1
|
Xie Y, Ma J, Chen M, Tian F, Zhou X, Yang C, Xiao H, Dong X, Yang Y, Chen D, Deng T, Dai X, Niu S. Identification and characterization of two hydrolase genes involved in the hydrolysis of galloylated catechin in the tea plant Camellia sinensis. Int J Biol Macromol 2025; 308:142620. [PMID: 40185441 DOI: 10.1016/j.ijbiomac.2025.142620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Galloylated catechins are major catechins in tea, resulting in a bitter and astringent taste. In this study, to identify the key genes involved in the hydrolysis of astringency-associated galloylated catechins in Camellia sinensis, multiomics association analysis, including enzyme activity assays, transcriptomics, and metabolomics, was performed. Subsequently, seven candidate genes involved in the hydrolysis of galloylated catechin were screened from tea genomes using correlation analysis. Phylogenetic analysis revealed that these genes were clustered into caffeoyl shikimate esterase, acetate esterase, and tannase groups. In vitro, the purified recombinant enzymes rCSS0031888 and rCSS0049322 catalyzed the hydrolysis of galloylated catechins into nongalloylated catechins. This study provides an efficient method for mining functional genes and identifying key genes involved in the hydrolysis of galloylated catechins in vitro, thereby reducing the bitterness and astringency of tea and offering a molecular basis for cultivating high-quality tea varieties.
Collapse
Affiliation(s)
- Youshudi Xie
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jie Ma
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Mei Chen
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Fengyun Tian
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xingrong Zhou
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Changli Yang
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Houhong Xiao
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xue Dong
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yanfen Yang
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Dingli Chen
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Tian Deng
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xinlong Dai
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Suzhen Niu
- Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Xueshi Road, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Tan J, Fang Z, Tian C, Zhou C, Zhang C, Jiang L, Zheng A, Yang N, Guo Y. Improving flavor of Wuyi rock tea processed from rain-soaked leaves by optimizing withering conditions. Food Chem 2025; 471:142762. [PMID: 39788012 DOI: 10.1016/j.foodchem.2025.142762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Rainy weather restricts the formation of high-quality Wuyi rock tea (WRT). Herein, an optimized withering process for rain-soaked leaves was developed using response surface methodology. Results showed that increasing the withering temperature, relative humidity, and withering time from 25 °C to 40 °C, 80 % to 97 %, and 3 to 6 h, respectively, effectively improved the sensory qualities of the optimized primary WRT (WRTO) prepared from rain-soaked leaves compared with those before optimization. The high content of soluble sugars, L-theanine, catechins, esters, alcohols, terpenoids, ketones, aldehydes and aromatics contributed significantly to the formation of the unique flavor of WRTO, which was significantly increased after optimizing the withering process. The flavor wheel of WRT-O was constructed, and its unique flavor was dominated by thickness and smoothness taste and floral, fruity, and sweet aroma. This study offers a theoretical reference for quality control of WRT produced from rain-soaked leaves.
Collapse
Affiliation(s)
- Jiayao Tan
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhou Fang
- Wuyishan Yongsheng Tea Industry Co., Ltd, Wuyishan City, Nanping 353000, China
| | - Caiyun Tian
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Jiang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anru Zheng
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niannian Yang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
He Y, Tang Y, Song S, Li L, An S, Zhou G, Zhu J, Li S, Yin Y, Jeyaraj A, Peng C, Li X, Zeng G. Effect of Blue Light Intensity During Spreading on the Aroma of Green Tea. Foods 2025; 14:1308. [PMID: 40282709 PMCID: PMC12025787 DOI: 10.3390/foods14081308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Spreading is the key process for ensuring green tea quality. However, the effect of blue light intensity conditions on the formation of green tea aroma and the evolution of key volatile compounds has not been assessed to date. Four tea samples treated with different light conditions (blue light intensities) were used to investigate the effect of spreading treatment on changes in the composition and content of volatile compounds. Volatile compounds in green tea samples were detected using headspace-solid phase microextraction and gas chromatography-mass spectrometry under different light conditions. Orthogonal partial least squares discriminant analysis (OPLS-DA) and relative odor activity value (rOAV) analyses were then applied to clarify the best blue light condition for forming aroma and associated compounds. The 116 volatile compounds were detected in the green tea samples, of which alcohols were the most abundant. The findings demonstrated that MBL (middle-intensity blue light; 150 μmol/(m2∙s)) treatment was the most effective condition for developing an intense and persistent fruity and floral scent compared to HBL (high-intensity blue light; 300 μmol/(m2∙s)) and LBL (low-intensity blue light; 75 μmol/(m2∙s)). This study underscores how blue light intensity conditions shape green tea aromas and offers operational insights. It also provides a theoretical basis for controlling light conditions in the process of green tea spreading.
Collapse
Affiliation(s)
- Youyue He
- Wenzhou Key Laboratory of Early Sprouting Tea Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou 325006, China; (Y.H.); (Y.T.); (C.P.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (S.S.); (A.J.); (X.L.)
| | - Yan Tang
- Wenzhou Key Laboratory of Early Sprouting Tea Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou 325006, China; (Y.H.); (Y.T.); (C.P.)
| | - Shiyue Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (S.S.); (A.J.); (X.L.)
| | - Lailong Li
- China Huaneng Group Co., Ltd., No. 6, FuXingMenNei St, Xicheng District, Beijing 100031, China; (L.L.); (S.A.); (G.Z.); (J.Z.)
| | - Shaoshuai An
- China Huaneng Group Co., Ltd., No. 6, FuXingMenNei St, Xicheng District, Beijing 100031, China; (L.L.); (S.A.); (G.Z.); (J.Z.)
| | - Guoming Zhou
- China Huaneng Group Co., Ltd., No. 6, FuXingMenNei St, Xicheng District, Beijing 100031, China; (L.L.); (S.A.); (G.Z.); (J.Z.)
| | - Jing Zhu
- China Huaneng Group Co., Ltd., No. 6, FuXingMenNei St, Xicheng District, Beijing 100031, China; (L.L.); (S.A.); (G.Z.); (J.Z.)
| | - Song Li
- Nanjing Agro-Tech Extension and Service Center, Nanjing 210029, China; (S.L.); (Y.Y.)
| | - Yue Yin
- Nanjing Agro-Tech Extension and Service Center, Nanjing 210029, China; (S.L.); (Y.Y.)
| | - Anburaj Jeyaraj
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (S.S.); (A.J.); (X.L.)
| | - Chunju Peng
- Wenzhou Key Laboratory of Early Sprouting Tea Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou 325006, China; (Y.H.); (Y.T.); (C.P.)
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (S.S.); (A.J.); (X.L.)
| | - Guanghui Zeng
- Wenzhou Key Laboratory of Early Sprouting Tea Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou 325006, China; (Y.H.); (Y.T.); (C.P.)
| |
Collapse
|
4
|
Tong L, Jiang Y, Zhang X, Zhang X, Zhang W, Ren G, Chen Z, Zhao Y, Guo S, Yan H, Pan Y, Duan JA, Zhang F. Metabolic and molecular basis of flavonoid biosynthesis in Lycii fructus: An integration of metabolomic and transcriptomic analysis. J Pharm Biomed Anal 2025; 255:116653. [PMID: 39731927 DOI: 10.1016/j.jpba.2024.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Flavonoids serve as bioactive components and contribute to medicinal and nutritional profile of Lycii fructus. However, there is limited information regarding the influence of ecological environments on the flavonoid biosynthesis pathway. In this study, we integrated transcriptome sequencing and metabonomic techniques across three distinct cultivation regions to elucidate the processes of flavonoids biosynthesis and the associated gene expression levels in L. fructus. LC-MS/MS based metabolomics revealed significant variations in metabolite profiles including 43 differential flavonoid metabolites, predominantly consisting of flavanol compounds across diverse regions. Additionally, 154 significantly differentially expressed genes (DEGs) were categorized in the flavonoid biosynthesis identified by de novo transcriptome assembly. Transcription factors C2C2 MYB, NAC, WRKY, AP2/ERF and B3 superfamily were the mainly hub genes regulating the flavonoids biosynthesis. The flavonoid pathway was built through integrated analysis of DEGs and DAMs to illustrate the molecular mechanism of flavonoid biosynthesis. Precipitation and temperature may serve as the primary environmental factors that affected the flavonoids variations. This study proposed a schematic of flavonoid biosynthesis in L. fructus, and further provided evidence for environmental response of L. fructus.
Collapse
Affiliation(s)
- Limei Tong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yinxiu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Xinrun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Xia Zhang
- School of Pharmacy, Key Laboratory of Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750021, PR China.
| | - Wenhua Zhang
- Bairuiyuan Gouqi Co., Ltd, Yinchuan 750200, China.
| | - Gang Ren
- Haixi Agriculture and Animal Husbandry Technology Extension Service Center, Delingha 817000, China.
| | - Zhanping Chen
- Haixi Agriculture and Animal Husbandry Technology Extension Service Center, Delingha 817000, China.
| | - Yuling Zhao
- Jinghe Gouqi Industry Development Center of Bortala Mongolian Autonomous Prefecture, Bortala 833399, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yang Pan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
5
|
Ai Z, Hu S, Ji L, Mu B, Yang Y. The Combination of Shaking and Yellow-Light Withering Promote the Volatile Aroma Components and the Aroma Quality of Black Tea. Foods 2025; 14:758. [PMID: 40077461 PMCID: PMC11899712 DOI: 10.3390/foods14050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The application of shaking during the withering process has been shown to significantly enhance the floral aroma of black tea. However, prior to this study, there was limited research on the effects of shaking combined with other withering treatments on the aroma components of black tea. In this study, the aroma attributes of black teas processed with shaking combinations of yellow-light or high-temperature withering (YLS, HTS, and HYS) were evaluated through sensory evaluation, and the volatile composition and identification of key aroma compounds in black teas and in-process withered tea leaves were analyzed by gas chromatography-mass spectrometry (GC-MS). The results indicated that black teas subjected to different shaking combinations exhibited a distinct floral aroma with higher volatile compound content, with the YLS treatment showing the most significant aroma improvement. Eight volatile compounds with relative odor activity values (rOAV) > 1 were identified from 53 differential volatile compounds in black tea under different shaking combinations as the most important contributors to aroma quality. Linalool, trans-β-Ionone, α-cedrene, and nonanal were identified as key floral volatiles with high rOAVs. Their concentrations in YLS were notably higher compared to those in S, both in withered tea leaves (with the exception of trans-β-Ionone) and in the final dry black teas, suggesting that there may be a synergistic effect between the yellow-light withering and the shaking process in enhancing these key floral compounds. Overall, this study found that shaking combined with yellow-light withering can improve the aroma composition and quality of black tea, providing a theoretical basis and practical guidance for the production and optimization of high-aroma black tea.
Collapse
Affiliation(s)
| | | | | | | | - Yiyang Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Z.A.); (L.J.)
| |
Collapse
|
6
|
Li Y, Chen Y, Dai X, Pan K, Mi X, Qiao D, Chen J, Chen Z, Shen Q, Zhang X. A comprehensive study of the physiology and chemistry of tea withering based on untargeted metabolomic, transcriptomic, and biochemical analyses. Food Chem 2025; 464:141713. [PMID: 39467504 DOI: 10.1016/j.foodchem.2024.141713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Withering is an important process for achieving high-quality flavor in tea. In this study, histological, metabolomics, transcriptomics, and biochemical analyses were combined to comprehensively explore the accumulation and molecular regulatory profiles of quality metabolites during tea withering. The results of tissue staining indicated that as the water content decreased, the vitality of the nucleus weakened, cytoplasmic content increased, flavone content decreased, and proteins degraded. Omics analysis showed that the total content of soluble sugars, free amino acids, and terpenoids increased, whereas that of catechins decreased significantly, although the caffeine content barely changed. Biochemical analysis revealed that the translated products of genes CSA010827 and CSA001819 catalyzed the biosynthesis of galactose and flavanol 3-O-glycosides, respectively, thereby increasing the content of soluble sugars and contributing to the astringent taste. Overall, by combining omics with histological and biochemical analyses, we revealed the metabolic profile and possible molecular mechanisms during the withering process of tea.
Collapse
Affiliation(s)
- Yan Li
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Yao Chen
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Xinlong Dai
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ke Pan
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Xiaozeng Mi
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Dahe Qiao
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Juan Chen
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Zhengwu Chen
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China.
| | - Qiang Shen
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China.
| | - Xiaoqin Zhang
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China.
| |
Collapse
|
7
|
Huang T, Zhang Y, Wang X, Zhang H, Chen C, Chen Q, Zhong Q. Comprehensive metabolite profiling reveals the dynamic changes of volatile and non-volatile metabolites in albino tea cultivar 'Ming guan' (MG) during white tea withering process. Food Res Int 2025; 202:115784. [PMID: 39967118 DOI: 10.1016/j.foodres.2025.115784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
'Ming guan'(MG), an elite albino cultivar deriving from the progeny of the traditional albino cultivar 'Bai jiguan', is a promising candidate for white tea production due to its favorable amino acid to phenol ratio. In this study, a comprehensive metabolomics analysis using ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS) were conducted to reveal the dynamic changes of non-volatile and volatile organic compounds (VOCs) throughout the withering processing of MG white tea. Meanwhile, multivariate statistical analyses were applied to screen for the characteristic components in the flavor and aroma of MG white tea. A total of 625 non-volatile metabolites and 118 VOCs were determined, of which 90 non-volatile metabolites (VIP ≥ 1, FC ≥ 2 or ≤ 0.5) were identified as key flavor components significantly changed throughout the withering process. The relative odor activity value (ROAV) analysis highlighted 22 VOCs (ROAV ≥ 1) with substantial effect on aroma formation, of which geraniol, (E)-2-hexenal, 4-methoxy-benzaldehyde and guaiacol emerging as the most key aroma constituents of MG white tea, endowing MG white tea with fruity and floral odor notes. This study offered a comprehensive investigation into metabolite changes in MG white tea, contributing valuable insights for the innovation of new white tea products utilizing albino tea plant mutants.
Collapse
Affiliation(s)
- Ting Huang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yinggen Zhang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiuping Wang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Hui Zhang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Quanbin Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qiusheng Zhong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
8
|
Wen M, Hu W, Li L, Long P, Han Z, Ke JP, Deng Z, Zhu M, Zhang L. Developed metabolomics approach reveals the non-volatile color-contributing metabolites during Keemun congou black tea processing. Food Chem 2025; 463:141222. [PMID: 39270495 DOI: 10.1016/j.foodchem.2024.141222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
While key aroma and taste compounds of Keemun Congou black teas (KCBT) form during aeration and thermal stages, it is still unknown whether these processing stages also produce non-volatile color-contributing metabolites. Through integrating metabolomics with correlation and ridge regression analyses, 190 metabolites were identified as marker compounds that reclassified 15 KCBT samples collected from five processing stages into four groups. Meanwhile, the results of quantification and heatmap analysis showed that the concentrations of theaflavins and theasinensins significantly increased, as catechin decreased, after rolling, while flavonoid aglycones and polyunsaturated fatty acids increased throughout drying. Regression analysis between marker compound levels and total color difference values (∆E) revealed that the major color contributors were 3,5-dicaffeoylquinic acid, glucosyl-dehydrodigallic acid, theacitrin A, kaempferol-O-robinobioside, and (-)-epigallocatechin, with regression coefficients (absolute value) exceeding 4 × 10-2. Overall, the present study confirmed that rolling and drying were the two vital stages responsible for the color formation of KCBT.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Wei Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Lu Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zhiyang Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Ntezimana B, Xu W, Li Y, Zhou J, Pathak S, Chen Y, Yu Z, Zhang D, Ni D. Integrated Transcriptomic and Metabolomic Analyses Reveal Changes in Aroma- and Taste-Related Substances During the Withering Process of Black Tea. Foods 2024; 13:3977. [PMID: 39683049 DOI: 10.3390/foods13233977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Withering is one of the major processing steps critical for the quality of black tea. In this study, we investigated the mechanisms underlying the physicochemical changes in metabolites and gene expression during the withering process of black tea using metabolomic and transcriptomic approaches, respectively. Based on gas chromatography/mass spectrometry non-targeted metabolomic approaches (GC-MS) and ultra-high performance liquid chromatograph-tandem mass spectrometry (UHPLC-MS/MS), a total of 76 volatile compounds and 160 non-volatile compounds were identified from tea leaves, respectively. RNA-seq analysis revealed that the number of differentially expressed genes (DEGs) for the comparative combination of withering time (i.e., W4h, W6h, W8h, W10h, and W12h) compared with CK (i.e., fresh leaves) were 3634, 2906, 4127, 5736, and 7650, respectively. The core genes in starch metabolism, namely alpha-amylase (AMY) and beta-amylase (BAM), were upregulated as withering time increased. AMY and BAM contributed to the decomposition of starch to increase the soluble sugars. The content of tea leaf alcohols and aldehydes, which are the vital contributors for greenish aroma, gradually decreased as withering time increased due to the downregulation of associated genes while the compounds related to sweet and fruity characteristics increased due to the upregulated expression of related genes. Most DEGs involved in amino acids were significantly upregulated, leading to the increase in free amino acids content. However, DEGs involved in catechins metabolism were generally downregulated during withering, and resulted in a reduction in catechins content and the accumulation of theaflavins. The same trend was observed in alpha-linolenic acid metabolism-related genes that were downregulated and enhanced the reduction in grassy aroma in black tea. The weighted gene co-expression network analysis (WGCNA) of DEGs showed that one module can be associated with more components and one component can be regulated by various modules. Our findings provide new insights into the quality formation of black tea during the withering process.
Collapse
Affiliation(s)
- Bernard Ntezimana
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Wenluan Xu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Yuchuan Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Sujan Pathak
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Dejiang Ni
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Hao Z, Wang J, Zhuang J, Feng X, Lv H, Feng J, Ye S, Tian W, Pan G, Chen P, Lin H, Chu Q. Another inner truth of shaking: Water migration and transformation-advanced physicochemical alterations in tea leaves. Food Chem 2024; 467:142338. [PMID: 39647387 DOI: 10.1016/j.foodchem.2024.142338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Shaking, essential in oolong tea production, is becoming an innovative method to impart floral fragrance. Research on shaking primarily concentrates on biological underpinnings, including modifications in gene expression and stress-triggered enzymatic catalysis, and consequent physicochemical properties. Water phase and distribution, reshaped by shaking and affected the biological and physicochemical alterations of tea leaves, is always ignored. This work utilized TEM, LF-NMR, UPLC-QqQ-MS, and GC-TOF-MS to explore physicochemical alterations during shaking. Results revealed shaking induced stomatal opening, water migration from stems to leaf veins, and a reduction in free water, transformed into bound water. Mechanical stimulation disrupted cell microstructures, including vacuoles, chloroplasts, and cell walls, releasing precursors and enzyme substrates. Shaking triggered intracellular physicochemical reactions that decreased polyphenols, amino acids, chlorophyll, and carotenoids, while increasing organic acids and sugars. Also catalyzed the synthesis of aromatic compounds like (E)-nerolidol, β-ionone epoxide, and α-farnesene, shaping the floral-fruity aroma and mellow taste of tea.
Collapse
Affiliation(s)
- Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China.
| | - Jinyuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayun Zhuang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Helin Lv
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weisu Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guanjun Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China.
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Wang J, Qu L, Yu Z, Jiang Y, Yu C, Zhu X, Lin Q, Niu L, Yu Y, Lin Q, Shang Y, Yuan H, Hua J. Targeted quantitative metabolomic and flavor objective quantification technique reveal the impact mechanism of shaking on black tea quality and non-volatile metabolites. Food Chem 2024; 458:140226. [PMID: 38943961 DOI: 10.1016/j.foodchem.2024.140226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Shaking constitutes a pivotal technique for enhancing black tea quality; nevertheless, its impact on the transformation mechanism of non-volatile metabolites (NVMs) in black tea remains obscure. The present study aimed to investigate the impact of shaking-withering methods (SWM) and traditional-withering methods (TWM) on black tea quality and NVMs conversion. A total of 57 NVMs and 14 objective quantitative indicators were obtained. SWM enhanced sweetness and umami taste, as well as appearance and liquor color brightness of black tea. Eight key differential NVMs were identified by multivariate statistical and dose over threshold value analysis. Metabolic pathway and evolution law analysis revealed that SWM enhanced the oxidation of catechins and flavonol glycosides, promoted the decarboxylation of glutamic acid, then facilitated the formation of theaflavin-3,3'-digallate, finally enhanced the taste and color quality of black tea. This study offers theoretical guidance and technical support for the targeted processing of high-quality black tea.
Collapse
Affiliation(s)
- Jinjin Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Lichi Qu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Ziming Yu
- Xianning Academy of Agricultural Sciences, 168 Wenquan Hesheng Road, Xianning, Hubei 437199, PR China
| | - Yongwen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Chengfa Yu
- Fu'an Tea Industry Development Center, 11 Jiefang Road, Fu'an, Fujian, 355099, PR China
| | - Xizhe Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Qingju Lin
- Fu'an Tea Industry Development Center, 11 Jiefang Road, Fu'an, Fujian, 355099, PR China
| | - Linchi Niu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yaya Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Qing Lin
- Fu'an Tea Industry Development Center, 11 Jiefang Road, Fu'an, Fujian, 355099, PR China
| | - Yan Shang
- Hangzhou Zhishan Tea Co., LTD, 123 Tongwu Village Road West, Hangzhou, Zhejiang 310000, PR China
| | - Haibo Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Jinjie Hua
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
12
|
Liu S, Fan B, Li X, Sun G. Global hotspots and trends in tea anti-obesity research: a bibliometric analysis from 2004 to 2024. Front Nutr 2024; 11:1496582. [PMID: 39606571 PMCID: PMC11598529 DOI: 10.3389/fnut.2024.1496582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background The prevalence of obesity and its related ailments is on the rise, posing a substantial challenge to public health. Tea, widely enjoyed for its flavors, has shown notable potential in mitigating obesity. Yet, there remains a lack of exhaustive bibliometric studies in this domain. Methods We retrieved and analyzed multidimensional data concerning tea and obesity studies from January 2004 to June 2024, using the Web of Science Core Collection database. This bibliometric investigation utilized tools such as Bibliometrix, CiteSpace, and VOSviewer to gather and analyze data concerning geographical distribution, leading institutions, prolific authors, impactful journals, citation patterns, and prevalent keywords. Results There has been a significant surge in publications relevant to this field within the last two decades. Notably, China, Hunan Agricultural University, and the journal Food and Function have emerged as leading contributors in terms of country, institution, and publication medium, respectively. Zhonghua Liu of Hunan Agricultural University has the distinction of most publications, whereas Joshua D. Lambert of The State University of New Jersey is the most cited author. Analyses of co-citations and frequently used keywords have identified critical focus areas within tea anti-obesity research. Current studies are primarily aimed at understanding the roles of tea components in regulating gut microbiota, boosting fat oxidation, and increasing metabolic rate. The research trajectory has progressed from preliminary mechanism studies and clinical trials to more sophisticated investigations into the mechanisms, particularly focusing on tea's regulatory effects on gut microbiota. Conclusion This study offers an intricate overview of the prevailing conditions, principal focus areas, and developmental trends in the research of tea's role against obesity. It delivers a comprehensive summary and discourse on the recent progress in this field, emphasizing the study's core findings and pivotal insights. Highlighting tea's efficacy in obesity prevention and treatment, this study also points out the critical need for continued research in this area.
Collapse
Affiliation(s)
- Shan Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Boyan Fan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoping Li
- The Center for Treatment of Pre-disease, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Guixiang Sun
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
13
|
Yu Y, Zhu X, Yuan B, Chen M, Wang J, Zhu L, Jiang Y, Yuan H, Hua J. Investigation of non-volatile metabolite variations during round green tea processing and effect of pan-frying degree using untargeted metabolomics and objective quantification. Food Chem 2024; 457:140067. [PMID: 38959681 DOI: 10.1016/j.foodchem.2024.140067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 07/05/2024]
Abstract
Round green tea (RGT) presents unique properties and is widely distributed in China, and during processing, it undergoes dynamic changes in non-volatile metabolites (NVMs), which are poorly understood. Utilizing UHPLC-Q-Exactive/MS analysis, this study comprehensively characterized 216 NVMs during RGT processing and identified fixation and pan-frying as key processes influencing NVMs. Additionally, 23 key differential NVMs were screened, with amino acid and flavonoid metabolism highlighted as key metabolic pathways for RGT taste and color quality. The impact of pan-frying degree on shape, color, and taste was also explored. Moderate pan-frying led to optimal results, including a tight and round shape, green and bright color, mellow and umami taste, and reduced astringent and bitter taste NVMs, including epigallocatechin gallate, procyanidin B2, myricetin 3-O-galactoside, quinic acid, strictinin, phenylalanine, and theobromine. This study addresses the NVM research gap in RGT processing, thus providing a technical foundation for the precision-oriented processing of high-quality tea.
Collapse
Affiliation(s)
- Yaya Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Xizhe Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Bifeng Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Ming Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjin Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Li Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Yongwen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Haibo Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Jinjie Hua
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
14
|
Li Q, Hu Q, Ou X, He J, Yu X, Hao Y, Zheng Y, Sun Y. Insights into "Yin Rhyme": Analysis of nonvolatile components in Tieguanyin oolong tea during the manufacturing process. Food Chem X 2024; 23:101729. [PMID: 39253009 PMCID: PMC11381817 DOI: 10.1016/j.fochx.2024.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Tieguanyin (TGY) is renowned for its distinctive "Yin Rhyme" flavor. To elucidate the underlying formation mechanism, we conducted sensory evaluations, electronic tongue analysis, and widely-targeted metabolomics. Our sensory evaluations and electronic tongue results indicated that TGY exhibits a thick and mellow taste profile, contributing to the "Yin Rhyme" flavor. Metabolomics analysis of tea products revealed that TGY shows significantly higher concentrations of umami substances (L-glutamate, L-theanine) and bitter substances (valine, catechins) compared to Jinguanyin (JGY). Additionally, metabolomic analysis during different oolong tea processing stages revealed significant differences in 21 substances, including L-glutamate, L-theanine, valine, and catechins, between fresh leaves of both varieties. These substances exhibited distinct fluctuation patterns during processing, indicating that the cultivar plays a crucial role in developing the "Yin Rhyme" flavor, which was enhanced throughout processing. This study provides a theoretical foundation for understanding the formation of the unique "Yin Rhyme" flavor of TGY.
Collapse
Affiliation(s)
- Qiuming Li
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingcai Hu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxi Ou
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jihang He
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinru Yu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunzhi Hao
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yucheng Zheng
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Ni Z, Chen W, Pan H, Xie D, Wang Y, Zhou J. Biochemical insights into tea foam: A comparative study across six categories. Food Chem X 2024; 23:101596. [PMID: 39040147 PMCID: PMC11261299 DOI: 10.1016/j.fochx.2024.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Tea foam properties, crucial indicators of tea quality, have gained renewed interest due to their potential applications in innovative beverages and foods. This study investigated the foaming properties and chemical foundations of six major tea categories through morphological observations and biochemical analyses. White tea exhibited the highest foaming ability at 56.28%, while black tea showed the best foam stability at 84.01%. Conversely, green tea had the lowest foaming ability (10.83%) and foam stability (54.24%). These superior foaming characteristics are attributed to the relatively low lipid content and acidic pH values. Surprisingly, no significant correlation was found between tea saponin content and foaming properties. Instead, specific amino acids (including Tyr, Gaba, Phe, Ile, and Leu) and catechins (GA and CG) were identified as potential contributors. These results deepen our understanding of tea foam formation and offer insights into utilizing tea-derived plant-based foams in food products.
Collapse
Affiliation(s)
- Zixin Ni
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongjing Pan
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dengchao Xie
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jihong Zhou
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Wu Y, Wang X, Chen L, Li Q, He J, Deng X, Xu J, Che R, Zhou J, Yuan W, Wu T, Tian J, Chen Y, Wang B. Effects of Five Different Withering Methods on the Composition and Quality of Congou Black Tea. Foods 2024; 13:3456. [PMID: 39517239 PMCID: PMC11545746 DOI: 10.3390/foods13213456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
To explore the effects of different withering methods on the quality of Congou black tea, this study focused on five different withering methods: natural withering, warm-air withering, sun-natural combined withering, sun withering, and shaking withering. Gas chromatography‒mass spectrometry (GC‒MS), high-performance liquid chromatography (HPLC), and ion-exchange chromatography techniques were used to analyze the nonvolatile and volatile components and composition of the tea. The results revealed significant differences (p < 0.05) in the contents of nonvolatile constituents including caffeine, polyphenols, soluble sugars, free amino acids and their components, theaflavins, thearubigins, and catechins among the five different withering methods, with varying degrees of correlation between these components. A total of 227 aroma compounds were detected, and significant differences in the contents of alcohols, aldehydes, and ketones were observed. A relative odor activity value (ROVA) analysis of the aroma compounds revealed that 19 compounds had an ROVA > 1. Among them, benzylaldehyde, trans-2-decenal, decanal, benzaldehyde, nonanal, hexanal, trans-linalool, and geraniol from the shaking withering method had significantly higher ROVA values than those from the other withering methods, which may be the reason for the prominent floral and fruity aroma of shaking withering. This study revealed the impact of different withering methods on the quality of Congou black tea, providing a scientific basis for the development of Congou black tea with different flavors and the improvement of Congou black tea processing techniques.
Collapse
Affiliation(s)
- Yamin Wu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Xinghua Wang
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Lijiao Chen
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Junjie He
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Xiujuan Deng
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Jiayi Xu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Raoqiong Che
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Jianyun Zhou
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Wenxia Yuan
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Tianyu Wu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Juan Tian
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Yaping Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Baijuan Wang
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| |
Collapse
|
17
|
Qi D, Shi Y, Lu M, Ma C, Dong C. Effect of withering/spreading on the physical and chemical properties of tea: A review. Compr Rev Food Sci Food Saf 2024; 23:e70010. [PMID: 39267185 DOI: 10.1111/1541-4337.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Withering and spreading, though slightly differing in their parameters, share the same aim of moisture reduction in tea leaves, and they have a strong impact on the physical and chemical properties of tea. Even though researchers tend to pay close attention to the characteristic crafts of different teas, increasing investigations begin to focus on the withering process due to its profound effects on the composition and content of quality-related compounds. This review provides an overview of tea withering process to address questions comprehensively during withering. Hence, it is expected in this review to figure out factors that affect withering results, the way withering influences the physical and chemical properties of withered leaves and tea quality, and intelligent technologies and devices targeted at withering processes to promote the modernization of the tea industry. Herein, several key withering parameters, including duration, temperature, humidity, light irradiation, airflow, and more, are tailored to different tea types, demanding further exploration of advanced withering devices and real-time monitoring systems. The development of real-time monitoring technology enables objective and real-time adjustment of withering status in order to optimize withering results. Tea quality, including taste, aroma, and color quality, is first shaped during withering due to the change of composition and content of quality-related metabolites through (non)enzymatic reactions, which are easily influenced by the factors above. A thorough understanding of withering is key to improving tea quality effectively and scientifically.
Collapse
Affiliation(s)
- Dandan Qi
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yali Shi
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Min Lu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chengying Ma
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, Guangdong, China
| | - Chunwang Dong
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
18
|
Xiang L, Zhu C, Qian J, Zhou X, Wang M, Song Z, Chen C, Yu W, Chen L, Zeng L. Positive contributions of the stem to the formation of white tea quality-related metabolites during withering. Food Chem 2024; 449:139173. [PMID: 38593722 DOI: 10.1016/j.foodchem.2024.139173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Most teas, including white tea, are produced from tender shoots containing both leaf and stem. However, the effect of the stem on white tea quality remains unclear, especially during withering, an essential process. Therefore, this study investigated the withering-induced changes in the leaves and stems of Camellia sinensis cv. 'Fudingdabai' by multi-group analysis. During withering, the levels of catechin and theobromine (i.e., major flavor-related compounds) decreased slightly, mainly in the leaves. The abundance of some proteinaceous amino acids related to fresh taste increased in stems due to increased protein hydrolysis. In addition, changes in biosynthetic pathways caused a decrease in theanine (a major non-proteinaceous amino acid) and an increase in gamma-aminobutyric acid in stems. Terpenes, mainly in the stems, were partially affected by withering. Phenylacetaldehyde, a major contributor to white tea aroma, increased mainly in the stems. These findings reflect the positive contribution of the stem to white tea quality.
Collapse
Affiliation(s)
- Lihui Xiang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin'an District, Fuzhou 350012, China
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Jiajia Qian
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Miao Wang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Zhenshuo Song
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin'an District, Fuzhou 350012, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin'an District, Fuzhou 350012, China
| | - Wenquan Yu
- Fujian Academy of Agricultural Sciences, No. 247 Wusi Road, Gulou District, Fuzhou 350003, China.
| | - Lin Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin'an District, Fuzhou 350012, China.
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
19
|
Feng J, Zhuang J, Chen Q, Lin H, Chu Q, Chen P, Wang F, Yu B, Hao Z. The effect of maturity of tea leaves and processing methods on the formation of milky flavor in white tea - A metabolomic study. Food Chem 2024; 447:139080. [PMID: 38520904 DOI: 10.1016/j.foodchem.2024.139080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Targeted metabolomics combined with chemometrics were applied to investigate the flavor profiles of 4 white tea samples, which were produced from different maturity fresh tea leaves with different withering methods. Mature leaves that underwent novel withering process at higher temperature (28-30℃) and humidity (75 ± 3 %) (MN) were characterized by intense milky flavor. The content of free amino acids, catechins, and soluble sugars in MN were significantly lower than that in the other 3 tea samples, resulting in a sweet and mellow taste with low bitterness. Meanwhile, MN possessed the highest intensity of milky aroma, which could be mainly attributed to the existence of dihydro-5-pentyl-2(3H)-furanone and 2-pentyl-furan as the key volatile substances with coconut and creamy fragrance. These findings provide insight into the substance foundations of milky flavor, and identified leaf maturity and processing method as the determining factors of the milk-flavored white tea (MFWT).
Collapse
Affiliation(s)
- Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jiayun Zhuang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qianlian Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Fang Wang
- Tea Sensory Evaluation Research Center, Ningde Normal University, Ningde 352000, Fujian, China
| | - Bugui Yu
- Zhenghe Ruiming Tea Co., LTD, Zhenghe 353600, Fujian, China
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, Fujian, China.
| |
Collapse
|
20
|
He Y, Liu S, Kang Y, Periakaruppan R, Zhuang J, Wang Y, Chen X, Liu X, Li X. The Light-Intensity-Affected Aroma Components of Green Tea during Leaf Spreading. Foods 2024; 13:2349. [PMID: 39123541 PMCID: PMC11311319 DOI: 10.3390/foods13152349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Leaf spreading is a key processing step that affects the aroma formation of green tea. The effects of a single-light wavelength on the aroma and taste of tea have been extensively studied. Less attention has been paid to the effect of different complex light intensities on the formation of green tea's volatile aroma during leaf spreading. The current study was designed to evaluate how leaf spreading under different complex light intensities relates to the quality of green tea. Using headspace solid-phase micro-extraction and gas chromatography-mass spectrometry (HS-SPME/GC-MS), volatile flavor compounds in green tea were analyzed during leaf spreading in five different light conditions. Multivariate statistical analysis and odor activity values (OAVs) were used to classify these samples and identify key odors. Eight distinct groups, including ninety volatile compounds, were detected. The most prevalent volatile compounds found in green tea samples were hydrocarbons and alcohols, which accounted for 29% and 22% of the total volatile compounds, respectively. Fourteen volatile compounds (OAV > 1) were identified as key active differential odorants. The chestnut-like aroma in green tea was mostly derived from 3-methyl-butanal and linalool, which were significantly accumulated in medium-intensity light (ML).
Collapse
Affiliation(s)
- Youyue He
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Shujing Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Yuzhong Kang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Rajiv Periakaruppan
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore 641 014, India;
| | - Jing Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Xinqiu Liu
- College of Humanities and Social Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
- Huanghai Science and Technology Innovation Research Institute of Shandong, Rizhao 276801, China
| |
Collapse
|
21
|
Sala-Cholewa K, Tomasiak A, Nowak K, Piński A, Betekhtin A. DNA methylation analysis of floral parts revealed dynamic changes during the development of homostylous Fagopyrum tataricum and heterostylous F. esculentum flowers. BMC PLANT BIOLOGY 2024; 24:448. [PMID: 38783206 PMCID: PMC11112930 DOI: 10.1186/s12870-024-05162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Proper flower development is essential for plant reproduction, a crucial aspect of the plant life cycle. This process involves precisely coordinating transcription factors, enzymes, and epigenetic modifications. DNA methylation, a ubiquitous and heritable epigenetic mechanism, is pivotal in regulating gene expression and shaping chromatin structure. Fagopyrum esculentum demonstrates anti-hypertensive, anti-diabetic, anti-inflammatory, cardio-protective, hepato-protective, and neuroprotective properties. However, the heteromorphic heterostyly observed in F. esculentum poses a significant challenge in breeding efforts. F. tataricum has better resistance to high altitudes and harsh weather conditions such as drought, frost, UV-B radiation damage, and pests. Moreover, F. tataricum contains significantly higher levels of rutin and other phenolics, more flavonoids, and a balanced amino acid profile compared to common buckwheat, being recognised as functional food, rendering it an excellent candidate for functional food applications. RESULTS This study aimed to compare the DNA methylation profiles between the Pin and Thrum flower components of F. esculentum, with those of self-fertile species of F. tataricum, to understand the potential role of this epigenetic mechanism in Fagopyrum floral development. Notably, F. tataricum flowers are smaller than those of F. esculentum (Pin and Thrum morphs). The decline in DNA methylation levels in the developed open flower components, such as petals, stigmas and ovules, was consistent across both species, except for the ovule in the Thrum morph. Conversely, Pin and Tartary ovules exhibited a minor decrease in DNA methylation levels. The highest DNA methylation level was observed in Pin stigma from closed flowers, and the most significant decrease was in Pin stigma from open flowers. In opposition, the nectaries of open flowers exhibited higher levels of DNA methylation than those of closed flowers. The decrease in DNA methylation might correspond with the downregulation of genes encoding methyltransferases. CONCLUSIONS Reduced overall DNA methylation and the expression of genes associated with these epigenetic markers in fully opened flowers of both species may indicate that demethylation is necessary to activate the expression of genes involved in floral development.
Collapse
Affiliation(s)
- Katarzyna Sala-Cholewa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland.
| | - Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland.
| |
Collapse
|
22
|
Qin M, Zhou J, Luo Q, Zhu J, Yu Z, Zhang D, Ni D, Chen Y. The key aroma components of steamed green tea decoded by sensomics and their changes under different withering degree. Food Chem 2024; 439:138176. [PMID: 38091790 DOI: 10.1016/j.foodchem.2023.138176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Steamed green tea has a long history and unique aroma, but little is known about its key aroma components. In this study, 173 volatiles in steamed green tea were identified using solvent-assisted flavor evaporation and headspace-solid phase microextraction plus two chromatographic columns of different polarities. Aroma extract dilution analysis revealed 48 highly aroma-active compounds with flavor dilution factors 64-1024. Internal standards were used to calculate odorant active value (OAV), and 11 OAV > 1 key aroma compounds were determined. Omission test identified eight substances, including dimethyl sulfide, (E)-β-ionone, cis-jasmone, linalool, nonanal, heptanal, isovaleraldehyde and (Z)-3-hexenol, as the key aroma active compounds of steamed green tea. With the increase of withering degree, the content of these substances increased first and then decreased except for heptanal and cis-jasmone. Moreover, the water content of 62 % was suggested to be an appropriate withering degree during the processing of steamed green tea.
Collapse
Affiliation(s)
- Muxue Qin
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qianqian Luo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junyu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
23
|
Wang Z, Gao C, Zhao J, Zhang J, Zheng Z, Huang Y, Sun W. The metabolic mechanism of flavonoid glycosides and their contribution to the flavor evolution of white tea during prolonged withering. Food Chem 2024; 439:138133. [PMID: 38064841 DOI: 10.1016/j.foodchem.2023.138133] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
This study was the first to comprehensively investigate the metabolic mechanism of flavonoid glycosides (FGs) and their contribution to flavor evolution during white tea processing using quantitative descriptive analysis, metabolomics, dose-over-threshold factors and pseudo-first-order kinetics. A total of 223 flavonoids were identified. Total FGs decreased from 7.02 mg/g to 4.35 mg/g during processing, compared to fresh leaves. A total of 86 FGs had a significant impact on the flavor evolution and 9 key flavor FGs were identified. The FG biosynthesis pathway was inhibited during withering, while the degradation pathway was enhanced. This promoted the degradation of 9 key flavor FGs following pseudo-first-order kinetics during withering. The degradation of the FGs contributed to increase the taste acceptance of white tea from -4.18 to 1.32. These results demonstrated that water loss stress during withering induces the degradation of key flavor FGs, contributing to the formation of the unique flavor of white tea.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamin Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jialin Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqiang Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
24
|
Kong W, Zhao P, Zhang Q, Yang J, Zhu Q, Zhang Y, Deng X, Chen X, Lin J, Zhang X. Chromatin accessibility mediated transcriptome changes contribute to flavor substance alterations and jasmonic acid hyperaccumulation during oolong tea withering process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:679-693. [PMID: 37921032 DOI: 10.1111/tpj.16521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
During the oolong tea withering process, abiotic stresses induce significant changes in the content of various flavor substances and jasmonic acid (JA). However, the changes in chromatin accessibility during withering and their potential impact remain poorly understood. By integrating ATAC-seq, RNA-seq, metabolite, and hormone assays, we characterized the withering treatment-induced changes in chromatin accessibility, gene expression levels, important metabolite contents, and JA and JA-ILE contents. Additionally, we analyzed the effects of chromatin accessibility alterations on gene expression changes, content changes of important flavor substances, and JA hyperaccumulation. Our analysis identified a total of 3451 open- and 13 426 close-differentially accessible chromatin regions (DACRs) under withering treatment. Our findings indicate that close-DACRs-mediated down-regulated differentially expressed genes (DEGs) resulted in the reduced accumulation of multiple catechins during withering, whereas open-DACRs-mediated up-regulated DEGs contributed to the increased accumulation of important terpenoids, JA, JA-ILE and short-chain C5/C6 volatiles. We further highlighted important DACRs-mediated DEGs associated with the synthesis of catechins, terpenoids, JA and JA and short-chain C5/C6 volatiles and confirmed the broad effect of close-DACRs on catechin synthesis involving almost all enzymes in the pathway during withering. Importantly, we identified a novel MYB transcription factor (CsMYB83) regulating catechin synthesis and verified the binding of CsMYB83 in the promoter-DACRs regions of key catechin synthesis genes using DAP-seq. Overall, our results not only revealed a landscape of chromatin alters-mediated transcription, flavor substance and hormone changes under oolong tea withering, but also provided target genes for flavor improvement breeding in tea plant.
Collapse
Affiliation(s)
- Weilong Kong
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Ping Zhao
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Qing Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Jingjing Yang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
- College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao, 266109, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yanbing Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiao Chen
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
- College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao, 266109, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| |
Collapse
|
25
|
Yang Y, Xie J, Wang Q, Deng Y, Zhu L, Zhu J, Yuan H, Jiang Y. Understanding the dynamic changes of volatile and non-volatile metabolites in black tea during processing by integrated volatolomics and UHPLC-HRMS analysis. Food Chem 2024; 432:137124. [PMID: 37633132 DOI: 10.1016/j.foodchem.2023.137124] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023]
Abstract
Processing technology has an important effect on the flavor quality of black tea. However, the dynamic changes of volatile and non-volatile metabolites in black tea during processing are poorly understood. In this study, the volatile and non-volatile compounds during black tea processing were comprehensively characterized by integrated volatolomics and UHPLC-Q-Exactive/MS analysis. Volatile and non-volatile metabolites changed continuously throughout the processing process, especially during the withering stage. A total of 178 volatile metabolites and 103 non-volatile metabolites were identified. Among them, 11 volatile components with relative odor activity value greater than 1 (including dimethyl sulfide, 3-methylbutanal, 2-methylbutanal, β-myrcene, β-ocimene, linalool, methyl salicylate, β-cyclocitral, β-citral, citral, and β-ionone) were regarded as key aroma-active components responsible for finished black tea with sweet aroma. This study provides a comprehensive understanding of dynamic evolution trajectory of volatile and non-volatile metabolites during processing, which lays a theoretical foundation for the targeted processing of high-quality black tea.
Collapse
Affiliation(s)
- Yanqin Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jialing Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qiwei Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Li Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jiayi Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
26
|
Fu Z, Chen L, Zhou S, Hong Y, Zhang X, Chen H. Analysis of differences in the accumulation of tea compounds under various processing techniques, geographical origins, and harvesting seasons. Food Chem 2024; 430:137000. [PMID: 37531914 DOI: 10.1016/j.foodchem.2023.137000] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
The processing techniques, geographical origins, and harvesting seasons have a significant impact on tea compound accumulation, leading to different flavor characteristics and consumer preferences for tea. Herein, six categories of tea involving 1329 samples revealed the distribution characteristics via compound accumulation, as well as the impact of production regions and harvesting seasons on flavor chemicals. With the increasing fermentation degree, the average content of tea polyphenols, catechins, and theanine in dark tea decreased by 57.78%, 94.64%, and 98.57% compared to green tea, respectively. The compounds in tea fluctuate with the geographical origins and seasons, with theanine and free amino acids being more accumulated in the Jiangnan tea region in spring tea, while total polyphenols and catechins were more abundant in Southwest China's tea region in summer and autumn tea. This study comprehensively understands the accumulation characteristics of tea compounds corresponding to processing techniques and the geographical origins of Chinese tea.
Collapse
Affiliation(s)
- Zhouping Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Liyan Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Sujuan Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Yiwei Hong
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
27
|
Chen M, Zhang Y, Wang Y, Cheng P, Zhang Q, Li M, Jia X, Pan Y, Lin S, Luo Z, Wang H, Ye J. Transcriptomic analysis of the effect of shaking and tumbling degree on quality formation of Wuyi rock tea. J Food Sci 2024; 89:81-95. [PMID: 37983847 DOI: 10.1111/1750-3841.16844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Shaking and tumbling are extremely important for the formation of the special flavor of Wuyi rock tea. In this study, we analyzed the effects of different shaking and tumbling degrees on the quality index content of tea leaves and determined changes in gene expression in tea leaves using RNA sequencing technology. On this basis, the correlation between gene expression intensities in tea leaves and tea quality index content was analyzed. The results showed that heavy shaking and tumbling (MW3) increased gene expression of metabolic pathways, biosynthesis of secondary metabolites, starch and sucrose metabolism, biosynthesis of amino acids, glycine, serine, and threonine metabolism, alpha-linolenic acid metabolism pathways and decreased gene expression of flavonoid biosynthesis, carbon fixation in photosynthetic organisms, phenylpropanoid biosynthesis, and plant hormone signal transduction pathways in tea leaves, which in turn increased the content of caffeine, soluble sugar, amino acid and decreased the content of flavone, tea polyphenol, catechin component in tea leaves; the opposite was true for light shaking and tumbling. Second, this study found that MW3 was more beneficial in improving the mellowness, sweetness, and fresh and brisk taste of tea leaves and reducing the bitterness of tea leaves. This study provides some references to guide the processing of Wuyi rock tea with different flavors. PRACTICAL APPLICATION: Heavy shaking and tumbling was more beneficial in improving the mellowness, sweetness, and fresh and brisk taste of tea leaves and reducing the bitterness of tea leaves. Therefore, the degree of shaking and tumbling in Wuyi production can be appropriately improved to produce high-quality tea and improve the economic benefits of tea.
Collapse
Affiliation(s)
- Meihui Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Ying Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Qi Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yibin Pan
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Zhengwei Luo
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
28
|
Wang J, Ouyang W, Zhu X, Jiang Y, Yu Y, Chen M, Yuan H, Hua J. Effect of shaking on the improvement of aroma quality and transformation of volatile metabolites in black tea. Food Chem X 2023; 20:101007. [PMID: 38144830 PMCID: PMC10740037 DOI: 10.1016/j.fochx.2023.101007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 12/26/2023] Open
Abstract
Shaking is an innovative technology employed in black tea processing to enhance flavor. However, the effects of shaking on the evolutionary mechanisms of volatile metabolites (VMs) remain unclear. In this study, we compared the effects of a shaking-withering method with those of traditional withering on the flavor and VMs transformation of black tea. The results showed that black tea treated with shaking exhibited excellent quality with floral and fruity aroma. Based on gas chromatography-tandem mass spectrometry, 128 VMs (eight categories) were detected. Combining variable importance projection with odor activity value analysis, eight key differential VMs were identified. Shaking could promote the oxidative degradation of fatty acids and carotenoids and modulate the biosynthesis of terpenoids to facilitate the formation of floral/fruity VMs (such as (Z)-hexanoic acid-3-hexenyl ester, ethyl hexanoate, trans-β-ionone, and decanal). Our findings provide theoretical guidance for the production of high-quality black tea with floral and fruity aromas.
Collapse
Affiliation(s)
| | | | - Xizhe Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yongwen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yaya Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Ming Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Haibo Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjie Hua
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| |
Collapse
|
29
|
Wen M, Zhu M, Han Z, Ho CT, Granato D, Zhang L. Comprehensive applications of metabolomics on tea science and technology: Opportunities, hurdles, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4890-4924. [PMID: 37786329 DOI: 10.1111/1541-4337.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
With the development of metabolomics analytical techniques, relevant studies have increased in recent decades. The procedures of metabolomics analysis mainly include sample preparation, data acquisition and pre-processing, multivariate statistical analysis, as well as maker compounds' identification. In the present review, we summarized the published articles of tea metabolomics regarding different analytical tools, such as mass spectrometry, nuclear magnetic resonance, ultraviolet-visible spectrometry, and Fourier transform infrared spectrometry. The metabolite variation of fresh tea leaves with different treatments, such as biotic/abiotic stress, horticultural measures, and nutritional supplies was reviewed. Furthermore, the changes of chemical composition of processed tea samples under different processing technologies were also profiled. Since the identification of critical or marker metabolites is a complicated task, we also discussed the procedure of metabolite identification to clarify the importance of omics data analysis. The present review provides a workflow diagram for tea metabolomics research and also the perspectives of related studies in the future.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Granato
- Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
30
|
Zhou J, He C, Qin M, Luo Q, Jiang X, Zhu J, Qiu L, Yu Z, Zhang D, Chen Y, Ni D. Characterizing and Decoding the Effects of Different Fermentation Levels on Key Aroma Substances of Congou Black Tea by Sensomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14706-14719. [PMID: 37752697 DOI: 10.1021/acs.jafc.3c02813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Fermentation is the key technology for black tea aroma formation. The key aroma substances of black tea at different fermentation stages (unfermented (WDY), underfermented (F1H), fully fermented (F4H), and overfermented (F8H)) were characterized by the methodology of Sensomics. Aroma extract dilution analysis was performed on volatile fractions extracted by using solvent-assisted flavor evaporation and solid-phase microextraction, yielding 93 odor-active areas. Internal standard method plus stable isotope dilution analysis was used for quantitative analysis. The omission experiment identified 23 aroma substances. Further reduction and addition experiments revealed phenylacetaldehyde, (E,E)-2,4-heptadienal, geraniol, linalool, β-damascenone, 2-methylbutyraldehyde, dimethyl sulfide, and isovaleraldehyde with odor activity values (OAV) > 100 as the characteristic aroma components of F4H and also as the main contributors to aroma differences between different fermentation degrees. The green odor of (E,E)-2,4-heptadienal was highlighted in WDY and F1H relative to that in F4H due to the lower contribution of phenylacetaldehyde and β-damascenone in the former two samples. Additionally, excessive OAV increase of fatty aldehydes in F8H masked its similar floral and fruity aroma.
Collapse
Affiliation(s)
- Jingtao Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chang He
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Muxue Qin
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qianqian Luo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinfeng Jiang
- Jiangxi Sericulture and Tea Research Institute, Nanchang, Jiangxi 330202, China
| | - Junyu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Qiu
- Lichuan Xingdoushan Black Tea Co., Ltd, Lichuan, Hubei 445000, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
31
|
Jia X, Zhang Q, Chen M, Wang Y, Lin S, Pan Y, Cheng P, Li M, Zhang Y, Ye J, Wang H. Analysis of the effect of different withering methods on tea quality based on transcriptomics and metabolomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1235687. [PMID: 37780509 PMCID: PMC10538532 DOI: 10.3389/fpls.2023.1235687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023]
Abstract
Withering is very important to the quality of Wuyi rock tea. In this study, transcriptomics and metabolomics were used to analyze the effects of different withering methods on tea quality formation. The results showed that sunlight withering (SW) was most beneficial in increasing the gene expression of ubiquinone and other terpenoid-quinone biosynthesis (ko00130), pyruvate metabolism (ko00620), starch and sucrose metabolism (ko00500), and tryptophan metabolism (ko00380) pathways, and increasing the content of nucleotides and derivatives, terpenoids, organic acids and lipids, thus enhancing the mellowness, fresh and brisk taste and aroma of tea. Withering trough withering (WW) was most beneficial in increasing the gene expression of glutathione metabolism (ko00480), phenylpropanoid biosynthesis (ko00940) pathways, increasing the content of phenolic acids and flavonoids, thus enhancing tea bitterness. A comprehensive evaluation of the metabolite content and taste characteristics of tea leaves showed SW to be the best quality and charcoal fire withering (FW) to be the worst quality. This study provided an important basis for guiding the processing of Wuyi rock tea with different flavors.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Yibin Pan
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
32
|
Kong W, Zhu Q, Zhang Q, Zhu Y, Yang J, Chai K, Lei W, Jiang M, Zhang S, Lin J, Zhang X. 5mC DNA methylation modification-mediated regulation in tissue functional differentiation and important flavor substance synthesis of tea plant ( Camellia sinensis L.). HORTICULTURE RESEARCH 2023; 10:uhad126. [PMID: 37560013 PMCID: PMC10407603 DOI: 10.1093/hr/uhad126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 08/11/2023]
Abstract
In plants, 5mC DNA methylation is an important and conserved epistatic mark involving genomic stability, gene transcriptional regulation, developmental regulation, abiotic stress response, metabolite synthesis, etc. However, the roles of 5mC DNA methylation modification (5mC methylation) in tea plant growth and development (in pre-harvest processing) and flavor substance synthesis in pre- and post-harvest processing are unknown. We therefore conducted a comprehensive methylation analysis of four key pre-harvest tissues (root, leaf, flower, and fruit) and two processed leaves during oolong tea post-harvest processing. We found that differential 5mC methylation among four key tissues is closely related to tissue functional differentiation and that genes expressed tissue-specifically, responsible for tissue-specific functions, maintain relatively low 5mC methylation levels relative to non-tissue-specifically expressed genes. Importantly, hypomethylation modifications of CsAlaDC and TS/GS genes in roots provided the molecular basis for the dominant synthesis of theanine in roots. In addition, integration of 5mC DNA methylationomics, metabolomics, and transcriptomics of post-harvest leaves revealed that content changes in flavor metabolites during oolong tea processing were closely associated with transcription level changes in corresponding metabolite synthesis genes, and changes in transcript levels of these important synthesis genes were strictly regulated by 5mC methylation. We further report that some key genes during processing are regulated by 5mC methylation, which can effectively explain the content changes of important aroma metabolites, including α-farnesene, nerolidol, lipids, and taste substances such as catechins. Our results not only highlight the key roles of 5mC methylation in important flavor substance synthesis in pre- and post-harvest processing, but also provide epimutation-related gene targets for future improvement of tea quality or breeding of whole-tissue high-theanine varieties.
Collapse
Affiliation(s)
- Weilong Kong
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Yiwang Zhu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Jingjing Yang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Kun Chai
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Wenlong Lei
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Mengwei Jiang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Shengcheng Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| |
Collapse
|
33
|
Phuah YQ, Chang SK, Ng WJ, Lam MQ, Ee KY. A review on matcha: Chemical composition, health benefits, with insights on its quality control by applying chemometrics and multi-omics. Food Res Int 2023; 170:113007. [PMID: 37316075 DOI: 10.1016/j.foodres.2023.113007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
This review discussed the origin, manufacturing process, chemical composition, factors affecting quality and health benefits of matcha (Camellia sinensis), and the application of chemometrics and multi-omics in the science of matcha. The discussion primarily distinguishes between matcha and regular green tea with processing and compositional factors, and demonstrates beneficial health effects of consuming matcha. Preferred Reporting Items for Systematic Reviews and Meta-Analyses was adopted to search for relevant information in this review. Boolean operators were incorporated to explore related sources in various databases. Notably, climate, cultivar, maturity of tea leaves, grinding process and brewing temperature impact on the overall quality of matcha. Besides, sufficient shading prior to harvesting significantly increases the contents of theanine and chlorophyll in the tea leaves. Furthermore, the ground whole tea leaf powder delivers matcha with the greatest benefits to the consumers. The health promoting benefits of matcha are mainly contributed by its micro-nutrients and the antioxidative phytochemicals, specifically epigallocatechin-gallate, theanine and caffeine. Collectively, the chemical composition of matcha affected its quality and health benefits significantly. To this end, more studies are required to elucidate the biological mechanisms of these compounds for human health. Chemometrics and multi-omics technologies are useful to fill up the research gaps identified in this review.
Collapse
Affiliation(s)
- Yi Qian Phuah
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Wen Jie Ng
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ming Quan Lam
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Kah Yaw Ee
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.
| |
Collapse
|
34
|
Zhu C, Zhang S, Zhou C, Tian C, Shi B, Xu K, Huang L, Sun Y, Lin Y, Lai Z, Guo Y. RNA Methylome Reveals the m 6A-mediated Regulation of Flavor Metabolites in Tea Leaves under Solar-withering. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:769-787. [PMID: 36791953 PMCID: PMC10787128 DOI: 10.1016/j.gpb.2023.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/20/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
The epitranscriptomic mark N6-methyladenosine (m6A), which is the predominant internal modification in RNA, is important for plant responses to diverse stresses. Multiple environmental stresses caused by the tea-withering process can greatly influence the accumulation of specialized metabolites and the formation of tea flavor. However, the effects of the m6A-mediated regulatory mechanism on flavor-related metabolic pathways in tea leaves remain relatively uncharacterized. We performed an integrated RNA methylome and transcriptome analysis to explore the m6A-mediated regulatory mechanism and its effects on flavonoid and terpenoid metabolism in tea (Camellia sinensis) leaves under solar-withering conditions. Dynamic changes in global m6A level in tea leaves were mainly controlled by two m6A erasers (CsALKBH4A and CsALKBH4B) during solar-withering treatments. Differentially methylated peak-associated genes following solar-withering treatments with different shading rates were assigned to terpenoid biosynthesis and spliceosome pathways. Further analyses indicated that CsALKBH4-driven RNA demethylation can directly affect the accumulation of volatile terpenoids by mediating the stability and abundance of terpenoid biosynthesis-related transcripts and also indirectly influence the flavonoid, catechin, and theaflavin contents by triggering alternative splicing-mediated regulation. Our findings revealed a novel layer of epitranscriptomic gene regulation in tea flavor-related metabolic pathways and established a link between the m6A-mediated regulatory mechanism and the formation of tea flavor under solar-withering conditions.
Collapse
Affiliation(s)
- Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Biying Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linjie Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
35
|
Hao Z, Feng J, Chen Q, Lin H, Zhou X, Zhuang J, Wang J, Tan Y, Sun Z, Wang Y, Yu B. Comparative volatiles profiling in milk-flavored white tea and traditional white tea Shoumei via HS-SPME-GC-TOFMS and OAV analyses. Food Chem X 2023; 18:100710. [PMID: 37397202 PMCID: PMC10314143 DOI: 10.1016/j.fochx.2023.100710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/04/2023] Open
Abstract
White tea is a mildly fermented tea processed with withering and drying. Milk-flavored white tea has a unique milk flavor compared to the traditional white tea. Little is known about the aromas that make white tea taste milky. Here we conducted the volatile profiling via headspace solid-phase microextraction (HS-SPME)-gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) and chemometrics to explore the key volatiles making milk-flavored white tea taste milky. Sixty-seven volatiles were identified, with 7 volatiles (OAV > 1 and VIP > 1) were characterized as the typical aromas. Green and light fruity scent volatiles, such as methyl salicylate, benzyl alcohol, and phenylethyl alcohol, were richer in TFs than MFs. Strong fruity and cheese aromas, such as dihydro-5-pentyl-2(3H)-furanone, 2-pentyl-furan, (E)-6,10-dimethyl-5,9-undecadien-2-one, and hexanal, were more abundant in MFs than TFs. Dihydro-5-pentyl-2(3H)-furanone, recognized as coconut and creamy aroma, should be the essential volatile for milky flavor. Also, (E)-6,10-dimethyl-5,9-undecadien-2-one and 2-pentyl-furan may contribute to the milk scent formation.
Collapse
Affiliation(s)
- Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, Fujian, China
| | - Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qianlian Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Jiayun Zhuang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jinyuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yanping Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhilin Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yanfei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Bugui Yu
- Zhenghe Ruiming Tea Co., LTD, Zhenghe 353600, Fujian, China
| |
Collapse
|
36
|
Wu Z, Jiao Y, Jiang X, Li C, Sun W, Chen Y, Yu Z, Ni D. Effects of Sun Withering Degree on Black Tea Quality Revealed via Non-Targeted Metabolomics. Foods 2023; 12:2430. [PMID: 37372642 DOI: 10.3390/foods12122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, the effects of different sun withering degrees (75% (CK), 69% (S69), 66% (S66), 63% (S63), and 60% (S60) water content in the withered leaves) on black tea sensory quality were investigated by means of sensory evaluation plus metabolomics analysis. Sensory evaluation results showed higher sensory quality scores for the black tea in S69-S66, due to better freshness, sweeter taste, and a sweet and even floral and fruity aroma. Additionally, 65 non-volatile components were identified using Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF/MS). Among them, the content increase of amino acids and theaflavins was found to promote the freshness and sweetness of black tea. The aroma of tea was analyzed using combined Solvent Assisted Flavor Evaporation-Gas Chromatography-Mass Spectrometry (SAFE-GC-MS) and Headspace-Solid Phase Micro Extract-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS), and 180 volatiles were identified, including 38 variable importance in projection (VIP) > 1 (p < 0.05) and 25 Odor Activity Value (OAV) > 1 volatiles. Statistical analysis revealed 11 volatiles as potential major aroma differential metabolites in black tea with a different sun withering degree, such as volatile terpenoids (linalool, geraniol, (E)-citral, and β-myrcene), amino-acid-derived volatiles (benzeneethanol, benzeneacetaldehyde, and methyl salicylate), carotenoid-derived volatiles (jasmone and β-damascenone), and fatty-acid-derived volatiles ((Z)-3-hexen-1-ol and (E)-2-hexenal). Among them, volatile terpenoids and amino acid derived volatiles mainly contributed to the floral and fruity aroma quality of sun-withered black tea.
Collapse
Affiliation(s)
- Zhuanrong Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Yuanfang Jiao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Xinfeng Jiang
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Chen Li
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Zhi Yu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| |
Collapse
|
37
|
Fang X, Liu Y, Xiao J, Ma C, Huang Y. GC-MS and LC-MS/MS metabolomics revealed dynamic changes of volatile and non-volatile compounds during withering process of black tea. Food Chem 2023; 410:135396. [PMID: 36634561 DOI: 10.1016/j.foodchem.2023.135396] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
High-performance liquid chromatography (HPLC), headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and ultra-high performance liquid chromatography-Q-Exactive HF-X mass spectrometer (UHPLC-Q-Exactive HF/MS) were carried out to reveal dynamic changes of volatile and non-volatile compounds during the withering process of black tea. A total of 118 volatile organic compounds (VOCs) and 648 metabolites were identified in fresh and withered tea-leaves, respectively. Among them, 47 VOCs (OAV > 1.0) for the aroma formation, and 46 characteristic metabolites (VIP > 1.50, p < 0.01) selected through orthonormal partial least squares-discriminant analysis, indicated the withering contribution during black tea processing. Overall, the withering promoted alcohols, aldehydes, phenols, heterocyclic oxygen, hydrocarbons and halogenated hydrocarbons through relevant hydrolyzation, decomposition, terpene synthesis, and O-methylation. The hydrolyzation, O-methylation, condensation and N-acylation of kaempferol glycosides, quercetin glycosides, ester catechins, and gallic acid generated the accumulation of methoxyl flavonoids and flavonoid glucosides, dihydrokaempferol, syringic acid, theaflavins, and N-acylated amino acids, respectively.
Collapse
Affiliation(s)
- Xin Fang
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China
| | - Yanan Liu
- Zhejiang Minghuang Natural Products Development Co., Ltd, Hangzhou, Zhejiang 310000, China
| | - Jingyi Xiao
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China
| | - Cunqiang Ma
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China
| | - Youyi Huang
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China.
| |
Collapse
|
38
|
Huang C, Sun P, Yu S, Fu G, Deng Q, Wang Z, Cheng S. Analysis of Volatile Aroma Components and Regulatory Genes in Different Kinds and Development Stages of Pepper Fruits Based on Non-Targeted Metabolome Combined with Transcriptome. Int J Mol Sci 2023; 24:ijms24097901. [PMID: 37175606 PMCID: PMC10178352 DOI: 10.3390/ijms24097901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Aroma is a crucial attribute affecting the quality of pepper and its processed products, which has significant commercial value. However, little is known about the composition of volatile aroma compounds (VACs) in pepper fruits and their potential molecular regulatory mechanisms. In this study, HS-SPME-GC-MS combined with transcriptome sequencing is used to analyze the composition and formation mechanism of VACs in different kinds and development stages of pepper fruits. The results showed that 149 VACs, such as esters, alcohols, aldehydes, and terpenoids, were identified from 4 varieties and 3 development stages, and there were significant quantitative differences among different samples. Volatile esters were the most important aroma components in pepper fruits. PCA analysis showed that pepper fruits of different developmental stages had significantly different marker aroma compounds, which may be an important provider of pepper's characteristic aroma. Transcriptome analysis showed that many differential genes (DEGs) were enriched in the metabolic pathways related to the synthesis of VACs, such as fatty acids, amino acids, MVA, and MEP in pepper fruits. In addition, we identified a large number of differential transcription factors (TFs) that may regulate the synthesis of VACs. Combined analysis of differential aroma metabolites and DEGs identified two co-expression network modules highly correlated with the relative content of VACs in pepper fruit. This study confirmed the basic information on the changes of VACs in the fruits of several Chinese spicy peppers at different stages of development, screened out the characteristic aroma components of different varieties, and revealed the molecular mechanism of aroma formation, providing a valuable reference for the quality breeding of pepper.
Collapse
Affiliation(s)
- Chuang Huang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Peixia Sun
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shuang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Genying Fu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Qin Deng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Zhiwei Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
39
|
Tang MG, Zhang S, Xiong LG, Zhou JH, Huang JA, Zhao AQ, Liu ZH, Liu AL. A comprehensive review of polyphenol oxidase in tea (Camellia sinensis): Physiological characteristics, oxidation manufacturing, and biosynthesis of functional constituents. Compr Rev Food Sci Food Saf 2023; 22:2267-2291. [PMID: 37043598 DOI: 10.1111/1541-4337.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/14/2023]
Abstract
Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.
Collapse
Affiliation(s)
- Meng-Ge Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng Zhang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing-Hui Zhou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Qing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhong-Hua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Ling Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
40
|
Shan X, Yu Q, Chen L, Zhang S, Zhu J, Jiang Y, Yuan H, Zhou Q, Li J, Wang Y, Deng Y, Li J. Analyzing the influence of withering degree on the dynamic changes in non-volatile metabolites and sensory quality of Longjing green tea by non-targeted metabolomics. Front Nutr 2023; 10:1104926. [PMID: 36998915 PMCID: PMC10043258 DOI: 10.3389/fnut.2023.1104926] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Withering is an important processing stage in green tea, which contributes to the tea flavor quality. The aim of this work was to comprehensively investigate the changes of chemical features and flavor attributes in Longjing green teas produced with five different withering degrees (moisture content of 75.05, 72.53, 70.07, 68.00, and 64.78%, w.b.). Combined with human sensory evaluation, electronic tongue and chromatic differences analysis, an assessment of the relationship between the withering degree and the sensory quality of Longjing tea was obtained. By using a non-targeted metabolomics approach, 69 significantly differential metabolites were screened. As the withering degree increased, most free amino acids and catechin dimers were increased, largely attributed to the hydrolysis of proteins and catechin oxidative polymerization, respectively. The contents of organic acids as well as phenolic acids and derivatives were reduced. Interestingly, flavone C-glycosides decreased overall while flavonol O-glycosides increased. The correlation analysis revealed that metabolites such as theasinensin F, theasinensin B, theaflavin, theaflavin-3,3′-gallate, theaflavin-3′-gallate, malic acid, succinic acid, quinic acid, theanine glucoside and galloylglucose had a greater influence on the taste and color of tea infusion (|r| > 0.6, p < 0.05). Overall, an appropriate withering degree at a moisture content of around 70% is more favorable to enhance the Longjing tea quality. These results may enhance the understanding of green tea flavor chemistry associated with withering and provide a theoretical basis for green tea processing.
Collapse
Affiliation(s)
- Xujiang Shan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qinyan Yu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Le Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Shan Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
| | - Jiayi Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Ji Li
- Agriculture and Rural Bureau of Chun'an County, Hangzhou, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Yujie Wang,
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Yuliang Deng,
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Jia Li,
| |
Collapse
|
41
|
Polyphenols and Antioxidant Activity of Thunbergia laurifolia Infused Tea under Drying Conditions. J FOOD QUALITY 2023. [DOI: 10.1155/2023/5046880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Thunbergia laurifolia leaf is used in Thai herbal medicine to moderate alcohol, food poisoning, and other health-related diseases mainly due to its overwhelming phytochemical compounds which exert several biological functions such as antioxidant, and anti-inflammatory properties, among others. This study investigated the potential effects of hot air-drying conditions (TL-D80°C, TL-D90°C, and TL -D100°C) of T. laurifolia tea leaves on phenolic compounds, total flavonoid content (TFC), total phenolic content (TPC), and antioxidant activities (AOA) of the infused teas. The results show that an increase in drying temperature significantly
improved TPC (709.7 ± 1.36–744.8 ± 5.79 mg GAE/) and TFC (198.98 ± 7.59–207.16 ± 4.10 mg RE/L) of infused teas. TL-D80°C (69.9 ± 0.95%) and TL-D90°C (69.3 ± 0.7%) infused teas showed significantly
higher DPPH inhibitory effect compared to TL-D100°C. Treatment had no effects
on ABTS.+ scavenging activity. The phenolic compounds detected in infused teas were rosmarinic acid, caffeic acid, gallic acid, catechin, rutin, and quercetin. Regarding, the cumulative phenolic compounds TL-D100°C infused teas were significantly higher
compared to TL-D90°C and TL-D80°C. The results suggest that drying conditions (i.e., TL-D100°C within 30 min) could be used to achieve appropriate moisture content of T. laurifolia tea leaves without compromising the phytochemical compositions and antioxidant potentials of the resulting infused teas.
Collapse
|
42
|
Chen J, Mei S, Zheng P, Guo J, Zeng Z, Lu H, Sun B. A multi-omics view of the preservation effect on Camellia sinensis leaves during low temperature postharvest transportation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
43
|
He Y, Li J, Mei H, Zhuang J, Zhao Z, Jeyaraj A, Wang Y, Chena X, Li X, Liu Z. Effects of leaf-spreading on the volatile aroma components of green tea under red light of different intensities. Food Res Int 2023; 168:112759. [PMID: 37120210 DOI: 10.1016/j.foodres.2023.112759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/26/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Spreading is an indispensable process in the aroma formation of green tea. The application of exogenous red-light spreading in tea processing has been verified to significantly improve the aroma of green tea, and endow tea with freshness, sweet flavor, and mellow taste. However, there were no previous studies investigating the effects of spreading with different red-light intensities on the aroma components of green tea. The aim of the present study was to evaluate the effect of the relationship between the aroma component and spreading with different red-light intensities (300 μmol∙m-2∙s-1, 150 μmol∙m-2∙s-1 and 75 μmol∙m-2∙s-1). As a result, a total of ninety-one volatile components were identified in this study. The orthogonal partial least squares discriminant analysis (OPLS-DA) model clearly distinguished the volatile components of green tea between different red-light intensities and obtained thirty-three differential volatile compounds. Combined with odor activity value (OAV > 1) analysis revealed that eleven volatile components were the key volatile compounds of green tea under different light conditions. Among them, 3-methyl-butanal, (E)-nerolidol, and linalool were the sources of chestnut-like aroma in green tea and were significantly accumulated under medium (MRL) and low intensity (LRL) red light. The results of the present study provided a theoretical basis that could guide green tea processing with red-light intensities to increase the aroma quality components of green tea.
Collapse
|
44
|
Aroma formation and transformation during sealed yellowing process of Pingyang yellow tea. Food Res Int 2023; 165:112535. [PMID: 36869535 DOI: 10.1016/j.foodres.2023.112535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Yellow tea, a unique type of tea in China which is characterized with yellow color, has gained increasing popularity due to its pleasant taste. However, transformation of aroma compounds during sealed yellowing has been poorly understood. Results of sensory evaluation exhibited that yellowing time was the key factor for flavor and fragrance formation. A total of 52 volatile components during sealed yellowing process of Pingyang yellow soup were further collected and analyzed. The results demonstrated that the sealed yellowing process significantly increased the ratio of alcohol and aldehyde compounds in the aroma volatiles of yellow tea, which were primarily composed of geraniol, linalool, phenylacetaldehyde, linalool oxide and cis-3-hexenol, and their proportion increased with the prolongation of sealed yellowing. Mechanistic speculation revealed that the sealed yellowing process promoted release of alcoholic aroma compounds from their glycoside precursors and enhanced Strecker and oxidative degradation. This study revealed the transformation mechanism of aroma profile during the sealed yellowing process, which would facilitate processing of yellow tea.
Collapse
|
45
|
Zhang C, Zhou C, Tian C, Xu K, Lai Z, Lin Y, Guo Y. Volatilomics Analysis of Jasmine Tea during Multiple Rounds of Scenting Processes. Foods 2023; 12:foods12040812. [PMID: 36832885 PMCID: PMC9956320 DOI: 10.3390/foods12040812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Jasmine tea is reprocessed from finished tea by absorbing the floral aroma of jasmine (Jasminum sambac (L.) Aiton); this process is commonly known as "scenting". Making high-quality jasmine tea with a refreshing aroma requires repeated scenting. To date, the detailed volatile organic compounds (VOCs) and the formation of a refreshing aroma as the number of scenting processes increases are largely unknown and therefore need further study. To this end, integrated sensory evaluation, widely targeted volatilomics analysis, multivariate statistical analyses, and odor activity value (OAV) analysis were performed. The results showed that the aroma freshness, concentration, purity, and persistence of jasmine tea gradually intensifies as the number of scenting processes increases, and the last round of scenting process without drying plays a significant role in improving the refreshing aroma. A total of 887 VOCs was detected in jasmine tea samples, and their types and contents increased with the number of scenting processes. In addition, eight VOCs, including ethyl (methylthio)acetate, (Z)-3-hexen-1-ol acetate, (E)-2-hexenal, 2-nonenal, (Z)-3-hexen-1-ol, (6Z)-nonen-1-ol, β-ionone, and benzyl acetate, were identified as key odorants responsible for the refreshing aroma of jasmine tea. This detailed information can expand our understanding of the formation of a refreshing aroma of jasmine tea.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
46
|
Zhou S, Zhang J, Ma S, Ou C, Feng X, Pan Y, Gong S, Fan F, Chen P, Chu Q. Recent advances on white tea: Manufacturing, compositions, aging characteristics and bioactivities. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
47
|
Li G, Liu J, Zhang H, Jia L, Liu Y, Li J, Zhou S, Wang P, Tan M, Shao J. Volatile metabolome and floral transcriptome analyses reveal the volatile components of strongly fragrant progeny of Malus × robusta. FRONTIERS IN PLANT SCIENCE 2023; 14:1065219. [PMID: 36743501 PMCID: PMC9895795 DOI: 10.3389/fpls.2023.1065219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Floral fragrance is an important trait that contributes to the ornamental properties and pollination of crabapple. However, research on the physiological and molecular biology of the floral volatile compounds of crabapple is rarely reported. In this study, metabolomic and transcriptomic analyses of the floral volatile compounds of standard Malus robusta flowers (Mr), and progeny with strongly and weakly fragrant flowers (SF and WF, respectively), were conducted. Fifty-six floral volatile compounds were detected in the plant materials, mainly comprising phenylpropane/benzene ring-type compounds, fatty acid derivatives, and terpene compounds. The volatile contents were significantly increased before the early flowering stage (ES), and the contents of SF flowers were twice those of WF and Mr flowers. Odor activity values were determined for known fragrant volatiles and 10-11 key fragrant volatiles were identified at the ES. The predominant fragrant volatiles were methyl benzoate, linalool, leaf acetate, and methyl anthranilate. In the petals, stamens, pistil, and calyx of SF flowers, 26 volatiles were detected at the ES, among which phenylpropane/benzene ring-type compounds were the main components accounting for more than 75% of the total volatile content. Functional analysis of transcriptome data revealed that the phenylpropanoid biosynthesis pathway was significantly enriched in SF flowers. By conducting combined analyses between volatiles and differentially expressed genes, transcripts of six floral scent-related genes were identified and were associated with the contents of the key fragrant volatiles, and other 23 genes were potentially correlated with the key volatile compounds. The results reveal possible mechanisms for the emission of strong fragrance by SF flowers, and provide a foundation for improvement of the floral fragrance and development of new crabapple cultivars.
Collapse
Affiliation(s)
- Guofang Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jia Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - He Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Linguang Jia
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Science, Changli, China
| | - Youxian Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jiuyang Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shiwei Zhou
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Pengjuan Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ming Tan
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jianzhu Shao
- College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
48
|
Zuo H, Si X, Li P, Li J, Chen Z, Li P, Chen C, Liu Z, Zhao J. Dynamic change of tea (Camellia sinensis) leaf cuticular wax in white tea processing for contribution to tea flavor formation. Food Res Int 2023; 163:112182. [PMID: 36596123 DOI: 10.1016/j.foodres.2022.112182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Despite some studies on tea leaf cuticular wax, their component changes during dehydration and withering treatments in tea processing and suspected relation with tea flavor quality formation remain unknown. Here, we showed that tea leaf cuticular wax changed drastically in tea leaf development, dehydration, or withering treatment during tea processing, which affected tea flavor formation. Caffeine was found as a major component of leaf cuticular wax. Caffeine and inositol contents in leaf cuticular wax increased during dehydration and withering treatments. Comparisons showed that tea varieties with higher leaf cuticular wax loading produced more aroma than these with lower cuticular wax loading, supporting a positive correlation between tea leaf cuticular wax loading and degradation with white tea aroma formation. Dehydration or withering treatment of tea leaves also increased caffeine and inositol levels in leaf cuticular wax and triggered cuticular wax degradation into various molecules, that could be related to tea flavor formation. Thus, tea leaf cuticular waxes not only protect tea plants but also contribute to tea flavor formation. The study provides new insight into the dynamic changes of tea leaf cuticular waxes for tea plant protection and tea flavor quality formation in tea processing.
Collapse
Affiliation(s)
- Hao Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiongyuan Si
- Biotechnology Center, Anhui Agricultural University, Hefei 230036, China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhihui Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
49
|
Zhang C, Zhou C, Xu K, Tian C, Zhang M, Lu L, Zhu C, Lai Z, Guo Y. A Comprehensive Investigation of Macro-Composition and Volatile Compounds in Spring-Picked and Autumn-Picked White Tea. Foods 2022; 11:foods11223628. [PMID: 36429222 PMCID: PMC9688969 DOI: 10.3390/foods11223628] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The flavour of white tea can be influenced by the season in which the fresh leaves are picked. In this study, the sensory evaluation results indicated that spring-picked white tea (SPWT) was stronger than autumn-picked white tea (APWT) in terms of the taste of umami, smoothness, astringency, and thickness as well as the aromas of flower and fresh. To explore key factors of sensory differences, a combination of biochemical composition determination, widely targeted volatilomics (WTV) analysis, multivariate statistical analysis, and odour activity value (OAV) analysis was employed. The phytochemical analysis showed that the free amino acid, tea polyphenol, and caffeine contents of SPWTs were significantly higher than those of APWTs, which may explain the higher umami, smoothness, thickness, and astringency scores of SPWTs than those of APWTs. The sabinene, (2E, 4E)-2, 4-octadienal, (-)-cis-rose oxide, caramel furanone, trans-rose oxide, and rose oxide contents were significantly higher in SPWTs than in APWTs, which may result in stronger flowery, fresh, and sweet aromas in SPWTs than in APWTs. Among these, (2E,4E)-2,4-octadienal and (-)-cis-rose oxide can be identified as key volatiles. This study provides an objective and accurate basis for classifying SPWTs and APWTs at the metabolite level.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengcong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
50
|
Wang Y, Li C, Lin J, Sun Y, Wei S, Wu L. The Impact of Different Withering Approaches on the Metabolism of Flavor Compounds in Oolong Tea Leaves. Foods 2022; 11:foods11223601. [PMID: 36429193 PMCID: PMC9689020 DOI: 10.3390/foods11223601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, complementary metabolomic and proteomic analyses were conducted on the solar- and indoor-withered oolong tea leaves, and freshly plucked leaves as the control, for the purpose to reveal the mechanisms underlying the initial formation of some flavor determinants during the early stage of oolong tea processing. As a result, a total of 978 non-volatile compounds and 152 volatile compounds were identified, the flavonoids and several esters were differently accumulated in various tea samples. In total, 7048 proteins were qualitatively and quantitatively determined, the analysis on pathway enrichment showed that phenylpropanoid, flavonoid metabolisms, and protein processing in endoplasmic reticulum were the major pathways discriminating the different tea samples. The joint protein-metabolite analysis showed that the multiple stresses such as dehydration, heat, and ultra-violet irradiation occurred during the withering step induced the dynamic and distinct changes in the biochemical network in the treated leaves compared to fresh leaves. The significant decreases in flavonoids, xanthine alkaloids, and several amino acids contributed to the alleviation of bitter or astringent taste of withered leaves, although the decomposition of L-theanine resulted in the loss of umami flavor over the solar-withering step. Moreover, the fruity or floral aromas, especially volatile terpenoids and phenylpropanoids/benzenoids, were retained or accumulated in the solar withered leaves, potentially aiding the formation of a better characteristic flavor of oolong tea made by indoor withered tea leaves. Distinct effects of solar- and indoor-withering methods on the flavor determinant formation provide a novel insight into the relationship between the metabolite accumulation and flavor formation during the withering step of oolong tea production.
Collapse
Affiliation(s)
- Yahui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenxue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaqi Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (S.W.); (L.W.)
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.W.); (L.W.)
| |
Collapse
|