1
|
Xiang Q, Yao L, Zhou J, Li S, Zeng W, Liu P. Effects of heat treatment on the binding between the key aroma-active compounds in Zanthoxylum bungeanum oil and pork myofibrillar proteins (MPs). Food Chem 2025; 482:144209. [PMID: 40209377 DOI: 10.1016/j.foodchem.2025.144209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/15/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
The mechanism underlying effective binding between the aroma compounds in Zanthoxylum bungeanum oil and pork, especially during heating, remains unclear, restricting accurate regulation of numbing flavor in meat dishes. Therefore, this study investigated the effects of heating on the binding between pork myofibrillar proteins (MPs) and four key aroma-active compounds in Zanthoxylum bungeanum oil and the related mechanism. Results showed that higher temperatures within 70-90 °C induced larger particle sizes and zeta potential values of MPs while reducing endogenous fluorescence. The surface hydrophobicity and secondary structure increased when heating to 80 °C and subsequently declined. Besides aroma compounds, these structural changes of MPs also affected their affinity for aromatic compounds. Higher binding percentages were observed in 2,3-butanediol (36 %-90 %) and linalyl acetate (12 %-55 %), while heating at 80 °C increased their binding amounts. Further correlation analysis and molecular docking revealed that these aroma compounds primarily bound with MPs via hydrogen bonding and various hydrophobic interactions.
Collapse
Affiliation(s)
- Qin Xiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Lijuan Yao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiao Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Songling Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Wei Zeng
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ping Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China.
| |
Collapse
|
2
|
Tan Z, Yang X, Zhao W, Ma J, Fan X, Liu Z, Dong X. Modifying yellowfin tuna myofibrillar proteins under ultra-high pressure auxiliary heat treatment: Impact on the conformation, gel properties and digestive characteristics. Food Chem 2025; 475:143365. [PMID: 39952182 DOI: 10.1016/j.foodchem.2025.143365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/02/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
This study investigated the changes in physicochemical and functional properties of yellowfin tuna myofibrillar protein (MP) under various ultra-high pressure (UHP) auxiliary heat methods. The UHP-assisted heat treatment induced a rearrangement of the MP secondary structure, facilitating the formation of MP gel networks and resulting in higher storage modulus (G') values. Microstructure results revealed that MP gel produced with UHP auxiliary heat exhibited a more rigid network. As pressure increased, the regular aggregation of protein molecules enhanced the stability and water-binding capacity within the gel network, particularly under the two-stage UHP auxiliary heat (TUH) condition at 300 MPa. MP gel prepared under this condition exhibited a 1.95-fold increase in gel strength compared to the control group and the lowest creep strain. Furthermore, in vitro simulated digestion results indicated that TUH method significantly improved the digestive properties of MP gel, suggesting potential for the development of easily digestible MP-based gel foods.
Collapse
Affiliation(s)
- Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoqing Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Weiping Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jingting Ma
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Fan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhengqi Liu
- GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
3
|
Su C, Huang Y, Chen J, Li H, Zhang D, Tang Y. Effect of ultrasound-assisted phosphates treatment on solubilization and stable dispersion of rabbit Myofibrillar proteins at low ionic strength. Food Chem 2025; 472:142898. [PMID: 39862610 DOI: 10.1016/j.foodchem.2025.142898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
The effects of high-intensity ultrasound (HIU) on the dispersibility of myofibrillar proteins (MPs) in low-salt medium were investigated. HIU-assisted STPP or TSPP could sharply improve the solubility and dispersibility of MPs (from 38.12 % to 94.08 % and 37.80 % to 89.91 %, respectively), whereas the use of NaCl or SHMP had negligible effects. MPs in STPP and TSPP medium had higher surface charge and stronger hydrophilic ability than those in NaCl and SHMP medium. The results of CLSM and SDS-PAGE showed MP depolymerization in STPP and TSPP medium. MPs in STPP and TSPP displayed a flexible α-helix conformation. HIU could induce the rearrangement of myosin and actin in STPP and TSPP medium and generated soluble oligomers by disulfide bonds. By contrast, MPs in SHMP and NaCl exhibited a stable β-sheet conformation, hindering the modification effect of HIU. Medium could affect the modification effect of HIU on MPs by changing surface charge and hydrophilicity.
Collapse
Affiliation(s)
- Chang Su
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China
| | - Yuxin Huang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China
| | - Jiaxin Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Dong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China
| | - Yong Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China.
| |
Collapse
|
4
|
Zhao Z, Sun N, Li C, Kong B, Xia X, Sun F, Liu Q, Cao C. Application of psyllium husk powder addition on the textural properties, oxidative stability and sensory attributes of non-phosphates luncheon meat. Meat Sci 2025; 222:109760. [PMID: 39854910 DOI: 10.1016/j.meatsci.2025.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/24/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
This study assessed the textural properties, oxidative stability and sensory attributes of non-phosphates luncheon meat containing different concentrations (0.75 %, 1.00 %, 1.25 %, 1.50 % and 1.75 %, w/w) of psyllium husk powder (PHP). The addition of PHP effectively promoted the emulsion stability and textural properties of non-phosphates luncheon meat, as verified by the changes noted in cooking loss and microstructural observations. Meanwhile, PHP successfully retarded lipid oxidation of non-phosphate luncheon meat during storage in a dose-dependent manner (P < 0.05). Moreover, 1.50 % PHP-addition overcame the quality defects in non-phosphates luncheon meat and was statistically no significant difference or better than the phosphate-added luncheon meat. Thus, 1.50 % PHP-addition exhibited the optimal phosphates-replacing effect in luncheon meat. However, a higher concentration of PHP (1.75 % in present work) exhibited a negative effect on the sensory attributes of non-phosphates luncheon meat. Additionally, hydrogen bonds and disulphide bonds were the major molecular forces in PHP-containing non-phosphates luncheon meat. Our results indicate that the application of PHP could be considered a feasible and practical strategy for processing non-phosphates luncheon meat with superior textural properties and sensory attributes.
Collapse
Affiliation(s)
- Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Nan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Cheng Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Yin C, Zhang X, Li Z, Wang Z, Zhao Q, Li Y, Zhang S. Effect of gellan gum on structural, gelling, and rheological properties of heat-induced gels prepared by soybean protein isolate hydrolysates. Int J Biol Macromol 2025; 308:142435. [PMID: 40139603 DOI: 10.1016/j.ijbiomac.2025.142435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/18/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Protein hydrolysates always exhibited better functional properties than natural protein, and polysaccharides could further improve their gel properties. This study aimed to investigate the effect of gellan gum (GG) on the heat-induced soybean protein isolated hydrolysate (SPIH) gels, and proposed a gel formation mechanism. GG effectively improved SPIH gels' strength, water-holding capacity and viscoelasticity, and made a dense and homogeneous network as observed by scanning electron microscopy. GG led to a transformation of free water into immobile and bound water within the SPIH gel as shown by the low field NMR. Molecular force interactions and FTIR indicated that the addition of GG enhanced hydrogen bonding, disulfide bonding, and hydrophobic interactions, which could promote the formation of a denser gel network. Specially, the SPIH-0.5 % GG gel's strength was increased by 340.55 % and its water-holding capacity was increased by 37.58 %, which was favorable for the development of high-water content and high strength gel food. This study provided a simple and practical method to improve the gelation properties of SPIH, potentially expanding its application in foods production.
Collapse
Affiliation(s)
- Chengpeng Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ziyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ziwei Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Fan X, Zhang K, Tan Z, Xu W, Liu X, Zhou D, Li D. Effects of ultrahigh pressure heat-assisted technology on the physicochemical and gelling properties of myofibrillar protein from Penaeus vannamei. Food Chem 2025; 464:141697. [PMID: 39427466 DOI: 10.1016/j.foodchem.2024.141697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
This study investigated the changes in conformation and gelling properties of myofibrillar protein (MP) from Penaeus vannamei under various ultrahigh pressure (UHP)-heat assisted technologies. The results indicated that UHP heat-assisted technology enhanced the cross-linking of the gel network by causing a rearrangement of the secondary structure of MP. Microstructural analysis revealed that MP gels treated with UHP heat-assisted technology exhibited a more uniform gel network structure. Additionally, UHP heat-assisted technology improved the binding capacity of water molecules within the gel network, particularly in the two-stage UHP heat-assisted (PBH) condition at 400 MPa. Gels prepared under this condition demonstrated the highest gel strength, measuring 386.4 g·mm. Furthermore, in vitro simulated digestion showed that PBH method significantly improved the digestibility of MP gels, suggesting that the UHP heat-assisted technology had the potential to produce easily digestible MP gel-based aquatic foods.
Collapse
Affiliation(s)
- Xin Fan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Kexin Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wensi Xu
- College of Life and Environmental Sciences, Hunan University of Arts and Science. Changde 415000, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Wang Y, Wang JL, Li K, Yuan JJ, Chen B, Wang YT, Li JG, Bai YH. Effect of chickpea protein modified with combined heating and high-pressure homogenization on enhancing the gelation of reduced phosphate myofibrillar protein. Food Chem 2025; 463:141180. [PMID: 39276541 DOI: 10.1016/j.foodchem.2024.141180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
The effects of chickpea protein (CP) modified by heating and/or high-pressure homogenization (HPH) on the gelling properties of myofibrillar protein under reduced phosphate conditions (5 mM sodium triphosphate, STPP) were investigated. The results showed that heating and HPH dual-modified CP could decrease the cooking loss by 29.57 %, elevate the water holding capacity by 17.08 %, and increase the gel strength by 126.88 %, which conferred myofibrillar protein with gelation performance comparable with, or even surpassing, that of the high-phosphate (10 mM STPP) control. This gelation behavior improvement could be attributed to enhanced myosin tail-tail interactions, decreased myosin thermal stability, elevated trans-gauche-trans disulfide conformation, strengthened hydrophobic interactions and hydrogen bonding, the uncoiling of α-helical structures, the formation of well-networked myofibrillar protein gel, and the disulfide linkages between the myosin heavy chain, actin, and CP subunits. Therefore, the dual-modified CP could be a promising phosphate alternative to develop healthier meat products.
Collapse
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jia-le Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jing-Jing Yuan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yun-Tao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jun-Guang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Malik A, Alamri A, Altwaijry N, Alamro A, Alhomida A, Ayub R, Odeibat H. Unraveling the Effects of Hexametaphosphate: Insights into Trypsin Aggregation and Structural Reversal. ACS OMEGA 2024; 9:50537-50543. [PMID: 39741823 PMCID: PMC11683647 DOI: 10.1021/acsomega.4c08286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Elevated serum phosphate levels have been linked to increased mortality rates. This study investigated the effect of millimolar (mM) concentrations of sodium hexametaphosphate (SHMP) on trypsin's aggregation and structural stability at intestinal pH levels. We used various spectroscopic and microscopic techniques to investigate the structural changes of trypsin aggregates. Turbidity and light scattering results revealed that trypsin aggregates began to solubilize at SHMP concentrations above 1 mM, with maximum solubilization observed at 6 mM SHMP. Intrinsic, thioflavin T (ThT) fluorescence, and far-UV CD spectra indicated that trypsin amorphous aggregates turn into native-like structures in the presence of 6 mM SHMP. Transmission electron microscope (TEM) imaging also showed the disappearance of amorphous aggregates at higher SHMP concentrations. This study showed that higher SHMP concentrations solubilized the trypsin aggregates and induced a native-like conformation. These findings highlighted that SHMP could be a good protein aggregate solubilizer, with future applications in inclusion body solubilization and protein refolding.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abir Alamro
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Alhomida
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rashid Ayub
- Department of Science Technology & Innovation, King Saud University, P.O. Box-2454, Riyadh 11451, Saudi Arabia
| | - Hamza Odeibat
- Department of Biochemistry,
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Moon CR, Ju YW, Pyo SH, Park SW, Lee S, Benashvili M, Son YJ. Physicochemical properties of surimi made from edible insects using washing and pH shift methods. Curr Res Food Sci 2024; 10:100952. [PMID: 39760012 PMCID: PMC11698935 DOI: 10.1016/j.crfs.2024.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Edible insects, characterized by their eco-friendly nature and high nutrient value, are promising protein sources. Therefore, we aimed to assess the suitability of insects as source ingredients for surimi, a widely-used, intermediate food material. Mealworm (Tenebrio molitor L.) and two-spotted cricket (Gryllus bimaculatus L.) surimi were prepared, and their physicochemical and rheological properties were examined. Myofibrillar protein-rich fractions were obtained using the washing and pH shift methods. For the pH shift method, the myofibrillar proteins were extracted at acid (pH 2) or alkaline (pH 11) conditions, and surimi gel was prepared by heating myofibrillar protein-rich fractions. The pH shift method resulted in a higher surimi yield from edible insects than the washing method, whereas the washing method resulted in a higher surimi yield from tilapia (Oreochromis niloticus) and chicken breast (Gallus gallus domesticus). After acid treatment, lipid oxidation increased in all samples; however, edible insect surimi exhibited lower oxidation levels than tilapia and chicken breast surimi. Insect proteins, except for acid-treated mealworm proteins, successfully formed gel structures upon heating, resulting in softer gels than those obtained from tilapia and chicken breast. Consequently, the pH shift method resulted in elevated insect surimi yield, and the alkaline treatment was more appropriate for producing fine-quality edible insect surimi. Our study demonstrates the usefulness of edible insects as surimi ingredients, particularly for soft-gel food production. These findings emphasize the innovative application of edible insects in the food industry, suggesting the possibility of expanding their use as alternative protein food ingredients.
Collapse
Affiliation(s)
- Chae-Ryun Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young-Woong Ju
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Su-Hyeon Pyo
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - So-Won Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Seul Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Mzia Benashvili
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yang-Ju Son
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| |
Collapse
|
10
|
Zhou Y, Liu J, Ma Y, Ma Z, Ma Q, Li Z, Wang S. Effect of partial substitution of complex phosphates with sodium bicarbonate on aggregation, conformation and gel properties of beef-pork-chicken complex myofibrillar proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7386-7396. [PMID: 38666745 DOI: 10.1002/jsfa.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/15/2024]
Abstract
BACKGROUND Complex phosphates (CP) can improve the physicochemical properties and gelation properties of myofibrillar fibrous protein (MP) in mixed meat products, but an excessive intake of phosphates over a long period of time is harmful to health. The present study investigated the effects of partial or complete substitution of CP with sodium bicarbonate (SB) on the physicochemical properties and gel properties of beef-pork-chicken mixed myofibrillar protein (BPC-MP), aiming to evaluate the feasibility of this method in reducing the amount of phosphate in mixed meat products. RESULTS Under the optimal substitution conditions, the turbidity of BPC-MP was reduced by 37.8%, the net negative potential was increased by 28.9% and the modulus of elasticity (G') was increased. The tertiary structure indexes of protein (including fluorescence intensity, surface hydrophobicity and active thiol content) were significantly changed, whereas the α-helix and β-turn angle contents in the secondary structure of protein were significantly increased. In addition, the water retention ability and strength of gel were also improved, which were increased by 20.7% and 42.6%, respectively. The results of scanning electron microscopy showed that the SB substitution group had a more compact and ordered microstructure. CONCLUSION The results showed that partial substitution of CP with SB reduced the amount of phosphate added to BPC-MP and had a positive effect on the physicochemical and gel properties of BPC-MP. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Jingxuan Liu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Yongliang Ma
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Zhiyuan Ma
- Baishan institute of science and technology, Baishan, People's Republic of China
| | - Qingshu Ma
- National Drinking Water Products Quality Inspection and Testing Center, Baishan, People's Republic of China
| | - Zongping Li
- National Drinking Water Products Quality Inspection and Testing Center, Baishan, People's Republic of China
| | - Shujie Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
11
|
Yang K, Chi R, Jiang J, Ma J, Zhang Y, Sun W, Zhou Y. Insight into the mechanisms of combining direct current magnetic field with phosphate in promoting emulsifying properties of myofibrillar protein. Food Chem 2024; 447:138990. [PMID: 38492306 DOI: 10.1016/j.foodchem.2024.138990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
This study investigated the combined effects of direct-current magnetic field (DC-MF, 9.5 mT) and tetrasodium-pyrophosphate (TSPP, 1-5 g/L) on emulsified gel properties of porcine myofibrillar protein (MP). Results showed that MP at DC-MF and 3 g/L TSPP had decreased spectrum intensity of UV and fluorescence compared to that without DC-MF, owing to the changes of MP tertiary structure caused by DC-MF, especially tryptophan and tyrosine. The emulsion treated with DC-MF behaved better emulsifying activity and stability than that without DC-MF under such condition. And emulsion had lower creaming index and better storage stability. Gels prepared by this MP emulsion had low porosity and stable structure, accompanying with smaller size and more uniform distribution of oil droplets. Microstructure images showed that gels were covered with microporous structure, which was conducive to the good WHC of the emulsified gels (97.12%). These results showed the feasibility of DC-MF and TSPP in improving MP emulsion/emulsified gel.
Collapse
Affiliation(s)
- Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rongshuo Chi
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jingjiao Jiang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Yunhua Zhang
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| | - Yuanhua Zhou
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
12
|
Xia X, Zhang B, Huang Y, Zhu Y, Qu M, Liu L, Sun B, Zhu X. Soy Protein Isolate Gel Subjected to Freezing Treatment: Influence of Methylcellulose and Sodium Hexametaphosphate on Gel Stability, Texture and Structure. Foods 2024; 13:2117. [PMID: 38998623 PMCID: PMC11241562 DOI: 10.3390/foods13132117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Freezing affects texture and induces the loss of gel quality. This study investigated the effects of methylcellulose (MC) (0.2%, 0.4%, 0.6%) and sodium hexametaphosphate (SHMP) (0.15%, 0.3%) on the gel textural and structural properties of SPI gels before and after freezing, and explores the synergistic enhancement of gel texture and the underlying mechanisms resulting from the simultaneous addition of SHMP and MC to SPI gels. It was revealed that MC improved the strength of SPI gels through its thickening properties, but it could not inhibit the reduction of SPI gels after freezing. The 0.4% MC-SPI gel exhibited the best gel strength (193.2 ± 2.4 g). SHMP inhibited gel reduction during freezing through hydrogen bonding and ionic interactions; it enhanced the freezing stability of SPI gels. The addition of 0.15% SHMP made the water-holding capacity in SPI gels reach the highest score after freezing (58.2 ± 0.32%). The synergistic effect of MC and SHMP could improve the strength and the freezing stability of SPI gels. MC facilitated the release of ionizable groups within SPI, causing negatively charged SHMP groups to aggregate on the SPI and inhibit the freezing aggregation of proteins. These results provide a strong basis for the improvement of cryogenic soy protein gel performance by SHMP and MC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (X.X.); (B.Z.); (Y.H.); (Y.Z.); (M.Q.); (L.L.); (B.S.)
| |
Collapse
|
13
|
Ding Y, Feng R, Zhu Z, Xu J, Xu Y. Effects of different protein cross-linking degrees on physicochemical and subsequent thermal gelling properties of silver carp myofibrillar proteins sol subjected to freeze-thaw cycles. Food Chem X 2024; 22:101448. [PMID: 38764785 PMCID: PMC11101881 DOI: 10.1016/j.fochx.2024.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Knowledge regarding the denaturation process and control methods for depolymerized sol-state myofibrillar proteins (MPs) during freezing remains scant. This study investigated the effects of protein cross-linking treatment before freezing on physicochemical and subsequent gelation properties of MPs sol subjected to freeze-thaw (F-T) cycles. Results indicated that after five F-T cycles, cross-linked MPs sols showed increased high molecular weight polymers and bound water (T21a and T21b) mobility, suggesting enhanced protein-protein interactions at the expense of protein-water interactions. Upon heating after F-T cycles, gels formed from cross-linked sols exhibited significantly higher hardness, springiness, and cooking loss (P < 0.05), alongside more contracted gel networks. Correlation analysis revealed that the formation and properties of thermal gel after freezing closely relate to changes in molecular conformation and chemical bonds of cross-linked MPs sol during freezing. This study provides new insights into regulating the freezing stability and post-thawed thermal processing properties of sol-based surimi products.
Collapse
Affiliation(s)
- Yuxin Ding
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Ruonan Feng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Zhifei Zhu
- Mekong Fishery Industry Co.,Ltd, Veun Kham Village, Don Khong, Champassak, Laos
- Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen, Guangdong, 518116 China
| | - Junmin Xu
- Mekong Fishery Industry Co.,Ltd, Veun Kham Village, Don Khong, Champassak, Laos
- Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen, Guangdong, 518116 China
| | - Yanshun Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Kim TK, Kim YJ, Kang MC, Cha JY, Kim YJ, Choi YJ, Jung S, Choi YS. Effects of myofibril-palatinose conjugate as a phosphate substitute on meat emulsion quality. Heliyon 2024; 10:e28315. [PMID: 38586345 PMCID: PMC10998059 DOI: 10.1016/j.heliyon.2024.e28315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
The objective of this study was to investigate a replacement for phosphate in meat products. Protein structural modification was employed in this study, and grafted myofibrillar protein (MP) with palatinose was added to meat emulsion without phosphate. Here, 0.15% of sodium polyphosphate (SPP) was replaced by the same (0.15%) concentration and double (0.3%) the concentration of grafted MP. Although the thermal stability was decreased, the addition of transglutaminase could increase stability. The rheological properties and pH also increased with the addition of grafted MP and transglutaminase. The addition of grafted protein could be perceived by the naked eye by observing a color difference before cooking, but it was not easy to detect after cooking. The cooking loss, emulsion stability, water holding capacity, lipid oxidation, and textural properties improved with the addition of grafted MP. However, the excessive addition of grafted MP and transglutaminase was not recommended to produce a high quality of phosphate replaced meat emulsion, and 0.15% was identified as a suitable addition ratio of grafted MP.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yoo-Jeong Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| |
Collapse
|
15
|
Yuan D, Liang X, Kong B, Xia X, Cao C, Zhang H, Liu Q, Li X. Influence of seaweed dietary fibre as a potential alternative to phosphates on the quality profiles and flavour attributes of frankfurters. Meat Sci 2024; 213:109511. [PMID: 38598966 DOI: 10.1016/j.meatsci.2024.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
This study primarily aimed to investigate the influence of seaweed dietary fibre (SDF), as a potential alternative to phosphates, on the quality profiles and flavour attributes of frankfurters. The results revealed that SDF addition can significantly improve the cooking yield and texture characteristics of phosphate-free frankfurters (P < 0.05), and 1.00% SDF proved to be the optimal concentration for replacing phosphates in frankfurters. Moreover, electronic nose and electronic tongue analyses demonstrated that SDF incorporation potentially influences the aroma and taste of phosphate-free frankfurters. Furthermore, volatile compound analysis revealed that SDF addition potentially compensates for the decrease in volatile flavour compound content caused by phosphate deficiency. Generally, our results indicate that SDF can be successfully applied as a potential alternative to phosphates and subsequently improve the quality profiles and flavour attributes of phosphate-free frankfurters. Moreover, they provide valuable theoretical guidance for the processing of phosphate-free emulsified meat products.
Collapse
Affiliation(s)
- Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
16
|
Wang Z, Yu Z, Ren S, Liu J, Xu J, Guo Z, Wang Z. Investigating Texture and Freeze-Thaw Stability of Cold-Set Gel Prepared by Soy Protein Isolate and Carrageenan Compounding. Gels 2024; 10:204. [PMID: 38534623 DOI: 10.3390/gels10030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
In this study, the purpose was to investigate the effects with different concentrations of carrageenan (CG, 0-0.30%) on the gel properties and freeze-thaw stability of soy protein isolate (SPI, 8%) cold-set gels. LF-NMR, MRI, and rheology revealed that CG promoted the formation of SPI-CG cold-set gel dense three-dimensional network structures and increased gel network cross-linking sites. As visually demonstrated by microstructure observations, CG contributed to the formation of stable SPI-CG cold-set gels with uniform and compact network structures. The dense gel network formation was caused when the proportion of disulfide bonds in the intermolecular interaction of SPI-CG cold-set gels increased, and the particle size and zeta potential of SPI-CG aggregates increased. SG20 (0.20% CG) had the densest gel network in all samples. It effectively hindered the migration and flow of water, which decreased the damage of freezing to the gel network. Therefore, SG20 exhibited excellent gel strength, water holding capacity, freeze-thaw stability, and steaming stability. This was beneficial for the gel having a good quality after freeze-thaw, which provided a valuable reference for the development of freeze-thaw-resistant SPI cold-set gel products.
Collapse
Affiliation(s)
- Zhuying Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhenhai Yu
- Heilongjiang Province Green Food Science Institute, Harbin 150028, China
| | - Shuanghe Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jun Liu
- Kedong Yuwang Co., Ltd., Qiqihaer 161000, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- National Grain Industry (High-Value Processing of Edible Oil Protein) Technology Innovation Center, Harbin 150030, China
| |
Collapse
|
17
|
Wang J, Xu Z, Lu W, Zhou X, Liu S, Zhu S, Ding Y. Improving the texture attributes of squid meat (sthenoteuthis oualaniensis) with slight oxidative and phosphate curing treatments. Food Res Int 2024; 176:113829. [PMID: 38163726 DOI: 10.1016/j.foodres.2023.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
This study aimed to improve the pasty texture of squid meat by oxidative and phosphate curing (OPC) treatment, and elucidate the underlying mechanism. The shear force, springiness, weight gain, water-holding capacity (WHC), color and sensory evaluation of squid meat samples treated with a mild OPC approach (OPC_2, 10 mM H2O2 solution with complex phosphate solution) were significantly improved. However, the samples subjected to over-oxidized (20 and 30 mM H2O2 solution with complex phosphate solution) treatment did not obtain favorable outcomes. Microstructure analysis revealed that muscle fibers aggregated after moderate OPC treatments, leading to an increased spacing between muscle fiber bundles. This gap facilitated a more uniform distribution and restriction of water, according to low-field nuclear magnetic resonance (LF-NMR) results. The results from in vitro simulated oxidation of myofibrillar proteins (MPs) demonstrated that increased H2O2 led to formation of carbonyl groups and decreased sulfhydryl groups, and even secondary structure changes, according to fourier transform infrared spectroscopy (FT-IR). Particle size, zeta potential and sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE) results showed that oxidation caused protein aggregation into larger molecules. This study presents a novel approach to improve pasty texture of squid meat.
Collapse
Affiliation(s)
- Jiangxiang Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Zheng Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Wei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| |
Collapse
|
18
|
Wu W, Jiang Q, Gao P, Yu D, Yu P, Xia W. L-histidine-assisted ultrasound improved physicochemical properties of myofibrillar proteins under reduced-salt condition - Investigation of underlying mechanisms. Int J Biol Macromol 2023; 253:126820. [PMID: 37690645 DOI: 10.1016/j.ijbiomac.2023.126820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The effects of the L-hisdine (L-His)-assisted ultrasound on physicochemical characteristics and conformation of myofibrillar protein (MP) under reduced-salt condition were investigated using spectroscopic analysis, and the binding mechanism between L-His and MP was further elucidated through molecular docking and molecular dynamics (MD) simulations. UV second derivative spectra and intrinsic Try fluorescence spectra revealed that L-His formed a complex with MP and altered the microenvironment of MP. After L-His-assisted ultrasound treatment, MP showed smaller particle size, higher solubility, and more uniform atomic force microscopy image due to the decrease of α-helix content and the subsequent increase in zeta potential, active sulfhydryl content, and surface hydrophobicity. Molecular docking and MD simulations demonstrated the optimal docking pose (minimum binding affinity of -6.78 kcal/mol) and revealed hydrophobic interactions and hydrogen bonds as the main interaction forces between L-His and MP, with several residues (ILE-464, ILE-480, THR-483, ASN-484, GLY-466, ASP-463, PHE-246) identified as binding sites.
Collapse
Affiliation(s)
- Wenmin Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
19
|
Liu SY, Lei H, Li LQ, Liu F, Li L, Yan JK. Effects of direct addition of curdlan on the gelling characteristics of thermally induced soy protein isolate gels. Int J Biol Macromol 2023; 253:127092. [PMID: 37758109 DOI: 10.1016/j.ijbiomac.2023.127092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
In this study, the effects of the direct addition of curdlan on the physicochemical, structural, and functional properties of heat-induced soy protein isolate (SPI) gels were evaluated. Results demonstrated that the direct incorporation of curdlan enhanced the gel-forming performance, water-holding capacity, and gel strength of heat-induced SPI gels. The presence of curdlan reduced the free water molecules and α-helix content in the SPI structure and contributed to the construction of stable SPI gels with uniform and compact network structures, as visually proven by microstructure observations. Moreover, compared with the SPI gel alone, the curdlan-SPI composite gels presented a more pronounced viscoelastic property and thermal stability mainly due to the intermolecular hydrogen bonding interaction between curdlan and the SPI molecules. Our findings suggest that the direct incorporation of curdlan can effectively ameliorate the gelling characteristics of heat-induced SPI gels, indicating its potential application as a promising gel improver in the food industry.
Collapse
Affiliation(s)
- Shi-Yong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Hongtao Lei
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Long-Qing Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
20
|
Chen H, Zou Y, Zhou A, Liu X, Benjakul S. Elucidating the molecular mechanism of water migration in myosin gels of Nemipterus virgatus during low pressure coupled with heat treatment. Int J Biol Macromol 2023; 253:126815. [PMID: 37690646 DOI: 10.1016/j.ijbiomac.2023.126815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The relationship between myosin denaturation, aggregation and water migration in Nemipterus virgatus myosin gels with different treatment processes under optimal low pressure coupled with heat treatment was investigated to clarify the molecular mechanism of water migration. With the different treatment processes, the proportion of bound water of the myosin gels increased significantly (P < 0.05). Denaturation of myosin S1 sub-fragments and α-helical unfolding during different treatment processes led to an increase in β-sheets content. These promote increased exposure of Try residues and hydrophobic groups of myosin, formation of clathrate hydrates, and reduced mobility of bound water. Furthermore, hydrophobic interactions and disulfide bonds caused the head-head and head-hinge to coalesce into a 3D honeycomb network with greater fractal dimension, less lacunarity, smaller water hole diameter and more water holes. This increased the capillary pressure experienced by the bound water, causing immobile water to migrate towards the bound water. The present study may be necessary to improve the mechanism of water migration in protein gel systems and to promote the industrial application of high pressure processing technology in surimi-based foods.
Collapse
Affiliation(s)
- Haiqiang Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China
| | - Yiqian Zou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Aimei Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaojuan Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
21
|
Zhang Q, Hou Y, Liu X, Sun J, Wang X, Sang Y. Improvement in the gelling properties of myofibrillar protein from the razor clam ( Sinonovacula constricta) through phosphorylation and structural characterization of the modified protein. Food Chem X 2023; 20:101006. [PMID: 38046180 PMCID: PMC10692655 DOI: 10.1016/j.fochx.2023.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023] Open
Abstract
This study investigated the modification of myofibrillar protein (MP) from the razor clam through phosphorylation by using various phosphate salts, namely, sodium tripolyphosphate (STPP), sodium trimetaphosphate (STMP), sodium polyphosphate (STTP) and sodium pyrophosphate (TSPP), and their mechanisms of action for functional and gelling properties. Fourier transform infrared spectrometry (FTIR) showed that MP introduced phosphate groups during phosphorylation; these phosphates changed the secondary structure. Moreover, MP after phosphorylation led to an increase in solubility, which was more evident in the case of TSPP phosphorylation, leading to the improvement of gel properties. Therefore, TSPP was the phosphate with the best gel properties in the modification of MP, showing the highest phosphorus content, which resulted in better gelling properties owing to its relatively shorter chains. These results showed that phosphate was able to improve protein cross-linking through ion interactions and electrostatic interactions, which ultimately improved the gelling properties of the razor clam protein.
Collapse
Affiliation(s)
| | | | - Xiaohan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
22
|
Malik A, Khan JM, Al-Amri AM, Altwaijry N, Sharma P, Alhomida A, Sen P. Hexametaphosphate, a Common Food Additive, Aggregated the Hen Egg White Lysozyme. ACS OMEGA 2023; 8:44086-44092. [PMID: 38027328 PMCID: PMC10666150 DOI: 10.1021/acsomega.3c06210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Polyphosphate polymers are chains of phosphate monomers chemically bonded together via phosphoanhydride bonds. They are found in all prokaryotic and eukaryotic organisms and are among the earliest, most anionic, and most mysterious molecules known. They are everywhere, from small cellular components to additives in our food. There is a strong association between hyperphosphatemia and mortality. That is why it is crucial to assess how polyphosphates, as food additives, affect the quality of edible proteins. This study investigated the effect of inexpensive and widely used food additives (hexametaphosphate labeled as E452) on bakery items, meat products, fish, and soft drinks. Using various spectroscopic and microscopic techniques, we examined how hexametaphosphate affected the aggregation propensity, structure, and stability of a commonly used food protein: hen egg white lysozyme (HEWL). The solubility of HEWL is affected in a bimodal fashion by the concentration of hexametaphosphate. The bimodal concentration-dependent effect was also observed in the tertiary and secondary structural changes. Hexametaphosphate-induced HEWL aggregates were amorphous, as evidenced by ThT fluorescence, far-UV CD, and TEM imaging. This study showed that the food additive (hexametaphosphate) may denature and aggregate proteins and may lead to undesirable health issues.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department
of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz M. Al-Amri
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Nojood Altwaijry
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Prerna Sharma
- Geisinger
Commonwealth School of Medicine Scranton, Scranton, Pennsylvania 18509-3240, United States
| | - Abdullah Alhomida
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Priyankar Sen
- Centre
for Bioseparation Technology, VIT University, Vellore 632014, India
| |
Collapse
|
23
|
Thermal gelation and digestion properties of hen egg white: Study on the effect of neutral and alkaline salts addition. Food Chem 2023; 409:135263. [PMID: 36592599 DOI: 10.1016/j.foodchem.2022.135263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
In this study, the thermal gelation and digestion properties of hen egg white (hen EW) proteins with different salts were investigated. Results show that the addition of neutral salt - sodium chloride (NaCl) decreased the gel hardness/resilience, increased gel lightness, aggregated particle size and digestibility of hen EW proteins significantly. In contrast, alkaline salts - phosphate and carbonate addition increased the gel resilience and strain tolerance as well as reduced the aggregated particle size and gel lightness of hen EW proteins due to the increase of solution pH and negative charge. Correlation analysis shows that the digestibility of hen EW gels was affected by gel viscoelasticity, molecule forces and texture. In conclusion, thermal gelation properties of hen EW proteins could be modulated by salts with different pH/ionic strength, and thus affected the protein digestion and peptide released.
Collapse
|
24
|
Liu Z, Yang W, Wei H, Deng S, Yu X, Huang T. The mechanisms and applications of cryoprotectants in aquatic products: An overview. Food Chem 2023; 408:135202. [PMID: 36525728 DOI: 10.1016/j.foodchem.2022.135202] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Frozen storage technology has been widely used for the preservation of Aquatic products. However, ice crystals formation, lipid oxidation and protein denaturation still easily causes aquatic products deterioration. Cryoprotectants are a series of food additives that could efficiently prolong the shelf life and guarantee the acceptability of frozen aquatic products. This review comprehensively illustrated the mechanism of protein denaturation caused by the ice crystal formation and lipid oxidation. The cryoprotective mechanism of various kinds of antifreeze agents (saccharides, phosphates, antifreeze proteins and peptides) and these cryoprotective structure-activity relationship, application efficiency on the quality of aquatic products were also discussed. Moreover, the advantages and disadvantages of each cryoprotectant are also prospected. Compared with others, antifreeze peptides show higher commercial and application values. While, lots of scientific research works are still required to develop novel antifreeze agent as a versatile ingredient with commercial value, applicable in the aquatic products preservation industry.
Collapse
Affiliation(s)
- Zhenlei Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang, Ningbo, Zhejiang Province 315211, China
| | - Huamao Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Xunxin Yu
- Zhejiang Tianhe Aquatic Products Co., Ltd., Wenling, Zhejiang 317500, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang, Ningbo, Zhejiang Province 315211, China.
| |
Collapse
|
25
|
Chen J, Zeng X, Chai J, Zhou G, Xu X. Improvement of the emulsifying properties of mixed emulsifiers by optimizing ultrasonic-assisted processing. ULTRASONICS SONOCHEMISTRY 2023; 95:106397. [PMID: 37044021 PMCID: PMC10119801 DOI: 10.1016/j.ultsonch.2023.106397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Optimizing ultrasound (ULD)-assisted flavonoid modification is an important component of enhancing its application potential. In this work, diverse flavonoids, such as quercetin (Que), apigenin (Api), and morin (Mor), were used to modify protein in myofibrillar protein (MP)/cellulose nanocrystal (CN) complexes using ULD-assisted method. Compared with the MP/CNs group, the triiodide contents of MP-Que/CNs, MP-Api/CNs, and MP-Mor/CNs increased by 1175.84%, 479.05%, and 2281.50% respectively. The findings revealed that the actual intensity of ULD was drastically reduced by the molecular weight decrease of these flavonoids. For olive oil emulsions prepared with mixed emulsifiers, the low interfacial diffusion rates (0.03 mN·m·s-1/2) and weak emulsifying activity (8.33 m2/g) of the MP/CN complexes were significantly improved by the flavonoids after ULD-assisted treatment. Notably, the emulsions prepared using MP-Api/CNs contained smaller oil droplets and exhibited better emulsifying properties, compared to emulsions prepared with MP-Mor/CNs or MP-Que/CNs. This study is essential for ULD-assisted treatment since the processing impact may be increased by choosing the most suitable flavonoid.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianming Zeng
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chai
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Wang Y, Yuan JJ, Li K, Wang JL, Li JG, Chen B, Bai YH. Effects of combined chickpea protein isolate and chitosan on the improvement of technological quality in phosphate-free pork meat emulsions: Its relation to modifications on protein thermal and structural properties. Meat Sci 2023; 201:109194. [PMID: 37087874 DOI: 10.1016/j.meatsci.2023.109194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
The effects of combined chickpea protein isolate (CPI, 1%, w/w) and chitosan (CHI, 1%, w/w) on the technological, thermal, and structural properties of phosphate-free pork meat emulsions (PPMEs) were investigated. The results showed that CPI + CHI significantly improved the emulsion stability (P < 0.05), synergistically elevated the hardness and chewiness, and did not negatively impact the color attributes, which endowed the PPMEs with similar or even better technological performances compared to the high-phosphate control. These alterations were related to the reduced myosin enthalpy values, the rearrangement of free water into immobilized water, the synergistic reduction in α-helical structure and increase in β-sheet structure, the increased trans-gauche-trans SS conformation intensity of the Raman bands, and the formation of interactive protein gel networks where small-sized fat particles were evenly dispersed in the protein matrix. Therefore, combined CPI and CHI shows promise as a phosphate replacer for meat products.
Collapse
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Jing-Jing Yuan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Jia-le Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Jun-Guang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
27
|
Li X, Yue X, Huang Q, Xiong S. Insight into the spatial distribution and interaction model of heat-induced micro- and nano-starch/myofibrillar protein blends. Int J Biol Macromol 2023; 240:124366. [PMID: 37044321 DOI: 10.1016/j.ijbiomac.2023.124366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
This work investigated the gelatinizing and hydration properties of raw and milled tapioca starches at micron and nano scale as well as their effects on gelation of myofibrillar proteins (MP) from Ctenopharyngodon idellus by analyzing rheology, texture and microstructure of heat-induced MP/starch blends. Milling induced starch granules damage to micron and nano scale, causing a fall in starch swelling power and a jump in water solubility. Among raw and milled starches, nano-starch had the best reinforcement effect on MP gel, i.e., MP/nano-starch showed the lowest critical gel concentration, highest G', strongest resistance to deformation and highest texture performance. Correlation analysis revealed that starch water solubility was responsible for the reinforced MP gel rather than starch swelling power. A schematic model was proposed for illustrating the interaction of starches and MP. All the blends had the ordered filamentous network as the basic skeleton, with some starches (granules and their fragments) in the voids or on the edge or surface of MP filaments as inert fillers, and some (chain segments) embedded in the filaments as active fillers. Almost all nano-starch were actively filled into the MP filaments to enhance the strength of filaments, thus achieving the best reinforcement effect on MP gel.
Collapse
Affiliation(s)
- Xuxu Li
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Xinran Yue
- National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China.
| | - Shanbai Xiong
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| |
Collapse
|
28
|
Wang Y, Yuan JJ, Li K, Chen X, Wang YT, Bai YH. Evaluation of chickpea protein isolate as a partial replacement for phosphate in pork meat batters: Techno-functional properties and molecular characteristic modifications. Food Chem 2023; 404:134585. [PMID: 36444014 DOI: 10.1016/j.foodchem.2022.134585] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022]
Abstract
The effects of chickpea protein isolate (CPI, 0.5-2 %, w/w) on the techno-functional properties of 50 % reduced-phosphate pork meat batters (RPMBs) were explored. The results showed that 1.5-2 % CPI significantly decreased the cooking loss but significantly increased the emulsion stability, hardness, gumminess, chewiness and yellowness (b*) of RPMBs (P < 0.05). CPI altered molecular characteristics of RPMBs, as demonstrated by the increased storage modulus (G'), the conversion of free water into immobilized water, the reduced intensities of the aliphatic residue Raman bands, the decreased α-helical structure and the formation of well-organized gel networks with evenly distributed small fat globules. Principal component analysis and Pearson's correlation analysis indicated that CPI-induced changes in RPMB techno-functional properties were closely related to molecular characteristics. Hierarchical cluster analysis suggested that RPMBs supplemented with 1.5-2 % CPI were highly similar in techno-functional properties to the high-phosphate group. Therefore, CPI may potentially be used to develop reduced-phosphate meat products.
Collapse
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China
| | - Jing-Jing Yuan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun-Tao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan 450000, China.
| |
Collapse
|
29
|
Jia B, Chen J, Yang G, Bi J, Guo J, Shang K, Wang S, Wu Z, Zhang K. Improvement of solubility, gelation and emulsifying properties of myofibrillar protein from mantis shrimp (Oratosquilla oratoria) by phosphorylation modification under low ionic strength of KCl. Food Chem 2023; 403:134497. [DOI: 10.1016/j.foodchem.2022.134497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
30
|
Li G, Mi S, Zeng Q, Wang L, Liu X, Zhang M, Lv Z, Jin Y, Li J, Guo Y, Zhang B. Quantitative proteomics provides insights into the mechanism of the differences in heat-induced gel properties for egg white proteins with different interior quality during ageing in laying hens. Food Chem 2023; 419:136031. [PMID: 37004363 DOI: 10.1016/j.foodchem.2023.136031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/19/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
The purpose of this study was to investigate the mechanism for the differences in heat-induced gel properties of egg white proteins with different interior quality during ageing in laying hens. Quantitative proteomic analysis revealed that the abundance of ovotransferrin, avidin, mucin 5B, and clusterin increased with decreasing Haugh units (HU), leading to the transition from disorder to order in the secondary and tertiary structure of egg white proteins, with the burial of hydrophobic groups and a reduction in the negative charge on the protein surface, rendering the egg white protein solution aggregated. These changes would accelerate the rate of aggregation of egg white proteins during heating, resulting in the loss of orientation of the molecular chains, forming coarse and porous gel structures and poor gel properties. This research provides a new idea for improving the gelling properties of egg whites from lower interior quality during ageing in laying hens.
Collapse
|
31
|
Hu Y, Du L, Sun Y, Zhou C, Pan D. Recent developments in phosphorylation modification on food proteins: Structure characterization, site identification and function. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Wang K, Li Y, Zhang Y, Sun J, Qiao C. Preheating and high-intensity ultrasound synergistically affect the physicochemical, structural, and gelling properties of chicken wooden breast myofibrillar protein. Food Res Int 2022; 162:111975. [DOI: 10.1016/j.foodres.2022.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
|
33
|
Effects of actomyosin dissociation on the physicochemical and gelling properties of silver carp myofibrillar protein sol during freeze–thaw cycles. Food Res Int 2022; 162:112075. [DOI: 10.1016/j.foodres.2022.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
|
34
|
Influence of sodium chloride and sodium pyrophosphate on the physicochemical and gelling properties of silver carp myofibrillar proteins sol subjected to freeze-thaw cycles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Cao C, Xu Y, Liu M, Kong B, Zhang F, Zhang H, Liu Q, Zhao J. Additive Effects of L-Arginine with Potassium Carbonate on the Quality Profile Promotion of Phosphate-Free Frankfurters. Foods 2022; 11:foods11223581. [PMID: 36429173 PMCID: PMC9688976 DOI: 10.3390/foods11223581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The present study investigated the additive effects of L-Arginine (L-Arg) with potassium carbonate (PC) on the quality characteristics of phosphate-free frankfurters. The results showed that L-Arg combined with PC could act as a viable phosphate replacer by decreasing cooking loss and improving the textural properties of phosphate-free frankfurters (p < 0.05), mainly because of its pH-raising ability. Moreover, L-Arg could assist PC in effectively retarding lipid oxidation in phosphate-free frankfurters during storage (p < 0.05). Furthermore, 0.1% L-Arg combined with 0.15% PC was found to exhibit the best optimal phosphate-replacing effect. This combination could also overcome quality defects and promote the sensory attributes of phosphate-free frankfurters to the maximum extent. Therefore, our results suggest that L-Arg combined with PC can be considered a feasible alternative for the processing of phosphate-free frankfurters with an improved quality profile and superior health benefits.
Collapse
Affiliation(s)
- Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yining Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Meiyue Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science & Research Institute, Harbin 150028, China
- Correspondence: (Q.L.); (J.Z.); Tel.: +86-451-5519-0675 (Q.L.)
| | - Jinhai Zhao
- Institute of Advanced Technology, Heilongjiang Academy of Science, Harbin 150001, China
- Correspondence: (Q.L.); (J.Z.); Tel.: +86-451-5519-0675 (Q.L.)
| |
Collapse
|
36
|
Yang K, Wu D, Wang L, Wang X, Ma J, Sun W. Direct current magnetic field: An optional strategy for reducing pyrophosphate in gelatinous meat products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Zhu Y, Nie Y, Lu Y, Ye T, Jiang S, Lin L, Lu J. Contribution of phosphorylation modification by sodium tripolyphosphate to the properties of surimi-crabmeat mixed gels. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Zhang Y, Bai G, Jin G, Wang Y, Wang J, Puolanne E, Cao J. Role of low molecular additives in the myofibrillar protein gelation: underlying mechanisms and recent applications. Crit Rev Food Sci Nutr 2022; 64:3604-3622. [PMID: 36239320 DOI: 10.1080/10408398.2022.2133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding mechanisms of myofibrillar protein gelation is important for development of gel-type muscle foods. The protein-protein interactions are largely responsible for the heat-induced gelation. Exogenous additives have been extensively applied to improve gelling properties of myofibrillar proteins. Research has been carried out to investigate effects of different additives on protein gelation, among which low molecular substances as one of the most abundant additives have been recently implicated in the modifications of intermolecular interactions. In this review, the processes of myosin dissociation under salt and the subsequent interaction via intermolecular forces are elaborated. The underlying mechanisms focusing on the role of low molecular additives in myofibrillar protein interactions during gelation particularly in relation to modifications of the intermolecular forces are comprehensively discussed, and six different additives i.e. metal ions, phosphates, amino acids, hydrolysates, phenols and edible oils are involved. The promoting effect of low molecular additives on protein interactions is highly attributed to the strengthened hydrophobic interactions providing explanations for improved gelation. Other intermolecular forces i.e. covalent bonds, ionic and hydrogen bonds could also be influenced depending on varieties of additives. This review can hopefully be used as a reference for the development of gel-type muscle foods in the future.
Collapse
Affiliation(s)
- Yuemei Zhang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Genpeng Bai
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Guofeng Jin
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Ying Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jinpeng Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jinxuan Cao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
39
|
Effects of different recovered sarcoplasmic proteins on the gel performance, water distribution and network structure of silver carp surimi. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Lu Y, Zhu Y, Ye T, Nie Y, Jiang S, Lin L, Lu J. Physicochemical properties and microstructure of composite surimi gels: The effects of ultrasonic treatment and olive oil concentration. ULTRASONICS SONOCHEMISTRY 2022; 88:106065. [PMID: 35724484 PMCID: PMC9234091 DOI: 10.1016/j.ultsonch.2022.106065] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 05/23/2023]
Abstract
This study was conducted to evaluate the effects of extra virgin olive (EVO) oil incorporation on the physicochemical properties and microstructure of surimi gels subjected to ultrasound-assisted water-bath heating. As the oil content was increased from 0 to 5 g/100 g, the breaking force and gel strength of the surimi gels significantly decreased, while the whiteness level exhibited the opposite tendency irrespective of the heating method. Compared with the traditional water-bath heating method, the ultrasonic heating promoted the unfolding of the α-helix structure and intensified the formation of β-sheet content and non-covalent bonds (ionic bonds, hydrogen bonds, and disulfide bonds), especially disulfide bonds, which contributed to the further crosslinking of the proteins and to gelation, thereby improving the gels' strength. In addition, smaller cavities and compact microstructures were observed in the low-oil (≤3 g/100 g) surimi gels under ultrasonic treatment, which effectively prevented water migration in the gel network and resulted in a high water holding capacity and uniform water distribution. However, the ultrasonic treatment barely remedied the poor microstructures of the high-oil (>3 g/100 g) surimi gels owing to oil coalescence, which weakened the protein-protein interaction. In conclusion, ultrasonic treatment combined with water-bath heating significantly improved the gelation properties of the low-oil surimi gels, although it did not remarkably improve those of the high-oil gels. The choice of a suitable oil concentration could be of great importance for the production and functioning of surimi products via ultrasound-assisted treatments.
Collapse
Affiliation(s)
- Yufeng Lu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Yajun Zhu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Tao Ye
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Yongtao Nie
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Shaotong Jiang
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Lin Lin
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China.
| | - Jianfeng Lu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China.
| |
Collapse
|
41
|
Zhou A, Chen H, Zou Y, Liu X, Benjakul S. Insight into the mechanism of optimal low-level pressure coupled with heat treatment to improve the gel properties of Nemipterus virgatus surimi combined with water migration. Food Res Int 2022; 157:111230. [DOI: 10.1016/j.foodres.2022.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
|
42
|
Yuan D, Cao C, Kong B, Sun F, Zhang H, Liu Q. Micronized cold-pressed hemp seed cake could potentially replace 50% of the phosphates in frankfurters. Meat Sci 2022; 189:108823. [PMID: 35429824 DOI: 10.1016/j.meatsci.2022.108823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 01/23/2023]
Abstract
Present study aimed to investigate the concentration effect of micronized cold-pressed hemp seed cake (MCPHSC) on the quality profiles and sensorial attributes of 50% phosphates reduced frankfurters. The results showed that MCPHSC could be used as an ideal phosphates replacer for obviously decreasing the cooking loss and promoting textural and gel properties of reduced-phosphates frankfurters (P < 0.05), which was verified by scanning electron microscopy. Moreover, the incorporation of MCPHSC could significantly inhibit the occurrence of lipid oxidation of reduced-phosphates frankfurters during storage in a dose-dependent manner (P < 0.05). Additionally, replacing 50% phosphates with 2% (w/w) MCPHSC was found to possess the best optimal replacement effect to enhance the quality profiles of reduced-phosphates frankfurters (P < 0.05). However, a higher amount of MCPHSC had a negative effect on the sensorial evaluations of the reduced-phosphates frankfurters. Our results suggested that the addition of MCPHSC could be applied as a practical way for improving the quality defects of reduced-phosphates frankfurters.
Collapse
Affiliation(s)
- Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
43
|
Modulation of soy protein isolate gel properties by a novel "two-step" gelation process: Effects of pre-aggregation with different divalent sulfates. Food Chem 2022; 394:133515. [PMID: 35749876 DOI: 10.1016/j.foodchem.2022.133515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022]
Abstract
A novel pre-aggregation process prior to gelation was applied to modulate the aggregation and gelation pathway of soy protein isolate (SPI). SPI dispersions were pre-aggregated with CaSO4, MgSO4 or ZnSO4 at 0-15 mM and then gelled by adding CaSO4 up to a final salt concentration of 35 mM. Compared with the sample without pre-aggregation, the storage modulus of SPI gels pre-aggregated with 10 mM CaSO4, 10 mM MgSO4, and 2.5 mM ZnSO4 were increased by 50.5%, 35.7%, and 63.6%, respectively. The fracture stress, texture profile analysis parameters, and water holding capacity were markedly improved by an appropriate level of pre-aggregation. To a certain extent, pre-aggregation could promote the formation of uniform structure with thicker strands, whereas over-aggregation resulted in a coarser network, which was correlated with the volume-mean diameter (D4,3) of pre-aggregated SPI particles. The results are of great value for further understanding of gelation mechanism of proteins.
Collapse
|
44
|
Cai W, Hu T, Cai W, Huang Q. Ultrasound-induced changes in rheological behavior and hydrophobic microdomains of Lignosus rhinocerotis polysaccharide. Int J Biol Macromol 2022; 213:565-573. [PMID: 35660043 DOI: 10.1016/j.ijbiomac.2022.05.182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/28/2022] [Indexed: 11/26/2022]
Abstract
Ultrasound is increasingly applied to modify the structures and physicochemical properties of polysaccharides. Hence, this work investigated the ultrasound-induced changes in the rheological behavior and hydrophobic microdomains of Lignosus rhinocerotis polysaccharide (LRP). With an increase in ultrasonic time, the apparent viscosity, storage modulus, loss modulus, and the final percentage recovery of LRP/water system increased to reach the maximum after 10 min treatment and then decreased. These results indicated that short-term (10 min) ultrasound could increase the strength of the network structure of LRP/water system, while longer-term ultrasound (30 and 60 min) weakened the network structure. The self-healing properties of LRP/water system was not affected by ultrasound treatment according to repeated strain and time sweep data. The critical aggregation concentration of the LRP/water system decreased from 2.5 to 1.8 mg/mL after 10 min ultrasound and the number of hydrophobic microdomains increased, suggesting that ultrasound promoted the hydrophobic aggregation of LRP.
Collapse
Affiliation(s)
- Wudan Cai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Hu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China
| | - Wenfei Cai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
45
|
Qin R, Wu R, Shi H, Jia C, Rong J, Liu R. Formation of AGEs in fish cakes during air frying and other traditional heating methods. Food Chem 2022; 391:133213. [PMID: 35617759 DOI: 10.1016/j.foodchem.2022.133213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
This study investigated the formation of advanced glycation end products (AGEs) in fish cakes under air frying, deep frying, pan frying and baking. The results showed that the AGEs contents on the surface of fish cakes significantly increased with prolonging heating time. The AGEs contents under different methods were following: deep frying > air frying ≈ pan frying > baking. However, the AGEs contents in the interior of fish cakes were hardly influenced by the methods and time. The correlation analysis showed that the AGEs contents were negatively correlated with the moisture content, positively correlated with the yellowness (b*) value, oil content and oxidation products. Additionally, the air-fried fish cake exhibited a denser texture compared to the others, and its colour was similar to the deep-fried ones. Conclusively, the air-fried fish cake showed low oil and AGEs contents, and similar colour to the deep-fried fish cake.
Collapse
Affiliation(s)
- Ruike Qin
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Runlin Wu
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Haonan Shi
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
46
|
Mun S, Shin EC, Kim S, Park J, Jeong C, Boo CG, Yu D, Sim JH, Ji CI, Nam TJ, Cho S. Comparison of Imitation Crab Sticks with Real Snow Crab (Chionoecetes opilio) Leg Meat Based on Physicochemical and Sensory Characteristics. Foods 2022; 11:foods11101381. [PMID: 35626951 PMCID: PMC9141829 DOI: 10.3390/foods11101381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Recently, many manufacturers have been developing or producing imitation crab sticks (ICSs) that are highly similar to real snow crab leg meat (RC). This study evaluated the similarities between commercial ICSs and RC based on the analysis of physicochemical and sensory properties. Normal ICS (NS) and premium ICSs either with real crab leg meat (PS-RC) or without it (PS) were compared with RC. The sensory evaluation results showed that PS and NS had the highest and lowest levels of similarity to RC, respectively. The carbohydrate contents of ICSs (10–23%) were higher than that of RC (0.5%). Among ICSs, PS showed more similarity with RC than NS and PS-RC in terms of gel strength and texture profiles. PS-RC and PS showed a microstructural pattern that slightly imitated the muscle fiber arrangement of RC. The electric tongue analysis of taste compounds, such as sugars, free amino acids, and nucleotides, showed that the taste profile of ICSs is distinctly different from that of RC. The electronic nose analysis identified 32 volatile compounds, while the principal component analysis using electronic nose data successfully distinguished three clusters: PS-RC and PS, RC, and NS. Our results could provide useful information for the development of ICSs with higher similarity to RC.
Collapse
Affiliation(s)
- Sohyun Mun
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Korea; (S.M.); (S.K.); (C.J.)
| | - Eui-Cheol Shin
- Department of GreenBio Science/Food Science, Gyeongsang National University, Jinju 52725, Korea; (E.-C.S.); (C.-G.B.)
| | - Seonghui Kim
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Korea; (S.M.); (S.K.); (C.J.)
| | | | - Chungeun Jeong
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Korea; (S.M.); (S.K.); (C.J.)
| | - Chang-Guk Boo
- Department of GreenBio Science/Food Science, Gyeongsang National University, Jinju 52725, Korea; (E.-C.S.); (C.-G.B.)
| | - Daeung Yu
- Department of Human Senior Ecology Cooperative Course (Food and Nutrition), Changwon National University, Changwon 51140, Korea; (D.Y.); (J.-H.S.)
- Department of Food and Nutrition, Changwon National University, Changwon 51140, Korea
| | - Jin-Ha Sim
- Department of Human Senior Ecology Cooperative Course (Food and Nutrition), Changwon National University, Changwon 51140, Korea; (D.Y.); (J.-H.S.)
| | - Cheong-Il Ji
- Lucky Union Foods Co., Ltd., Samutsakorn 74000, Thailand;
| | - Taek-Jeong Nam
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea;
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Korea; (S.M.); (S.K.); (C.J.)
- Correspondence: ; Tel.: +82-51-629-5833
| |
Collapse
|
47
|
Wang K, Li Y, Sun J, Qiao C, Ho H, Huang M, Xu X, Pang B, Huang H. Synergistic effect of preheating and different power output high-intensity ultrasound on the physicochemical, structural, and gelling properties of myofibrillar protein from chicken wooden breast. ULTRASONICS SONOCHEMISTRY 2022; 86:106030. [PMID: 35576857 PMCID: PMC9118886 DOI: 10.1016/j.ultsonch.2022.106030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 05/02/2023]
Abstract
The effects of preheating to 50 ℃ and the subsequent application of high-intensity ultrasound (HIU, 20 kHz) at 200, 400, 600, and 800 W on the physicochemical, structural, and gelling properties of wooden breast myofibrillar protein (WBMP) were studied. Results suggested that the WBMP structure expanded to the balanced state at 600 W, and rheological properties exhibit that 600 W HIU (P < 0.05) significantly improved the storage modulus (G') of WBMP. Notably, the WBMP gel (600 W) had the best hardness (65.428 ± 0.33 g), springiness (0.582 ± 0.01), and water-holding capacity (86.11 ± 0.83%). Raman spectra and low-field NMR indicated that 600 W HIU increased the β-fold content (37.94 ± 0.04%) and enlarged the immobilized-water proportion (93.87 ± 0.46%). Scanning electron micrographs confirmed that the gel was uniform and dense at 600 W. Therefore, preheating to 50 ℃ followed by HIU (600 W) helped form a superior WBMP gel.
Collapse
Affiliation(s)
- Ke Wang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China.
| | - Changming Qiao
- Shandong Zhucheng Waimao Co., Ltd, Zhucheng 262200, China
| | - Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Ming Huang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Pang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - He Huang
- Shandong New Hope Liuhe Group Co., Ltd. Qingdao 266061, China
| |
Collapse
|
48
|
Wang L, Yang K, Wang X, Wu D, You X, Ma J, Zhang Y, Xiong G, Wang L, Sun W. Gel properties and thermal gelling mechanism in myofibrillar protein of grass carp (
Ctenopharyngodon idellus
) under the synergistic effects of radio frequency combined with magnetic field. J Food Sci 2022; 87:1662-1671. [DOI: 10.1111/1750-3841.16103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Limei Wang
- College of Life Science Yangtze University Jingzhou P. R. China
| | - Kun Yang
- College of Life Science Yangtze University Jingzhou P. R. China
| | - Xian Wang
- College of Life Science Yangtze University Jingzhou P. R. China
| | - Di Wu
- College of Life Science Yangtze University Jingzhou P. R. China
| | - Xiaopeng You
- College of Life Science Yangtze University Jingzhou P. R. China
| | - Jing Ma
- College of Life Science Yangtze University Jingzhou P. R. China
| | - Yunhua Zhang
- School of Mechanical Engineering Yangtze University Jingzhou P. R. China
| | - Guangquan Xiong
- Institute for Farm Products Processing and Nuclear‐Agricultural Technology Hubei Academy of Agricultural Science Wuhan P. R. China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear‐Agricultural Technology Hubei Academy of Agricultural Science Wuhan P. R. China
| | - Weiqing Sun
- College of Life Science Yangtze University Jingzhou P. R. China
| |
Collapse
|
49
|
Jia Z, Guo Z, Wang W, Yi S, Li X, Li J, Zhou G. Effect of compound phosphate on the water‐holding capacity and nutritional quality of sea bass (
Lateolabrax japonicus
) fillets. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhi‐Hui Jia
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
| | - Zhi‐Han Guo
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
| | - Wei Wang
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
| | - Shu‐Min Yi
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
| | - Xue‐Peng Li
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
| | - Jian‐Rong Li
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian, Liaoning 116034 People 's Republic of China
| | - Guangwen Zhou
- Shandong University of Science and Technology Taian Shandong 266590 People 's Republic of China
| |
Collapse
|
50
|
Ma Y, Wang Y, Jiang S, Zeng M. Effect of gelatin on gelation properties of oyster (Crassostrea gigas) protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|