1
|
Zhou H, Loo LSW, Ong FYT, Lou X, Wang J, Myint MK, Thong A, Seow DCS, Wibowo M, Ng S, Lv Y, Kwang LG, Bennie RZ, Pang KT, Dobson RCJ, Domigan LJ, Kanagasundaram Y, Yu H. Cost-effective production of meaty aroma from porcine cells for hybrid cultivated meat. Food Chem 2025; 473:142946. [PMID: 39864181 DOI: 10.1016/j.foodchem.2025.142946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Cultivated meats are typically hybrids of animal cells and plant proteins, but their high production costs limit their scalability. This study explores a cost-effective alternative by hypothesizing that controlling the Maillard and lipid thermal degradation reactions in pure cells can create a meaty aroma that could be extracted from minimal cell quantities. Using spontaneously immortalized porcine myoblasts and fibroblasts adapted to suspension culture with a 1 % serum concentration, we developed a method to isolate flavor precursors via freeze-thawing. Thermal reaction conditions were optimized to enhance aroma compound production. Chemical profiling demonstrates that myoblasts produce an aroma profile closer to pork meat than fibroblasts, although serum reduction decreased aroma yield. Sensory analysis supported these findings. Incorporating the optimized aroma extract - derived from just 1.2 % (w/w) cells - into plant proteins resulted in a hybrid cultivated meat with 78.5 % sensory similarity to pork meat, but with a significant 80 % reduction in production costs.
Collapse
Affiliation(s)
- Hanzhang Zhou
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore; Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Larry Sai Weng Loo
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore; Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore; Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore; Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Francesca Yi Teng Ong
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Xuanming Lou
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore
| | - Jiahao Wang
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Matthew Khine Myint
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore
| | - Aaron Thong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Deborah Chwee San Seow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Mario Wibowo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Shengyong Ng
- Ants Innovate Pte. Ltd., Temasek Boulevard, Singapore 038987, Singapore
| | - Yunbo Lv
- Nanyang Environment And Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Leng Gek Kwang
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Rachel Z Bennie
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; The Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Kuin Tian Pang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore; Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Renwick C J Dobson
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; The Riddet Institute, Massey University, Palmerston North, New Zealand; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Laura J Domigan
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; The Riddet Institute, Massey University, Palmerston North, New Zealand; Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Hanry Yu
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore; Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore; Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore.
| |
Collapse
|
2
|
Zhang C, Tan J, He J, Hu Q, Li J, Xie J. Effect of lysine on the cysteine-xylose Maillard reaction to form flavor compounds. Food Chem 2025; 469:142529. [PMID: 39733566 DOI: 10.1016/j.foodchem.2024.142529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024]
Abstract
To understand flavor formation mechanisms in complex meat-like Maillard systems, effect of lysine on cysteine-xylose reaction to form flavors was studied. GC-MS and GC-O analyses found lysine of 1 times cysteine concentration led to the greatest amount of sulfur-containing meaty compounds while more additional lysine caused more pyrazine compounds. LC-MS analysis showed lysine competed with cysteine to form the early-stage intermediate of Lys-Amadori compounds and accelerated conversion of 2-threityl-thiazolidine-4-carboxylic acids to Cys-Amadori compounds from the cysteine-xylose reaction. Reaction rates based on UV 294 and 420 nm absorbance, browning color, and consumption of cysteine and xylose suggested addition of lysine continuously accelerated the Maillard reaction at intermediate and final stages. Pearson correlation analysis revealed less reaction rates and Lys-Amadori compounds formed could cause more meaty compounds and thereby exposed formation pathways of important aroma compounds. This work can provide guidance for optimizing meat or meat product composition to improve meat flavor.
Collapse
Affiliation(s)
- Chenping Zhang
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jia Tan
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jinxin He
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qingqing Hu
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Juan Li
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianchun Xie
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China..
| |
Collapse
|
3
|
Al-Dalali S, He Z, Du M, Sun H, Zhao D, Xu B. Effect of frozen storage on the untargeted and targeted metabolites of flavored roasted beef using UHPLC-MS/MS and GC-MS. Food Chem 2025; 469:142511. [PMID: 39708658 DOI: 10.1016/j.foodchem.2024.142511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
In this study, we investigated the changes in untargeted metabolites using UHPLC-MS/MS and the flavors of nonflavored (BS1) and flavored (BS2) roasted beef using GC-MS throughout a 6-month frozen period. A total of 509, 659, and 496 metabolites met the conditions for differential screening, and 56, 103, and 47 differential metabolites were recognized between BS1 and BS2 at 0, 3, and 6 months of frozen periods, respectively. The total relative abundance of organic nitrogen compounds, phenylpropanoids, polyketides, organic acids and their derivatives, and benzenoids increased during frozen storage at 3 months and then decreased at 6 months. A total of 16 differential metabolites were identified as markers for prolonged freezing, which belong to organic acids and their derivatives (Asp-Val-Lys, Val-Lys, Met-Phe, Tyr-Leu, N(6)-(octanoyl)lysine, and cis-acetylacrylate), lipids and lipid-like molecules (2,3-dimethyl-3-hydroxyglutaric acid, PC(P-16:0/2:0), (S)-17-hydroxy-9,11,13,15-octadecatetraynoic acid, PC(18:1(9Z)/18:1(11Z)), LysoPC (20:4(8Z,11Z,14Z,17Z)/0:0), PC(20:5/0:0), PE(20:3(8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z)), and PS(14:1(9Z)/22:0)), and others (putrescine and phenylacetaldehyde). Sixty-three volatile flavor compounds were detected, and their concentrations were decreased along with frozen storage, except for aldehydes. Positive correlations were observed between volatiles and free amino acids. Therefore, frozen storage has a notable effect on the metabolite profiles of roasted beef.
Collapse
Affiliation(s)
- Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin 541006, China; Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, Guilin 541006, China; Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen.
| | - Zhigui He
- School of Food and Health, Guilin Tourism University, Guilin 541006, China; Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, Guilin 541006, China; Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China.
| | - Miying Du
- School of Food and Health, Guilin Tourism University, Guilin 541006, China; Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, Guilin 541006, China; Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
| | - Hui Sun
- School of Food and Health, Guilin Tourism University, Guilin 541006, China; Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, Guilin 541006, China; Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
| | - Dong Zhao
- School of Food and Health, Guilin Tourism University, Guilin 541006, China; Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, Guilin 541006, China; Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
4
|
Li X, Liu X, Su S, Yao Z, Zhu Z, Chen X, Lao F, Li X. Impact of Oil Temperature and Splashing Frequency on Chili Oil Flavor: Volatilomics and Lipidomics. Foods 2025; 14:1006. [PMID: 40231999 PMCID: PMC11941942 DOI: 10.3390/foods14061006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
In this study, headspace gas chromatography-ion mobility spectrometry, headspace gas chromatography-mass spectrometry, and lipidomics were used to explore the effects of three oil temperatures (210 °C, 180 °C, 150 °C) with single- and traditional triple-oil-splashing processes (210 °C → 180 °C → 150 °C) on the formation of key chili oil aromas. A total of 31 key aroma compounds were identified, with 2,4-nonadienal, α-pinene, α-phellandrene, and β-ocimene being found in all treatment groups. Lipidomics suggested that oleic acid, linoleic acid, and α-linolenic acid were highly positively correlated with key chili oil key aroma compounds, such as (E)-2-heptenal, 2-methylbutyraldehyde, limonene, (E, E)-2,4-heptadienal, 2,4-nonadienal, and 2,4-decadienal. The temperature and frequency of oil splashing significantly affected the chili oil aroma profile (p < 0.05). The citrus, woody, and grassy notes were richer in chili oil prepared at 150 °C, malty and fatty aromas were more prominent at 180 °C, and the nutty aroma was stronger in 210 °C prepared and triple-splashed chili oil. The present study reveals how sequential oil splashing processes synergistically activate distinct lipid degradation pathways compared to single-temperature treatments, providing new insights into lipid-rich condiment preparation, enabling chefs and food manufacturers to target specific aroma profiles.
Collapse
Affiliation(s)
- Xiaoping Li
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Xiaopeng Liu
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Shiting Su
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Zhao Yao
- School of Health Industry, Sichuan Tourism University, Chengdu 610100, China
| | - Zhenhua Zhu
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Xingyou Chen
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Xiang Li
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Shakoor A, Al-Dalali S, Xie J, Zhang C, Hossen I. Insight into the effect of GSH curing treatment on the flavor formation of chicken meat. Food Chem 2025; 468:142488. [PMID: 39708508 DOI: 10.1016/j.foodchem.2024.142488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Glutathione (GSH) is an important precursor of meat flavor. This study aimed to evaluate the effect of GSH-curing on the flavor of cooked chicken. GSH-cured chicken with different concentrations and uncured chicken (blank) were roasted separately and comprehensively analyzed in terms of flavors, odor-active compounds, free amino acids, and fatty acids profile. Volatile flavor compounds were analyzed using solid-phase micro-extraction (SPME) along with GC-MS, GC-O/AEDA, and odor activity value (OAV) calculations. The results showed that the contents of most flavors derived from the Maillard reaction increased due to GSH-curing treatment, such as 2-methylthiophene, 3-methylthiophene, 2-methylthiazole, and 5-methylthiazole, while the lipid degradation flavors reduced, like hexanal, heptanal, and (E,E)-2,4-decadienal. In particular, during sensory analysis, the cured sample with 1.6 mmol GSH had the greatest roasted meaty odor. In addition, GSH curing results in the increased formation of key odor-active substances (OAV ≥ 1), such as 2-acetylthiazole.
Collapse
Affiliation(s)
- Ashbala Shakoor
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin 541006, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen.
| | - Jianchun Xie
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Chenping Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Imam Hossen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Zhou L, Ren Y, Shi Y, Zhao L, Tian H, Feng X, Li J, Yang Y, Xing W, Yu Y, Zhao Q, Zhang J, Tang C. Investigation on the pro-aroma generation effects of fatty acids in beef via thermal oxidative models. Food Chem X 2025; 26:102291. [PMID: 40083855 PMCID: PMC11905826 DOI: 10.1016/j.fochx.2025.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/21/2025] [Accepted: 02/16/2025] [Indexed: 03/16/2025] Open
Abstract
Fatty acids (FAs) in lipids are important precursors for the formation of meat aroma compounds. However, the specific roles of individual FAs and related reactions in beef aroma formation remain unclear. This study established thermal oxidation models to investigate the impact of different FAs on the formation of beef aroma compounds. The results revealed that thermal oxidation of seven FAs with different saturation produced 42 aroma compounds. Among them, unsaturated fatty acids (UFAs) participating in thermal oxidation degradation is the primary pathway for aroma compound formation, and the types of aroma compounds produced by C18:2n6 and C20:4n6 are similar. The addition of UFAs to lipid-free beef induces lipid oxidation-Maillard reaction interactions, producing more thiophenes, thiazoles, and pyridines, such as 2-acetyl-3-methylthiophene and 2-pentylpyridine, etc. The key aroma compounds in beef with odor characteristics such as fruity, green, fatty or milky are mainly produced by C18:1n9, C18:2n6 and C20:4n6.
Collapse
Affiliation(s)
- Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yimeng Ren
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Agricultural Sciences, Zhengzhou University, 450001, China
| | - Yujie Shi
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Agricultural Sciences, Zhengzhou University, 450001, China
| | - Liyuan Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huihui Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Agricultural Sciences, Zhengzhou University, 450001, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihai Xing
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Yao Y, Huang M, Liao Q, Wang X, Yu J, Hayat K, Zhang X, Ho CT. Unravelling the formation of characteristic aroma of traditional braised pork through untargeted and targeted flavoromics. Food Chem 2025; 464:141629. [PMID: 39423535 DOI: 10.1016/j.foodchem.2024.141629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Untargeted flavoromics and targeted quantitative analysis of key aroma compounds, and analysis of dynamic change of aroma precursors concentration were used to investigate the aroma evolution of traditional braised pork and the underlying mechanism. The results indicated that lipid oxidation dominated at early cooking stage (0th-45th min), resulting in an increased concentration of most aldehydes, alcohols, ketones, such as hexanal, heptanal, octanal, nonanal, (E)-2-octenal, benzaldehyde, 1-octen-3-ol, and 2,3-octanedione, accompanied with an enhanced unpleasant fatty odor. From 45th to 73rd min, the seasonings alleviated excessive oxidation of unsaturated fatty acids accompanied with decreased aldehydes. Moreover, the diffusion of glucose and amino acids from seasonings to lean meat promoted the consumption of endogenous ribose and amino acids in meat through Maillard reaction, and facilitated the formation of dimethyl trisulfide, dimethyl disulfide, methanethiol, and 2-furfural, which contributed to the meaty, sauce-like, and sweety aroma, thus formed the characteristic aroma of traditional braised pork.
Collapse
Affiliation(s)
- Yishun Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Meigui Huang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Qiuhong Liao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xiaomin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Khizar Hayat
- Department of Natural Sciences, Parkland College, Champaign, IL 61821, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| |
Collapse
|
8
|
Du W, Ma Q, Li Y, Bai S, Huang Y, Cui W, Accoroni C, Fan B, Wang F. Effects of unsaturated C18 fatty acids on "glucose-glutathione" Maillard reaction: Comparison and formation pathways of initial stage and meaty flavor compounds. Food Res Int 2025; 201:115645. [PMID: 39849734 DOI: 10.1016/j.foodres.2024.115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/30/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
To explore the effect of oleic acid, linoleic acid, and linolenic acid on "glucose-glutathione" Maillard reaction initial stage and meaty flavor compounds formation pathways, glutathione-Amadori compound was synthesized, and identified by Q/TOF and NMR. Depending on the concentration of glutathione and glutathione-Amadori compound quantified by UPLC-MS/MS, the unsaturated C18 fat acids inhibited glutathione Amadori compound formation or accelerated degradation, and oleic acid inhibited most markedly. The results showed that 65 volatile compounds were detected by GC-MS-O in four model systems. Particularly, following the addition of unsaturated C18 fatty acids, the content of meaty flavor compounds sequentially decreased from oleic acid to linoleic acid and then to linolenic acid. The CAMOLA (carbohydrate module labeling) demonstrated the 2-methylthiophene, 2-thiophenecarboxaldehyde, 4-mercaptophenol, 2-acetylthiazole, and thieno[3,2-b]thiophene formation pathways. Particularly, we found for the first time that the skeleton of 4-mercaptophenol generated from glucose. The volatile compounds of reaction systems were discriminated by heatmap and PCA analysis. These results highlights the effect of lipid composition on Maillard reaction and contributes to the control of savory flavor.
Collapse
Affiliation(s)
- Wenbin Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qianli Ma
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yang Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (CangZhou) CAAS, CangZhou, HeBei 061019, China
| | - Weiye Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cecilia Accoroni
- National Institute of Agricultural Technology (INTA), Oliveros, Santa Fe 2115, Argentina
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Shi Y, Li J, Zhou L, Zhang J, Feng X, Xing W, Tang C, Bai Y. Exploring the contribution of phosphatidylcholine and triglyceride on the formation of beef aroma-active compounds with thermal oxidation system. Curr Res Food Sci 2025; 10:100973. [PMID: 39906506 PMCID: PMC11791242 DOI: 10.1016/j.crfs.2025.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Thermal oxidation of phospholipids and triglycerides is a major source of beef aroma compounds. In this study, phosphatidylcholine (PC) and triglyceride (TG) were isolated and purified from beef and added to defatted beef and raw beef. The composition of aroma compounds generated by thermal oxidation in three model systems were compared by flavoromics. The main aroma compounds produced by the thermal oxidation of PC were decanal, (E)-2-nonenal, (E)-2-undecenal, and (E,E)-2,4-decadienal, while the main aroma compounds produced by the thermal oxidation of TG were nonanal, (E)-2-undecenal, and decanal. Nonanal remains the main aroma compound produced by PC and TG in defatted beef. Octanal and nonanal were the major aroma compounds generated by thermal oxidation of raw beef samples spiked with PC and TG. Raw beef with added PC and TG had higher levels of sulfides and heterocycles after thermal oxidation compared to defatted beef with added lipids. The comparison of the aroma profiles in three thermo-oxidative models indicated that PC contributed more than TG to the key odor-active compounds in cooked beef. Additionally, the thermo-oxidative degradation of PC facilitated the formation of Maillard reaction products. However, the beef matrix may inhibit the formation of decanal and (E,E)-2,4-decadienal.
Collapse
Affiliation(s)
- Yujie Shi
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weihai Xing
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yueyu Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
10
|
Meng L, Nie Y, Zhou Q, Zheng T, Song J, Zhang C, Chen H, Lin D, Cao S, Xu S. Effect of hot-air drying processing on the volatile organic compounds and maillard precursors of Dictyophora Rubrovalvata based on GC-IMS, HPLC and LC-MS. Food Chem 2025; 463:141074. [PMID: 39236392 DOI: 10.1016/j.foodchem.2024.141074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
The dynamic changes in volatile organic compounds (VOCs), reducing sugars, and amino acids of Dictyophora rubrovalvata (DR) at various drying temperatures were analyzed using GC-IMS, HPLC, and LC-MS. Orthogonal partial least squares discriminant analysis (OPLS-DA) combined with VOCs indicated that drying temperature of 80 °C was optimal. Variable importance in the projection (VIP) and relative odor activity value (ROAV) were employed to identify 22 key VOCs. The findings suggested that esters played a predominant role among the VOCs. Pearson correlation analysis revealed that serine (Ser), glutamine (Gln), lysine (Lys), alanine (Ala), threonine (Thr), glutamic acid (Glu), asparagine (Asn), ribose, and glucose were closely associated with the formation of esters, aldehydes, ketones, pyrimidines, and pyrazines. In conclusion, this study laid a foundational theory for elucidating the characteristics aroma substances and their production pathways, providing a valuable reference for analysing the flavor characteristics of DR.
Collapse
Affiliation(s)
- Lingshuai Meng
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China
| | - Yu Nie
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China
| | - Qingsong Zhou
- Guiyang jirentang pharmaceutical Co.Ltd, Guiyang, Guizhou 550000, PR China
| | - Tingting Zheng
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China
| | - Jianxin Song
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Chao Zhang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China
| | - Haijiang Chen
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China
| | - Dong Lin
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China
| | - Sen Cao
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Su Xu
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China.
| |
Collapse
|
11
|
Lee D, Lee S, Jo C. Application of Animal Resources into the Maillard Reaction Model System to Improve Meat Flavor. Food Sci Anim Resour 2025; 45:303-327. [PMID: 39840239 PMCID: PMC11743841 DOI: 10.5851/kosfa.2024.e133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
Simulating meat flavor via Maillard reaction model systems that contain a mixture of amino acids and reducing sugars is an effective approach to understanding the reaction mechanism of the flavor precursors. Notably, animal resources such as fish, beef, chicken, pork hydrolysates, and fats are excellent precursors in promoting favorable meaty and roasted flavors and umami tastes of Maillard reaction products. The experimental conditions and related factors of the model systems for sensory enhancements, debittering, and off-flavor reduction with meat and by-products are summarized in this review. The review also highlights the flavor precursors in the animal resources and their participation in the Maillard reaction. This review provides a basis for a better understanding of the model systems, especially those prepared with animal resources.
Collapse
Affiliation(s)
- Dongheon Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Seokjun Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
12
|
Zhou L, Ren Y, Shi Y, Fan S, Zhao L, Dong M, Li J, Yang Y, Yu Y, Zhao Q, Zhang J, Tang C. Comprehensive foodomics analysis reveals key lipids affect aroma generation in beef. Food Chem 2024; 461:140954. [PMID: 39186890 DOI: 10.1016/j.foodchem.2024.140954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Lipids are vital precursors to beef aroma compounds, but the exact lipid molecules influencing aroma generation remain unconfirmed. This study employs gas chromatography-olfactometry-mass spectrometry and absolute quantitative lipidomics to identify beef's aroma and lipid profiles and to examine lipid alterations post-thermal processing. The aim is to understand the role of lipids in aroma generation during beef's raw-to-cooked transition. Eighteen key aroma compounds were identified as significant contributors to the aroma of beef. 265 lipid molecules were quantified accurately, and we found that triglycerides containing C18:1 or C18:2 chains, such as TG(16:0_18:1_18:1), TG(16:0_18:1_18:2), TG(16:0_16:1_18:1), as well as phosphatidylcholine and phosphatidylethanolamine containing PC(16:1e_20:4), PC(16:0e_20:4), PC(18:2e_18:2), and PE(16:1e_20:4), played important roles in the generation of key aroma compounds in beef. C18:1, C18:2, C18:3, and C20:4 were key substrates for the formation of aroma compounds. In addition, lysophosphatidylcholine and lysophosphatidylethanolamine containing unsaturated fatty acid chains may serve as important aroma retainers.
Collapse
Affiliation(s)
- Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yimeng Ren
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yujie Shi
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shijie Fan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liyuan Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Miaomiao Dong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Yao Y, Huang M, Wang X, Yu J, Cui H, Hayat K, Zhang X, Ho CT. Characteristic volatile compounds contributed to aroma of braised pork and their precursor sources. Food Chem 2024; 459:140335. [PMID: 38981383 DOI: 10.1016/j.foodchem.2024.140335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The characteristic aroma compounds of traditional braised pork were investigated by gas chromatography-mass spectrometry-olfactometry (GC-MS-O), odor-activity values, and aroma recombination and omission experiments. A total of 56 volatile compounds were detected by GC-MS, among which hexanal, octanal, nonanal, (E)-2-octenal, 2,3-octanedione, 1-octen-3-ol, 2-pentylfuran, methanethiol, and dimethyl trisulfide were identified as the key aroma compounds by molecular sensory science. Partial least squares regression analysis indicated that some aroma compounds significantly contributed to fatty (hexanal, heptanal, 2-pentylfuran, nonanal, and (E)-2-octenal), meaty (methanethiol, dimethyl disulfide, dimethyl trisulfide, and octanal), sauce-like flavor (3-hydroxy-2-butanone and 2-furfural), and sweet, caramel (2,3-octanedione, 1-octen-3-ol). Lean meat produced more aldehydes, alcohols, ketones, and sulfur-containing compounds than subcutaneous fat. The seasonings (saccharose, cooking wine, and soy sauce) facilitated the formation of ethyl L-lactate, 2-acetylfuran, 2-furfural, 5-methyl-2-furaldehyde, 2-methyl-pyrazine, and 2-acetylpyrrole. Meanwhile they reduced the content of lipid oxidation products, thereby stimulated the characteristic aroma of the Chinese traditional braised pork.
Collapse
Affiliation(s)
- Yishun Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
| | - Meigui Huang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiaomin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
| | - Heping Cui
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| |
Collapse
|
14
|
Lee D, Kim HJ, Kim SS, Park N, Jo C. Changes in the flavor formation and sensory attributes of Maillard reaction products by different oxidation degrees of beef tallow via cold plasma. Food Res Int 2024; 196:115118. [PMID: 39614581 DOI: 10.1016/j.foodres.2024.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
It remains unclear how the oxidation degree of animal fat affects the flavor formation and sensory attributes of Maillard reaction products (MRPs). To oxidize beef tallow differentially under mild conditions, an atmospheric pressure cold plasma (APCP) was applied due to its easy, economical, and controllable manipulation and effectiveness. As the duration of APCP increased after 10 min, the oxidation degree of beef tallow increased significantly (p < 0.05). The beef tallow was incorporated into the cysteine-xylose model system and heated at 120 °C for 90 min. Volatiles from lipid oxidation products increased, whereas sulfur-containing compounds decreased significantly when the model included APCP-treated beef tallow (p < 0.05). MRPs with 10-min APCP-treated beef tallow showed reduced off-odor (p < 0.05). Thus, moderate APCP treatment to beef tallow may be beneficial for sensory attributes of MRPs. It suggests the potential of APCP to improve the flavor of heat-sensitive foods by controlling lipid oxidation.
Collapse
Affiliation(s)
- Dongheon Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hye-Jin Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sung-Su Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Nayoon Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
15
|
Liu M, Zhou J, Qin J, Qin Z, Jiang J, Yu F, Chen M, Liu X, Zhang M. Evaluation of High Vacuum Flavor Extraction Device as a Novel Technique for the Extraction of Volatile Compounds. Foods 2024; 13:3206. [PMID: 39410239 PMCID: PMC11476022 DOI: 10.3390/foods13193206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, a high vacuum flavor extraction (HVE) device was developed to address the limitations of traditional extraction methods, such as extended extraction times and artifact generation during high-temperature processes. Firstly, the repeatability and precision of the HVE method were evaluated through quantitative analysis of twelve volatile odor compounds across seven replicate extractions using gas chromatography-flame ionization detection (GC-FID). The results showed that the HVE system achieved a mean relative standard deviation (RSD) of 11.60 ± 1.79% and a recovery rate of 90.55 ± 4.56%, demonstrating its precision and reproducibility. Secondly, the performance of HVE was compared with solvent-assisted flavor evaporation (SAFE) and simultaneous distillation-extraction (SDE) for extracting flavor compounds from fried tilapia mince. The results indicated that HVE was more effective, particularly in extracting aldehydes and pyrazines, which are key contributors to the flavor profile. Finally, sensory evaluations supported these findings, showing that the odor profiles obtained through HVE were most similar to the original sample, with a similarity score of 72.55%, compared to 69.25% for SAFE and 60.29% for SDE. These findings suggest that HVE is a suitable method for the extraction and analysis of volatile compounds in complex food matrices such as fried tilapia mince.
Collapse
Affiliation(s)
- Mingyuan Liu
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Jie Zhou
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Jingkai Qin
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Zhongyi Qin
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Jiequn Jiang
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Futian Yu
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Mei Chen
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Xiaoling Liu
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Meishuo Zhang
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| |
Collapse
|
16
|
Zhang C, Wang X, Liu Y, Wang J, Xie J. Characteristics of meat flavoring prepared using hydrolyzed plant protein mix by three different heating processes. Food Chem 2024; 446:138853. [PMID: 38422645 DOI: 10.1016/j.foodchem.2024.138853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Meat flavoring was prepared using mainly enzymatic hydrolysate of plant protein mix, VB1, cysteine, and glucose by three heating processes, including A (80 °C-140 min), B (two-stage, 80 °C-30 min/120 °C-30 min), and C (120 °C-40 min). The A-, B-, and C-heated samples exhibited the strongest fatty and weakest meaty, the strongest meaty and kokumi, and the strongest roasted and bitterness characteristics, respectively. PLS-DA for free amino acids with TAVs and that for SPME/GC-MS results with GC-O and OAVs, suggested three amino acids and eight flavor compounds contributed significantly in differentiating taste or aroma attributes of the three heated samples. Molecular weight distribution and degree of amino substitution suggested 1-5 kDa peptides contributed to kokumi taste. Overall, C- and A-heating exhibited the highest rates in Maillard reaction and lipid oxidation, respectively, while those of B heating were between these two heating processes and responsible for better flavor of meat flavoring.
Collapse
Affiliation(s)
- Chenping Zhang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yang Liu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianchun Xie
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
17
|
Rodriguez-Amaya DB, Amaya-Farfan J. The Maillard reactions: Pathways, consequences, and control. VITAMINS AND HORMONES 2024; 125:149-182. [PMID: 38997163 DOI: 10.1016/bs.vh.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The century old Maillard reactions continue to draw the interest of researchers in the fields of Food Science and Technology, and Health and Medical Sciences. This chapter seeks to simplify and update this highly complicated, multifaceted topic. The simple nucleophilic attack of an amine onto a carbonyl group gives rise to a series of parallel and subsequent reactions, occurring simultaneously, resulting into a vast array of low and high mass compounds. Recent research has focused on: (1) the formation and transformation of α-dicarbonyl compounds, highly reactive intermediates which are essential in the development of the desired color and flavor of foods, but also lead to the production of the detrimental advanced glycation end products (AGEs); (2) elucidation of the structures of melanoidins in different foods and their beneficial effects on human health; and (3) harmful effects of AGEs on human health. Considering that MRs have both positive and negative consequences, their control to accentuate the former and to mitigate the latter, is also being conscientiously investigated with the use of modern techniques and technology.
Collapse
Affiliation(s)
| | - Jaime Amaya-Farfan
- School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
18
|
Xu C, Yin Z. Unraveling the flavor profiles of chicken meat: Classes, biosynthesis, influencing factors in flavor development, and sensory evaluation. Compr Rev Food Sci Food Saf 2024; 23:e13391. [PMID: 39042376 DOI: 10.1111/1541-4337.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024]
Abstract
Chicken is renowned as the most affordable meat option, prized by consumers worldwide for its unique flavor, and universally recognized for its essential savory flavor. Current research endeavors are increasingly dedicated to exploring the flavor profile of chicken meat. However, there is a noticeable gap in comprehensive reviews dedicated specifically to the flavor quality of chicken meat, although existing reviews cover meat flavor profiles of various animal species. This review aims to fill this gap by synthesizing knowledge from published literature to describe the compounds, chemistry reaction, influencing factors, and sensory evaluation associated with chicken meat flavor. The flavor compounds in chicken meat mainly included water-soluble low-molecular-weight substances and lipids, as well as volatile compounds such as aldehydes, ketones, alcohols, acids, esters, hydrocarbons, furans, nitrogen, and sulfur-containing compounds. The significant synthesis pathways of flavor components were Maillard reaction, Strecker degradation, lipid oxidation, lipid-Maillard interaction, and thiamine degradation. Preslaughter factors, including age, breed/strain, rearing management, muscle type, and sex of chicken, as well as postmortem conditions such as aging, cooking conditions, and low-temperature storage, were closely linked to flavor development and accounted for the significant differences observed in flavor components. Moreover, the sensory methods used to evaluate the chicken meat flavor were elaborated. This review contributes to a more comprehensive understanding of the flavor profile of chicken meat. It can serve as a guide for enhancing chicken meat flavor quality and provide a foundation for developing customized chicken products.
Collapse
Affiliation(s)
- Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
de Sousa Fontes VM, de Sousa Galvão M, Moreira de Carvalho L, do Nascimento Guedes FL, Dos Santos Lima M, Alencar Bezerra TK, Madruga MS. Thiamine, cysteine and xylose added to the Maillard reaction of goat protein hydrolysate potentiates the formation of meat flavoring compounds. Food Chem 2024; 445:138398. [PMID: 38394903 DOI: 10.1016/j.foodchem.2024.138398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/16/2023] [Accepted: 01/06/2024] [Indexed: 02/25/2024]
Abstract
A protein hydrolysate of goat viscera added with xylose, cysteine, and thiamine under different pH was used to prepare a meat flavoring. Goat viscera hydrolysate and flavoring were subjected to analysis of physicochemical characteristics, amino acid profile, sugars, fatty acids, and volatile profile. Meat aroma characteristics were initiated in the hydrolysate, in which Strecker's pyrazines and aldehydes were identified, which also had fatty acids and amino acids available for the formation of 96 volatile compounds in the flavorings via lipid manipulation, Maillard occurrence, Strecker manipulation and interactions among these means. Maillard reaction products with intense meat aroma, such as 2-methyl-3-furanthiol, 2-furfurylthiol and, bis(2-methyl-3-furyl) disulfide were isolated only in the flavoring at pH 4. In contrast, the flavoring at pH 6 showed a higher concentration than all the other compounds, providing a lower meat characteristic, but an intense sweet, fatty and goat aroma.
Collapse
Affiliation(s)
| | - Mércia de Sousa Galvão
- Departament of Food Engineering, Center for Technology, Federal University of Paraiba, Campus I, 58051-900, Brazil
| | - Leila Moreira de Carvalho
- Departament of Food Engineering, Center for Technology, Federal University of Paraiba, Campus I, 58051-900, Brazil
| | | | - Marcos Dos Santos Lima
- Federal Institute of Education Science and Technology Sertão Pernambucano, Department of Food Technology, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, Petrolina, Pernambuco CEP 56314-520, Brazil.
| | | | - Marta Suely Madruga
- Departament of Food Engineering, Center for Technology, Federal University of Paraiba, Campus I, 58051-900, Brazil.
| |
Collapse
|
20
|
Hu BB, Yin WT, Zhang HB, Zhai ZQ, Liu HM, Wang XD. The interaction between lipid oxidation and the Maillard reaction model of lysine-glucose on aroma formation in fragrant sesame oil. Food Res Int 2024; 186:114397. [PMID: 38729739 DOI: 10.1016/j.foodres.2024.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.
Collapse
Affiliation(s)
- Bei-Bei Hu
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Wen-Ting Yin
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China.
| | - Heng-Bo Zhang
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Zhuo-Qing Zhai
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Hua-Min Liu
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Xue-de Wang
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| |
Collapse
|
21
|
Du W, Wang Y, Ma Q, Li Y, Wang B, Bai S, Fan B, Wang F. The number and position of unsaturated bonds in aliphatic aldehydes affect meat flavorings system: Insights on initial Maillard reaction stage and meat flavor formation from thiazolidine derivatives. Curr Res Food Sci 2024; 8:100719. [PMID: 38533489 PMCID: PMC10963188 DOI: 10.1016/j.crfs.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Nonanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and (E,Z)-2,6-nonadienal were used to study the effect of number and position of the unsaturated bond in aliphatic aldehydes on meat flavorings. Cysteine-Amadori and thiazolidine derivatives were synthesized, identified by UPLC-TOF/MS and NMR, and quantitatively by UPLC-MS/MS. The polyunsaturated aldehydes exhibited higher inhibition than monounsaturated aldehydes, and monounsaturated aldehydes exhibited higher inhibition than saturated aldehydes, mainly manifested by the inhibition of the cysteine-Amadori formation and acceleration of the thiazolidine derivatives formation. The effect of unsaturated bonds position in aliphatic aldehydes on the initial Maillard reaction stage was similar. The cysteine played an important role in catalyzing the reaction of aliphatic aldehydes. A total of 109 volatile compounds derived by heating prepared thiazolidine derivatives degradation were detected by GC-MS. Formation pathways of volatile compounds were proposed by retro-aldol, oxidation, etc. Particularly, a route to form thiazole by the decarboxylation reaction of thiazolidine derivatives which derivatives from formaldehyde reacting with cysteine was proposed.
Collapse
Affiliation(s)
- Wenbin Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Yutang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Qianli Ma
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yang Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
22
|
Jia R, Xun W, Liao G, Yang Y, Wang G. Comparison of the Fatty Acid Composition and Small Molecular Metabolites between Yanjin Blackbone Chicken and Piao Chicken Meat. Food Sci Anim Resour 2023; 43:975-988. [PMID: 37969319 PMCID: PMC10636213 DOI: 10.5851/kosfa.2023.e53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 11/17/2023] Open
Abstract
The fatty acid composition and small molecular metabolites in breast and leg meat of Yanjin blackbone chickens (YBC) and Piao chickens (PC) were detected by gas chromatography-mass spectrometry and liquid chromatography-quadrupole static field orbital trap mass spectrometry. Thirty-two fatty acids were detected, and the total fatty acid content of PC was significantly higher than that of YBC (p<0.05). Oleic acid, linoleic acid, palmitic acid, stearic acid, and arachidonic acid were the main fatty acids in the two chicken varieties, and the composition of fatty acids in the two varieties were mainly unsaturated fatty acids, being more than 61.10% of the total fatty acids. Meanwhile, 12 and 16 compounds were screened out from chicken legs and chicken breasts of YBC and PC, respectively, which had important contributions to the differences between groups.
Collapse
Affiliation(s)
- Rong Jia
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Wen Xun
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Yuan Yang
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| |
Collapse
|
23
|
Du W, Wang Y, Yan Q, Bai S, Huang Y, Li L, Mu Y, Shakoor A, Fan B, Wang F. The number and position of unsaturated bonds in aliphatic aldehydes affect the cysteine-glucose Maillard reaction: Formation mechanism and comparison of volatile compounds. Food Res Int 2023; 173:113337. [PMID: 37803647 DOI: 10.1016/j.foodres.2023.113337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 10/08/2023]
Abstract
Nonanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and (E,Z)-2,6-nonadienal were used to reveal the effect of the number and position of unsaturated bond in aliphatic aldehydes on Maillard reaction for the generation of 88 stewed meat-like volatile compounds. The results showed that (E,E)-2,4-nonadienal and (E,Z)-2,6-nonadienal exhibited greater inhibition of the cysteine reaction with glucose than nonanal and (E)-2-nonenal. However, the positions of the unsaturated bonds in aliphatic aldehydes in the Maillard reaction stage were similar. A carbohydrate module labeling approach was used to present the formation pathways of 34 volatile compounds derived from the Maillard reaction with aliphatic aldehyde systems. The number and position of unsaturated bonds in aliphatic aldehydes generate multiple pathways of flavor compound formation. 2-Propylfuran and (E)-2-(2-pentenyl)furan resulted from aliphatic aldehydes. 5-Butyldihydro-2(3H)-furanone and 2-methylthiophene were produced from the Maillard reaction. 2-Furanmethanol, 2-thiophenecarboxaldehyde, and 5-methyl-2-thiophenecarboxaldehyde were derived from the interaction of aliphatic aldehydes and the Maillard reaction. In Particular, the addition of aliphatic aldehydes changed the formation pathway of 2-propylthiophene, thieno[3,2-b]thiophene, and 2,5-thiophenedicarboxaldehyde. Heatmap and PLS-DA analysis could discriminate volatile compound compositions of the five systems and screen the marker compounds differentiating volatile compounds.
Collapse
Affiliation(s)
- Wenbin Du
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yutang Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghong Yan
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Long Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuwen Mu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ashbala Shakoor
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
24
|
Joo ST, Lee EY, Son YM, Hossain MJ, Kim CJ, Kim SH, Hwang YH. Aging mechanism for improving the tenderness and taste characteristics of meat. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1151-1168. [PMID: 38616883 PMCID: PMC11007300 DOI: 10.5187/jast.2023.e110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 04/16/2024]
Abstract
Tenderness and taste characteristics of meat are the key determinants of the meat choices of consumers. This review summarizes the contemporary research on the molecular mechanisms by which postmortem aging of meat improves the tenderness and taste characteristics. The fundamental mechanism by which postmortem aging improves the tenderness of meat involves the operation of the calpain system due to apoptosis, resulting in proteolytic enzyme-induced degradation of cytoskeletal myofibrillar proteins. The improvement of taste characteristics by postmortem aging is mainly explained by the increase in the content of taste-related peptides, free amino acids, and nucleotides produced by increased hydrolysis activity. This review improves our understanding of the published research on tenderness and taste characteristics of meat and provides insights to improve these attributes of meat through postmortem aging.
Collapse
Affiliation(s)
- Seon-Tea Joo
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Yu-Min Son
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Md. Jakir Hossain
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - So-Hee Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
25
|
Wang Y, Zhang H, Li K, Luo R, Wang S, Chen F, Sun Y. Dynamic changes in the water distribution and key aroma compounds of roasted chicken during roasting. Food Res Int 2023; 172:113146. [PMID: 37689908 DOI: 10.1016/j.foodres.2023.113146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/11/2023]
Abstract
The effects of roasting times (0, 2, 4, 6, 8, 10, 12, and 14 min) on the dynamic changes of the water distribution and key aroma compounds in roasted chicken during the electric roasting process were studied. In total, 36 volatile compounds were further determined by GC-MS and 11 compounds, including 1-octen-3-ol, 1-heptanol, hexanal, decanal, (E)-2-octenal, acetic acid hexyl ester, nonanal, 2-pentylfuran, heptanal, (E, E)-2,4-decadienal and octanal, were confirmed as key aroma compounds. The relaxation time of T22 and T23 was increased first and then decreased, while the M22 and M23 in roasted chicken were decreased and increased with increasing roasting time, respectively. The fluidity of the water in the chicken during the roasting process was decreased, and the water with a high degree of freedom migrated to the water with a low degree of freedom. In addition, the L*, a*, b*, M23 and all amino acids were positively correlated with all the key aroma compounds, while T22, M22 and moisture content were negatively correlated with all the key aroma compounds.
Collapse
Affiliation(s)
- Yongrui Wang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Heyu Zhang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - KenKen Li
- College of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Ruiming Luo
- College of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Songlei Wang
- College of Food and Wine, Ningxia University, Yinchuan 750021, China.
| | - Fang Chen
- School of Primary Education, Chongqing Normal University, Chongqing 400700, China
| | - Ye Sun
- Quality Control Office, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
26
|
Han D, Deng S, Wang H, Huang F, Fauconnier ML, Li H, Zheng J, Meng L, Zhang C, Li X. Lipid oxidation and flavor changes in saturated and unsaturated fat fractions from chicken fat during a thermal process. Food Funct 2023; 14:6554-6569. [PMID: 37382231 DOI: 10.1039/d3fo01061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Chicken fat, due to its rich fatty acids (FAs), is more prone to lipid oxidation and the production of volatile compounds. The aim of the present study was to investigate the oxidative characteristics and flavor changes of saturated (SFF) and unsaturated fat fractions (USFF) from chicken fat induced by heating (140 °C at 70 rpm min-1 for 1 h and 2 h: SFF1, USFF1, SFF2 and USFF2). The FAs and volatile compounds were analyzed by gas chromatography-mass spectrometry (GC-MS) and two-dimensional gas chromatography time of flight mass spectrometry (GC × GC-ToFMS), respectively. The results showed that higher contents of unsaturated fatty acids (UFAs) were found in USFF compared to that in SFF, whereas USFF showed lower levels of saturated fatty acids (SFAs). With the extension of heating time, the SFA/UFA ratio in USFF and SFF significantly increased (p < 0.05), and more aldehydes, alcohols, ketones, and lactones were formed. Moreover, the odor activity values of 23 important compounds in USFF1-2 were significantly higher (p < 0.05) than those in SFF1-2. As revealed by principal component analysis (PCA) and cluster analysis (CA), it was obviously observed that all samples were divided into four clusters (USFF-SFF, USFF1-SFF1, USFF2, and SFF2). According to correlation analysis between FAs and volatile compounds, C18:2 ω6, C18:3 ω6 and C18:3 ω3 were significantly associated with dodecanal, (Z)-3-hexenal, (E)-2-decenal, 2-undecenal, (E)-2-dodecenal, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 2-decanone, γ-octalactone and γ-nonalactone. Our data elucidated that fat fractions from chicken fat with varying degrees of saturation could impart different flavor characteristics during a thermal process.
Collapse
Affiliation(s)
- Dong Han
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Siyang Deng
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Hang Wang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Feng Huang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Hong Li
- Shanxi Bangda Food Co., Ltd., Linfen 041000, China
| | - Jian Zheng
- Inner Mongolia Xibei Catering Group Co., Ltd., Huhhot 010000, China
| | - Linchun Meng
- Shanxi Yifa Tongcheng Agricultural Development Co., Ltd., Datong 037000, China
| | - Chunhui Zhang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xia Li
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
27
|
Zhang G, Xiao P, Yuan M, Li Y, Xu Y, Li H, Sun J, Sun B. Roles of sulfur-containing compounds in fermented beverages with 2-furfurylthiol as a case example. Front Nutr 2023; 10:1196816. [PMID: 37457986 PMCID: PMC10348841 DOI: 10.3389/fnut.2023.1196816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 07/18/2023] Open
Abstract
Aroma is a critical component of the flavor and quality of beverages. Among the volatile chemicals responsible for fragrance perception, sulfur compounds are unique odorants due to their extremely low odor threshold. Although trace amounts of sulfur compounds can enhance the flavor profile of beverages, they can lead to off-odors. Sulfur compounds can be formed via Maillard reaction and microbial metabolism, imparting coffee aroma and altering the flavor of beverages. In order to increase the understanding of sulfur compounds in the field of food flavor, 2-furfurylthiol (FFT) was chosen as a representative to discuss the current status of their generation, sensory impact, enrichment, analytical methods, formation mechanisms, aroma deterioration, and aroma regulation. FFT is comprehensively reviewed, and the main beverages of interest are typically baijiu, beer, wine, and coffee. Challenges and recommendations for FFT are also discussed, including analytical methods and mechanisms of formation, interactions between FFT and other compounds, and the development of specific materials to extend the duration of aroma after release.
Collapse
Affiliation(s)
- Guihu Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Peng Xiao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Mengmeng Yuan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Youming Li
- Inner Mongolia Taibus Banner Grassland Brewing Co., Ltd., Xilin Gol League, China
| | - Youqiang Xu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Jinyuan Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
28
|
Xu X, Liu X, Zhang J, Liang L, Wen C, Li Y, Shen M, Wu Y, He X, Liu G, Xu X. Formation, migration, derivation, and generation mechanism of polycyclic aromatic hydrocarbons during frying. Food Chem 2023; 425:136485. [PMID: 37276667 DOI: 10.1016/j.foodchem.2023.136485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and lipophilic, which can be found in frying system. This review summarized the formation, migration and derivation for PAHs, hypothesized the possible mechanism for PAHs generation during frying and presented the research prospects. Some factors like high oil consumption, high temperature, long time and oil rich in unsaturated fatty acids promoted the formation of PAHs and the presence of antioxidants inhibited the PAHs formation. The effect of proteins and carbohydrates in foods on the formation of PAHs is inconclusive. The formed PAHs were migrated into food and air. Moreover, some PAHs transformed into more toxic PAHs-derivatives during frying. The generation of PAHs may be related to low-barrier free radical-mediated reaction and the unsaturated hydrocarbons may be precursors of PAHs during frying. In future, the isotope tracer technology and on-line detection may be applied to discover intermediates and provide clues for studying PAHs generation mechanisms.
Collapse
Affiliation(s)
- Xiangxin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mengyu Shen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yinyin Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou 225009, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
29
|
Wen F, Zeng C, Yang Y, Xu T, Wang H, Wang S. Sensory attributes and functional properties of maillard reaction products derived from the crassosotrea gigas (Ostrea rivularis gould) enzymatic hydrolysate and xylose system. Heliyon 2023; 9:e14774. [PMID: 37012907 PMCID: PMC10066532 DOI: 10.1016/j.heliyon.2023.e14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
To improve the flavor of Ostrea rivularis Gould, enzymatic hydrolysis was conducted and xylose-OEH Maillard reaction products were prepared. Then, their physicochemical properties and metabolites were determined by UHPLC-MS-MS, and volatile compounds were determined by GC-MS to investigate the changes. The results showed that His, Gln, Lys, Asp, and Cys were the major amino acids consumed. After being heated at 120 °C for up to 150 min, the DPPH (2,2-Diphenyl-1-picrylhydrazyl) was 85.32 ± 1.35% and the reducing capacity was 1.28 ± 0.12. Both were the highest in the groups. Additionally, 45 volatile compounds, including 2-ethyl-5-methyl-pyrazine and 2-ethyl-3,5-dimethyl-pyrazine, and 678 compounds were identified. We also found that 18 metabolites with significant differences (VIP ≥2) were differential metabolites, which involved lipid oxides and amino acid derivatives. The content of lipids favored the regulation of Maillard products and affected the lower threshold of the flavor of aldehydes, which contributed to the flavor and antioxidant activity. These results suggested the potential of xylose-OEH MRPs as a natural antioxidant for further processing oysters.
Collapse
|
30
|
Identification of aroma active compounds in walnut oil by monolithic material adsorption extraction of RSC18 combined with gas chromatography-olfactory-mass spectrometry. Food Chem 2023; 402:134303. [DOI: 10.1016/j.foodchem.2022.134303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
|
31
|
Zheng AR, Wei CK, Liu DH, Thakur K, Zhang JG, Wei ZJ. GC-MS and GC×GC-ToF-MS analysis of roasted / broth flavors produced by Maillard reaction system of cysteine-xylose-glutamate. Curr Res Food Sci 2023; 6:100445. [PMID: 36699115 PMCID: PMC9868338 DOI: 10.1016/j.crfs.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Maillard reaction products (MRPs) with roasted/broth flavors were prepared and analyzed for the resulting flavor differences. The identification of volatile compounds in MRPs was carried out by GC-MS and GC × GC-ToF-MS. A total of 88 compounds were identified by GC-MS; 130 compounds were identified by GC × GC-ToF-MS, especially acids and ketones were identified. Principal component analysis (PCA) was used to visualize the volatile compounds, and the roasted/broth flavors were differentiated. The contents and types of pyrazines were more in roasted flavors; thiol sulfides and thiophenes were more in broth flavors. All in all, the differences in volatile compounds producing roasted/broth flavors were studied through the cysteine-xylose-glutamate Maillard reaction system, which provided a theoretical basis for the future use of Maillard reaction to simulate meat flavor.
Collapse
Affiliation(s)
- An-Ran Zheng
- School of Food and Wine & School of Agriculture, Ningxia University, Yinchuan, 750021, PR China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China
| | - Chao-Kun Wei
- School of Food and Wine & School of Agriculture, Ningxia University, Yinchuan, 750021, PR China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
- Corresponding author. School of Food and Wine & School of Agriculture, Ningxia University, Yinchuan, 750021, PR China.
| | - Dun-Hua Liu
- School of Food and Wine & School of Agriculture, Ningxia University, Yinchuan, 750021, PR China
| | - Kiran Thakur
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Jian-Guo Zhang
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
- Corresponding author. School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China.
| |
Collapse
|
32
|
Effect of Aliphatic Aldehydes on Flavor Formation in Glutathione-Ribose Maillard Reactions. Foods 2023; 12:foods12010217. [PMID: 36613433 PMCID: PMC9818664 DOI: 10.3390/foods12010217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The Maillard reaction (MR) is affected by lipid oxidation, the intermediate products of which are key to understanding this process. Herein, nine aliphatic aldehyde−glutathione−ribose models were designed to explore the influence of lipid oxidation products with different structures on the MR. The browning degree, fluorescence degree, and antioxidant activity of the MR products were determined, and the generated volatile organic compounds (VOCs) and nonvolatile compounds were analyzed by gas chromatography-mass spectrometry and ultra-performance liquid chromatography-mass spectrometry. A total of 108 VOCs and 596 nonvolatile compounds were detected. The principal component and hierarchical clustering analyses showed that saturated aldehydes mainly affected the VOCs generated by the MR, while unsaturated aldehydes significantly affected the nonvolatile compounds, which changed the taste attributes of the MR products. Compared with the control group, the addition of unsaturated aldehydes significantly increased the sourness score and decreased the umami score. In addition, the addition of unsaturated aldehydes decreased the antioxidant activity and changed the composition of nonvolatile compounds, especially aryl thioethers and medium chain fatty acids, with a strong correlation with umami and sourness in the electronic tongue analysis (p < 0.05). The addition of aliphatic aldehydes reduces the ultraviolet absorption of the intermediate products of MR browning, whereas saturated aldehydes reduce the browning degree of the MR products. Therefore, the flavor components of processed foods based on the MR can be effectively modified by the addition of lipid oxidation products.
Collapse
|
33
|
An J, Lee J, Song M, Oh H, Kim Y, Chang S, Go Y, Song D, Cho H, Park H, Kim HB, Cho J. Effects of supplemental different clay minerals in broiler chickens under cyclic heat stress. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:113-131. [PMID: 37093908 PMCID: PMC10119463 DOI: 10.5187/jast.2022.e94] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2023]
Abstract
The objective of this study was to investigate the effect of supplementing clay minerals and organic chromium in feed on broiler chicken under heat stress (HS). A total of 90 one-day-old broiler chicken (Arbor Acres) with an initial body weight of 45.0 ± 0.2 g were assigned to five treatment groups (six replications, three birds each cage): 1) NC group, basal diet under room temperature environment; 2) PC group, basal diet under high temperature (HT) environment; 3) ILT group, basal diet + 1% illite + HT; 4) ZLT group, basal diet + 1% zeolite + HT; 5) OC group, basal diet + 400 ppb/kg organic chromium + HT. The ILT and ZLT groups had significantly higher body weight than the PC group in 4 weeks. Apparent total tract digestibility of gross energy was increased in the ILT, ZLT, and OC groups compared to the PC group. The NC group had lower foot-pad dermatitis score than other groups. Escherichia coli population in the cecum and feces was decreased in the ZLT group than in the PC group. Lactobacillus in cecum and feces was significantly increased in the ZLT group than in the PC group. Regarding blood profiles, blood cortisol was decreased in the NC and ILT groups compared to the PC group. Water holding capacity and pH were increased in the ZLT group than the PC group. In conclusion, according to the results of growth performance, nutrients digestibility, bacteria counts, and meat characteristics, supplementation of the ZLT in broiler diet can alleviate HS.
Collapse
Affiliation(s)
- Jaewoo An
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Jihwan Lee
- Department of Poultry Science, University
of Georgia (UGA), Athens, GA 30602, USA
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Hanjin Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Yongju Kim
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Youngbin Go
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Dongcheol Song
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Haeryoung Park
- Korea Agriculture Technology Promotion
Agency, Iksan 54667, Korea
| | - Hyeun Bum Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
34
|
Fu Y, Cao S, Yang L, Li Z. Flavor formation based on lipid in meat and meat products: A review. J Food Biochem 2022; 46:e14439. [PMID: 36183160 DOI: 10.1111/jfbc.14439] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Meat product is popular throughout the world due to its unique taste. Flavor is one of the most important quality characteristics of meat products and also is a key influencing factor in the overall acceptability of meat products. The flavor of meat products is formed by precursors undergoing a series of complex reactions. During meat product processing, lipids are hydrolyzed by lipase to produce flavor precursors such as free fatty acid, then further oxidized to form volatile flavor compounds. This review summarizes lipolysis, lipid oxidation, and interaction of lipid with Maillard reaction and amino acid during meat products processing and storage as well as influencing factors on lipid degradation including raw meat (source of meat, feeding pattern, and castration), processing methods (thermal processing, nonthermal processing, salting, and fermentation) and additives. Meanwhile, the volatile compounds produced by lipids in meat products including aldehydes, alcohols, ketones, and hydrocarbons are summed up. Analytical methods of volatile compounds and the application of lipidomics analysis in mechanisms of flavor formation of meat products are also reviewed. PRACTICAL APPLICATIONS: Flavor is one of the most important quality characteristics of meat products, which influences the acceptability of meat products for consumption. Lipids play an important role in the flavor formation of meat products. Understanding the relationship between flavor compounds and changes in lipid compositions during the processing and storage of meat products will be helpful to control the quality of meat products.
Collapse
Affiliation(s)
- Yinghua Fu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shenyi Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Li Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Zhenglei Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
35
|
Liu XL, Du XP, Yang YF, Wei HC, He F, Chen F, Ni H. Study on the aroma formation of baked sea bass (Lateolabrax japonicus) via solvent-assisted flavor evaporation coupled with gas chromatography-mass spectrometry (SAFE-GC-MS) analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Ye Y, Dai S, Zhang H, He S, Hu W, Cao X, Wei Z. Ultrasound-Assisted Preparation of Maillard Reaction Products Derived from Hydrolyzed Soybean Meal with Meaty Flavor in an Oil-In-Water System. Molecules 2022; 27:molecules27217236. [PMID: 36364060 PMCID: PMC9655089 DOI: 10.3390/molecules27217236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
In the present work, we prepared Maillard reaction products (MRPs) derived from enzyme hydrolyzed soybean meal with ultrasound assistance in an oil-(oxidized lard)-in-water system (UEL-MRPs) or oil-free system (UN-MRPs), and the effect of ultrasound on the properties of the obtained MRPs was evaluated. The analysis of fatty acids in lard with different treatments showed that ultrasound can generate more unsaturated fatty acids in the aqueous phase. The UV–Vis absorbances of UEL-MRPs, UN-MRPs, and MRPs obtained in an oil-in-water system (EL-MRPs) and MRPs obtained in an oil-free system (N-MRPs) at 294 and 420 nm indicated that ultrasound could increase the amount of Maillard reaction intermediates and melanoids in the final products of the Maillard reaction. This was in line with the result obtained from color change determination—that ultrasound can darken the resultant MRPs. Volatile analysis showed ultrasound can not only increase the number of volatile substances, but also greatly increase the composition of volatile substances in UEL-MRPs and UN-MRPs, especially the composition of those contributing to the flavor of the MRPs, such as oxygen-containing heterocycles, sulfur-containing compounds, and nitrogen-containing heterocycles. Descriptive sensory evaluation revealed that UN-MRPs and UEL-MRPs had the highest scores in total acceptance, ranking in the top two, and UEL-MRPs had the strongest meaty flavor among these four kinds of MRPs. Furthermore, the measurements of antioxidant activities, including DPPH radical-scavenging activity, hydroxyl radical scavenging ability, and ferric ion reducing antioxidant power, were conducted, showing that UN-MRPs exhibited the highest antioxidant activity among all the MRPs.
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengquan Dai
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hongyan Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wanwan Hu
- Huangshan Chaogang Food Co., Ltd., Huangshan 245000, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Correspondence: (X.C.); (Z.W.)
| | - Zhaojun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Correspondence: (X.C.); (Z.W.)
| |
Collapse
|
37
|
Wang Y, Xie J, Zhang C, Xu Y, Yang X. Effect of lipid on formation of Maillard and
lipid‐Maillard
meaty flavour compounds in heated cysteine‐xylose‐methyl linoleate system. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yutong Wang
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Jianchun Xie
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Chenping Zhang
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Yuxia Xu
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Xuelian Yang
- School of Food and Health Beijing Technology and Business University (BTBU) Beijing China
| |
Collapse
|
38
|
Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem 2022; 393:133416. [DOI: 10.1016/j.foodchem.2022.133416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 12/28/2022]
|
39
|
Ye Y, Ye S, Wanyan Z, Ping H, Xu Z, He S, Cao X, Chen X, Hu W, Wei Z. Producing beef flavors in hydrolyzed soybean meal-based Maillard reaction products participated with beef tallow hydrolysates. Food Chem 2022; 378:132119. [PMID: 35033715 DOI: 10.1016/j.foodchem.2022.132119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
This work investigated the effect of oxidized beef tallow on the volatile compositions and sensory properties of soybean meal-based Maillard reaction products (MRPs). Various tallow oxidation methods included thermal treatment (TT), enzymatic hydrolysis (ET) and enzymatic hydrolysis combined with mild thermal (ETT) treatment. Results showed that all these oxidized tallow contained more types of volatile compounds than those of untreated tallow. Moreover, the composition of almost all types of volatile substances was greatly increased with the addition of the oxidized beef tallow into the hydrolyzed soybean meal-based Maillard reaction system. More importantly, the composition of oxygen-containing heterocycles (63.89 μg/mL), sulfur-containing compounds (76.64 μg/mL), and nitrogen-containing heterocycles (19.81 μg/mL) that contribute positively to sensory properties in ETT-MRPs was found to be the highest among all the MRPs. Correlation assessment revealed that ETT was closely related to the most typical volatile products and sensory attributes, indicating this approach can effectively enhance the sensory and flavor of hydrolyzed soybean meal derived MRPs.
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shuangshuang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhangxiang Wanyan
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Hao Ping
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Zixun Xu
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiangyang Chen
- School of Life and Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Wanwan Hu
- Huangshan Chaogang Food Co., Ltd, Huangshan 245000, China
| | - Zhaojun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
40
|
The potential application of vegetable oils in the D-xylose and L-cysteine Maillard reaction system for meaty aroma production. Food Res Int 2022; 155:111081. [DOI: 10.1016/j.foodres.2022.111081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022]
|
41
|
Sohail A, Al-Dalali S, Wang J, Xie J, Shakoor A, Asimi S, Shah H, Patil P. Aroma compounds identified in cooked meat: A review. Food Res Int 2022; 157:111385. [DOI: 10.1016/j.foodres.2022.111385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
|
42
|
Analysis of key precursor peptides and flavor components of flaxseed derived Maillard reaction products based on iBAQ mass spectrometry and molecular sensory science. Food Chem X 2022; 13:100224. [PMID: 35146413 PMCID: PMC8802846 DOI: 10.1016/j.fochx.2022.100224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/02/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Peptides-MRPs had high umami, mouthfulness, and continuity enhancement. DLSFIP and ELPGSP accounted for 42.22% and 20.41% of total consumption. Sulfur and nitrogen flavors was dependent on cysteine and peptides, respectively. This study also revealed the flavor formation mechanism of flaxseed derived MRPs.
Flaxseed derived Maillard reaction products (MRPs) have typical meaty flavor, but there is no report on comparison of their amino acids and peptides reactivity. The peptides and amino acids of flaxseed protein hydrolysates were separately collected by G-15 gel chromatography. Taste dilution analysis (TDA) showed that peptides-MRPs had high umami, mouthfulness, and continuity enhancement. Further, LC-MS/MS revealed that flaxseed protein hydrolysates consumed 41 peptides after Maillard reaction. Particularly, DLSFIP (Asp-Leu-Ser-Phe-Ile-Pro) and ELPGSP (Glu-Leu-Pro-Gly-Ser-Pro) accounted for 42.22% and 20.41% of total consumption, respectively. Aroma extract dilution analysis (AEDA) indicated that formation of sulfur-containing flavors was dependent on cysteine, while peptides were more reactive than amino acids for nitrogen-containing heterocycles. On the other hand, 11 flavor compounds with flavor dilution (FD) ≥ 64 were identified for flaxseed derived MRPs, such as 2-methylthiophene, 2-methyl-3-furanthiol, furfural, 2-furfurylthiol, 3-thiophenethiol, thieno[3,2-b] thiophene, 2,5-thiophenedicarboxaldehyde, 2-methylthieno[2,3-b] thiophene, 1-(2-methyl-3-furylthio)-ethanethiol, 2-methylthieno[3,2-b] thiophene, and bis(2-methyl-3-furyl)-disulfide. In addition, we further demonstrated the flavors formation mechanism of flaxseed derived MRPs.
Collapse
|
43
|
Zhang Y, Lv H, Yang B, Zheng P, Zhang H, Wang X, Granvogl M, Jin Q. Characterization of Thermally Induced Flavor Compounds from the Glucosinolate Progoitrin in Different Matrices via GC-TOF-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1232-1240. [PMID: 35050615 DOI: 10.1021/acs.jafc.1c04415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As important flavor precursors, glucosinolates are ubiquitous in the plant family of Brassicaceae. Glucosinolate degradation products are the major volatile flavor compounds of rapeseed oil, accounting for up to 80% of the total volatiles. However, up to now, little attention has been paid to the volatile flavor products of the nonenzymatic thermal degradation of glucosinolates. One of the most important factors that determine the flavor of hot-pressed rapeseed oil is the roasting process, where the thermal degradation of glucosinolates mainly occurs. The thermal degradation behavior and volatile products of progoitrin (the main glucosinolate of rapeseed) in different matrices (phosphate buffer at a pH value of 5.0, 7.0, or 9.0, sea sand, and rapeseed powder) at different temperatures (150-200 °C) and times (0-60 min) were studied using HPLC and GC-TOF-MS. Thereby, the degradation rate of progoitrin decreased in the following order: pH 9.0 > sea sand > rapeseed powder > pH 7.0 > pH 5.0. Further, a higher degradation was observed with increasing temperature and time. Under the applied conditions in this study, 2,4-pentadienenitrile was the major nitrile and thiophenes were the major sulfur-containing volatile compounds formed. Possible formation pathways of main sulfur-containing and nitrogen-containing volatiles were proposed.
Collapse
Affiliation(s)
- Youfeng Zhang
- International Joint Research Laboratory for Lipid Nutrition and Safety, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department of Food Chemistry and Analytical Chemistry (170a), Institute of Food Chemistry, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Helin Lv
- International Joint Research Laboratory for Lipid Nutrition and Safety, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Binbin Yang
- International Joint Research Laboratory for Lipid Nutrition and Safety, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Panxi Zheng
- International Joint Research Laboratory for Lipid Nutrition and Safety, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- International Joint Research Laboratory for Lipid Nutrition and Safety, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Michael Granvogl
- Department of Food Chemistry and Analytical Chemistry (170a), Institute of Food Chemistry, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Qingzhe Jin
- International Joint Research Laboratory for Lipid Nutrition and Safety, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
44
|
Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Res Int 2022; 151:110823. [PMID: 34980374 DOI: 10.1016/j.foodres.2021.110823] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Plant-based meat analogues (PBMA) are promising foods to address the global imbalance between the supply and demand for meat products caused by the increasing environmental pressures and growing human population. Given that the flavor of PBMA plays a crucial role in consumer acceptance, imparting meat-like flavor is of great significance. As a natural approach to generate meat-like flavor, the Maillard reaction involving food-derived peptides could contribute to the required flavor compounds, which has promising applications in PBMA formulations. In this review, the precursors of meat-like flavor are summarized followed by a discussion of the reactions and mechanisms responsible for generation of the flavor compounds. The preparation and analysis techniques for food-derived Maillard reacted peptides (MRPs) as well as their taste and aroma properties are discussed. In addition, the MRPs as meat flavor precursors and their potential application in the formulation of PBMA are also discussed. The present review provides a fundamental scientific information useful for the production and application of MRPs as meat flavor precursors in PBMA.
Collapse
|
45
|
Xu Y, Xie X, Zhang W, Yan H, Peng Y, Jia C, Li M, Qi J, Xiong G, Xu X, Zhou G. Effect of stewing time on fatty acid composition, textural properties and microstructure of porcine subcutaneous fat from various anatomical locations. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Carcass Traits, Meat Quality, and Volatile Compounds of Lamb Meat from Different Restricted Grazing Time and Indoor Supplementary Feeding Systems. Foods 2021; 10:foods10112822. [PMID: 34829104 PMCID: PMC8619811 DOI: 10.3390/foods10112822] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to investigate the carcass traits, meat quality, and volatile compounds of growing lambs under different restricted grazing time and indoor supplementary feeding systems. Fifty 3-month-old male Tan lambs (with similar body weight) were divided into five groups randomly according to grazing time 12 h/d (G12), 8 h/d(G8), 4 h/d(G4), 2 h/d (G2), and 0 h (G0, indoor supplementary feeding). Animals were slaughtered at the end of the experiment, and the longissimus thoracis (LT) samples were collected for further analysis. The results indicated that indoor supplementary feeding improved the percentages of carcass fat and non-carcass fat of pre-slaughter weight (PSW) and decreased the cooking loss of lamb meat. Grazing for 8 h/d or 2 h/d enhanced PSW, carcass, and meat percentages of PSW. Lambs grazing for 2 h/d with supplement and indoor supplementary feeding lambs had a higher level of intramuscular fat and lightness (L*) value and lower cooking loss in the LT muscle, but higher yellowness (b*) and fat content were found in indoor supplementary feeding lambs. More categories of volatile compounds were identified in meat from grazing lambs than from indoor supplementary feeding lambs, but lower content of aldehydes and total volatile flavor compounds was detected in grazing lambs. Overall, the results demonstrated that the feeding system is a main factor that affects lamb meat quality, and proper grazing time can improve the quantity and quality of lamb meat and provide meat with different flavors to the consumers.
Collapse
|
47
|
Yu H, Liu H, Erasmus SW, Zhao S, Wang Q, van Ruth SM. An explorative study on the relationships between the quality traits of peanut varieties and their peanut butters. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Supplementation of Mixed Organic Acids Improves Growth Performance, Meat Quality, Gut Morphology and Volatile Fatty Acids of Broiler Chicken. Animals (Basel) 2021; 11:ani11113020. [PMID: 34827753 PMCID: PMC8614297 DOI: 10.3390/ani11113020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Organic acid as a green feed additive is increasingly favoured by enterprises and scholars, but little emphasis has been placed on the effect of organic acids on broiler meat quality and lipid profile. Therefore, this study observed that mixed organic acids improve broiler growth performance, meat quality as well as muscle lipid profile, which suggests that mixed organic acids can be an effective measure to prevent meat quality decline in chicken meat. Abstract Background: Organic acid as a green feed additive is increasingly favoured by enterprises and scholars, but little emphasis has been placed on the effect of organic acids on broiler meat quality. Methods: A total of 192 male chicks (one-day-old, weighted 48.40 ± 0.64 g) were selected to investigate the effect of mixed organic acids (MOA) on growth performance, meat quality as well as fatty acids profile. Chicks were randomly allocated to three treatments with eight replicates and eight chicks per replicate, including a corn–soybean basal diet with 0 (CON), 3000 mg/kg (low MOA; LMOA), and 6000 mg/kg (high MOA; HMOA) MOA. The experiment was divided into starter (d 1–d 21) and grower (d 22–d 42) phases. Results: Broilers supplemented with LMOA and HMOA enhanced (p < 0.05) the final body weight and average daily gain in the grower and overall phases. An improved (p < 0.05) feed conversion ratio in the grower and overall phases was observed in broilers supplemented with LMOA. The breast and thigh muscles pH24h were higher (p < 0.05) in broilers fed with HMOA and the redness in thigh meat was also improved (p < 0.05). Additionally, supplementing LMOA increased (p < 0.05) the saturated fatty acids, unsaturated fatty acids and the ratio of polyunsaturated fatty acids to saturated fatty acids in breast meat. A positive effect occurred (p < 0.05) on jejunal villus height and ileal crypt depth in 21 d broilers supplemented with HMOA. Conclusion: Our findings indicated that dietary supplementation of MOA could improve the growth performance, meat quality, and fatty acids profile, as well as intestinal morphology. Furthermore, diets supplemented with mixed organic acids at 3000 mg/kg may be more desirable, considering the overall experimental results in broilers.
Collapse
|
49
|
Cui H, Yu J, Zhai Y, Feng L, Chen P, Hayat K, Xu Y, Zhang X, Ho CT. Formation and fate of Amadori rearrangement products in Maillard reaction. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Xu L, Liu S, Cheng Y, Qian H. The effect of aging on beef taste, aroma and texture, and the role of microorganisms: a review. Crit Rev Food Sci Nutr 2021; 63:2129-2140. [PMID: 34463171 DOI: 10.1080/10408398.2021.1971156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present review summarizes the advantages and disadvantages of three different aging methods (traditional dry aging, wet aging in vacuum shrink pack and dry aging in a highly moisture-permeable bag), discusses the effects of aging on beef which focus on the formation of taste-active compounds and aroma-active compounds and texture changes, and speculates the role of microbes. All these three aging methods can improve the aroma, flavor and texture of beef to varying degrees. It is concluded that the improvement in the taste during aging may be attributed to the following three aspects: First, the release of reducing sugars from the transition of glycogen and ATP; Second, the formation of free amino acids (FAAs) and peptides through proteolysis; Third, IMP, GMP, inosine and hypoxanthine which are produced by the degradation of nucleotides. The improvement of aroma is related to the volatile aroma-active components, which are produced by the thermal oxidation/degradation of fatty acids and the Maillard reaction between amino acids and reducing sugars during aging. And the change of texture is mainly owing to the degradation of cytoskeletal myofibrin and collagen with intramural connective tissue in meat by the endogenous proteolysis system. The role of microorganism in aging will be the main direction of further research.
Collapse
Affiliation(s)
- Lin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shengnan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|