CP4-EPSPS protein. Food Chem 2022; 378:132112. [PMID: 35033711 DOI: 10.1016/j.foodchem.2022.132112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/14/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022]
Abstract
Nanomaterial-based lateral flow immunoassays (LFIAs) have been widely used for the on-site detection of genetically modified components. However, the practical applications are often limited by the complex matrix, such as in red samples. In this study, a thionine (Thi) labeling-based LFIA was developed for the first time to detect CP4-EPSPS protein. The optimal labeling concentration of Thi was 0.5 mg/mL, and the antibody could be rapidly coupled to Thi in 10 min. The visual limit of detection (vLOD) levels for transgenic soybean, sugar beet, and cotton containing the CP4-EPSPS protein reached 0.05%, 0.1%, and 0.1%, respectively, and had no interference from other proteins. After storage at 4 °C for three months, the LFIA sensitivity remained unchanged and showed good stability. This method could be used to screen and detect a variety of transgenic crops containing the CP4-EPSPS protein, and the results were consistent with the current standard assay. This study pioneered the development of an immunochromatographic method using Thi as a marker and applied it to the detection of the CP4-EPSPS protein in herbicide-tolerant transgenic crops. This provides a new method for the rapid immunoassay of Thi as a dye and has good prospects for practical application.
Collapse
Affiliation(s)
- Jinbin Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Qianwen Yang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hua Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yifan Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Wei Jiang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yu Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haijuan Zeng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| |
Collapse
|
31
|
Rizwan M, Selvanathan V, Rasool A, Qureshi MAUR, Iqbal DN, Kanwal Q, Shafqat SS, Rasheed T, Bilal M. Metal-Organic Framework-Based Composites for the Detection and Monitoring of Pharmaceutical Compounds in Biological and Environmental Matrices. WATER, AIR, AND SOIL POLLUTION 2022; 233:493. [PMID: 36466935 PMCID: PMC9685123 DOI: 10.1007/s11270-022-05904-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/13/2022] [Indexed: 05/10/2023]
Abstract
The production of synthetic drugs is considered a huge milestone in the healthcare sector, transforming the overall health, aging, and lifestyle of the general population. Due to the surge in production and consumption, pharmaceutical drugs have emerged as potential environmental pollutants that are toxic with low biodegradability. Traditional chromatographic techniques in practice are time-consuming and expensive, despite good precision. Alternatively, electroanalytical techniques are recently identified to be selective, rapid, sensitive, and easier for drug detection. Metal-organic frameworks (MOFs) are known for their intrinsic porous nature, high surface area, and diversity in structural design that provides credible drug-sensing capacities. Long-term reusability and maintaining chemo-structural integrity are major challenges that are countered by ligand-metal combinations, optimization of synthetic conditions, functionalization, and direct MOFs growth over the electrode surface. Moreover, chemical instability and lower conductivities limited the mass commercialization of MOF-based materials in the fields of biosensing, imaging, drug release, therapeutics, and clinical diagnostics. This review is dedicated to analyzing the various combinations of MOFs used for electrochemical detection of pharmaceutical drugs, comprising antibiotics, analgesics, anticancer, antituberculosis, and veterinary drugs. Furthermore, the relationship between the composition, morphology and structural properties of MOFs with their detection capabilities for each drug species is elucidated.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Vidhya Selvanathan
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan Malaysia
| | - Atta Rasool
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | | | - Dure Najaf Iqbal
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Qudsia Kanwal
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Syed Salman Shafqat
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, 54000 Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261 Saudi Arabia
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60695 Poznan, PL Poland
| |
Collapse
|
32
|
Huang Q. Simultaneous quantitative analysis of Listeria monocytogenes and Staphylococcus aureus based on antibiotic-introduced lateral flow immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5866-5874. [PMID: 34877941 DOI: 10.1039/d1ay01467f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food poisoning caused by microorganisms has caused widespread concern. Herein, a highly sensitive on-site screening test strip for the detection of different pathogenic microorganisms (Listeria monocytogenes and Staphylococcus aureus) was designed. In this analysis platform, colloidal gold-coupled vancomycin was used as a signal unit to label Gram-positive bacteria, and highly sensitive polyclonal antibodies were used as recognition molecules to capture these specific strains. Compared with the traditional dual-antibody sandwich model, this new type of antibiotic-pathogen-antibody sandwich model is low-cost and can simultaneously detect multiple microorganisms. Under optimal conditions, this strategy showed satisfactory sensitivity and a wide linear range (L. monocy and S. aure could be directly assayed within linear ranges of 5 × 104 to 107 and 5 × 102 to 107 CFU mL-1, and the visual detection limits were 105 and 103 CFU mL-1, respectively). The analytical performance and practicability of this sensor system have been further studied. This developed biosensor was applied to bacteria-contaminated water, milk and broth with satisfactory results. All of these attractive characteristics make the assay possess potential applications in food safety, medical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Qiong Huang
- Shanxi Technology and Business College, 030006 Taiyuan, Shanxi Province, People's Republic of China.
| |
Collapse
|
33
|
Fan W, Gao W, Jiao J, Wang D, Fan M. Highly sensitive SERS detection of residual nitrofurantoin and 1-amino-hydantoin in aquatic products and feeds. LUMINESCENCE 2021; 37:82-88. [PMID: 34637600 DOI: 10.1002/bio.4148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/02/2023]
Abstract
Nitrofurantoin (NFT), a typical highly effective nitrofuran antibiotic drug, has been prohibited but still widely found in animal food products. It can be metabolized in animals to form 1-amino-hydantoin (AHD) that can then form stable and toxic metabolite-protein adducts. Hence, the detection of NFT and AHD in aquatic products and feeds is very important. However, there are limited reports concerning NFT detection and none about AHD by using surface-enhanced Raman spectroscopy (SERS) method. Herein, potassium bromide (KBr) decorated silver (Ag) nanoparticles (Ag-BrNPs)-based SERS approach was proposed for NFT and AHD detection. The limit of detection (LOD) for NFT was 1 μg/L. The detection of NFT residues in sea cucumber and fish feeds was also realized with the LOD of 1 and 50 ng/g, respectively. More importantly, the sensing of AHD was easily realized with the SERS approach for the first time. After the derivatization with 2-nitrobenzaldehyde (2-NBA), Ag-BrNPs were also successfully utilized for AHD detection in sea cucumber with the LOD of 5 ng/g.
Collapse
Affiliation(s)
- Wanli Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Weixing Gao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jian Jiao
- Beijing Tong Ren Tang Health (Dalian) Seafoods Co., Ltd, Beijing, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Fan W, Yang S, Gao W, Wang D, Fan M. Highly sensitive bromide aided SERS detection of furazolidone and 3-amino-2-oxazolidinone residual in aquaculture products. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Niu X, Bo X, Guo L. MOF-derived hollow NiCo 2O 4/C composite for simultaneous electrochemical determination of furazolidone and chloramphenicol in milk and honey. Food Chem 2021; 364:130368. [PMID: 34242879 DOI: 10.1016/j.foodchem.2021.130368] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/24/2021] [Accepted: 06/12/2021] [Indexed: 11/19/2022]
Abstract
Herein, bimetallic Co/Ni-MOF derived hollow NiCo2O4@C composite modified glassy carbon electrode (NiCo2O4@C/GCE) is constructed and applied to simultaneously detect furazolidone (FZD) and chloramphenicol (CAP) for the first time. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption-desorption and X-ray photoelectron spectroscopy confirm that NiCo2O4@C has hollow and mesoporous structure, abundant carbon matrixes, sufficient oxygen defects and mixed-valence metallic elements. These advantages make NiCo2O4@C/GCE show distinguished electrocatalytic performance toward the simultaneous determination of FZD and CAP. The NiCo2O4@C/GCE shows wide linear ranges of 0.5-240 µM for FZD and 0.5-320 µM for CAP, low limit of detection of 8.47 nM for FZD and 35 nM for CAP. The mechanism studies show that reductions of FZD and CAP on NiCo2O4@C/GCE are both four-electron and four-proton processes. Moreover, the sensor obtains desirable recoveries for the simultaneous determination of FZD (95.85%-103.9%) and CAP (95.72%-104.4%) in milk and honey by standard addition method.
Collapse
Affiliation(s)
- Xia Niu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Liping Guo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
36
|
Cai P, Wang R, Ling S, Wang S. A high sensitive platinum-modified colloidal gold immunoassay for tenuazonic acid detection based on monoclonal IgG. Food Chem 2021; 360:130021. [PMID: 33991976 DOI: 10.1016/j.foodchem.2021.130021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/06/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
Due to the threat of tenuazonic acid (TA) to public health, it is urgent to establish rapidly effective and sensitive assay methods for TA. In this study, a TA-specific IgG monoclonal antibody (McAb) with high affinity (Kaff was 1.72 × 1010 L/mol) was screened, and the developed icELISA for TA detection has IC50 of 2.50 ng/mL and LOD of 0.17 ng/mL. Platinum-modified gold nanoparticle (Au@PtNP) was optimized as Au@Pt0.4NP, and the resulted Au@Pt0.4NP-McAb probe was designed to catalyze precipitation-type tetramethylbenzidine for visual detection of trace TA with visual LOD of 0.39 ng/mL. The sensitivity of this established Au@Pt0.4NP-McAb strip was highly increased when compared with the existing colloidal gold strip. The developed strip was used to detect trace TA in apple juice and tomato ketchup which were consistent with the results from UHPLC-MS/MS. Therefore, this developed strip could be used for rapid detection of trace TA in real samples.
Collapse
Affiliation(s)
- Peiyuan Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongzhi Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sumei Ling
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
37
|
Xu J, Dou L, Liu S, Su L, Yin X, Ren J, Hu H, Zhang D, Sun J, Wang Z, Wang J. Lateral flow immunoassay for furazolidone point-of-care testing: Cater to the call of saving time, labor, and cost by coomassie brilliant blue labeling. Food Chem 2021; 352:129415. [PMID: 33711728 DOI: 10.1016/j.foodchem.2021.129415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/17/2021] [Indexed: 11/30/2022]
Abstract
Furazolidone (FZD) and its metabolite called 3-amino-2-oxazolidinone (AOZ) would induce carcinogenic and mutagenic effects to human. In this work, to develop a novel, stable, and simple point of care testing (POCT) with a potential to social applied for FZD detection, we utilized the aspect of protein staining of coomassie brilliant blue (CBB) to exploit a new CBB-LFIA strategy free of NPs. Only one mixing step is needed during the probe manufacturing process, which requires just 2 h and is a great time saving strategy compared with other methods (requiring 4-33 h for probe preparation). Besides, the cost of CBB-LFIA is 300 times lesser than other LFIA with respect to obtaining the label. The developed CBB-LFIA was successfully applied to detect AOZ with a detection limit of 2 ng mL-1, without any influence from other potential interfering compounds. The proposed CBB-LFIA exhibited prominent practical application, and possesses considerable utilization potential in the related field.
Collapse
Affiliation(s)
- Jingke Xu
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Lihong Su
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Jing Ren
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Huilan Hu
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23Xinning Road, Xining 810008, Qinghai, China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22Xinong Road, Yangling 712100, Shanxi, China.
| |
Collapse
|
38
|
Shirshahi V, Liu G. Enhancing the analytical performance of paper lateral flow assays: From chemistry to engineering. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Rajakumaran R, Krishnapandi A, Chen SM, Balamurugan K, Chang FM, Sakthinathan S. Electrochemical investigation of zinc tungstate nanoparticles; a robust sensor platform for the selective detection of furazolidone in biological samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Alagumalai K, Shanmugam R, Chen SM, Balamurugan M. Facile synthesis of Co( ii)-doped cobalt oxide nanostructures: their application in the sensitive determination of the prophylactic drug furazolidone. NEW J CHEM 2021. [DOI: 10.1039/d1nj01261d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Electrochemical detection of prophylactic drug furazolidone through Co–Co2O4 modified GCE.
Collapse
Affiliation(s)
- Krishnapandi Alagumalai
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Ragurethinam Shanmugam
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Muthukutty Balamurugan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
41
|
Serebrennikova KV, Hendrickson OD, Zvereva EA, Popravko DS, Zherdev AV, Xu C, Dzantiev BB. A Comparative Study of Approaches to Improve the Sensitivity of Lateral Flow Immunoassay of the Antibiotic Lincomycin. BIOSENSORS 2020; 10:E198. [PMID: 33287157 PMCID: PMC7761767 DOI: 10.3390/bios10120198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
This study provides a comparative assessment of the various nanodispersed markers and related detection techniques used in the immunochromatographic detection of an antibiotic lincomycin (LIN). Improving the sensitivity of the competitive lateral flow immunoassay is important, given the increasing demands for the monitoring of chemical contaminants in food. Gold nanoparticles (AuNPs) and CdSe/ZnS quantum dots (QDs) were used for the development and comparison of three approaches for the lateral flow immunoassay (LFIA) of LIN, namely, colorimetric, fluorescence, and surface-enhanced Raman spectroscopy (SERS)-based LFIAs. It was demonstrated that, for colorimetric and fluorescence analysis, the detection limits were comparable at 0.4 and 0.2 ng/mL, respectively. A SERS-based method allowed achieving the gain of five orders of magnitude in the assay sensitivity (1.4 fg/mL) compared to conventional LFIAs. Therefore, an integration of a SERS reporter into the LFIA is a promising tool for extremely sensitive quantitative detection of target analytes. However, implementation of this time-consuming technique requires expensive equipment and skilled personnel. In contrast, conventional AuNP- and QD-based LFIAs can provide simple, rapid, and inexpensive point-of-care testing for practical use.
Collapse
Affiliation(s)
- Kseniya V. Serebrennikova
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Olga D. Hendrickson
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Elena A. Zvereva
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Demid S. Popravko
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Anatoly V. Zherdev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Chuanlai Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Boris B. Dzantiev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| |
Collapse
|
42
|
Mulvaney SP, Kidwell DA, Lanese JN, Lopez RP, Sumera ME, Wei E. Catalytic lateral flow immunoassays (cLFIA™): Amplified signal in a self-contained assay format. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
43
|
Zhang M, Bu T, Tian Y, Sun X, Wang Q, Liu Y, Bai F, Zhao S, Wang L. Fe3O4@CuS-based immunochromatographic test strips and their application to label-free and dual-readout detection of Escherichia coli O157:H7 in food. Food Chem 2020; 332:127398. [DOI: 10.1016/j.foodchem.2020.127398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 01/09/2023]
|
44
|
Liu SH, Wen BY, Lin JS, Yang ZW, Luo SY, Li JF. Rapid and Quantitative Detection of Aflatoxin B 1 in Grain by Portable Raman Spectrometer. APPLIED SPECTROSCOPY 2020; 74:1365-1373. [PMID: 32748642 DOI: 10.1177/0003702820951891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many foodstuffs are extremely susceptible to contamination with aflatoxins, in which aflatoxin B1 is highly toxic and carcinogenic. Therefore, it is crucial to develop a rapid and effective analytical method for detecting and monitoring aflatoxin B1 in food. Herein, a surface-enhanced Raman spectroscopic (SERS) method combined with QuEChERS (quick, easy, cheap-effective, rugged, safe) sample pretreatment technique was used to detect aflatoxin B1. Sample preparation was optimized into a one-step extraction method using an Au nanoparticle-based solution (Au sol) as the SERS detection substrate. An affordable portable Raman spectrometer was then used for rapid, label-free, quantitative detection of aflatoxin B1 levels in foodstuffs. This method showed a good linear log relationship between the Raman signal intensity of aflatoxin B1 in the 1-1000 µg L-1 concentration range with a limit of detection of 0.85 µg kg-1 and a correlation coefficient of 0.9836. Rapid aflatoxin B1 detection times of ∼10 min for wheat, corn, and protein feed powder samples were also achieved. This method has high sensitivity, strong specificity, excellent stability, is simple to use, economical, and is suitable for on-site detection, with good prospects for practical application in the field of food safety.
Collapse
Affiliation(s)
- Sheng-Hong Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| | - Bao-Ying Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| | - Jia-Sheng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| | - Zhen-Wei Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| | - Shi-Yi Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, 12466Xiamen University, Xiamen, China
| |
Collapse
|
45
|
Cai Y, Yan J, Zhu L, Wang H, Lu Y. A Rapid Immunochromatographic Method Based on a Secondary Antibody-Labelled Magnetic Nanoprobe for the Detection of Hepatitis B preS2 Surface Antigen. BIOSENSORS 2020; 10:E161. [PMID: 33142715 PMCID: PMC7692799 DOI: 10.3390/bios10110161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Hepatitis B is a globally prevalent viral infectious disease caused by the hepatitis B virus (HBV). In this study, an immunochromatographic assay (ICA) for the rapid detection of hepatitis B preS2 antigen (preS2Ag) was established. The magnetic nanoparticles (MNPs) indirectly labelled with goat anti-mouse (GAM) secondary antibody were applied as a nanoprobe for free preS2 antibody (preS2Ab) capturing and signal amplification. By employing sample pre-incubation processing as well, preS2Ag-preS2Ab was sufficiently caught by the GAM-MNPs probe in 5 min. A qualitative sensitivity of 625 ng/mL was obtained by naked-eye observation within 15-20 min. A standard curve (0-5000 ng/mL) was established, with a quantitative limit of detection (LOD) of 3.6 ng/mL, based on the stability and penetrability of the magnetic signal characteristics. The proposed method for preS2Ag was rapid (~25 min, cf. ELISA ~4 h) and had a good accuracy, which was verified using an ELISA kit (relative error < 15%). Large equipment and skilled technicians were not required. The sensitivity and specificity of the developed GAM-MNPs-ICA method were 93.3% and 90% in clinical serum samples (n = 25), respectively. A good detection consistency (84%) was observed between the developed ICA method and 2 types of commercial ELISA kits, indicating that the GAM-MNPs-ICA has a potential application in large-scale screening for and point-of-care diagnosis of hepatitis B or other infectious diseases.
Collapse
Affiliation(s)
- Yangyang Cai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.C.); (J.Y.)
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Jun Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.C.); (J.Y.)
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Li Zhu
- Beijing Institute of Biotechnology, Beijing 100071, China; (L.Z.); (H.W.)
| | - Hengliang Wang
- Beijing Institute of Biotechnology, Beijing 100071, China; (L.Z.); (H.W.)
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.C.); (J.Y.)
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| |
Collapse
|
46
|
Nanozyme amplification mediated on-demand multiplex lateral flow immunoassay with dual-readout and broadened detection range. Biosens Bioelectron 2020; 169:112610. [PMID: 32961498 DOI: 10.1016/j.bios.2020.112610] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 01/18/2023]
Abstract
Development of sensitive, facile and rapid biosensors is important for widespread applications. Nanozymes can be ideal signal donors for constructing dual-readout lateral flow immunoassays (LFIA) because they are an excellent class of optical reporters. Herein, a magnetic prussian blue nanozyme (MPBN) mediated dual-readout on-demand multiplex lateral flow immunoassay (MLFIA) was established by employing ractopamine (RAC) and clenbuterol (CLE) as the model analytes. The MPBN was synthesized through in-suit shell-growing and introduced as a bifunctional signal tag owing to their darker original color and peroxidase-like activity. Based on the catalytic signal created by catalyzing oxidation of chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) and colorimetric signal generated by tag's original color, improved precision and broadened detection range were acquired by implementing a dual-readout strategy. And a two-fold increase in the detection range could fulfill different limit requirements of the same target in various regions. The obtained recoveries from 84.01% to 119.94% indicating the repeatability and reliability of the proposed method. This method provides an attractive platform for the detection of a same target with different detection limits, which possesses a considerable potential in monitoring of other targets.
Collapse
|
47
|
Abstract
In recent years, advances in immunosensor device fabrication have significantly expanded the use of this technology in a broad range of applications including clinical diagnosis, food analysis, quality control, environmental studies and industrial monitoring. The most important aspect in fabrication is to obtain a design that provides a low detection limit. The utilization of nanomaterials as a label, catalyst and biosensing transducer is, perhaps, the most popular approach in ultrasensitive devices. This chapter reviews recent advances in immunosensor fabrication and summarizes the most recent studies. Strategies employed to significantly improve sensitivity and specificity of immunosensor technology and the advantages and limitations thereof are explored.
Collapse
Affiliation(s)
- Muhammet Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
48
|
Wu W, Yang S, Liu J, Mi J, Dou L, Pan Y, Mari GM, Wang Z. Progress in immunoassays for nitrofurans detection. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1786672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Weilin Wu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Shuyu Yang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Jialiang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Jiafei Mi
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Yantong Pan
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Ghulam Mujtaba Mari
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| |
Collapse
|
49
|
Moyano A, Serrano-Pertierra E, Salvador M, Martínez-García JC, Rivas M, Blanco-López MC. Magnetic Lateral Flow Immunoassays. Diagnostics (Basel) 2020; 10:E288. [PMID: 32397264 PMCID: PMC7278001 DOI: 10.3390/diagnostics10050288] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
A new generation of magnetic lateral flow immunoassays is emerging as powerful tool for diagnostics. They rely on the use of magnetic nanoparticles (MNP) as detecting label, replacing conventional gold or latex beads. MNPs can be sensed and quantified by means of external devices, allowing the development of immunochromatographic tests with a quantitative capability. Moreover, they have an added advantage because they can be used for immunomagnetic separation (IMS), with improvements in selectivity and sensitivity. In this paper, we have reviewed the current knowledge on magnetic-lateral flow immunoassay (LFIA), coupled with both research and commercially available instruments. The work in the literature has been classified in two categories: optical and magnetic sensing. We have analysed the type of magnetic nanoparticles used in each case, their size, coating, crystal structure and the functional groups for their conjugation with biomolecules. We have also taken into account the analytical characteristics and the type of transduction. Magnetic LFIA have been used for the determination of biomarkers, pathogens, toxins, allergens and drugs. Nanocomposites have been developed as alternative to MNP with the purpose of sensitivity enhancement. Moreover, IMS in combination with other detection principles could also improve sensitivity and limit of detection. The critical analysis in this review could have an impact for the future development of magnetic LFIA in fields requiring both rapid separation and quantification.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - M. Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| |
Collapse
|
50
|
Small size nanoparticles—Co3O4 based lateral flow immunoassay biosensor for highly sensitive and rapid detection of furazolidone. Talanta 2020; 211:120729. [DOI: 10.1016/j.talanta.2020.120729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 11/22/2022]
|