1
|
Vymyslický T, Trněný O, Rietman H, Balko C, Đorđević V, Ranđelović P, Dybová M. Phenotypic characterization of soybean genetic resources at multiple locations: breeding implications for enhancing environmental resilience, yield and protein content. FRONTIERS IN PLANT SCIENCE 2025; 16:1422162. [PMID: 40260437 PMCID: PMC12009817 DOI: 10.3389/fpls.2025.1422162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/22/2025] [Indexed: 04/23/2025]
Abstract
Introduction Soybean is an important legume crop and a leading source of dietary protein and oil in animal feed, as well as an important food for human consumption. The objective of our research was to study soybean genetic resources in context of future protein self-sufficiency both in human and animal nutrition. Methods Collection of 360 different accessions from various regions worldwide was evaluated across four European locations during two consecutive years in phenotyping trials. The five most important traits of soybean - plant emergence, plant length, protein content, seed yield, and R8 stage - were carefully analysed, revealing significant variability. Results Ten exceptionally stable genotypes were identified based on their protein content and yield, presenting promising candidates for breeding programs. Discussion Our findings underscore the importance of integrating genotype-environment interaction analyses into breeding initiatives, considering the observed variability in phenotypic traits across diverse environments and genotypes.
Collapse
Affiliation(s)
| | | | | | - Christiane Balko
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Cultivated Plants, Sanitz, Germany
| | - Vuk Đorđević
- Institute for Field and Vegetable Crops, Novi Sad, Serbia
| | | | | |
Collapse
|
2
|
Zhou S, Huang J, Zhang H, Song X, Jiang Y, Zhao X, Shen X. Live yeast (Saccharomyces cerevisiae) improves growth performance and liver metabolic status of lactating Hu sheep. J Dairy Sci 2025; 108:3700-3715. [PMID: 39986452 DOI: 10.3168/jds.2024-25829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/19/2025] [Indexed: 02/24/2025]
Abstract
Yeast, a natural starter culture, is widely used to improve digestion function in ruminants. However, whether yeast affects the physiological state of the liver in ruminants is currently unknown. The aim of this study was to investigate the effects of yeast on liver metabolic status and physiological functions of Hu sheep during lactation. A total of 24 lactating Hu sheep were randomly divided into 4 groups with 6 sheep in each group: the control group (normal diet) and the low-, medium-, and high-dose groups, in which each sheep was fed an additional 0.5 g, 1 g, and 2 g yeast per morning, respectively. Blood, liver, small intestine samples were collected for subsequent analysis, and milk production and BW were recorded during the experimental period. The results showed that dietary yeast supplementation mitigated BW loss, enhanced liver function, and increased milk protein and lactose contents in Hu sheep during lactation. Compared with the normal diet, dietary yeast supplementation reduced the content of lipid droplets in the liver, significantly upregulated the expression of lipid β-oxidation-related enzymes (PPARA and CPT1A), and significantly decreased the expression of lipid synthesis-related enzymes (FASN, PPARγ, DGAT1, and DGAT2) in the liver without affecting the capacity of the small intestine to absorb foodborne lipids. In addition, dietary yeast supplementation significantly decreased blood nonesterified free fatty acid content and increased blood glucose and liver expression of key enzymes involved in gluconeogenesis (PCK1α, FBP, and G6PC). These results suggest that dietary yeast supplementation may alleviate weight loss and enhance milk quality in Hu sheep during lactation. Furthermore, it can improve liver metabolic adaptability and protect liver health by regulating lipid metabolism and metabolic glucose homeostasis in the liver. Notably, adding 1 g or 2 g of yeast to the daily diet yields superior effects.
Collapse
Affiliation(s)
- Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Jie Huang
- Huzhou Research Institute of Hu Sheep, Huzhou Academy of Agricultural Science, Huzhou, Zhejiang, P. R. China 313000
| | - Hao Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Xiaokun Song
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Yijin Jiang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Xu Zhao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095.
| |
Collapse
|
3
|
Yang C, Chen X, Niu P, Yang X, Lu Y. Incremental effects of Eurotium cristatum fermentation of soybean on its nutrients, flavor profile and laxative regulation in experimental constipated rats. Food Funct 2025; 16:2363-2377. [PMID: 39995243 DOI: 10.1039/d4fo06067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
This study developed a probiotic Eurotium cristatum-fermented soybean powder (EFSP) and analyzed its nutrient profile, volatile components, and laxative efficacy in rats. After 8 days fermentation, polysaccharide contents significantly decreased, while total flavonoid levels initially increased in the first 6 days, and then decreased rapidly. Isoflavone glycosides were reduced, accompanied by an increase in isoflavone aglycones. Additionally, marked changes were observed in the composition and content of short-chain fatty acids, protein-based amino acids, and volatile compounds. Furthermore, EFSP demonstrated superior laxative effects to non-fermented soybean powder (NFSP) in diphenoxylate-induced constipated rats, primarily by modulating the aquaporins, mucin and enteric neuro factor levels in the colonic tissue. Metabolomics indicated that linoleic acid, primary bile acid synthesis, and taurine and sulfinic acid might be involved in constipation regulation. These findings suggested that Eurotium cristatum fermentation enhances the nutritional properties of soybean, contributing to its distinctive nutritional quality.
Collapse
Affiliation(s)
- Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xuefeng Chen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Pengfei Niu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yalong Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
De Rossi L, Rocchetti G, Lucini L, Rebecchi A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses-A Narrative Review. Antioxidants (Basel) 2025; 14:200. [PMID: 40002386 PMCID: PMC11851925 DOI: 10.3390/antiox14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Polyphenols (PPs) are recognized as bioactive compounds and antimicrobial agents, playing a critical role in enhancing food safety, preservation, and extending shelf life. The antimicrobial effectiveness of PPs has different molecular and biological reasons, predominantly linked to their hydroxyl groups and electron delocalization, which interact with microbial cell membranes, proteins, and organelles. These interactions may reduce the efficiency of metabolic pathways, cause destructive damage to the cell membrane, or they may harm the proteins and nucleic acids of the foodborne bacteria. Moreover, PPs exhibit a distinctive ability to form complexes with metal ions, further amplifying their antimicrobial activity. This narrative review explores the complex and multifaceted interactions between PPs and foodborne pathogens, underlying the correlation of their chemical structures and mechanisms of action. Such insights shed light on the potential of PPs as innovative natural preservatives within food systems, presenting an eco-friendly and sustainable alternative to synthetic additives.
Collapse
Affiliation(s)
- Luca De Rossi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Annalisa Rebecchi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| |
Collapse
|
5
|
Naponelli V, Piscazzi A, Mangieri D. Cellular and Molecular Mechanisms Modulated by Genistein in Cancer. Int J Mol Sci 2025; 26:1114. [PMID: 39940882 PMCID: PMC11818640 DOI: 10.3390/ijms26031114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Genistein (4',5,7-trihydroxyisoflavone) is a phytoestrogen belonging to a subclass of natural flavonoids that exhibits a wide range of pharmacological functions, including antioxidant and anti-inflammatory properties. These characteristics make genistein a valuable phytochemical compound for the prevention and/or treatment of cancer. Genistein effectively inhibits tumor growth and dissemination by modulating key cellular mechanisms. This includes the suppression of angiogenesis, the inhibition of epithelial-mesenchymal transition, and the regulation of cancer stem cell proliferation. These effects are mediated through pivotal signaling pathways such as JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin. Moreover, genistein interferes with the function of specific cyclin/CDK complexes and modulates the activation of Bcl-2/Bax and caspases, playing a critical role in halting tumor cell division and promoting apoptosis. The aim of this review is to discuss in detail the key cellular and molecular mechanisms underlying the pleiotropic anticancer effects of this flavonoid.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Annamaria Piscazzi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
6
|
Li C, Sheng M, Zhang M, Rogers KM, Nie J, Shao S, Xiao J, Yuan Y. Similarity recognition approach to identify zero-added MSG soy sauce using stable isotopes and amino acid profiles. Food Chem 2024; 461:140859. [PMID: 39163723 DOI: 10.1016/j.foodchem.2024.140859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
Seasonings such as naturally fermented soy sauce without added monosodium glutamate (MSG), are currently a growth market in China. However, fraudulent and mislabeled zero-added MSG soy sauce may cause a risk of excessive MSG intake, increasing food safety issues for consumers. This study investigates stable carbon and nitrogen isotopes and 16 amino acids in typical Chinese in-market soy sauces and uses a similarity method to establish criteria to authenticate MSG addition claims. Results reveal most zero-added MSG soy sauces had lower δ13C values (-25.2 ‰ to -17.7 ‰) and glutamic acid concentrations (8.97 mg mL-1 to 34.76 mg mL-1), and higher δ15N values (-0.27 ‰ +0.95 ‰) and other amino acid concentrations than added-MSG labeled samples. A combined approach, using isotopes, amino acids, similarity coefficients and uncertainty values, was evaluated to rapidly and accurately identify zero-added MSG soy sauces from MSG containing counterparts.
Collapse
Affiliation(s)
- Chunlin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Meiling Sheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Menglin Zhang
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo 36310, Spain; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Karyne M Rogers
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China; National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Jing Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Shengzhi Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo 36310, Spain.
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| |
Collapse
|
7
|
Gao YL, Yoshida A, Liu JY, Yuan J, Maeda S, Wang Y, Jiang YR, Sun XM, Chen CP, Wang Y, Okajima T, Osatomi K. Quality improvement of threadfin bream (Nemipterus virgatus) surimi-gel using soy protein as a natural food additive. Food Chem 2024; 460:140423. [PMID: 39067386 DOI: 10.1016/j.foodchem.2024.140423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Previously, we identified sarcoplasmic serine proteinase (SSP) as a modori-inducing proteinase from threadfin bream belly muscle. In this study, we investigated the autolytic activity of commercial threadfin bream surimi under modori-inducing conditions. High autolytic activity was detected in commercial surimi and was inhibited by a soybean trypsin inhibitor, indicating that SSP still remained in the commercial surimi. The effects of soy protein, defatted soy protein (DSP) and isolated soy protein (ISP), on SSP activity and surimi-gel properties were evaluated. The results showed that the modori phenomenon was induced at 70 °C, and that both DSP and ISP suppressed SSP activity and strengthened the breaking strength and breaking distance of the modori-induced gel. Surimi-gel with DSP performed better on gel whiteness than that of ISP, and 1 g/kg DSP had optimal gel properties. In conclusion, soy protein proved to be a good natural food additive for surimi-gel production of threadfin bream.
Collapse
Affiliation(s)
- Yi-Li Gao
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi 315300, China
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; Faculty of Fisheries, Nagasaki University, Nagasaki, 852-8521, Japan.
| | - Jin-Yang Liu
- China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Jing Yuan
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi 315300, China
| | - Shinnosuke Maeda
- Faculty of Fisheries, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Youjun Wang
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yan-Rong Jiang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China
| | - Xiao-Mi Sun
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | - Yajun Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, 200137, China
| | | | - Kiyoshi Osatomi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; Faculty of Fisheries, Nagasaki University, Nagasaki, 852-8521, Japan
| |
Collapse
|
8
|
Qi J, Zhu R, Mao J, Wang X, Xu H, Guo L. Effect of Unfermented Soy Product Consumption on Blood Lipids in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Acad Nutr Diet 2024; 124:1474-1491.e1. [PMID: 38342411 DOI: 10.1016/j.jand.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Clinical studies have reported the beneficial effects of unfermented soy product consumption on blood lipids in various populations. However, contradictory results have been reported regarding the influence of unfermented soy product consumption on blood lipids in postmenopausal women. OBJECTIVE The aim of this systematic review and meta-analysis was to evaluate the effects of diets with unfermented soy products compared with diets without unfermented soy products on blood lipids in postmenopausal women. METHODS The Cochrane Library, PubMed, Scopus, Web of Science, and Embase electronic databases were searched for eligible randomized controlled trials (RCTs) published up to February 21, 2023. RCTs were included if they were published in English and investigated the effect of unfermented soy product consumption on blood lipids in postmenopausal women who had discontinued hormone replacement therapy at least 3 months before randomization. A random-effects model was used to calculate the overall effect size of the mean difference (MD) and 95% CI. Risk of bias was assessed using the Cochrane Risk-of-Bias Tool for Randomized Trials, version 2. RESULTS Twenty-nine RCTs involving 2,457 participants were included. The results showed that, compared with the control group that did not consume unfermented soy products, consumption of unfermented soy products significantly reduced total cholesterol (TC) (MD, -9.46 mg/dL [to convert mg/dL cholesterol to mmol/L, multiply mg/dL by 0.0259; to convert mmol/L cholesterol to mg/dL, multiply by 38.7]; 95% CI -15.04 to -3.89 mg/dL; P = .001) and triglycerides (TGs) (MD, -10.86 mg/dL [to convert mg/dL TGs to mmol/L, multiply mg/dL by 0.0113; to convert mmol/L TGs to mg/dL, multiply mmol/L by 88.6]; 95% CI -19.70 to -2.02 mg/dL; P = .016), while significantly increasing high-density lipoprotein cholesterol (MD, 2.32 mg/dL; 95% CI 0.87 to 3.76 mg/dL; P = .002) in postmenopausal women, but had no significant effect on low-density lipoprotein cholesterol (MD, -4.55 mg/dL; 95% CI -10.90 to 1.80 mg/dL; P = .160). Results of soy preparation subgroup analysis showed that soy isolate protein significantly reduced TC and soy protein-containing isoflavones significantly reduced TC and low-density lipoprotein cholesterol and increased high-density lipoprotein cholesterol. Furthermore, unfermented soy product consumption significantly reduced TC, low-density lipoprotein cholesterol, and TG levels in postmenopausal women with lipid disorders and TGs in healthy postmenopausal women. CONCLUSIONS The results showed that unfermented soy product consumption reduced TC and TG levels significantly, and increased high-density lipoprotein cholesterol levels in postmenopausal women. The findings of this review contribute to the evidence-base for dietary management of blood lipids in postmenopausal women.
Collapse
Affiliation(s)
- Jiahe Qi
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Ruiting Zhu
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Jing Mao
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Xi Wang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Haiyan Xu
- School of Nursing, Jilin University, Changchun, Jilin, China.
| | - Lirong Guo
- School of Nursing, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
9
|
Budau R, Okamura T, Hasegawa Y, Nakanishi N, Hamaguchi M, Fukui M. Supplementation of Miso to a Western-Type Diet Stimulates ILC3s and Decreases Inflammation in the Small Intestine. Nutrients 2024; 16:3743. [PMID: 39519576 PMCID: PMC11547460 DOI: 10.3390/nu16213743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Western-type diets (WDs) damage the intestinal barrier by disrupting the gut microbiota composition and causing inflammation, leading to the development of obesity, type 2 diabetes, and non-alcoholic fatty liver disease. Short-chain fatty acids (SCFAs) are produced by the gut microbiota and found in fermented foods and can stimulate the anti-inflammatory action of type 3 innate lymphoid cells (ILCS3s) in the intestine. This study hypothesised that supplementing miso, a Japanese fermented food, to a WD could increase the levels of SCFAs and thus stimulate ILC3s, decreasing inflammation in the intestine and protecting intestinal barrier integrity. METHODS Mice with RORγt total (KI/KI) or partial (KI/w) knockout were fed a high-fat high-sugar diet (HFHSD) for eight weeks as a model of WD. Half of the mice received miso supplementation in addition to the HFHSD. Weight gain, glucose tolerance and insulin resistance, intestinal barrier integrity, intestinal immunity, and liver condition were assessed. RESULTS Miso supplementation increased SCFA levels in the small intestine, which stimulated ILC3 function in KI/w mice. Glucose tolerance was improved, intestinal barrier integrity was ameliorated, and mucus production was increased. The level of IL-22 was increased, while pro-inflammatory ILC1s, M1 macrophages, TNF-α, and IL-1β were decreased. Liver condition was not affected. CONCLUSIONS This study demonstrated that miso supplementation influenced several factors involved in inflammation and intestinal barrier integrity by stimulating ILC3s in RORγt heterozygous mice. Moreover, it showed that the number of ILC3s is not the key factor in immune regulation, but rather the ability of ILC3 to produce IL-22 and employ it to control the immune response in the small intestine.
Collapse
MESH Headings
- Animals
- Intestine, Small/metabolism
- Intestine, Small/immunology
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Mice
- Inflammation
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Diet, Western/adverse effects
- Gastrointestinal Microbiome
- Dietary Supplements
- Mice, Knockout
- Diet, High-Fat/adverse effects
- Male
- Fatty Acids, Volatile/metabolism
- Insulin Resistance
- Interleukin-22
- Immunity, Innate
- Mice, Inbred C57BL
- Interleukins/metabolism
Collapse
Affiliation(s)
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (R.B.)
| | | | | | | | | |
Collapse
|
10
|
Shi SS, Hu T. Effects of Eurotium Cristatum on soybean ( Glycine max L.) polyphenols and the inhibitory ability of soybean polyphenols on acetylcholinesterase under different conditions. Food Chem X 2024; 23:101526. [PMID: 38933989 PMCID: PMC11200280 DOI: 10.1016/j.fochx.2024.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Most phenolic compounds in beans exist in complex, insoluble binding forms that bind to cell wall components via ether, ester, or glucoside bonds. In the process of solid-state fermentation, Eurotium Cristatum can produce many hydrolase enzymes, such as α-amylase, pectinase, cellulase and β-glucosidase, which can effectively hydrolyze ether, ester or glucoside bond, release bound polyphenols, and increase polyphenol content in soybeans. When the fermentation conditions of soybean were fermentation time 12 days, inoculation amount 15% and initial pH 2, the content of free polyphenols in fermented soybean was 2.79 mg GAE/g d.w, which was 4.98 times that of unfermented soybean. The contents of bound polyphenols and total phenols in fermented soybean were 0.62 mg GAE/g d.w and 3.41 mg GAE/g d.w, respectively, which were 2.38 times and 4.16 times of those in unfermented soybean. At the same time, the inhibitory effect of free polyphenols in fermented soybean on acetylcholinesterase reached 91.51%. Thus, our results demonstrated that solid state fermentation and Eurotium Cristatum can be used as an effective way to increase soybean polyphenol content and combat Alzheimer's disease.
Collapse
Affiliation(s)
- Shuo-shuo Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
11
|
Ngui ME, Lin YH, Wei IL, Wang CC, Xu YZ, Lin YH. Effects of the combination of biochar and organic fertilizer on soil properties and agronomic attributes of soybean (Glycine max L.). PLoS One 2024; 19:e0310221. [PMID: 39298498 DOI: 10.1371/journal.pone.0310221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
This research aimed to investigate the impacts of a combination of rice husk biochar and organic fertilizer on the physical and chemical properties of soil, the population of soil bacteria, the relative chlorophyll content of leaves, the development of soybean root nodules, and yield components under strongly acid soil conditions. A greenhouse and pot experiment was designed using a randomize complete block design with factorial 2 × 3 treatments and three replications. The experimental treatments comprised two rates of biochar (35 and 70 g/pot) and three rates of organic fertilizer (70, 105, and 140 g/pot). After 100 days of amendment of strongly acidic soils, the results showed that application of treatments B35F70 and B70F140 increased soil pH by 16.80% compared to the control group (CK). On the other hand, treatments B35F140 and B70F105 resulted in an increase of soil electrical conductivity by 66.67% compared to CK. In addition, after 100 days of amendment with treatments B35F105, B35F105, B35F140, B70F105, B70F70, B70F70, and B35F140, organic matter, available phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), and zinc (Zn), organic matter, available phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), and zinc (Zn), significantly increased when compared to the control group (CK). Treatment B35F140 increased relative leaf chlorophyll content and soybean seed weight per plant by 60.76% and 100.56%, respectively when compared to the CK. Furthermore, treatment B35F70 produced 125% more root nodules than CK. Moreover, each amended strongly acid soil resulted with a significant upsurge in total soil bacteria compared to the CK. Overall, statistics proved that a combination of biochar and organic fertilizer improved soil properties and soybean agronomic attributes.
Collapse
Affiliation(s)
- Marianus Evarist Ngui
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yong-Hong Lin
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - I-Lang Wei
- Department of Plant Industry, Soil and Fertilizer Laboratory, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chia-Chung Wang
- Department of Plant Industry, Soil and Fertilizer Laboratory, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ya-Zhen Xu
- Department of Plant Medicine, Molecular Plant Medicine Laboratory, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ying-Hong Lin
- Department of Plant Medicine, Molecular Plant Medicine Laboratory, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
12
|
Li A, Liu Y, Yang G, Du M, Song J, Kan J. Impact of salt content on Douchi metabolites: biogenic amines, non-volatile compounds and volatile compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7524-7535. [PMID: 38738583 DOI: 10.1002/jsfa.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND The excessive salt intake associated with Douchi has become a topic of controversy. Addressing this concern and enhancing its market competitiveness necessitates the application of salt reduction fermentation in Douchi. Therefore, to promote the application of salt reduction fermentation in Douchi, a comprehensive study was undertaken aiming to investigate the differences in biogenic amines, volatile compounds and non-volatile compounds in Douchi with varying salt content. RESULTS The findings unequivocally demonstrate that salt hampers the formation of metabolites in Douchi. As the salt content increased, there was a significant decrease (P < 0.05) in the levels of total acid, amino-type nitrogen and free amino acids in Douchi. Notably, when the salt content exceeded 80 g kg-1, there was a substantial reduction (P < 0.05) in putrescine, lactic acid and malic acid levels. Similarly, when the salt content surpassed 40 g kg-1, β-phenethylamine and oxalic acid levels exhibited a significant decline (P < 0.05). Furthermore, the results of E-nose and principal component analysis based on headspace solid phase microextraction gas chromatography-mass spectrometry revealed notable discrepancies in the volatile compound content between Douchi samples with relatively low salt content (40 and 80 g kg-1) and those with relatively high salt content (120, 160 and 200 g kg-1) (P < 0.05). By employing partial least squares discriminant analysis, eight distinct volatile compounds, including o-xylene, benzaldehyde and 1-octen-one, were identified. These compounds exhibited higher concentrations in Douchi samples with relatively low salt content (40 and 80 g kg-1). The sensory results showed that Douchi samples with lower salt content exhibited higher scores in the soy sauce-like and Douchi aroma attributes. CONCLUSION In conclusion, this study significantly enhances our understanding of the impact of salt on metabolites in Douchi and provides invaluable insights for the development of salt reduction fermentation in this context. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aijun Li
- College of Food Science, Southwest University, Chongqing, China
| | - Yuchen Liu
- College of Food Science, Southwest University, Chongqing, China
| | - Gang Yang
- College of Food Science, Southwest University, Chongqing, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
- Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Jun Song
- Shu Xiang Douchi Food Research Institute limited company, Chongqing, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
- Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
13
|
Wang B, Shi Y, Zhang H, Hu Y, Chen H, Liu Y, Wang F, Chen L. Influence of microorganisms on flavor substances and functional components of sojae semen praeparatum during fermentation: A study integrating comparative metabolomics and high-throughput sequencing. Food Res Int 2024; 187:114405. [PMID: 38763659 DOI: 10.1016/j.foodres.2024.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Sojae semen praeparatum (SSP), a fermented product known for its distinctive flavor and medicinal properties, undergoes a complex fermentation process due to the action of various microorganisms. Despite its widespread use, the effect of these microorganisms on the flavor compounds and functional components of SSP remains poorly understood. This study aimed to shed light on this aspect by identifying 20 metabolites as potential key flavor substances in SSP. Moreover, glycine and lysine were identified as crucial flavor substances. Additionally, 24 metabolites were identified as key functional components. The dominant microorganisms involved in the fermentation process were examined, revealing six genera of fungi and 12 genera of bacteria. At the species level, 16 microorganisms were identified as dominant through metagenome sequencing. Spearman correlation analysis demonstrated a strong association between dominant microorganisms and both flavor substances and functional components. Furthermore, the study validated the significance of four core functional microorganisms in improving the flavor and quality of SSP. This comprehensive exploration of functional microorganisms of SSP on key flavor substances/functional components during SSP fermentation. The study findings serve as a valuable reference for enhancing the overall flavor and quality of SSP.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Yifan Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Hongyi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Hongping Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Youping Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Fu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China.
| | - Lin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Chen H, Aili R, Wang M, Qiu F. Transformation profiles of the isoflavones in germinated soybean based on UPLC-DAD quantification and LC-QTOF-MS/MS confirmation. Food Chem X 2024; 22:101413. [PMID: 38707783 PMCID: PMC11068514 DOI: 10.1016/j.fochx.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Germinated soybean is one kind of food and a medicine. In the actual process of producing a large amount of naturally germinated soybean, it is difficult to strictly control the germination process conditions. However, sprout length may be more suitable as the terminal judgment indicator for naturally germinated soybean. An UPLC-DAD method was developed and validated to explore the transformation profiles of soybean isoflavones in germinated yellow or black soybean with different sprout lengths. Moreover, an LC - QTOF-MS/MS method was used to avoid false positive results. The contents of daidzein, glycitein, and genistein almost reached their corresponding maximum values when the sprout length ranged from 1.0 cm to 1.5 cm (P < 0.05). Therefore, yellow soybean is suggested to be the processing raw material with higher contents of those isoflavones, and the optimal sprout length for germinated soybean may be in the range of 1.0-1.5 cm.
Collapse
Affiliation(s)
| | | | - Manyuan Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Feng Qiu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
15
|
Mertens E, Deriemaeker P, Van Beneden K. Analysis of the Nutritional Composition of Ready-to-Use Meat Alternatives in Belgium. Nutrients 2024; 16:1648. [PMID: 38892581 PMCID: PMC11175014 DOI: 10.3390/nu16111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The interest in meat alternatives has increased over the years as people embrace more varied food choices because of different reasons. This study aims to analyse the nutritional composition of ready-to-use meat alternatives and compare them with meat (products). METHODS Nutritional composition values were collected in 2022 of all ready-to-use meat alternatives in Belgian supermarkets, as well as their animal-based counterparts. A one-sample t-test was performed to test the nutritional composition of ready-to-use meat alternatives against norm values, while an independent samples t-test was used to make the comparison with meat. RESULTS Minced meat and pieces/strips/cubes scored favourably on all norm values. Cheeseburgers/schnitzels, nut/seed burgers and sausages contained more than 10 g/100 g total fat. The saturated fat and salt content was lower than the norm value in each category. Legume burgers/falafel contained less than 10 g/100 g protein. Vegetarian/vegan minced meat and bacon contained fewer calories, total and saturated fat, and more fibre compared to their animal-based counterparts. CONCLUSIONS Minced meat and pieces/strips/cubes came out as the most favourable categories regarding nutritional composition norm values. Vegetarian/vegan steak came out the least favourable compared to steak, while vegetarian/vegan minced meat and vegetarian/vegan bacon came out the most favourable compared to their animal-based counterparts.
Collapse
Affiliation(s)
- Evelien Mertens
- Department of Health Care, Design and Technology, Nutrition and Dietetics Program, Erasmushogeschool Brussel, 1090 Brussels, Belgium; (P.D.); (K.V.B.)
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Peter Deriemaeker
- Department of Health Care, Design and Technology, Nutrition and Dietetics Program, Erasmushogeschool Brussel, 1090 Brussels, Belgium; (P.D.); (K.V.B.)
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Katrien Van Beneden
- Department of Health Care, Design and Technology, Nutrition and Dietetics Program, Erasmushogeschool Brussel, 1090 Brussels, Belgium; (P.D.); (K.V.B.)
| |
Collapse
|
16
|
Miao X, Niu H, Sun M, Dong X, Hua M, Su Y, Wang J, Li D. A comparative study on the nutritional composition, protein structure and effects on gut microbiota of 5 fermented soybean products (FSPs). Food Res Int 2024; 183:114199. [PMID: 38760132 DOI: 10.1016/j.foodres.2024.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 05/19/2024]
Abstract
In this study, we conducted an analysis of the differences in nutrient composition and protein structure among various fermented soybean products and their impacts on the gut microbiota of rats. Conventional physicochemical analysis was employed to analyze the fundamental physicochemical composition of the samples. Additionally, we utilized high-performance liquid chromatography and ELISA techniques to quantify the presence of antinutritional compounds. Fourier infrared spectroscopy was applied to delineate the protein structure, while 16 s rRNA gene sequencing was conducted to evaluate alterations in gut microbiota abundance. Subsequently, KEGG was utilized for metabolic pathway analysis. Our findings revealed that fermented soybean products improved the nutritional profile of soybeans. Notably, Douchi exhibited the highest protein content at 52.18 g/100 g, denoting a 26.58 % increase, whereas natto showed a 24.98 % increase. Douchi and natto demonstrated the most substantial relative amino acid content, comprising 50.86 % and 49.04 % of the total samples, respectively. Moreover, the levels of antinutritional factors markedly decreased post-fermentation. Specifically, the α-helix content in doujiang decreased by 13.87 %, while the random coil content in soybean yogurt surged by 132.39 %. Rats that were fed FSP showcased notable enhancements in gut microbiota and associated metabolic pathways. A strong correlation was observed between nutrient composition, protein structure, and gut microbiota abundance. This study furnishes empirical evidence supporting the heightened nutritional attributes of FSPs.
Collapse
Affiliation(s)
- Xinyu Miao
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Honghong Niu
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Mubai Sun
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Xin Dong
- Center for Disease Control and Prevention of Hinggan League, Hinggan League 137400, China
| | - Mei Hua
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Ying Su
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Jinghui Wang
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China.
| | - Da Li
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China.
| |
Collapse
|
17
|
Khayatan D, Nouri K, Momtaz S, Roufogalis BD, Alidadi M, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Plant-Derived Fermented Products: An Interesting Concept for Human Health. Curr Dev Nutr 2024; 8:102162. [PMID: 38800633 PMCID: PMC11126794 DOI: 10.1016/j.cdnut.2024.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/23/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024] Open
Abstract
The health benefits of fermenting plant-derived products remain an underexplored domain. Plants and other natural products serve as medicinal agents when consumed as part of our diets, and the role of microorganisms in fermentation garners significant scientific interest. The present narrative review investigates the effects of fermentation of substances such as plants, algae, and fungi on their therapeutic and related purposes. Among the microorganisms used in fermentation, lactic acid bacteria are often linked to fermented products, particularly dairy and animal-based ones, and take center stage. These microorganisms are adept at synthesizing vitamins, active peptides, minerals, proteinases, and enzymes. Plant-derived fermented products are a significant source of active peptides, phytochemicals, flavonoids, and bioactive molecules with a profound impact on human health. They exhibit anti-inflammatory, anticarcinogenic, antiatherosclerotic, antidiabetic, antimicrobial, and antioxidant properties, the effects being substantiated by experimental studies. Clinical investigations underscore their effectiveness in managing diverse health conditions. Various studies highlight a synergy between microorganisms and plant-based materials, with fermentation as an innovative method for daily food preparation or a treatment option for specific ailments. These promising findings highlight the need for continued scientific inquiry into the impact of fermentation-derived products in clinical settings. Clinical observations to date have offered valuable insights into health improvement for various disorders. This current narrative review explores the impact of natural and plant-originated fermented products on health and well-being.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Nouri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Mona Alidadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Dwivedi S, Singh V, Sharma K, Sliti A, Baunthiyal M, Shin JH. Significance of Soy-Based Fermented Food and Their Bioactive Compounds Against Obesity, Diabetes, and Cardiovascular Diseases. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:1-11. [PMID: 38117392 DOI: 10.1007/s11130-023-01130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Soybean-based fermented foods are commonly consumed worldwide, especially in Asia. These fermented soy-products are prepared using various strains of Bacillus, Streptococcus, Lactobacillus, and Aspergillus. The microbial action during fermentation produces and increases the availability of various molecules of biological significance, such as isoflavones, bioactive peptides, and dietary fiber. These dietary bio active compounds are also found to be effective against the metabolic disorders such as obesity, diabetes, and cardiovascular diseases (CVD). In parallel, soy isoflavones such as genistein, genistin, and daidzin can also contribute to the anti-obesity and anti-diabetic mechanisms, by decreasing insulin resistance and oxidative stress. The said activities are known to lower the risk of CVD, by decreasing the fat accumulation and hyperlipidemia in the body. In addition, along with soy-isoflavones fermented soy foods such as Kinema, Tempeh, Douchi, Cheonggukjang/Chungkukjang, and Natto are also rich in dietary fiber (prebiotic) and known to be anti-dyslipidemia, improve lipolysis, and lowers lipid peroxidation, which further decreases the risk of CVD. Further, the fibrinolytic activity of nattokinase present in Natto soup also paves the foundation for the possible cardioprotective role of fermented soy products. Considering the immense beneficial effects of different fermented soy products, the present review contextualizes their significance with respect to their anti-obesity, anti-diabetic and cardioprotective roles.
Collapse
Affiliation(s)
- Sushmita Dwivedi
- Govind Ballabh Pant Institute of Engineering and Technology, Ghurdauri, Pauri, India
| | - Vineet Singh
- Kyungpook National University, Daegu, South Korea
| | - Kritika Sharma
- Govind Ballabh Pant Institute of Engineering and Technology, Ghurdauri, Pauri, India
| | - Amani Sliti
- Kyungpook National University, Daegu, South Korea
| | - Mamta Baunthiyal
- Govind Ballabh Pant Institute of Engineering and Technology, Ghurdauri, Pauri, India.
| | - Jae-Ho Shin
- Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
19
|
Madjirebaye P, Peng F, Mueed A, Huang T, Mahamat B, Pahane MM, Xi Q, Chen X, Moussa K, Kadebe ZT, Otchom BB, Xu Y, Xie M, Xiong T, Peng Z. Exploring Impact of Probiotic-Fermented Soymilk on Dextran-Sulfate-Sodium-Induced Ulcerative Colitis via Modulating Inflammation and Gut Microbiota Profile. Mol Nutr Food Res 2024; 68:e2300586. [PMID: 38299716 DOI: 10.1002/mnfr.202300586] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/29/2023] [Indexed: 02/02/2024]
Abstract
SCOPE Lactic acid bacteria with probiotic functions and their fermentation products play a role in regulating ulcerative colitis (UC). This study investigates the potential role of fermented soymilk (FSM4) rich in isoflavones on DSS-induced UC. METHODS AND RESULTS Mice received 3% DSS and are supplemented daily once for 1 week by NFSM and FSM4. DSS usually causes intestinal inflammation and alters the gut microbiota. FSM4 intervention improves the UC-related inflammation and gut microbiota alteration. It considerably decreases pro-inflammatories such as TNF-α, IL-1β, and IL-6 in serum and COX-2 and MPO in colon tissues and pathogenic bacteria (Escherichia-Shigella). This facilitates gut-healthy bacteria growth. These healthy bacteria negatively correlat with pro-inflammatory factors but positively associated with acetic acid, butyric acid, and propionic acid, which may act for PPAR-γ pathway activating and NF-κB p65 pathway inhibiting, lowering the risk of UC. Overall, FSM4 might alleviate UC and significantly reverse the dysbiosis of gut microbiota via the PPAR-γ activation. It could be a good alternative for developing functional food to protect against UC. CONCLUSION FSM4 attenuates intestinal inflammation and modulates the SCFA-producing bacteria growth, which enable the PPAR-γ activation to alleviate the UC target, which could be a dietary intervention strategy for gut health.
Collapse
Affiliation(s)
- Philippe Madjirebaye
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Fei Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Bechir Mahamat
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | | | - Qinghua Xi
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Kalli Moussa
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Zoua Tessou Kadebe
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Brahim Boy Otchom
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Yazhou Xu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| |
Collapse
|
20
|
Yin X, Zhang F, Bi C, Liu Y, Guo Y, Sun P, Hong J. Association between soybean product consumption and executive function in Chinese Tibetan children and adolescents. Front Nutr 2024; 11:1348918. [PMID: 38487627 PMCID: PMC10937359 DOI: 10.3389/fnut.2024.1348918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024] Open
Abstract
Objective This sought to explore the association between soybean product consumption and executive function (EF) in Chinese Tibetan adolescents in high-altitude areas. Methods A total of 1,184 Tibetan children and adolescents were tested on demographic variables, soybean product consumption, and executive function in Lhasa and Nagchu regions of Tibet, China, using stratified whole population sampling. One-way ANOVA, linear regression analysis, and logistic regression analysis were used to analyze the associations existing between soybean product consumption and executive function. Results The proportions of Hardly ever, Occasionally, and Often in Soy Consumption among Tibetan children and adolescents in high altitude areas of Tibet, China were 21.7, 50.3, and 28.0%, respectively. The difference in 2 back reaction time among Tibetan children and adolescents with different soybean product consumption was statistically significant (F = 6.374, p = 0.002). The difference in conversion function reaction time was also statistically significant (F = 8.129, p < 0.001). Taking the soybean product consumption ≥6 t/w group as the reference group, after adjusting the relevant factors, those with soybean product consumption ≤1 t/w showed a statistically significant increase in Inhibit Function Dysfunction (OR = 1.844, 95% CI: 1.152, 2.951) and Conversion Function Dysfunction (OR = 2.008, 95% CI: 1.106, 3.646) had an increased risk of Conversion Function Dysfunction (OR = 2.008, 95% CI: 1.106, 3.646), which was significantly different (p < 0.05). Conclusion There is an association between soybean product consumption and inhibitory control and translational flexibility of brain executive functions in Chinese Tibetan children and children and adolescents at high altitude.
Collapse
Affiliation(s)
- Xiaojian Yin
- Department of Physical Education, Shanghai Institute of Technology, Shanghai, China
| | - Feng Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Cunjian Bi
- Sports Health Promotion Center, Chizhou University, Chizhou, China
| | - Yuan Liu
- Physical Education College of Shanghai University, Shanghai, China
| | - Yaru Guo
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Pengwei Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jun Hong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| |
Collapse
|
21
|
Kang JH, Dong Z, Shin SH. Benefits of Soybean in the Era of Precision Medicine: A Review of Clinical Evidence. J Microbiol Biotechnol 2023; 33:1552-1562. [PMID: 37674385 PMCID: PMC10774093 DOI: 10.4014/jmb.2308.08016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Soybean (Glycine max) is an important ingredient of cuisines worldwide. While there is a wealth of evidence that soybean could be a good source of macronutrients and phytochemicals with health-promoting effects, concerns regarding adverse effects have been raised. In this work, we reviewed the current clinical evidence focusing on the benefits and risks of soybean ingredients. In breast, prostate, colorectal, ovarian, and lung cancer, epidemiological studies showed an inverse association between soybean food intake and cancer risks. Soybean intake was inversely correlated with risks of type 2 diabetes mellitus (T2DM), and soy isoflavones ameliorated osteoporosis and hot flashes. Notably, soybean was one of the dietary protein sources that may reduce the risk of breast cancer and T2DM. However, soybean had adverse effects on certain types of drug treatment and caused allergies. In sum, this work provides useful considerations for planning clinical soybean research and selecting dietary protein sources for human health.
Collapse
Affiliation(s)
- Jung Hyun Kang
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou 450008, Henan, P.R. China
| | - Seung Ho Shin
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Bio & Medical Bigdata (BK4 Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
22
|
Hashimoto Y, Hamaguchi M, Fukui M. Fermented soybean foods and diabetes. J Diabetes Investig 2023; 14:1329-1340. [PMID: 37799064 PMCID: PMC10688128 DOI: 10.1111/jdi.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
The number of patients with type 2 diabetes mellitus is increasing, and its prevention and management are important. One of the factors contributing to the increased incidence of type 2 diabetes mellitus is the change in dietary habits, including a Westernized diet. Fermented foods are foods that are transformed by the action of microorganisms to produce beneficial effects in humans and have been consumed for thousands of years. The production and consumption of fermented soy foods, including natto, miso, douchi, cheonggukjang, doenjang, tempeh, and fermented soy milk, are widespread in Asian countries. This review focuses on fermented soybean foods and summarizes their effects on diabetes. Fermentation increases the content of ingredients originally contained in soybeans and adds new ingredients that are not present in the original soybeans. Recent studies have revealed that fermented soybean food modifies the gut microbiota-related metabolites by modifying dysbiosis. Furthermore, it has been reported that fermented soybean foods have antioxidant, anti-inflammatory, and anti-diabetic effects. In recent years, fermented foods, including fermented soybeans, have shown various beneficial effects. Therefore, it is necessary to continue focusing on the benefits and mechanisms of action of fermented foods.
Collapse
Affiliation(s)
- Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
23
|
Dai W, Liu Y, Zhang X, Dai L. 16S rDNA profiling of Loach ( Misgurnus anguillicus) fed with soybean fermented powder intestinal flora in response to Lipopolysaccharide (LPS) infection. Heliyon 2023; 9:e22369. [PMID: 38053882 PMCID: PMC10694309 DOI: 10.1016/j.heliyon.2023.e22369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
Soybean fermentation has a balancing effect on the regulation of intestinal flora. Relative research between fermented soybeans and intestinal microbiota is limited. Our aim was to explore the effects of soybean fermented fowder on lipopolysaccharide (LPS) induced intestinal microflora and corresponding functions in loach. 16S rDNA high-throughout sequencing was applied to estimate differences in the intestinal microbiota and predict genes function. Analysis of the overall of sequencing data showed that the ratio of Effective Tags in both the control group and the treatment group was greater than 80 %. Based on six major classifications involved in the phylum, class, order, family, genus, and species, we acquired the changes in the composition of intestinal microorganisms after the supplement of soybean fermented powder. These results showed that the dominant bacteria in the two groups were basically distinct at different levels. Alpha diversity analysis indicated that the microbial richness and uniformity of soybean fermented powder decreased compared to the control group. PICRUSt and Taxfun tools analysis of intestinal flora illustrated the functional genes of the six groups were mainly involved in metabolism, genetic information processing, cellular processes, environmental information processing, and human diseases at the level 1. These data clearly demonstrated the effect of soybean fermented powder on the gut microbiome. Not only that, it provides new ideas and insights for achieving high-quality utilization of soybean fermented powder. The potential mechanisms of soybean fermented powder to alter gut flora and intestinal microbiome function can further be explored.
Collapse
Affiliation(s)
- Weihong Dai
- Changtai District Center for Disease Prevention and Control, Zhangzhou, 363900, PR China
| | - Yu Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Xinxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Lishang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| |
Collapse
|
24
|
Nair B, Adithya JK, Chandrababu G, Lakshmi PK, Koshy JJ, Manoj SV, Ambiliraj DB, Vinod BS, Sethi G, Nath LR. Modulation of carcinogenesis with selected GRAS nutraceuticals via Keap1-Nrf2 signaling pathway. Phytother Res 2023; 37:4398-4413. [PMID: 37468211 DOI: 10.1002/ptr.7940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Keap1-Nrf2 is a fundamental signaling cascade known to promote or prevent carcinogenesis. Extensive studies identify the key target of modulatory aspects of Keap1-Nrf2 signaling against cancer. Nutraceuticals are those dietary agents with many health benefits that have immense potential for cancer chemoprevention. The nutritional supplements known as nutraceuticals are found to be one of the most promising chemoprevention agents. Upon investigating the dual nature of Nrf2, it became clear that, in addition to shielding normal cells from numerous stresses, Nrf2 may also promote the growth of tumors. In the present review, we performed a systematic analysis of the role of 12 different nutraceuticals like curcumin, sulforaphane, resveratrol, polyunsaturated fatty acids (PUFA) from fish oil, lycopene, soybean, kaempferol, allicin, thymoquinone, quercetin, gingerol, and piperine in modulating the Nrf2/Keap1 signaling mechanism. Among these, 12 Generally Recognized As Safe (GRAS) certified nutraceuticals, sulforaphane is the most extensively studied compound in modulating Keap1-Nrf signaling. Even though there is much evidence at preclinical levels, further high-quality research is still required to validate the potential role of these nutraceuticals in Keap1-Nrf2 modulation.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Jayaprakash K Adithya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Gopika Chandrababu
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - P K Lakshmi
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Joel Joy Koshy
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | - D B Ambiliraj
- Department of Chemistry, Sree Narayana College, Chempazhanthy, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
25
|
Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Comprehensive bacterial-metabolite profiles of Hawaijar, Bekang, and Akhone: a comparative study on traditional fermented soybeans of north-east India. World J Microbiol Biotechnol 2023; 39:315. [PMID: 37736853 DOI: 10.1007/s11274-023-03773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Preparation of traditionally fermented soybeans varies across ethnicities with distinct tastes, flavour, and nutritional values. The fermented soybean varieties Hawaijar, Bekang, and Akhone of north-east India are associated with diverse ethnic groups from Manipur, Mizoram, and Nagaland, respectively. These varieties differ in substrate and traditional practice that exerts differential bacterial-metabolite profile, which needs an in-depth analysis i. Culture-dependent and independent techniques investigated the bacterial diversity of the fermented soybean varieties. Gas chromatography and mass spectroscopy (GC-MS) studied these varieties' metabolite profiles. The common dominant bacterial genera detected in Hawaijar, Bekang, and Akhone were Bacillus, Ignatzschinaria, and Corynebacterium, with the presence of Brevibacillus and Staphylococcus exclusively in Hawaijar and Oceanobacillus in Bekang and Akhone. The metabolite analysis identified a higher abundance of essential amino acids, amino and nucleotide sugars, and vitamins in Hawaijar, short-chain fatty acids in Bekang, polyunsaturated fatty acids in Akhone and Hawaijar, and prebiotics in Akhone. The bacteria-metabolite correlation analysis predicted four distinct bacterial clusters associated with the differential synthesis of the functional metabolites. While B. subtilis is ubiquitous, cluster-1 comprised B. thermoamylovorans/B. amyloliquefaciens, cluster-2 comprised B. tropicus, cluster-3 comprised B. megaterium/B. borstelensis, and cluster-4 comprised B. rugosus. To the best of our knowledge, this is the first comparative study on traditional fermented soybean varieties of north-east India linking bacterial-metabolite profiles which may help in designing starters for desired functionalities in the future.
Collapse
Affiliation(s)
- Sushmita Das
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Maloyjo Joyraj Bhattacharjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Ashis K Mukherjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Mojibur Rohman Khan
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
26
|
Xu Y, Zhang X, Li D, Qian K, Liu Y, Xu T, Dai L, Cheng J. The transcriptome sequencing analysis reveals immune mechanisms of soybean fermented powder on the loach ( Misgurnus anguillicaudatus) in response to Lipopolysaccharide (LPS) infection. Front Immunol 2023; 14:1247038. [PMID: 37662918 PMCID: PMC10471800 DOI: 10.3389/fimmu.2023.1247038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The loach (Misgurnus anguillicaudatus), a small commercial fish that is widely cultivated for its high-quality protein, vitamins, minerals, and essential amino acid, is a member of the genus Misgurnus and the family Cyprinidae. In this study, we gave the LPS-injected loach fermented soybean meal and used transcriptome sequencing to investigate the impact of the fermented soybean powder on the loach's immune system. 3384 up-regulated genes and 12116 down-regulated genes were found among the 15500 differentially expressed genes, according to the results. The differentially expressed genes were shown to be involved in cellular processes, metabolic processes, cellular anatomical entities, and binding, according to the Go functional annotation. Meanwhile, the KEGG enrichment analysis indicated that the soybean fermented powder treated groups showed significant differences in DNA replication, Nucleotide excision repair, Fanconi anemia pathway, and Base excision repair pathways, suggesting that these pathways are closely related to the enhancement of the immune function of loach by soybean fermented powder. The particular conclusions not exclusively can provide a new conception for the rational utilization of soybean fermented powder but also can provide theoretical guidance for the subsequent healthy breeding of loach.
Collapse
Affiliation(s)
- Yayuan Xu
- Institute of Agro-Products Processing, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Engineering Laboratory of Food Microbial Fermentation and Functional Application, Hefei, China
| | - Xinxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dongqi Li
- Institute of Agro-Products Processing, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Engineering Laboratory of Food Microbial Fermentation and Functional Application, Hefei, China
| | - Kun Qian
- Institute of Agro-Products Processing, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Engineering Laboratory of Food Microbial Fermentation and Functional Application, Hefei, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingjuan Xu
- Gerontology Institute, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lishang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianghua Cheng
- Institute of Agro-Products Processing, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Engineering Laboratory of Food Microbial Fermentation and Functional Application, Hefei, China
| |
Collapse
|
27
|
Xie J, Wang Y, Zhong R, Yuan Z, Du J, Huang J. Quality evaluation of Sojae Semen Praeparatum by HPLC combined with HS-GC-MS. Heliyon 2023; 9:e18767. [PMID: 37593616 PMCID: PMC10432166 DOI: 10.1016/j.heliyon.2023.e18767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/29/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Sojae Semen Praeparatum is a popular fermented legume product in China, with a delicious flavour and health benefits. However, the quality control methods for Sojae Semen Praeparatum are now incomplete, and there are no standards for defining its degree of fermentation. In this study, we introduced colour, acid value, ethanol-soluble extractives and six flavonoid components' content to evaluate the quality of Sojae Semen Praeparatum comprehensively. Multiple linear regression was used to streamline the 11 evaluation indicators to 4 and confirm the evaluating feasibility of the four indicators. The degree of fermentation and odour of Sojae Semen Praeparatum were analyzed on headspace-gas chromatography-mass, and two types of odours, 'pungent' and 'unpleasant', could distinguish over-fermented Sojae Semen Praeparatum. Our research developed fermentation specifications and quality standards for Sojae Semen Praeparatum.
Collapse
Affiliation(s)
- Jiaqi Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yibo Wang
- China National Traditional Chinese Medicine Co., Ltd, China
| | - Rongrong Zhong
- China National Traditional Chinese Medicine Co., Ltd, China
| | - Zhenshuang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Du
- China National Traditional Chinese Medicine Co., Ltd, China
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
28
|
Jung SM, Kaur A, Amen RI, Oda K, Rajaram S, Sabatè J, Haddad EH. Effect of the Fermented Soy Q-CAN ® Product on Biomarkers of Inflammation and Oxidation in Adults with Cardiovascular Risk, and Canonical Correlations between the Inflammation Biomarkers and Blood Lipids. Nutrients 2023; 15:3195. [PMID: 37513613 PMCID: PMC10383246 DOI: 10.3390/nu15143195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic low-grade inflammation plays a key role in the development of cardiovascular disease (CVD) but the process may be modulated by consuming fermented soy foods. Here, we aim to evaluate the effect of a fermented soy powder Q-CAN® on inflammatory and oxidation biomarkers in subjects with cardiovascular risk. In a randomized crossover trial, 27 adults (mean age ± SD, 51.6 ± 13.5 y) with a mean BMI ± SD of 32.3 ± 7.3 kg/m2 consumed 25 g daily of the fermented soy powder or an isoenergic control powder of sprouted brown rice for 12 weeks each. Between-treatment results showed a 12% increase in interleukin-1 receptor agonist (IL-1Ra) in the treatment group, whereas within-treatment results showed 23% and 7% increases in interleukin-6 (IL-6) and total antioxidant status (TAS), respectively. The first canonical correlation coefficient (r = 0.72) between inflammation markers and blood lipids indicated a positive association between high-sensitivity C-reactive protein (hsCRP) and IL-1Ra with LDL-C and a negative association with HDL-C that explained 62% of the variability in the biomarkers. These outcomes suggest that blood lipids and inflammatory markers are highly correlated and that ingestion of the fermented soy powder Q-CAN® may increase IL-1Ra, IL-6, and TAS in individuals with CVD risk factors.
Collapse
Affiliation(s)
- Sarah M Jung
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
- Rongxiang Xu College of Health and Human Services, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Amandeep Kaur
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Rita I Amen
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Joan Sabatè
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ella H Haddad
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
29
|
An F, Wu J, Feng Y, Pan G, Ma Y, Jiang J, Yang X, Xue R, Wu R, Zhao M. A systematic review on the flavor of soy-based fermented foods: Core fermentation microbiome, multisensory flavor substances, key enzymes, and metabolic pathways. Compr Rev Food Sci Food Saf 2023; 22:2773-2801. [PMID: 37082778 DOI: 10.1111/1541-4337.13162] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
The characteristic flavor of fermented foods has an important impact on the purchasing decisions of consumers, and its production mechanisms are a concern for scientists worldwide. The perception of food flavor is a complex process involving olfaction, taste, vision, and oral touch, with various senses contributing to specific properties of the flavor. Soy-based fermented products are popular because of their unique flavors, especially in Asian countries, where they occupy an important place in the dietary structure. Microorganisms, known as the souls of fermented foods, can influence the sensory properties of soy-based fermented foods through various metabolic pathways, and are closely related to the formation of multisensory properties. Therefore, this review systematically summarizes the core microbiome and its interactions that play an active role in representative soy-based fermented foods, such as fermented soymilk, soy sauce, soybean paste, sufu, and douchi. The mechanism of action of the core microbial community on multisensory flavor quality is revealed here. Revealing the fermentation core microbiome and related enzymes provides important guidance for the development of flavor-enhancement strategies and related genetically engineered bacteria.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Guoyang Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jinhui Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xuemeng Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ruixia Xue
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
30
|
Nara N, Kurosawa Y, Fuse-Hamaoka S, Kuroiwa M, Endo T, Tanaka R, Kime R, Hamaoka T. A single dose of oral nattokinase accelerates skin temperature recovery after cold water immersion: A double-blind, placebo-controlled crossover study. Heliyon 2023; 9:e17951. [PMID: 37483751 PMCID: PMC10362143 DOI: 10.1016/j.heliyon.2023.e17951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
Nattokinase (NK) intake may improve blood flow; however, its effects on skin temperature, which is predominantly controlled by skin surface blood flow, are unknown. The purpose of this study was to determine the effects of a single dose of NK on changes in skin temperature after cold water immersion. A double-blinded, placebo-controlled, crossover intervention study was performed on nine healthy men. The participants were randomised to receive either a single dose of 2,000 fibrinolytic units (FU) of NK or a placebo with subsequent crossover. Two hours after supplementation, the participants immersed both hands in a water bath maintained at 10 °C for 1 min. Skin temperature, perceived coldness, cardiac output, and sympathetic nervous activity were measured before, during, and after water immersion. Two-way analysis of variance showed a significant effect of treatment interaction on the skin temperature of the middle finger, palm, and back of the right hand (p < 0.05). These findings represented that the skin temperatures of the middle finger, palm, and back of the right hand immersed in the cold water were significantly dropped due to the cold water immersion, and then recovered more quickly by NK intake than by placebo intake. The results of the current study highlight the potential implications of NK for the prevention of excessive vasoconstriction. It may be more significant for those with cold-sensitive constitution, such as women and elderly. In contrast, the acute administration of 2,000 FU of NK did not affect changes in heart rate, cardiac output, sympathetic nervous activity compared with a placebo in healthy men.
Collapse
Affiliation(s)
- Noriko Nara
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Department of Food & Health Sciences, Jissen Women's University, 4-1-1 Osakaue, Hino-shi, Tokyo 191-8510, Japan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Sayuri Fuse-Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Tasuki Endo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, Aichi 468-8502, Japan
| | - Riki Tanaka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
31
|
Du L, Chen W, Wang J, Huang L, Zheng Q, Chen J, Wang L, Cai C, Zhang X, Wang L, Zhong Q, Zhong W, Fang X, Liao Z. Beneficial Effects of Bacillus amyloliquefaciens D1 Soy Milk Supplementation on Serum Biochemical Indexes and Intestinal Health of Bearded Chickens. Microorganisms 2023; 11:1660. [PMID: 37512832 PMCID: PMC10385625 DOI: 10.3390/microorganisms11071660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effects of dietary supplementation with Bacillus amyloliquefaciens D1 (B. amyloliquefaciens D1) on growth performance, serum anti-inflammatory cytokines, and intestinal microbiota composition and diversity in bearded chickens. To investigate the effects of Bacillus amyloliquefaciensa and fermented soy milk, 7-day-old broilers were orally fed different doses of Bacillus amyloliquefaciens D1 fermented soy milk for 35 days, with the unfermented soy milk group as the Placebo group. This study found that B. amyloliquefaciens D1 fermented soy milk improved the intestinal microbiota of broilers, significantly increasing the abundance of beneficial bacteria and decreasing the abundance of harmful bacteria in the gut. B. amyloliquefaciens D1 fermented soy milk also significantly reduced the serum lipopolysaccharide (LPS) content. The body weight and daily weight gain of broilers were increased. In conclusion, the results of this study are promising and indicate that supplementing the diets of bearded chickens with B. amyloliquefaciens D1 fermented soy milk has many beneficial effects in terms of maintaining intestinal microbiota balance and reducing inflammation in chickens.
Collapse
Affiliation(s)
- Liyu Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weizhe Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lingzhu Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qikai Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Linhao Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Cai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangbin Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wujie Zhong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
32
|
Zhu Y, Chen G, Diao J, Wang C. Recent advances in exploring and exploiting soybean functional peptides-a review. Front Nutr 2023; 10:1185047. [PMID: 37396130 PMCID: PMC10310054 DOI: 10.3389/fnut.2023.1185047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Soybeans are rich in proteins and phytochemicals such as isoflavones and phenolic compounds. It is an excellent source of peptides with numerous biological functions, including anti-inflammatory, anticancer, and antidiabetic activities. Soy bioactive peptides are small building blocks of proteins that are released after fermentation or gastrointestinal digestion as well as by food processing through enzymatic hydrolysis, often in combination with novel food processing techniques (i.e., microwave, ultrasound, and high-pressure homogenization), which are associated with numerous health benefits. Various studies have reported the potential health benefits of soybean-derived functional peptides, which have made them a great substitute for many chemical-based functional elements in foods and pharmaceutical products for a healthy lifestyle. This review provides unprecedented and up-to-date insights into the role of soybean peptides in various diseases and metabolic disorders, ranging from diabetes and hypertension to neurodegenerative disorders and viral infections with mechanisms were discussed. In addition, we discuss all the known techniques, including conventional and emerging approaches, for the prediction of active soybean peptides. Finally, real-life applications of soybean peptides as functional entities in food and pharmaceutical products are discussed.
Collapse
Affiliation(s)
- Yongsheng Zhu
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Gang Chen
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Jingjing Diao
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
33
|
Matsumura Y, Kitabatake M, Kayano SI, Ito T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants (Basel) 2023; 12:antiox12040880. [PMID: 37107256 PMCID: PMC10135282 DOI: 10.3390/antiox12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Oxidative stress causes various diseases, such as type II diabetes and dyslipidemia, while antioxidants in foods may prevent a number of diseases and delay aging by exerting their effects in vivo. Phenolic compounds are phytochemicals such as flavonoids which consist of flavonols, flavones, flavanonols, flavanones, anthocyanidins, isoflavones, lignans, stilbenoids, curcuminoids, phenolic acids, and tannins. They have phenolic hydroxyl groups in their molecular structures. These compounds are present in most plants, are abundant in nature, and contribute to the bitterness and color of various foods. Dietary phenolic compounds, such as quercetin in onions and sesamin in sesame, exhibit antioxidant activity and help prevent cell aging and diseases. In addition, other kinds of compounds, such as tannins, have larger molecular weights, and many unexplained aspects still exist. The antioxidant activities of phenolic compounds may be beneficial for human health. On the other hand, metabolism by intestinal bacteria changes the structures of these compounds with antioxidant properties, and the resulting metabolites exert their effects in vivo. In recent years, it has become possible to analyze the composition of the intestinal microbiota. The augmentation of the intestinal microbiota by the intake of phenolic compounds has been implicated in disease prevention and symptom recovery. Furthermore, the “brain–gut axis”, which is a communication system between the gut microbiome and brain, is attracting increasing attention, and research has revealed that the gut microbiota and dietary phenolic compounds affect brain homeostasis. In this review, we discuss the usefulness of dietary phenolic compounds with antioxidant activities against some diseases, their biotransformation by the gut microbiota, the augmentation of the intestinal microflora, and their effects on the brain–gut axis.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shin-ichi Kayano
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
34
|
Tomar GS, Gundogan R, Can Karaca A, Nickerson M. Valorization of wastes and by-products of nuts, seeds, cereals and legumes processing. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:131-174. [PMID: 37898538 DOI: 10.1016/bs.afnr.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Wastes and by-products of nuts, seeds, cereals and legumes carry a unique potential for valorization into value-added ingredients due to their protein, dietary fiber, antioxidant, vitamin and mineral contents. The most crucial factor in the recovery of value-added ingredients and bioactives from the wastes and by-products is the utilization of the most efficient extraction technique. This work is an overview of the classification of wastes and by-products of nuts, seeds, cereals and legumes processing, the methods used in the extraction of valuable compounds such as proteins, dietary fibers, phenolics, flavonoids and other bioactives. This chapter provides insights on the promising applications of extracted ingredients in various end products. A special emphasis is given to the challenges and improvement methods for extraction of value-added compounds from wastes and by-products of nuts, seeds, cereals and legumes processing.
Collapse
Affiliation(s)
- Gizem Sevval Tomar
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Rukiye Gundogan
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
35
|
Soy Consumption and the Risk of Type 2 Diabetes and Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:nu15061358. [PMID: 36986086 PMCID: PMC10058927 DOI: 10.3390/nu15061358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Soy is rich in plant protein, isoflavones, and polyunsaturated fatty acids. To clarify the associations between soy intake and type 2 diabetes (T2D) and cardiovascular diseases (CVDs) events, we performed a meta-analysis and review. A total of 1963 studies met the inclusion criteria, and 29 articles with 16,521 T2D and 54,213 CVDs events were identified by the eligibility criteria. During a follow-up of 2.5–24 years, the risk of T2D, CVDs, coronary heart disease, and stroke in participants with the highest soy consumption decreased by 17% (total relative risk (TRR) = 0.83, 95% CI: 0.74–0.93), 13% (TRR = 0.87, 95% CI: 0.81–0.94), 21% (TRR = 0.79, 95% CI: 0.71–0.88), and 12% (TRR = 0.88, 95% CI: 0.79–0.99), respectively, compared to the lowest sot consumption. A daily intake of 26.7 g of tofu reduced CVDs risk by 18% (TRR = 0.82, 95% CI: 0.74–0.92) and 11.1 g of natto lowered the risk of CVDs by 17% (TRR = 0.83, 95% CI: 0.78–0.89), especially stroke. This meta-analysis demonstrated that soy consumption was negatively associated with the risks of T2D and CVDs and a specific quantity of soy products was the most beneficial for the prevention of T2D and CVDs. This study has been registered on PROSPERO (registration number: CRD42022360504).
Collapse
|
36
|
Glucoregulatory Properties of Fermented Soybean Products. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease, characterized by persistent hyperglycemia, the prevalence of which is on the rise worldwide. Fermented soybean products (FSP) are rich in diverse functional ingredients which have been shown to exhibit therapeutic properties in alleviating hyperglycemia. This review summarizes the hypoglycemic actions of FSP from the perspective of different target-related molecular signaling mechanisms in vitro, in vivo and clinical trials. FSP can ameliorate glucose metabolism disorder by functioning as carbohydrate digestive enzyme inhibitors, facilitating glucose transporter 4 translocation, accelerating muscular glucose utilization, inhibiting hepatic gluconeogenesis, ameliorating pancreatic dysfunction, relieving adipose tissue inflammation, and improving gut microbiota disorder. Sufficiently recognizing and exploiting the hypoglycemic activity of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
|
37
|
Mantegazza G, Dalla Via A, Licata A, Duncan R, Gardana C, Gargari G, Alamprese C, Arioli S, Taverniti V, Karp M, Guglielmetti S. Use of kefir-derived lactic acid bacteria for the preparation of a fermented soy drink with increased estrogenic activity. Food Res Int 2023; 164:112322. [PMID: 36737914 DOI: 10.1016/j.foodres.2022.112322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Fermented foods are receiving growing attention for their health promoting properties. In particular, there is a growing demand for plant-based fermented foods as dairy alternatives. Considering that soy is a vegetal food rich in nutrients and a source of the phytoestrogen isoflavones, the aim of this study was to select safe food microorganisms with the ability to ferment a soy drink resulting in a final product with an increased estrogenic activity and improved functional properties. We used milk kefir grains, a dairy source of microorganisms with proven health-promoting properties, as a starting inoculum for a soymilk. After 14 passages of daily inoculum in fresh soy drink, we isolated four lactic acid bacterial strains: Lactotoccus lactis subsp. lactis K03, Leuconostc pseudomesenteroides K05, Leuconostc mesenteroides K09 and Lentilactobacillus kefiri K10. Isolated strains were proven to be safe for human consumption according to the assessment of their antibiotic resistance profile and comparative genomics. Furthermore, functional characterization of the bacterial strains demonstrated their ability to ferment sugars naturally present in soybeans and produce a creamy texture. In addition, we demonstrated, by means of a yeast-based bioluminescence reporter system, that the two strains belonging to the genus Leuconostoc increased the estrogenic activity of the soybean drink. In conclusion, the proposed application of the bacterial strains characterized in this study meets the growing demand of consumers for health-promoting vegetal food alternatives to dairy products.
Collapse
Affiliation(s)
- Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Alessandro Dalla Via
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Armando Licata
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Robin Duncan
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Claudio Gardana
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Cristina Alamprese
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Stefania Arioli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Matti Karp
- Materials Science and Environmental Engineering, Bio and Circular Economy, Tampere University, Finland
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy.
| |
Collapse
|
38
|
Gewtaisong J, Chukeatirote E, Ahn J. Characterization of Bacillus subtilis bacteriophage BasuTN3 isolated from Thua Nao, a thai fermented soybean food product. Food Sci Biotechnol 2023; 32:203-208. [PMID: 36647518 PMCID: PMC9839916 DOI: 10.1007/s10068-022-01188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2023] Open
Abstract
The infection of bacteriophage is of great concern in food industry as this can result in complete fermentation failure. In this study, a virulent bacteriophage, named BasuTN3, was isolated from Thua Nao, a Thai fermented soybean. The stability of BasuTN3 was evaluated under various ranges of temperature, pH, chloroform, UV, and disinfectants. The results showed that the isolated BasuTN3 appeared to be specific to its bacterial host, which was identified as Bacillus subtilis strain TN3 based on the 16 S rRNA gene sequence analysis. Under TEM, the BasuTN3 belonged to the family Myoviridae. The isolated BasuTN3 could withstand wide temperature ranges (4-45 °C) and pH conditions (5-11). The BasuTN3 was susceptible to chloroform, UV, and commonly used disinfectants. The results obtained expand the knowledge of the Bacillus bacteriophage diversity in the fermented soybean products and provide useful information for the bacteriophage and its bacterial starter cultures.
Collapse
Affiliation(s)
| | | | - Juhee Ahn
- Department of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| |
Collapse
|
39
|
Huo C, Yang X, Li L. Non-beany flavor soymilk fermented by lactic acid bacteria: Characterization, stability, antioxidant capacity and in vitro digestion. Food Chem X 2023; 17:100578. [PMID: 36845480 PMCID: PMC9944549 DOI: 10.1016/j.fochx.2023.100578] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/01/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
LAB fermentation could reduce the beany flavor, the sensitization of soymilk and improve the digestibility of soymilk, easy to be accepted by consumers. This study evaluated the characterization, stability, in vitro digestion and antioxidant capacity of soymilk fermented by different Lactic acid bacteria (LAB). The results showed that fat content of L.plantarum-S (0.77 g/100 mL) was the lowest, which proved that L.plantarum had a significant effect on lipid degradation, the protein content of L.delbrueckii-S (23.01 mg/mL) was higher. L.delbrueckii-S and L.paracasei-S were more acceptable to people, as well as high overall ratings. L.paracasei fermented soymilk has better suspension stability and smaller particle size. The fermented soymilk showed higher free amino acids (FAA) content, peptide content and stronger antioxidant activity than soymilk after digestion. The soymilk fermented by L. plantarum contained higher FAA content and L.delbrueckii contained the highest peptide content compared with other strains. L.acidophilus-S and L.rhamnosus-S showed stronger DPPH scavenging rate and FARP, which were 57.03 % and 52.78 % stronger than unfermented soymilk, respectively. These results may be provided a theoretical basis for the strain screening of fermented soymilk.
Collapse
|
40
|
Shvabskaia OB, Karamnova NS, Izmailova OV, Drapkina OM. Healthy Eating in Population Models of Nutrition: Asian Diet Style Summary. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023. [DOI: 10.20996/1819-6446-2022-12-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The population of Japan and Okinawa is known for the longest life expectancy, which many researchers rightly associate with the nature of nutrition existing in these territories. The Japanese diet and Okinawan diet, along with other traditional diets, are real examples of historically established sustainable patterns of healthy eating. Asian eating styles have marked differences from European eating patterns, not only in differences in food sources, but also in eating habits. The article presents the historical, climatic and cultural features of these diets; the issues of food composition, energy and nutritional value of these models of nutrition are considered in detail with an analysis of the differences existing between them; highlights the benefits of products grown mainly in Japan, which are ration-forming for the population of this country; as well as the results of scientific studies on the protective effect of the Japanese and Okinawan diets on human health and disease prevention.
Collapse
Affiliation(s)
- O. B. Shvabskaia
- National Medical Research Center for Therapy and Preventive Medicine
| | - N. S. Karamnova
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. V. Izmailova
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
41
|
Que Z, Jin Y, Huang J, Zhou R, Wu C. Flavor compounds of traditional fermented bean condiments: Classes, synthesis, and factors involved in flavor formation. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Li S, Liu C, Song Y, Ma N, Lu J. Association of Soyfoods or Soybean Products Consumption with Psychological Symptoms: Evidence from a Cross-Sectional Study of Chinese University Students during the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:819. [PMID: 36613140 PMCID: PMC9819589 DOI: 10.3390/ijerph20010819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
There is a strong association between soyfoods or soybean product consumption and adolescent health, but there are few studies on the association between soyfoods or soybean product consumption and psychological symptoms among university students. To this end, this study investigated the association between soyfoods or soybean products consumption and psychological symptoms among Chinese university students and analyzed the association between them. A three-stage stratified whole-group sampling method was used to administer questionnaires on soyfoods or soybean products consumption and psychological symptoms to 7742 university students in China. Self-assessment questionnaires were also administered to confounding variables such as basic demographic information, family status, parental education, body mass index (BMI), and moderate and vigorous physical activity (MVPA). The chi-square test, one-way ANOVA, and logistic regression analysis were used to explore the association and differences between soyfoods or soybean products consumption and psychological symptoms. The proportion of Chinese university students' soyfoods or soybean products consumption in ≤one time/week, two-four times/week, and ≥five times/week were 38.81%, 40.24%, and 20.95%, respectively. University students' psychological symptoms problem detection rate was 16.22%. The detection rate of psychological symptoms was lower among university male students (14.75%) than female students (17.35%), and the difference was statistically significant (χ2 = 9.525, p < 0.01). After adjusting for relevant covariates, students with soyfoods or soybean products consumption ≤one time/week (OR = 1.83, 95% CI:1.52, 2.21) had a higher risk of psychological symptoms compared to university students with soyfoods or soybean products consumption ≥five time/week (p < 0.01). During the COVID-19 pandemic, Chinese university students had lower consumption of soyfoods or soybean products and a higher detection rate of psychological symptoms. There was a negative association between soyfoods or soybean products consumption and psychological symptoms. Our study provides a scientific reference for the government and educational decision-making authorities and suggests that education on eating behavior and dietary guidance should be emphasized among university students in the future to maintain a reasonable consumption of soyfoods or soybean products for better physical and mental health development.
Collapse
Affiliation(s)
- Shengpeng Li
- School of Preschool Education, Jingzhou Institute of Technology, Jingzhou 434020, China
| | - Cong Liu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Yongjing Song
- College of Education and Sports Sciences, Yangtze University, Jingzhou 434020, China
| | - Nan Ma
- College of Physical Education and Health, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China
| | - Jinkui Lu
- School of Physical Education, Shangrao Normal University, Shangrao 334000, China
| |
Collapse
|
43
|
AL Zahrani AJ, Shori AB. Viability of probiotics and antioxidant activity of soy and almond milk fermented with selected strains of probiotic Lactobacillus spp. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
44
|
LIU X, WANG J, XU Z, SUN J, LIU Y, XI X, MA Y. Quality assessment of fermented soybeans: physicochemical, bioactive compounds and biogenic amines. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Xu LIU
- Hebei Agricultural University, China
| | - Jun WANG
- Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| | - Zihan XU
- Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| | | | | | - Xiaoli XI
- Hebei Agricultural University, China
| | - Yanli MA
- Hebei Agricultural University, China; Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| |
Collapse
|
45
|
Li J, Peng B, Huang L, Zhong B, Yu C, Hu X, Wang W, Tu Z. Association between flavors and microbial communities of traditional Aspergillus-Douchi produced by a typical industrial-scale factory. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Wang X, Chen B, Fang X, Zhong Q, Liao Z, Wang J, Wu X, Ma Y, Li P, Feng X, Wang L. Soy isoflavone-specific biotransformation product S-equol in the colon: physiological functions, transformation mechanisms, and metabolic regulatory pathways. Crit Rev Food Sci Nutr 2022; 64:5462-5490. [PMID: 36503364 DOI: 10.1080/10408398.2022.2154744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidemiological data suggest that regular intake of soy isoflavones may reduce the incidence of estrogen-dependent and aging-associated disorders. Equol is a metabolite of soy isoflavone (SI) produced by specific gut microbiota and has many beneficial effects on human health due to its higher biological activity compared to SI. However, only 1/3 to 1/2 of humans are able to produce equol in the body, which means that not many people can fully benefit from SI. This review summarizes the recent advances in equol research, focusing on the chemical properties, physiological functions, conversion mechanisms in vitro and vivo, and metabolic regulatory pathways affecting S-equol production. Advanced experimental designs and possible techniques in future research plan are also fully discussed. Furthermore, this review provides a fundamental basis for researchers in the field to understand individual differences in S-equol production, the efficiency of metabolic conversion of S-equol, and fermentation production of S-equol in vitro.
Collapse
Affiliation(s)
- Xiaoying Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Baiyan Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuejiao Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuhao Ma
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pengzhen Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoxuan Feng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
47
|
Yang J, Zou Y, Guo J, Yang X, Jin B. Protective effect of isoflavone enriched soy β-conglycinin on osteoporosis in ovariectomized rats. J Food Biochem 2022; 46:e14507. [PMID: 36334298 DOI: 10.1111/jfbc.14507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Research shows that the consumption of soybean foods can reduce the incidence rate of bone fractures in women after menopause. The aim of this study was to investigate the effects of different complex of soy β-conglycinin (7S) and isoflavones (7S-ISO) on osteoporosis in ovariectomized rats. All treatments were administrated intragastrically to the groups every afternoon for 3 months. The treatments were administrated at 1 mL·(100 g)-1 , the animals were given 50 mg·kg-1 ·d-1 ISO, and the concentration of protein was about 2 wt. %. The bone mineral density (BMD) and the bone biomechanics results of left tibia' maximum load in the 7S-ISO group is significantly higher than in the ovariectomized group and the 7S group (p < .05). Otherwise, the serum tartrate-resistant acid phosphatase (s-TRACP), serum osteocalcin (s-BGP), and serum estradiol (s-E2 ) levels in 7S-ISO were all significantly different from the OVX, OVX + casein, and the OVX + 7S group (p < .05). The serum calcium (s-Ca) level was not significantly different among all the groups. 7S-ISO may exhibit moderate estrogenic activities and as compared to 7S and ISO in osteoporosis (OP) of ovariectomized rats. PRACTICAL APPLICATIONS: The effects of soy proteins on the health of females have always been a concern. It has been extensively reported soy 7S globulin (7S) as a type of trimer glycoprotein can depress blood fats. The aim of this study was to investigate the effects of different complex of soy β-conglycinin and isoflavones (ISO), the main storage proteins and polyphenols in soy, on osteoporosis in ovariectomized rats.
Collapse
Affiliation(s)
- Juan Yang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, P. R. China.,Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, Zhanjiang, P. R. China
| | - Yuan Zou
- College of Food Science, South China Agricultural University, Guangzhou, P. R. China
| | - Jian Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, P. R. China.,Research and Development Centre of Food Proteins, Department of Food Science and Technology, South China University of Technology, Guangzhou, P. R. China
| | - Xiaoquan Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, P. R. China.,Research and Development Centre of Food Proteins, Department of Food Science and Technology, South China University of Technology, Guangzhou, P. R. China
| | - Bei Jin
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, P. R. China
| |
Collapse
|
48
|
Chua JY, Huang A, Liu SQ. Comparing the effects of isoleucine and leucine supplementation at different dosage on the growth and metabolism of Torulaspora delbrueckii Biodiva during soy whey fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Saeed F, Afzaal M, Shah YA, Khan MH, Hussain M, Ikram A, Ateeq H, Noman M, Saewan SA, Khashroum AO. Miso: A traditional nutritious & health-endorsing fermented product. Food Sci Nutr 2022; 10:4103-4111. [PMID: 36514754 PMCID: PMC9731531 DOI: 10.1002/fsn3.3029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/16/2022] Open
Abstract
Consumer demand for fermented foods with a well-balanced nutrient profile has been increasing owing to their ability to prevent chronic diseases as well as their functional, nutritional, and nutraceutical benefits. Among those functional foods, miso is a well-known traditional fermented food with a distinctive savory flavor and aroma that is most commonly used as a seasoning in miso soup. Among different fermented products, miso is derived from soybeans and grains as a result of the activities of Koji enzymes and beneficial microbes. Additionally, the microbial community of miso is thought to be crucial in enhancing its distinct flavor and texture as well as its nutritional properties. Despite the importance of microorganisms in the production of miso, there has been relatively little research done to characterize and describe the nutritional and medicinal potential of miso. In this review, the potential therapeutic properties, i.e., anticancer, antimicrobial, and antiobesity, of miso have been discussed comprehensively. This review envisions the production technology, its history, microbial population, nutritional properties, and the potential health benefits of miso associated with its consumption.
Collapse
Affiliation(s)
- Farhan Saeed
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Yasir Abbas Shah
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | | | - Muzzamal Hussain
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Ikram
- University Institute of Food Science and Technology, The University of LahoreLahorePakistan
| | - Huda Ateeq
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Noman
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Shamaail A. Saewan
- Department of Food SciencesCollege of Agriculture, University of BasrahBasrahIraq
| | - Ashraf O. Khashroum
- Department of Plant Production and Protection, Faculty of AgricultureJerash UniversityJerashJordan
| |
Collapse
|
50
|
Kusumah J, Gonzalez de Mejia E. Impact of soybean bioactive compounds as response to diet-induced chronic inflammation: A systematic review. Food Res Int 2022; 162:111928. [DOI: 10.1016/j.foodres.2022.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
|