1
|
Liang Y, Weng X, Ling H, Mustafa G, Yang B, Lu N. Transcriptomic Insights into Molecular Response of Butter Lettuce to Different Light Wavelengths. PLANTS (BASEL, SWITZERLAND) 2024; 13:1582. [PMID: 38931014 PMCID: PMC11207648 DOI: 10.3390/plants13121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Lettuce is a widely consumed leafy vegetable; it became popular due to its enhanced nutritional content. Recently, lettuce is also regarded as one of the model plants for vegetable production in plant factories. Light and nutrients are essential environmental factors that affect lettuce growth and morphology. To evaluate the impact of light spectra on lettuce, butter lettuce was grown under the light wavelengths of 460, 525, and 660 nm, along with white light as the control. Plant morphology, physiology, nutritional content, and transcriptomic analyses were performed to study the light response mechanisms. The results showed that the leaf fresh weight and length/width were higher when grown at 460 nm and lower when grown at 525 nm compared to the control treatment. When exposed to 460 nm light, the sugar, crude fiber, mineral, and vitamin concentrations were favorably altered; however, these levels decreased when exposed to light with a wavelength of 525 nm. The transcriptomic analysis showed that co-factor and vitamin metabolism- and secondary metabolism-related genes were specifically induced by 460 nm light exposure. Furthermore, the pathway enrichment analysis found that flavonoid biosynthesis- and vitamin B6 metabolism-related genes were significantly upregulated in response to 460 nm light exposure. Additional experiments demonstrated that the vitamin B6 and B2 content was significantly higher in leaves exposed to 460 nm light than those grown under the other conditions. Our findings suggested that the addition of 460 nm light could improve lettuce's biomass and nutritional value and help us to further understand how the light spectrum can be tuned as needed for lettuce production.
Collapse
Affiliation(s)
- Yongqi Liang
- Shanxi Qingmei Biotechnology Company Limited, Baoji 721000, China
| | - Xinying Weng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Hao Ling
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Na Lu
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa 277-0882, Japan
| |
Collapse
|
2
|
Veremeichik GN, Grigorchuk VP, Makhazen DS, Subbotin EP, Kholin AS, Subbotina NI, Bulgakov DV, Kulchin YN, Bulgakov VP. High production of flavonols and anthocyanins in Eruca sativa (Mill) Thell plants at high artificial LED light intensities. Food Chem 2023; 408:135216. [PMID: 36566545 DOI: 10.1016/j.foodchem.2022.135216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Eruca sativa (arugula) is a food crop containing valuable bioactive flavonoids. Plants growing with monochrome light-emitting diodes (LED) and "binary" light sources, including red/blue (RB), were tested using HPLC-DAD-ESI-MS/MS. Most artificial lighting options with a high intensity of 1000 μmol m-2s-1 (except for warm white light) resulted in an almost 20-fold increase in flavonol productivity. Monochromatic sources had no advantage over white light in terms of increasing anthocyanin productivity. However, RB light increased the anthocyanin content and productivity of E. sativa plants by more than ten times compared to white light. Plant growth on monochromatic and binary sources at high intensities was comparable to that on white light. Measurement of the content of chlorophyll and its degradation product, phyllobilins, showed that plants are not under stressful conditions. Overall, our data show that a significant increase in flavonoid content can be achieved without a loss of arugula plant biomass.
Collapse
Affiliation(s)
- G N Veremeichik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - V P Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - D S Makhazen
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - E P Subbotin
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences (IACP FEB RAS), 5 Radio str., Vladivostok 690041, Russia
| | - A S Kholin
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences (IACP FEB RAS), 5 Radio str., Vladivostok 690041, Russia
| | - N I Subbotina
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences (IACP FEB RAS), 5 Radio str., Vladivostok 690041, Russia
| | - D V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Y N Kulchin
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences (IACP FEB RAS), 5 Radio str., Vladivostok 690041, Russia
| | - V P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
3
|
Gómez-Bellot MJ, Lorente B, Medina S, Gil-Izquierdo Á, Durand T, Galano JM, Vicente-Sánchez S, Ortuño MF, Sánchez-Blanco MJ. Acute and Rapid Response of Melissa officinalis and Mentha spicata to Saline Reclaimed Water in Terms of Water Relations, Hormones, Amino Acids and Plant Oxylipins. PLANTS (BASEL, SWITZERLAND) 2022; 11:3427. [PMID: 36559540 PMCID: PMC9781781 DOI: 10.3390/plants11243427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The use of reclaimed water is considered an efficient tool for agricultural irrigation; however, the high salinity associated to this water could compromise plant quality and yields. Balm and spearmint plants were submitted for 15 days to three irrigation treatments in a controlled chamber: control with EC: 1.2 dS m-1 (control), reclaimed water from secondary effluent (EC: 1.6 dS m-1) (S) and water from secondary effluent with brine (EC: 4.4 dS m-1) (SB). The plant water status, stomatal and hormonal regulation, nutritional response, concentration of amino acids and plant oxidative stress-based markers, as well as growth were evaluated. Both species irrigated with saline reclaimed water reduced leaf water potential and gas exchange in comparison with control plants, following 2 days of exposure to irrigation treatments. Nevertheless, spearmint plants recovered photosynthetic activity from the seventh day onwards, maintaining growth. This was attributed to hormonal changes and a greater accumulation of some amino acids and some plant oxylipins (phytoprostanes) in comparison to balm plants, which contributed to the improvement in the organoleptic and health-promoting properties of spearmint. A longer irrigation period with saline reclaimed water would be necessary to assess whether the quality of both species, especially spearmint, could further improve without compromising their growth.
Collapse
Affiliation(s)
- María José Gómez-Bellot
- Department of Irrigation, CEBAS-CSIC, University Campus of Espinardo–Edif. 25, 30100 Espinardo, Spain
| | - Beatriz Lorente
- Department of Irrigation, CEBAS-CSIC, University Campus of Espinardo–Edif. 25, 30100 Espinardo, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo–Edif. 25, 30100 Espinardo, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo–Edif. 25, 30100 Espinardo, Spain
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, University of Montpellier, ENSCM, 34090 Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, University of Montpellier, ENSCM, 34090 Montpellier, France
| | | | - María Fernanda Ortuño
- Department of Irrigation, CEBAS-CSIC, University Campus of Espinardo–Edif. 25, 30100 Espinardo, Spain
| | | |
Collapse
|
4
|
Fan H, Chen Z, Ma R, Wen Y, Li H, Wang J, Sun B. V6a-amylose helical cavity and benzoic acids with para-hydroxyl structure facilitate the formation of inclusion complex. Carbohydr Polym 2022; 298:120065. [DOI: 10.1016/j.carbpol.2022.120065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
|
5
|
Rodrigues JPB, Liberal Â, Petropoulos SA, Ferreira ICFR, Oliveira MBPP, Fernandes Â, Barros L. Agri-Food Surplus, Waste and Loss as Sustainable Biobased Ingredients: A Review. Molecules 2022; 27:molecules27165200. [PMID: 36014439 PMCID: PMC9412510 DOI: 10.3390/molecules27165200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ensuring a sustainable supply of food for the world’s fast growing population is a major challenge in today’s economy, as modern lifestyle and increasing consumer concern with maintaining a balanced and nutritious diet is an important challenge for the agricultural sector worldwide. This market niche for healthier products, especially fruits and vegetables, has increased their production, consequently resulting in increased amounts of agri-food surplus, waste, and loss (SWL) generated during crop production, transportation, storage, and processing. Although many of these materials are not utilized, negatively affecting the environmental, economic, and social segments, they are a rich source of valuable compounds that could be used for different purposes, thus preventing the losses of natural resources and boosting a circular economy. This review aimed to give insights on the efficient management of agri-food SWL, considering conventional and emerging recovery and reuse techniques. Particularly, we explored and summarized the chemical composition of three worldwide cultivated and consumed vegetables (carrots, broccoli and lettuce) and evaluate the potential of their residues as a sustainable alternative for extracting value-added ingredients for the development of new biodynamic products.
Collapse
Affiliation(s)
- Joana P. B. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 384 46 Volos, Greece
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| |
Collapse
|
6
|
Li Y, Wu L, Jiang H, He R, Song S, Su W, Liu H. Supplementary Far-Red and Blue Lights Influence the Biomass and Phytochemical Profiles of Two Lettuce Cultivars in Plant Factory. Molecules 2021; 26:7405. [PMID: 34885984 PMCID: PMC8658879 DOI: 10.3390/molecules26237405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/04/2022] Open
Abstract
Three different LED spectra (W: White light; WFR: W + far-red light; WB: W + blue light) with similar photosynthetic photon flux density (PPFD) were designed to explore the effects of supplementary far-red and blue lights on leaf color, biomass and phytochemicals of two cultivars of red-leaf lettuce ("Yanzhi" and "Red Butter") in an artificial lighting plant factory. Lettuce plants under WB had redder leaf color and significantly higher contents of pigments, such as chlorophyll a, chlorophyll b, chlorophyll (a + b) and anthocyanins. The accumulation of health-promoting compounds, such as vitamin C, vitamin A, total phenolic compounds, total flavonoids and anthocyanins in the two lettuce cultivars were obviously enhanced by WB. Lettuce under WFR showed remarkable increase in fresh weight and dry weight; meanwhile, significant decreases of pigments, total phenolic compounds, total flavonoids and vitamin C were found. Thus, in the plant factory system, the application of WB can improve the coloration and quality of red leaf lettuce while WFR was encouraged for the purpose of elevating the yield of lettuce.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Houcheng Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.W.); (H.J.); (R.H.); (S.S.); (W.S.)
| |
Collapse
|
7
|
Proietti S, Moscatello S, Riccio F, Downey P, Battistelli A. Continuous Lighting Promotes Plant Growth, Light Conversion Efficiency, and Nutritional Quality of Eruca vesicaria (L.) Cav. in Controlled Environment With Minor Effects Due to Light Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:730119. [PMID: 34712255 PMCID: PMC8546256 DOI: 10.3389/fpls.2021.730119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/09/2021] [Indexed: 05/17/2023]
Abstract
Light-emitting diode lamps can allow for the optimization of lighting conditions in artificial growing environments, with respect to light quality, quantity, and photoperiod extension, to precisely manage resources and crop performance. Eruca vesicaria (L.) Cav. was hydroponically cultured under three light treatments to investigate the effect on yield and nutritional properties of rocket plants. A treatment of (W-12h) having a12/12 h light/dark at 600 μmol m-2 s-1 provided by LEDs W:FR:R:B = 12:2:71:15 was compared with two treatments of continuous lighting (CL), 24 h light at 300 μmol m-2 s-1 provided by cool white LEDs (W-CL), and by LED R:B = 73:27 (RB-CL). CL enhanced the growth of the rocket plants: total fresh biomass, leaf fresh weight, and shoot/root ratio increased in W-CL, and leaf dry weight, leaf dry matter %, root fresh and dry weight, and specific leaf dry weight (SLDW) increased in RB-CL. Total carbon content was higher in RB-CL, whereas total nitrogen and proteins content increased in W-12h. Both W-CL and RB-CL increased carbohydrate content in the rocket leaves, while W-CL alone increased the sugar content in the roots. Fibers, pigments, antioxidant compounds, and malic acid were increased by CL regardless of the light spectrum applied. Nitrate was significantly reduced in the rocket leaves grown both in W-CL and RB-CL. Thus, the application of CL with low light intensity can increase the yield and quality value of rocket, highlighting that careful scheduling of light spectrum, intensity, and photoperiod can improve the performance of the crop.
Collapse
Affiliation(s)
- Simona Proietti
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Stefano Moscatello
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Francesca Riccio
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Peter Downey
- Department of Applied Science, Limerick Institute of Technology, Limerick, Ireland
| | - Alberto Battistelli
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| |
Collapse
|
8
|
Phytochemical Responses to Salt Stress in Red and Green Baby Leaf Lettuce (Lactuca sativa L.) Varieties Grown in a Floating Hydroponic Module. SEPARATIONS 2021. [DOI: 10.3390/separations8100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lettuce (Lactuca sativa L.) is one of the most popular leafy vegetables, appreciated globally as a low-calorie food with bioactive compounds. The application of a low dose of abiotic stress is considered a sustainable pre-harvest strategy to modify the nutraceutical value of horticultural products. In this work, we explored the response of two differently colored (red or green) baby leaf lettuce varieties to four NaCl concentrations in the nutrient solution (from 1 to 30 mM), using a full factorial design. We focused on leaf morphological parameters and possible phytochemical enhancement of the main polyphenols and anthocyanins, analyzed by LC-MS. The response to low-to-moderate salt stress exposure was affected mainly by salt concentration for leaf traits or by the cultivar for leaf color, with very limited factors’ interactions. Multivariate analysis indicated a predominant role of the genotypic factor in shaping differences in the two weeks growing cycle for baby leaf lettuce. Phytochemically, different dose–response models to sub-optimal saline conditions may be applied to the various compounds. A significant hormetic stimulation was present only for cyanidin-malonyl glucoside, the main anthocyanin present in the red cultivar.
Collapse
|
9
|
Jin N, Jin L, Luo S, Tang Z, Liu Z, Wei S, Liu F, Zhao X, Yu J, Zhong Y. Comprehensive Evaluation of Amino Acids and Polyphenols in 69 Varieties of Green Cabbage ( Brassica oleracea L. var. capitata L.) Based on Multivariate Statistical Analysis. Molecules 2021; 26:molecules26175355. [PMID: 34500788 PMCID: PMC8434452 DOI: 10.3390/molecules26175355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023] Open
Abstract
The biological activities of the primary metabolites and secondary metabolites of 69 green cabbage varieties were tested. The LC-MS detection method was used to determine the content of 19 free amino acids (lysine, tryptophan, phenylalanine, methionine, threonine, isoleucine, leucine, valine, arginine, asparagine, glycine, proline, tyrosine, glutamine, alanine, aspartic acid, serine, and glutamate). The content of 10 polyphenols (chlorogenic acid, gallic acid, 4-coumaric acid, ferulic acid, gentisic acid, cymarin, erucic acid, benzoic acid, rutin, and kaempferol) was determined by the HPLC detection method. Considering the complexity of the data obtained, variance analysis, diversity analysis, correlation analysis, hierarchical cluster analysis (HCA), and principal component analysis (PCA) were used to process and correlate amino acid or polyphenol data, respectively. The results showed that there were significant differences between the different amino acids and polyphenols of the 69 cabbage varieties. The most abundant amino acids and polyphenols were Glu and rutin, respectively. Both amino acids and polyphenols had a high genetic diversity, and multiple groups of significant or extremely significant correlations. The 69 cabbage varieties were divided into two groups, according to 19 amino acid indexes, by PCA. Among them, seven varieties with high amino acid content all fell into the fourth quadrant. The HCA of amino acids also supports this view. Based on 10 polyphenols, the 69 cabbage varieties were divided into two groups by HCA. Based on 29 indexes of amino acids and polyphenols, 69 cabbage varieties were evaluated and ranked by PCA. Therefore, in this study, cabbage varieties were classified in accordance with the level of amino acids and polyphenols, which provided a theoretical basis for the genetic improvement of nutritional quality in cabbage.
Collapse
Affiliation(s)
- Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Fanhong Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
| | - Xiaoqiang Zhao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (N.J.); (L.J.); (S.L.); (Z.T.); (Z.L.); (S.W.); (F.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (J.Y.); (Y.Z.)
| | - Yuan Zhong
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (J.Y.); (Y.Z.)
| |
Collapse
|
10
|
De Farias PM, de Vasconcelos LB, Ferreira ME, Pascall M, Tapia-Blácido DR. Nopal cladode (Opuntia ficus-indica) flour: Production, characterization, and evaluation for producing bioactive film. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Li J, Wu T, Huang K, Liu Y, Liu M, Wang J. Effect of LED Spectrum on the Quality and Nitrogen Metabolism of Lettuce Under Recycled Hydroponics. FRONTIERS IN PLANT SCIENCE 2021; 12:678197. [PMID: 34220897 PMCID: PMC8247776 DOI: 10.3389/fpls.2021.678197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Light quality optimization is an efficient method for improving the growth and quality of lettuce in plant factories. In this study, lettuce seedlings were illuminated under different light-emitting diode (LED) lights, namely, red-blue (RB), red-blue-green (RBG), red-blue-purple (RBP), and red-blue-far-red (RBF) LED lights, to investigate the effect of light quality on growth, quality, and nitrogen metabolism. The combination of 75% red and 25% blue light was set as the basic light source, and 20% of green, purple and far-red light were added to basic light source, respectively. All the treatments were set to 200 μmol m-2 s-1. Results showed that the fresh weight and dry weight of aboveground lettuce under RBG, RBP, and RBF treatments were significantly lower than those under the RB treatment because of the decrease in the effective photon flux density for chlorophyll absorption. The vitamin C content of the lettuce leaves was increased by about 23% with the addition of purple light. For nitrate reduction, the addition of green light significantly increased the nitrite content of the lettuce leaves. It also promoted the reduction from nitrite to ammonium through the activation of the nitrite reductase (NiR) expression and enzyme activity. The nitrate and ammonium content decreased with the addition of purple light because of the inhibited NR and NiR expression and enzyme activity. For nitrogen assimilation, individual (e.g., Asp, Glu, and Leu) and total amino acids were induced to increase by adding green, purple, and far-red light. The addition of light was hypothesized to have inhibited protein biosynthesis, thereby causing the accumulation of amino acids. Correlation analysis showed that the relative expression levels between HY5 and NR/NiR presented a significantly negative correlation. Transcription factor HY5 might mediate the regulation of light quality on nitrogen metabolism by inhibiting NR and NiR expressions. It might also exert a negative effect on nitrate reduction. Further studies via genome editing techniques on the identification of HY5 functions for nitrate assimilation will be valuable. Nevertheless, the results of this work enrich the understanding of the effect of light quality on nitrate metabolism at the level of gene expression and enzyme activity.
Collapse
Affiliation(s)
- Jie Li
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Yubing Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Mingyue Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
12
|
Sadras V, Vázquez C, Garzo E, Moreno A, Medina S, Taylor J, Fereres A. The role of plant labile carbohydrates and nitrogen on wheat-aphid relations. Sci Rep 2021; 11:12529. [PMID: 34131178 PMCID: PMC8206072 DOI: 10.1038/s41598-021-91424-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
Interactions between plants and herbivores are key drivers of evolution and ecosystem complexity. We investigated the role of plant labile carbohydrates and nitrogen on wheat-aphid relations in a 22 factorial combining [CO2] and nitrogen supply. We measured life history traits (assay 1) and feeding behaviour (assay 2) of bird-cherry oat aphid (Rhopalosiphum padi L.) and English grain aphid (Sitobion avenae F.) forced to feed on single leaf laminae, and reproduction of R. padi in a setting where insects moved freely along the plant (assay 3). Experimental setting impacted aphid traits. Where aphids were constrained to single leaf, high nitrogen reduced their fitness and discouraged phloem feeding. Where aphids could move throughout the plant, high nitrogen enhanced their reproduction. Aphid responses to the interaction between nitrogen and [CO2] varied with experimental setting. The number of R. padi adults varied tenfold with plant growing conditions and correlated negatively with molar concentration of sugars in stem (assay 3). This finding has two implications. First, the common interpretation that high nitrogen favours insect fitness because protein-rich animal bodies have to build from nitrogen-poor plant food needs expanding to account for the conspicuous association between low nitrogen and high concentration of labile carbohydrates in plant, which can cause osmotic stress in aphids. Second, the function of labile carbohydrates buffering grain growth needs expanding to account for the osmotic role of carbohydrates in plant resistance to aphids.
Collapse
Affiliation(s)
- Victor Sadras
- South Australian Research and Development Institute, Adelaide, Australia. .,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia.
| | - Carolina Vázquez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Elisa Garzo
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Julian Taylor
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| |
Collapse
|
13
|
Marques de Farias P, Barros de Vasconcelos L, da Silva Ferreira ME, Alves Filho EG, De Freitas VAA, Tapia-Blácido DR. Nopal cladode as a novel reinforcing and antioxidant agent for starch-based films: A comparison with lignin and propolis extract. Int J Biol Macromol 2021; 183:614-626. [PMID: 33933543 DOI: 10.1016/j.ijbiomac.2021.04.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
The potential use of nopal cladode flour (NC) as reinforcing/bioactive agent in cassava starch-based films was evaluated and compared with the use of propolis extract or lignin, which are commonly used for these purposes. Cassava starch-based films containing untreated NC (S-NC), NC treated at pH 12 (S-NC12), aqueous propolis extract at two different concentrations (SP1 or SP2), or lignin (S-L) were produced by the casting technique; glycerol was used as plasticizer. NC12 and NC affected the mechanical properties of the cassava starch-based film similarly as compared to propolis extract and lignin. Moreover, NC and NC12 had different performance as reinforcing and antioxidant agent in cassava starch-based film. Thus, S-NC12 film was more elongable (28.5 ± 6.5%), more hydrophobic (contact angle: 70.8° ± 0.1), less permeable to water vapor (0.8 ± 0.0 × 10-10 g·m-1·s-1·Pa-1) and had better antioxidant activity by ABTS•+ (44.70 ± 0.3 μM Trolox·g-1 of film) than the S-NC film. SEM and TGA analysis of films showed that NC12 was better incorporated into the cassava starch matrix than NC, lignin and propolis extract. Overall, nopal cladode flour has potential use in the production of active biodegradable packaging for the food preservation with high oxidation rate.
Collapse
Affiliation(s)
- Patrícia Marques de Farias
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Lucicleia Barros de Vasconcelos
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Márcia Eliana da Silva Ferreira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, S/N, CEP 14040-903 Ribeirão Preto, SP, Brazil
| | - Elenilson G Alves Filho
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Victor A A De Freitas
- Departamento de Ciências naturais, Universidade Federal de São João del-Rei, Building B, Office B.07, Minas Gerais, Brazil
| | - Delia Rita Tapia-Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 Bairro Monte Alegre- Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Plant Polyphenols-Biofortified Foods as a Novel Tool for the Prevention of Human Gut Diseases. Antioxidants (Basel) 2020; 9:antiox9121225. [PMID: 33287404 PMCID: PMC7761854 DOI: 10.3390/antiox9121225] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Plant food biofortification is recently receiving remarkable attention, as it aims to increase the intake of minerals, vitamins, or antioxidants, crucial for their contribution to the general human health status and disease prevention. In this context, the study of the plant’s secondary metabolites, such as polyphenols, plays a pivotal role for the development of a new generation of plant crops, compensating, at least in part, the low nutritional quality of Western diets with a higher quality of dietary sources. Due to the prevalent immunomodulatory activity at the intestinal level, polyphenols represent a nutritionally relevant class of plant secondary metabolites. In this review, we focus on the antioxidant and anti-inflammatory properties of different classes of polyphenols with a specific attention to their potential in the prevention of intestinal pathological processes. We also discuss the latest biotechnology strategies and new advances of genomic techniques as a helpful tool for polyphenols biofortification and the development of novel, healthy dietary alternatives that can contribute to the prevention of inflammatory bowel diseases.
Collapse
|
15
|
Zhao L, Zhao X, Xu Y, Liu X, Zhang J, He Z. Simultaneous determination of 49 amino acids, B vitamins, flavonoids, and phenolic acids in commonly consumed vegetables by ultra-performance liquid chromatography-tandem mass spectrometry. Food Chem 2020; 344:128712. [PMID: 33267980 DOI: 10.1016/j.foodchem.2020.128712] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/29/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
A sensitive and reliable method was developed and validated for the simultaneous determination of 49 amino acids, B vitamins, flavonoids, and phenolic acids based on a rapid metabolomic extraction procedure combined with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) in a single chromatographic run and applied in analysis of 26 commonly consumed vegetables. The chromatographic and sample preparation conditions were optimized, given the high diversity of the target analytes. Eight isotope-labeled standards were applied to validate the method in terms of recovery, linearity, matrix effects, precision, and sensitivity. Most recoveries in four vegetable matrices ranged from 65.0% to 105.3% with associated RSDs < 20%. Low LOQs ranged from 0.06 to 17 µg/kg. Linear calibration curves with different ranges were established with R2 > 0.993. Among the 26 vegetables, purple cabbage, broccoli, and red lettuce were found to contain the highest concentrations of free amino acids, B vitamins, and phenolic compounds.
Collapse
Affiliation(s)
- Liuqing Zhao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Xiaodong Zhao
- Linyi Academy of Agricultural Sciences, Linyi 276012, Shandong, PR China
| | - Yaping Xu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China.
| |
Collapse
|
16
|
Wojdyło A, Nowicka P, Tkacz K, Turkiewicz IP. Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In Vitro Bioactive Properties. Molecules 2020; 25:molecules25204648. [PMID: 33053861 PMCID: PMC7587365 DOI: 10.3390/molecules25204648] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of the study was to analyze potential health-promoting and nutritional components (polyphenols, L-ascorbic acid, carotenoids, chlorophylls, amino acids, organic acid, sugars, ash and pectins) of selected sprouts (radish, lentil, black medick, broccoli, sunflower, leek, beetroot, mung beans) and microgreens (kale, radish, beetroot, green peas, amaranth). Moreover, antioxidant capacity (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing ability of plasma (FRAP), and oxygen radical absorbance capacity (ORAC)), in vitro anti-diabetic potential (inhibition of α-amylase and α-glucosidase), and anti-obesity (pancreatic lipase) and anti-cholinergic (acetylcholinesterase and butyrylcholinesterase) activity were evaluated. The results of this study show that sprouts are effective in antioxidant capacity as a result of a high content of polyphenols and L-ascorbic acid. Additionally, sprouts are better sources of amino acids, pectins and sugars than microgreens. Microgreens were characterized by high content of carotenoids and chlorophylls, and organic acid, without any sugars, exhibiting higher anti-diabetic and anti-cholinergic activity than sprouts. Some selected sprouts (broccoli, radish, lentil) and microgreens (radish, amaranths, kale) should be used daily as superfoods or functional food.
Collapse
|
17
|
García CJ, Yang X, Huang D, Tomás-Barberán FA. Can we trust biomarkers identified using different non-targeted metabolomics platforms? Multi-platform, inter-laboratory comparative metabolomics profiling of lettuce cultivars via UPLC-QTOF-MS. Metabolomics 2020; 16:85. [PMID: 32737683 DOI: 10.1007/s11306-020-01705-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Data analysis during UPLC-MS non-targeted metabolomics introduces variation as different manufacturers use specific algorithms for data treatment and this makes untargeted metabolomics an application for the discovery of new biomarkers with low confidence in the reproducibility of the results under the use of different metabolomics platforms. OBJECTIVES This study compared the ability of two platforms (Agilent UPLC-ESI-QTOF-MS and Waters UPLC-IMS-QTOF-MS) to identify biomarkers in butterhead and romaine lettuce cultivars. METHODS Two case studies by different metabolomics platforms: (1) Waters and Agilent datasets processed by the same data pre-processing software (Progenesis QI), and (2) Datasets processed by different data pre-processing software. RESULTS A higher number of candidate biomarkers shared between sample groups in case 2 (101) than in case 1 (26) was found. Thirteen metabolites were common to both cases. Romaine lettuce was characterised by phenolic compounds including flavonoids, hydroxycinnamate derivatives, and 9-undecenal, while Butterhead showed sesquiterpene lactones and xanthosine. This study demonstrates that high percentages of the most discriminatory entities can be obtained by using the manufacturers' embedded pre-processing software and following the recommended processing data guidelines using commercial software to normalise the data matrix.
Collapse
Affiliation(s)
- Carlos J García
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Center for Applied Soil Science and Biology of the Segura, Spanish National Research Council (CEBAS-CSIC), 30100, Murcia, Spain
| | - Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, 610213, People's Republic of China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Center for Applied Soil Science and Biology of the Segura, Spanish National Research Council (CEBAS-CSIC), 30100, Murcia, Spain.
| |
Collapse
|
18
|
Evaluation of the Probiotic Properties and the Capacity to Form Biofilms of Various Lactobacillus Strains. Microorganisms 2020; 8:microorganisms8071053. [PMID: 32679908 PMCID: PMC7409210 DOI: 10.3390/microorganisms8071053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last 20 years, Lactobacillus species inhabiting the gastrointestinal tract (GIT) have received much attention, and their health-promoting properties are now well-described. Probiotic effects cannot be generalized, and their uses cover a wide range of applications. It is thus important to proceed to an accurate selection and evaluation of probiotic candidates. We evaluate the probiotic potential of six strains of Lactobacillus in different in vitro models representing critical factors of either survival, efficacy, or both. We characterized the strains for their ability to (i) modulate intestinal permeability using transepithelial electrical resistance (TEER), (ii) form biofilms and resist stressful conditions, and (iii) produce beneficial host and/or bacteria metabolites. Our data reveal the specificity of Lactobacillus strains to modulate intestinal permeability depending on the cell type. The six isolates were able to form spatially organized biofilms, and we provide evidence that the biofilm form is beneficial in a strongly acidic environment. Finally, we demonstrated the ability of the strains to produce γ-aminobutyric acid (GABA) that is involved in the gut-brain axis and beneficial enzymes that promote the bacterial tolerance to bile salts. Overall, our study highlights the specific properties of Lactobacillus strains and their possible applications as biofilms.
Collapse
|
19
|
Viršilė A, Brazaitytė A, Vaštakaitė-Kairienė V, Miliauskienė J, Jankauskienė J, Novičkovas A, Laužikė K, Samuolienė G. The distinct impact of multi-color LED light on nitrate, amino acid, soluble sugar and organic acid contents in red and green leaf lettuce cultivated in controlled environment. Food Chem 2020; 310:125799. [PMID: 31711809 DOI: 10.1016/j.foodchem.2019.125799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 09/20/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
In this study we explore the effects of multi-colour LED lighting spectrum on nutritive primary metabolites in green ('Lobjoits green cos') and red ('Red cos') leaf lettuce (Lactuca sativa L.), cultivated in controlled environment. The basal lighting, consisting of blue 455 nm, red 627 and 660 nm and far red 735 nm LEDs, was supplemented with UV-A 380 nm, green 510 nm, yellow 595 nm or orange 622 nm LED wavelengths at total photosynthetic photon flux density of 300 μmol m-2 s-1. Supplemental lighting colours did not affect lettuce growth; however had distinct impact on nitrite, amino acid, organic acid, and soluble sugar contents. Orange, green and UV-A light had differential effects on red and green leaf lettuce metabolism and interplay with nutritional value and safety of lettuce production. The metabolic response was cultivar specific; however green light had reasonable impact on the contents of nutritive primary metabolites in red and green leaf lettuce.
Collapse
Affiliation(s)
- Akvilė Viršilė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Kaunas distr., 54333, Lithuania.
| | - Aušra Brazaitytė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Kaunas distr., 54333, Lithuania
| | - Viktorija Vaštakaitė-Kairienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Kaunas distr., 54333, Lithuania
| | - Jurga Miliauskienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Kaunas distr., 54333, Lithuania
| | - Julė Jankauskienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Kaunas distr., 54333, Lithuania
| | - Algirdas Novičkovas
- Vilnius University, Institute of Photonics and Nanotechnology, Vilnius 10222, Lithuania
| | - Kristina Laužikė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Kaunas distr., 54333, Lithuania
| | - Giedrė Samuolienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Kaunas distr., 54333, Lithuania
| |
Collapse
|
20
|
Wang Y, Gao S, He X, Li Y, Zhang Y, Chen W. Response of total phenols, flavonoids, minerals, and amino acids of four edible fern species to four shading treatments. PeerJ 2020; 8:e8354. [PMID: 31976179 PMCID: PMC6964689 DOI: 10.7717/peerj.8354] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/04/2019] [Indexed: 01/05/2023] Open
Abstract
Total phenols, flavonoids, minerals and amino acids content were investigated in leaves of four fern species grown under four shading treatments with different sunlight transmittance in 35% full sunlight (FS), 13% FS, 8% FS and 4% FS. The leaves of four fern species contain high levels of total phenols and flavonoids, abundant minerals and amino acids, and these all were strongly affected by transmittance. Total phenols and flavonoids content were significantly positively correlated with transmittance, while minerals and total amino acids content were significantly negatively correlated with transmittance, a finding that supports research into how higher light intensity can stimulate the synthesis of phenols and flavonoids, and proper shading can stimulate the accumulation of minerals and amino acids. Matteuccia struthiopteris (L.) Todaro (MS) had the highest total phenols content, Athyrium multidentatum (Doll.) Ching (AM) showed the highest total amino acids, total essential amino acids content, Osmunda cinnamomea (L) var. asiatica Fernald (OCA) exhibited the highest total non-essential amino acids and flavonoids content. Pteridium aquilinum (L.) Kuhn var. latiusculum (Desy.) Underw. ex Heller (PAL) exhibited the highest minerals content. This research can provide a scientific basis for the cultivation and management of those four fern species.
Collapse
Affiliation(s)
- Yanlin Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Shanshan Gao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Xingyuan He
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Forest Ecology and Management, Chinese Academy of Sciences, Shenyang, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| | - Yan Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| | - Yue Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| | - Wei Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Forest Ecology and Management, Chinese Academy of Sciences, Shenyang, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
21
|
Ceccanti C, Landi M, Rocchetti G, Miras Moreno MB, Lucini L, Incrocci L, Pardossi A, Guidi L. Hydroponically Grown Sanguisorba minor Scop.: Effects of Cut and Storage on Fresh-Cut Produce. Antioxidants (Basel) 2019; 8:E631. [PMID: 31818034 PMCID: PMC6943539 DOI: 10.3390/antiox8120631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Wild edible plants have been used in cooking since ancient times. Recently, their value has improved as a result of the scientific evidence for their nutraceutical properties. Sanguisorba minor Scop. (salad burnet) plants were hydroponically grown and two consecutive cuts took place at 15 (C1) and 30 (C2) days after sowing. An untargeted metabolomics approach was utilized to fingerprint phenolics and other health-related compounds in this species; this approach revealed the different effects of the two cuts on the plant. S. minor showed a different and complex secondary metabolite profile, which was influenced by the cut. In fact, flavonoids increased in leaves obtained from C2, especially flavones. However, other secondary metabolites were downregulated in leaves from C2 compared to those detected in leaves from C1, as evidenced by the combination of the variable important in projections (VIP score > 1.3) and the fold-change (FC > 2). The storage of S. minor leaves for 15 days as fresh-cut products did not induce significant changes in the phenolic content and antioxidant capacity, which indicates that the nutraceutical value was maintained. The only difference evidenced during storage was that leaves obtained from C2 showed a lower constitutive content of nutraceutical compounds than leaves obtained from C1; except for chlorophylls and carotenoids. In conclusion, the cut was the main influence on the modulation of secondary metabolites in leaves, and the effects were independent of storage.
Collapse
Affiliation(s)
- Costanza Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.I.); (A.P.); (L.G.)
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.I.); (A.P.); (L.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29121 Piacenza, Italy; (G.R.); (M.B.M.M.); (L.L.)
| | - Maria Begoña Miras Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29121 Piacenza, Italy; (G.R.); (M.B.M.M.); (L.L.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29121 Piacenza, Italy; (G.R.); (M.B.M.M.); (L.L.)
| | - Luca Incrocci
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.I.); (A.P.); (L.G.)
| | - Alberto Pardossi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.I.); (A.P.); (L.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.I.); (A.P.); (L.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
22
|
Vitamin C in Plants: From Functions to Biofortification. Antioxidants (Basel) 2019; 8:antiox8110519. [PMID: 31671820 PMCID: PMC6912510 DOI: 10.3390/antiox8110519] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamin C (l-ascorbic acid) is an excellent free radical scavenger, not only for its capability to donate reducing equivalents but also for the relative stability of the derived monodehydroascorbate radical. However, vitamin C is not only an antioxidant, since it is also a cofactor for numerous enzymes involved in plant and human metabolism. In humans, vitamin C takes part in various physiological processes, such as iron absorption, collagen synthesis, immune stimulation, and epigenetic regulation. Due to the functional loss of the gene coding for l-gulonolactone oxidase, humans cannot synthesize vitamin C; thus, they principally utilize plant-based foods for their needs. For this reason, increasing the vitamin C content of crops could have helpful effects on human health. To achieve this objective, exhaustive knowledge of the metabolism and functions of vitamin C in plants is needed. In this review, the multiple roles of vitamin C in plant physiology as well as the regulation of its content, through biosynthetic or recycling pathways, are analyzed. Finally, attention is paid to the strategies that have been used to increase the content of vitamin C in crops, emphasizing not only the improvement of nutritional value of the crops but also the acquisition of plant stress resistance.
Collapse
|
23
|
Simko I. Genetic variation and relationship among content of vitamins, pigments, and sugars in baby leaf lettuce. Food Sci Nutr 2019; 7:3317-3326. [PMID: 31660145 PMCID: PMC6804913 DOI: 10.1002/fsn3.1196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
Baby leaf lettuce harvested approximately 30 days after planting is the primary component of spring mix salads, a popular type of packaged salads. Very little is known, however, about the content of vitamins, sugars, and pigments in young lettuce plants. Therefore, plants of 42 accessions harvested at baby leaf stage were analyzed for the contents of vitamin C, ß-carotene, anthocyanins, chlorophylls, glucose, fructose, and sucrose. Significant differences among accessions were found for content of all seven compounds plus sucrose sweetness equivalency (SSE) and average vitamin load (AVLAC). "Floricos" was highest in all sugars, SSE and vitamin C; "Taiwan" was highest in ß-carotene and AVLAC, and "Annapolis" and "Darkland" were highest for anthocyanins and chlorophyll contents, respectively. The lowest content of glucose and sucrose was found in iceberg "Salinas," fructose in L. serriola accession UC96US23, vitamin C in PI 257288, and β-carotene in "Solar." The lowest relative sweetness (SSE) was calculated for UC96US23, followed by "Salinas," while the lowest AVLAC was estimated for PI 257288. There were very strong, positive correlations among contents of the three sugars, and between β-carotene and vitamin C, and β-carotene and anthocyanins. Composition profiles of accessions presented in this study, together with identified associations between compounds, can be used by breeders, growers, and producers to select lettuces with desirable combinations of sugars, pigments, and vitamins. This information can help in development of new cultivars and breeding lines with desirable combination of traits, pleasing taste, and higher vitamin content.
Collapse
Affiliation(s)
- Ivan Simko
- U.S. Department of AgricultureAgricultural Research ServiceU.S. Agricultural Research StationCrop Improvement and Protection Research UnitSalinasCAUSA
| |
Collapse
|