1
|
Xu Y, Dai Y, Zhen S, Yang F, Wu J, Bi S, Liu Y. Flavor enhancement pathways and mechanisms of cold-pressed walnut oil based on defatted cold-pressed walnut meal hydrolysates. Food Chem 2025; 482:144190. [PMID: 40184747 DOI: 10.1016/j.foodchem.2025.144190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/25/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The present study aimed to investigate the effect and underlying mechanism of Maillard reaction products (MRPs) derived from defatted cold-pressed walnut meal hydrolysates (DCWMH) on the aroma enhancement of cold-pressed walnut oil (CWO). Nineteen key aroma-active compounds were identified in CWO, hot-pressed walnut oil (HWO), and flavored walnut oil (FWO) using gas chromatography-olfactory-mass spectrometry (GC-O-MS) and odor activity values (OAVs). Principal component analysis (PCA) based on quantitative descriptive analysis (QDA) showed that the "roasted flavor" was positively correlated with FWO. Correlation analysis of free amino acids identified aspartic acid (Asp) as a key aroma precursor. Additionally, a novel pathway for furfural formation via Schiff base intermediates was proposed from the free radical cleavage process of the Maillard reaction in the [13C5]Xylose-Asp model system. Overall, this study provides valuable insights into the control of flavor quality during walnut oil production and supports the potential for the comprehensive utilization of walnut by-products.
Collapse
Affiliation(s)
- Ying Xu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100048, PR China; College of Food Science and Nutritional Engineering, China Agricultural University (CAU), National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory for Food Non-Thermal Processing, Beijing 100083, PR China
| | - Yixin Dai
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100048, PR China
| | - Shaobo Zhen
- School of Hotel Management, China University of Labor Relations, Beijing 100048, PR China
| | - Fan Yang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100048, PR China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University (CAU), National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory for Food Non-Thermal Processing, Beijing 100083, PR China
| | - Shuang Bi
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100048, PR China.
| | - Ye Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100048, PR China.
| |
Collapse
|
2
|
Lee M, Kim YS. Analysis of volatile and odor-active compounds in charcoal-grilled marinated beef using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Sci Biotechnol 2025; 34:1339-1349. [PMID: 40110406 PMCID: PMC11914630 DOI: 10.1007/s10068-024-01783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 03/22/2025] Open
Abstract
Charcoal-grilled marinated beef (CMB) is a popular Korean food that has garnered worldwide attention. In this study, volatile and odor-active compounds generated in CMB were analyzed using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). Solvent-assisted flavor extraction and solid-phase micro extraction were employed to extract the volatile compounds before GC-MS and GC-O analyses. In total, 196 compounds were identified in CMB. Certain heterocyclic compounds, such as pyrazines and thiazoles, could be produced by grilling at high temperatures. The formation of benzene derivatives and phenols could be attributed to charcoal grilling and marinade used. In the GC-O results, 3-methylsulfanylpropanal, 2-methoxyphenol, 1,3-benzothiazole, furaneol, 3-methylphenol, prop-2-ene-1-thiol, 2-ethyl-3,5-dimethylpyrazine, and 2,5-dimethylpyrazine exhibited relatively high flavor dilution factors. Based on these findings, sulfur-containing compounds, pyrazines, phenols, and aldehydes primarily influence the characteristic flavor of CMB.
Collapse
Affiliation(s)
- Minjoo Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Young-Suk Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
3
|
Zhang C, Tan J, He J, Hu Q, Li J, Xie J. Effect of lysine on the cysteine-xylose Maillard reaction to form flavor compounds. Food Chem 2025; 469:142529. [PMID: 39733566 DOI: 10.1016/j.foodchem.2024.142529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024]
Abstract
To understand flavor formation mechanisms in complex meat-like Maillard systems, effect of lysine on cysteine-xylose reaction to form flavors was studied. GC-MS and GC-O analyses found lysine of 1 times cysteine concentration led to the greatest amount of sulfur-containing meaty compounds while more additional lysine caused more pyrazine compounds. LC-MS analysis showed lysine competed with cysteine to form the early-stage intermediate of Lys-Amadori compounds and accelerated conversion of 2-threityl-thiazolidine-4-carboxylic acids to Cys-Amadori compounds from the cysteine-xylose reaction. Reaction rates based on UV 294 and 420 nm absorbance, browning color, and consumption of cysteine and xylose suggested addition of lysine continuously accelerated the Maillard reaction at intermediate and final stages. Pearson correlation analysis revealed less reaction rates and Lys-Amadori compounds formed could cause more meaty compounds and thereby exposed formation pathways of important aroma compounds. This work can provide guidance for optimizing meat or meat product composition to improve meat flavor.
Collapse
Affiliation(s)
- Chenping Zhang
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jia Tan
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jinxin He
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qingqing Hu
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Juan Li
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianchun Xie
- School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China..
| |
Collapse
|
4
|
Ahn J, Choi E, Lee KG. Analysis of volatiles and α-dicarbonyl compounds in Maillard reaction products derived from 2'-fucosyllactose and amino acids. Food Res Int 2025; 205:115975. [PMID: 40032468 DOI: 10.1016/j.foodres.2025.115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/12/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
This study aims to investigate the volatile and α-dicarbonyl compounds (α-DCs) formed in Maillard reactions between 2'-fucosyllactose (2'-FL) and amino acids, with the goal of exploring their potential as flavoring agents and enhancing food quality and safety. The effects of pH, temperature, reaction time, and amino acid concentration on α-DC production were evaluated. Fucose generated the most α-DCs, whereas 2'-FL produced the least. α-DC formation increased with increasing pH, reaction time, temperature, and amino acid concentration. Among the amino acids evaluated, threonine elicited the highest α-DC production. In total, 50 volatile compounds were identified, with 2'-FL and lactose primarily forming furan and furan derivatives. In particular, 2'-FL yielded greater amounts of 2-furfural, 2-acetylfuran, 5-methylfurfural, furfuryl alcohol, and 2-furanmethanol than other monosaccharides. These findings highlight the potential of 2'-FL as a flavouring agent and enhance our understanding of α-DC formation during food processing and storage.
Collapse
Affiliation(s)
- Junghyun Ahn
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Eunyeong Choi
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
5
|
Du W, Ma Q, Li Y, Bai S, Huang Y, Cui W, Accoroni C, Fan B, Wang F. Effects of unsaturated C18 fatty acids on "glucose-glutathione" Maillard reaction: Comparison and formation pathways of initial stage and meaty flavor compounds. Food Res Int 2025; 201:115645. [PMID: 39849734 DOI: 10.1016/j.foodres.2024.115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/30/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
To explore the effect of oleic acid, linoleic acid, and linolenic acid on "glucose-glutathione" Maillard reaction initial stage and meaty flavor compounds formation pathways, glutathione-Amadori compound was synthesized, and identified by Q/TOF and NMR. Depending on the concentration of glutathione and glutathione-Amadori compound quantified by UPLC-MS/MS, the unsaturated C18 fat acids inhibited glutathione Amadori compound formation or accelerated degradation, and oleic acid inhibited most markedly. The results showed that 65 volatile compounds were detected by GC-MS-O in four model systems. Particularly, following the addition of unsaturated C18 fatty acids, the content of meaty flavor compounds sequentially decreased from oleic acid to linoleic acid and then to linolenic acid. The CAMOLA (carbohydrate module labeling) demonstrated the 2-methylthiophene, 2-thiophenecarboxaldehyde, 4-mercaptophenol, 2-acetylthiazole, and thieno[3,2-b]thiophene formation pathways. Particularly, we found for the first time that the skeleton of 4-mercaptophenol generated from glucose. The volatile compounds of reaction systems were discriminated by heatmap and PCA analysis. These results highlights the effect of lipid composition on Maillard reaction and contributes to the control of savory flavor.
Collapse
Affiliation(s)
- Wenbin Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qianli Ma
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yang Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (CangZhou) CAAS, CangZhou, HeBei 061019, China
| | - Weiye Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cecilia Accoroni
- National Institute of Agricultural Technology (INTA), Oliveros, Santa Fe 2115, Argentina
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Qiang Y, Wang J, Jiang W, Wang T, Huang F, Han D, Zhang C. Insights into the flavor endowment of aroma-active compounds in cloves (Syzygium aromaticum) to stewed beef. Food Chem 2025; 462:140704. [PMID: 39226642 DOI: 10.1016/j.foodchem.2024.140704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 09/05/2024]
Abstract
Clove (Syzygium aromaticum) is one of the most commonly used spices in stewed beef to enrich and improve its aroma during the stewing process. Gas chromatography ion mobility spectroscopy (GC-IMS), Q Exactive GC-Orbitrap-MS-O (QE-GC-MS/O), combined with sensory evaluation were employed to analyze the flavor endowment of aroma-active compounds in cloves to stewed beef. A total of 173 volatiles were identified in the clove powder (CP), stewed beef with clove (SBC), and stewed beef with salt (SBS), of which 21 volatiles were considered as aroma-active compounds. The concept of flavor endowment of aroma-active compounds in cloves was defined innovatively, and the endowment rate values (ERVs) of stewed beef were calculated. Nine aroma-active compounds in cloves were found to have a flavor endowment effect on stewed beef, while the terpenoids exhibited high ERVs. Despite the low ERV of eugenol, it still significantly impacted the aroma profile of SBC due to its high odor activity value (OAV) and flavor dilution (FD) factor. These volatiles offered mainly the clove, herbal, anise, and floral odor to stewed beef, which was also confirmed by sensory evaluation. These findings indicated that the terpenoids, phenolics and ethers in cloves had a significant influence on the overall aroma of stewed beef through the flavor endowment, which contributed to the precise use of cloves and improved the aroma of stewed beef.
Collapse
Affiliation(s)
- Yu Qiang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingfan Wang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Wei Jiang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianze Wang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Huang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong Han
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shandong Ledajia Biotechnology Co., Ltd, Laizhou, Shandong, 261400, China.
| |
Collapse
|
7
|
Lee SH, Kim HY. Analyses of the physicochemical and sensory characteristics of black goat triceps brachii muscle based on slaughter age. Food Chem X 2024; 24:101905. [PMID: 39525061 PMCID: PMC11546540 DOI: 10.1016/j.fochx.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, we aimed to analyze the effects of slaughter age on black goat meat's physicochemical and nutritional characteristics. Goats (age: 3, 6, 9, 12, 24, and 36 months) reared under identical conditions were used in this study. The key parameters were analyzed, including color, cooking yield, shear force, free amino acid (FAA) levels, free fatty acid levels, and sensory attributes. Hue values decreased, whereas redness increased with age. Umami and sweet FAA levels increased with age, and bitter FAA levels increased from 9 months. The flavor scores increased with age up to 9 months. Off-flavors were significantly higher in goats aged 24 and 36 months than in those aged 3 and 6 months. Goats aged 9 and 12 months had significantly higher texture scores than those aged 3, 6, and 36 months. Overall, our findings suggest that goats aged 9 and 12 months exhibit the best sensory qualities.
Collapse
Affiliation(s)
- Sol-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Republic of Korea
- Resources Science Research, Kongju National University, Yesan 32439, Republic of Korea
| |
Collapse
|
8
|
Cheng Y, Zheng Y, Cai X, Wang L, Zhou C, Cao J, Tong C, Wang J, Sun Y, Wang Z, Barba FJ, Pan D, Wu Z, Xia Q. Effect of pre-acidification induction on the physicochemical features, myofibrillar protein microstructure, and headspace volatiles of ready-to-cook goose meat. Food Res Int 2024; 197:115166. [PMID: 39593377 DOI: 10.1016/j.foodres.2024.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
This study examined the impact of pre-acidification induction on the quality attributes and flavor retention of ready-to-cook (RTC) goose meat products. The results demonstrated that pre-acidification could influence the eating qualities of RTC goose meat by effectively regulating the physicochemical properties of goose myofibrillar proteins (MP) including solubility and water-holding capacity. Elevated carbonyl contents indicated an enhanced gel-forming capacity in RTC goose meat during storage, accompanied with reduced total sulfhydryl contents from enhanced protonation pretreatment and augmented lipid oxidation. Structural characterization of MP via sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism spectroscopy, and intrinsic fluorescence revealed the formation of a dense protein matrix under highly acidic conditions. Furthermore, the headspace concentration of aldehydes increased by 3.23 times upon enhancing the pre-acidification intensity, resulting in the production of esters and acidic flavor compounds with favorable aromas. Correlation analysis demonstrated the dependence of headspace concentrations of volatile constituents on the acidification-enhanced surface hydrophobicity of MP, attributed to the modified binding sites of proteins after pre-acidification. Current results have indicated both the positive and negative influence of pre-acidulation induction on the eating quality of goose meat products, suggesting the necessity of introducing extra processes to modulate the quality of prefabricated products.
Collapse
Affiliation(s)
- Yan Cheng
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Xintong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Changmin Tong
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zhaoshan Wang
- Shandong Zhongke Food Co., Ltd, Tai'an City 271229, China
| | - Francisco J Barba
- Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Zhen Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
9
|
Feng L, Yang Y, Xie YT, Yan WY, Ma YK, Hu S, Yu AN. The volatile organic compounds generated from the Maillard reaction between l-ascorbic acid and l-cysteine in hot compressed water. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5764-5775. [PMID: 38385827 DOI: 10.1002/jsfa.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/14/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Hot compressed water (HCW), also known as subcritical water (SCW), refers to high-temperature compressed water in a special physical and chemical state. It is an emerging technology for natural product extraction. The volatile organic compounds (VOCs) generated from the Maillard reaction between l-ascorbic acid (ASA) and l-cysteine (Cys) have attracted significant interest in the flavor and fragrance industry. This study aimed to explore the formation mechanism of VOCs from ASA and Cys and examine the effects of reaction parameters such as temperature, time, and pH in HCW. RESULTS The identified VOCs were predominantly thiophene derivatives, polysulfides, and pyrazine derivatives in HCW. The findings indicated that thiophene derivatives were formed under various pH conditions, with polysulfide formation favored under acidic conditions and pyrazine derivative formation preferred under weak alkaline conditions, specifically at pH 8.0. CONCLUSION The Maillard reaction between ASA and Cys mainly produced thiophene derivatives, polysulfides, and pyrazine derivatives in HCW. The generation mechanism was significantly dependent on the surrounding pH conditions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liang Feng
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yan Yang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| | - Ya-Ting Xie
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| | - Wen-Yi Yan
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| | - Ying-Ke Ma
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| | - Sheng Hu
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| | - Ai-Nong Yu
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| |
Collapse
|
10
|
Zhang C, Wang X, Liu Y, Wang J, Xie J. Characteristics of meat flavoring prepared using hydrolyzed plant protein mix by three different heating processes. Food Chem 2024; 446:138853. [PMID: 38422645 DOI: 10.1016/j.foodchem.2024.138853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Meat flavoring was prepared using mainly enzymatic hydrolysate of plant protein mix, VB1, cysteine, and glucose by three heating processes, including A (80 °C-140 min), B (two-stage, 80 °C-30 min/120 °C-30 min), and C (120 °C-40 min). The A-, B-, and C-heated samples exhibited the strongest fatty and weakest meaty, the strongest meaty and kokumi, and the strongest roasted and bitterness characteristics, respectively. PLS-DA for free amino acids with TAVs and that for SPME/GC-MS results with GC-O and OAVs, suggested three amino acids and eight flavor compounds contributed significantly in differentiating taste or aroma attributes of the three heated samples. Molecular weight distribution and degree of amino substitution suggested 1-5 kDa peptides contributed to kokumi taste. Overall, C- and A-heating exhibited the highest rates in Maillard reaction and lipid oxidation, respectively, while those of B heating were between these two heating processes and responsible for better flavor of meat flavoring.
Collapse
Affiliation(s)
- Chenping Zhang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yang Liu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianchun Xie
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
11
|
Luo D, Tian B, Li J, Zhang W, Bi S, Fu B, Jing Y. Mechanisms underlying the formation of main volatile odor sulfur compounds in foods during thermal processing. Compr Rev Food Sci Food Saf 2024; 23:e13389. [PMID: 39031671 DOI: 10.1111/1541-4337.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Volatile sulfur compounds (VSCs) significantly influence food flavor and garner considerable attention in flavor research due to their low sensory thresholds, diverse odor attributes, and high reactivity. Extensive research studies have explored VSC formation through thermal processes such as the Maillard reaction, thermal pyrolysis, oxidation, and enzymatic reactions. However, understanding of the specific reaction mechanisms and processes remains limited. This is due to the dispersed nature of existing studies, the undefined intermediates involved, and the complexity of the matrices and processing conditions. Given these limitations, the authors have shifted their focus from foods to sulfides. The structure, source, and chemical characteristics of common precursors (sulfur-containing amino acids and derivatives, thiamine, thioglucoside, and lentinic acid) and their corresponding reactive intermediates (hydrogen sulfide, thiol, alkyl sulfide, alkyl sulfenic acid, and thial) are provided, and the degradation mechanisms, reaction rules, and matrix conditions are summarized based on their chemical characteristics. Additionally, the VSC formation processes in several typical foods during processing are elucidated, adhering to these identified rules. This article provides a comprehensive overview of VSCs, from precursors and intermediates to end products, and is crucial for understanding the mechanisms behind VSC formation and managing the flavor qualities of processed foods.
Collapse
Affiliation(s)
- Dongsheng Luo
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Binqiang Tian
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Jingxin Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Wentao Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Shuang Bi
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yanqiu Jing
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
12
|
Zhang Z, Chen J, Zheng L, Zhao J, Guo N, Fang X, Lu X, Zhang F, Zhu G. The potential meat flavoring derived from Maillard reaction products of rice protein isolate hydrolysate-xylose via the regulation of temperature and cysteine. Food Chem X 2024; 22:101491. [PMID: 38840727 PMCID: PMC11152652 DOI: 10.1016/j.fochx.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Maillard reaction products (MRPs) derived from rice protein isolate hydrolysate and D-xylose, with or without L-cysteine, were developed as a potential meat flavoring. The combined impact of temperature (80-140 °C) and cysteine on fundamental physicochemical characteristics, antioxidant activity, and flavor of MRPs were investigated through assessments of pH, color, UV-visible spectra, fluorescence spectra, free amino acids, volatile compounds, E-nose, E-tongue, and sensory evaluation. Results suggested that increasing temperature would reduce pH, deepen color, promote volatile compounds formation, and reduce the overall umami and bitterness. Cysteine addition contributed to the color inhibition, enhancement of DPPH radical-scavenging activity and reducing power, improvement in mouthfulness and continuity, reduction of bitterness, and the formation of sulfur compounds responsible for meaty flavor. Overall, MRPs prepared at 120 °C with cysteine addition could be utilized as a potential meat flavoring with the highest antioxidant activity and relatively high mouthfulness, continuity, umami, meaty aroma, and relatively low bitterness.
Collapse
Affiliation(s)
- Zuoyong Zhang
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Jiayi Chen
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Li Zheng
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Jinlong Zhao
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, Fengyang, 233100, Anhui Province, PR China
| | - Na Guo
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Xue Fang
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Xuan Lu
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Fangyan Zhang
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Guilan Zhu
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| |
Collapse
|
13
|
Wang J, Yang P, Liu J, Yang W, Qiang Y, Jia W, Han D, Zhang C, Purcaro G, Fauconnier ML. Study of the flavor dissipation mechanism of soy-sauce-marinated beef using flavor matrices. Food Chem 2024; 437:137890. [PMID: 37926031 DOI: 10.1016/j.foodchem.2023.137890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Soy sauce-based marinade beef (SSMB) is a traditional Chinese cuisine with a unique flavor. However, pre-precooling and air-cooling tunnels are necessary industrial units in the cold chain for flavor dissipation. Sensory-directed flavor analysis was performed to identify the key aroma-active compounds in SSMB that had just completed (100 ℃), pre-cooled in the brine tanks (45 ℃), and exited the air-cooleded tunnel (10 ℃). We identified 110 aroma-active substances, of which 42 were quantified based on their high flavor dilution factors. Recombination and omission tests identified 29 odorants as the main aroma-active molecules. Additionally, the flavor matrix revealed the relationship between the aroma component expression and sensory attributes. Flavor substances derived from spices, such as eugenol, anethole, and linalool, are enriched during the pre-cooling stage. The different meat attributes of the three samples were primarily related to aldehydes generated from lipid oxidation.
Collapse
Affiliation(s)
- Jingfan Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Ping Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmei Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Weifang Yang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Yu Qiang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Jia
- Jiangsu Chaoyue Agricultural Development Co., Ltd., Jiangsu 225400, China
| | - Dong Han
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Giorgia Purcaro
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| |
Collapse
|
14
|
Du W, Wang Y, Ma Q, Li Y, Wang B, Bai S, Fan B, Wang F. The number and position of unsaturated bonds in aliphatic aldehydes affect meat flavorings system: Insights on initial Maillard reaction stage and meat flavor formation from thiazolidine derivatives. Curr Res Food Sci 2024; 8:100719. [PMID: 38533489 PMCID: PMC10963188 DOI: 10.1016/j.crfs.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Nonanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and (E,Z)-2,6-nonadienal were used to study the effect of number and position of the unsaturated bond in aliphatic aldehydes on meat flavorings. Cysteine-Amadori and thiazolidine derivatives were synthesized, identified by UPLC-TOF/MS and NMR, and quantitatively by UPLC-MS/MS. The polyunsaturated aldehydes exhibited higher inhibition than monounsaturated aldehydes, and monounsaturated aldehydes exhibited higher inhibition than saturated aldehydes, mainly manifested by the inhibition of the cysteine-Amadori formation and acceleration of the thiazolidine derivatives formation. The effect of unsaturated bonds position in aliphatic aldehydes on the initial Maillard reaction stage was similar. The cysteine played an important role in catalyzing the reaction of aliphatic aldehydes. A total of 109 volatile compounds derived by heating prepared thiazolidine derivatives degradation were detected by GC-MS. Formation pathways of volatile compounds were proposed by retro-aldol, oxidation, etc. Particularly, a route to form thiazole by the decarboxylation reaction of thiazolidine derivatives which derivatives from formaldehyde reacting with cysteine was proposed.
Collapse
Affiliation(s)
- Wenbin Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Yutang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Qianli Ma
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yang Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
15
|
Wang Y, Liu L, Liu X, Wang Y, Yang W, Zhao W, Zhao G, Cui H, Wen J. Identification of characteristic aroma compounds in chicken meat and their metabolic mechanisms using gas chromatography-olfactometry, odor activity values, and metabolomics. Food Res Int 2024; 175:113782. [PMID: 38129007 DOI: 10.1016/j.foodres.2023.113782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/08/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Aroma has an important influence on the aroma quality of chicken meat. This study aimed to identify the characteristic aroma substances in chicken meat and elucidate their metabolic mechanisms. Using gas chromatography-olfactometry and odor activity values, we identified nonanal, octanal, and dimethyl tetrasulfide as the basic characteristic aroma compounds in chicken meat, present in several breeds. Hexanal, 1-octen-3-ol, (E)-2-nonenal, heptanal, and (E,E)-2,4-decadienal were breed-specific aroma compounds found in native Chinese chickens but not in the meat of white-feathered broilers. Metabolomics analysis showed that L-glutamine was an important metabolic marker of nonanal, hexanal, heptanal, octanal, and 1-octen-3-ol. Exogenous supplementation experiments found that L-glutamine increased the content of D-glucosamine-6-P and induced the degradation of L-proline, L-arginine, and L-lysine to enhance the Maillard reaction and promote the formation of nonanal, hexanal, heptanal, octanal, and 1-octen-3-ol, thus improving the aroma profile of chicken meat.
Collapse
Affiliation(s)
- Yanke Wang
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Li Liu
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Xiaojing Liu
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Yidong Wang
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Weifang Yang
- Beijing General Station of Animal Husbandry, Beijing 100107, China.
| | - Wenjuan Zhao
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Guiping Zhao
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Huanxian Cui
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
16
|
Du W, Wang Y, Yan Q, Bai S, Huang Y, Li L, Mu Y, Shakoor A, Fan B, Wang F. The number and position of unsaturated bonds in aliphatic aldehydes affect the cysteine-glucose Maillard reaction: Formation mechanism and comparison of volatile compounds. Food Res Int 2023; 173:113337. [PMID: 37803647 DOI: 10.1016/j.foodres.2023.113337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 10/08/2023]
Abstract
Nonanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and (E,Z)-2,6-nonadienal were used to reveal the effect of the number and position of unsaturated bond in aliphatic aldehydes on Maillard reaction for the generation of 88 stewed meat-like volatile compounds. The results showed that (E,E)-2,4-nonadienal and (E,Z)-2,6-nonadienal exhibited greater inhibition of the cysteine reaction with glucose than nonanal and (E)-2-nonenal. However, the positions of the unsaturated bonds in aliphatic aldehydes in the Maillard reaction stage were similar. A carbohydrate module labeling approach was used to present the formation pathways of 34 volatile compounds derived from the Maillard reaction with aliphatic aldehyde systems. The number and position of unsaturated bonds in aliphatic aldehydes generate multiple pathways of flavor compound formation. 2-Propylfuran and (E)-2-(2-pentenyl)furan resulted from aliphatic aldehydes. 5-Butyldihydro-2(3H)-furanone and 2-methylthiophene were produced from the Maillard reaction. 2-Furanmethanol, 2-thiophenecarboxaldehyde, and 5-methyl-2-thiophenecarboxaldehyde were derived from the interaction of aliphatic aldehydes and the Maillard reaction. In Particular, the addition of aliphatic aldehydes changed the formation pathway of 2-propylthiophene, thieno[3,2-b]thiophene, and 2,5-thiophenedicarboxaldehyde. Heatmap and PLS-DA analysis could discriminate volatile compound compositions of the five systems and screen the marker compounds differentiating volatile compounds.
Collapse
Affiliation(s)
- Wenbin Du
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yutang Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghong Yan
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Long Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuwen Mu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ashbala Shakoor
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
17
|
Huang X, Wang P, Xue W, Cheng J, Yang F, Yu D, Shi Y. Preparation of meaty flavor additive from soybean meal through the Maillard reaction. Food Chem X 2023; 19:100780. [PMID: 37780247 PMCID: PMC10534126 DOI: 10.1016/j.fochx.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/25/2023] [Accepted: 07/02/2023] [Indexed: 10/03/2023] Open
Abstract
Meaty flavor additive was prepared from soybean meal hydrolysate and xylose in the method of Maillard reaction. Under the conditions of reaction temperature 120 ℃, time 120 min and cysteine addition 10%, the Maillard products had strong flavor of meat. The content of free amino acids was 4.941 μ mol/mL in the products. There were 50 volatile flavor substances in Maillard reaction products according to GC-MS analysis. 4 mercaptans, 4 sulfur substituted furans, 3 thiophenes, 7 furans, 6 pyrazine, 3 pyrrole, 1 pyrimidine, 7 aldehydes, 4 ketones, 7 esters, 2 alcohols and 2 acids were included. The Maillard reaction products also have strong antioxidant activity. The scavenging ability of FRAP, DPPH radical, hydroxyl radical and ABTS+ radical was 1.82%, 69.8%, 68.7% and 71.6% respectively. The products of Mailard reaction have potential to be used in food additives.
Collapse
Affiliation(s)
- Xianhui Huang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenlin Xue
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jie Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fuming Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Dianyu Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yongge Shi
- Jiusan Grains and Oils Industrial Group Co., Ltd, Harbin 150090, China
| |
Collapse
|
18
|
Wang Y, Zhang H, Li K, Luo R, Wang S, Chen F, Sun Y. Dynamic changes in the water distribution and key aroma compounds of roasted chicken during roasting. Food Res Int 2023; 172:113146. [PMID: 37689908 DOI: 10.1016/j.foodres.2023.113146] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/11/2023]
Abstract
The effects of roasting times (0, 2, 4, 6, 8, 10, 12, and 14 min) on the dynamic changes of the water distribution and key aroma compounds in roasted chicken during the electric roasting process were studied. In total, 36 volatile compounds were further determined by GC-MS and 11 compounds, including 1-octen-3-ol, 1-heptanol, hexanal, decanal, (E)-2-octenal, acetic acid hexyl ester, nonanal, 2-pentylfuran, heptanal, (E, E)-2,4-decadienal and octanal, were confirmed as key aroma compounds. The relaxation time of T22 and T23 was increased first and then decreased, while the M22 and M23 in roasted chicken were decreased and increased with increasing roasting time, respectively. The fluidity of the water in the chicken during the roasting process was decreased, and the water with a high degree of freedom migrated to the water with a low degree of freedom. In addition, the L*, a*, b*, M23 and all amino acids were positively correlated with all the key aroma compounds, while T22, M22 and moisture content were negatively correlated with all the key aroma compounds.
Collapse
Affiliation(s)
- Yongrui Wang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Heyu Zhang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - KenKen Li
- College of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Ruiming Luo
- College of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Songlei Wang
- College of Food and Wine, Ningxia University, Yinchuan 750021, China.
| | - Fang Chen
- School of Primary Education, Chongqing Normal University, Chongqing 400700, China
| | - Ye Sun
- Quality Control Office, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
19
|
Zhang X, Li X, Liu SQ. Enzymatic hydrolysis of minced chicken carcasses for protein hydrolysate production. Poult Sci 2023; 102:102791. [PMID: 37307633 PMCID: PMC10276291 DOI: 10.1016/j.psj.2023.102791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023] Open
Abstract
Animal and poultry processing generates significant volumes of by-products that can be further processed for other uses. In this study, we treated minced chicken carcasses with proteases to produce protein hydrolysates that can be used as nutritional and/or flavor-enhancing ingredients. Five different microbial proteases were investigated for their abilities to hydrolyse the minced chicken carcass: Flavourzyme, Protamex, PB01, PB02, and PB03, with PB02 demonstrating the highest degree of hydrolysis (DH) of the minced chicken carcass (43.95%) after 4 h of hydrolysis. The essential hydrolytic parameters were optimized using response surface methodology in conjunction with Box-Behnken design. The optimal conditions were found to be: enzyme/substrate ratio of 3:100 (w/w), temperature of 51.20°C, pH of 6.62 ± 0.05, and substrate/water ratio of 1:1 (w/v) for 4-h hydrolysis, which resulted in a maximum DH of 45.44%. The protein recovery was 50.45 ± 2.05%, and the protein hydrolysate was high in free amino acids (7,757.31 mg/100 mL), of which essential and taste-active amino acids accounted for 41.74% and 92.64%, respectively. The hydrolysate was comprised mainly of low molecular weight peptides (1-5 kDa, 0.5-1 kDa, and <0.5 kDa), which were potential taste substances and flavor precursors. The resulting hydrolysate might be employed as a nutritive product, an ingredient for flavoring generation or a component of fermentation media.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Xinzhi Li
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore; Guangdong Haitian Innovation Tech Co. Ltd. Foshan 528000, China
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215213, China.
| |
Collapse
|
20
|
Yin L, Xu M, Huang Q, Zhang D, Lin Z, Wang Y, Liu Y. Nutrition and Flavor Evaluation of Amino Acids in Guangyuan Grey Chicken of Different Ages, Genders and Meat Cuts. Animals (Basel) 2023; 13:ani13071235. [PMID: 37048491 PMCID: PMC10093250 DOI: 10.3390/ani13071235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The composition and content of amino acids in foodstuffs have a vital impact on the nutritional value and taste. With the aim of understanding the nutrition and flavor of Guangyuan grey chicken, the composition and content of amino acids in the pectoralis and thigh muscle of chickens at the age of 90 d, 120 d and 150 d were determine using liquid chromatography–tandem mass spectrometry (LC-MS/MS) and an amino acid analyzer. A total of 17 amino acids were detected both in pectoralis and thigh muscle via the amino acid analyzer, of which the content of glutamate was the highest. Additionally, 21 deproteinized free amino acids were detected via LC-MS/MS. Among all samples, the content of glutamine in thigh muscle was the highest. The content of histidine in the pectoralis was the highest. In terms of the flavor amino acids (FAAs), the umami-taste and sweet-taste amino acids were higher in the thigh muscle of 120 d male chicken. From the perspective of protein nutrition, the essential amino acid was higher in pectoral muscle, and the composition was better. The results of the amino acid score showed that the content of leucine and valine were inadequate in Guangyuan grey chicken. Collectively, the content of amino acid in Guangyuan grey chicken was affected by age, gender and meat cut. This study confirms that meat of chicken in different ages, genders, and cuts presents different nutritional values and flavors owing to the variation of amino acids content.
Collapse
Affiliation(s)
- Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingxu Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinke Huang
- Guangyuan Municipal Bureau of Agriculture and Rural Affairs, Guangyuan 628000, China
| | - Donghao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
21
|
The potential meat flavoring generated from Maillard reaction products of wheat gluten protein hydrolysates-xylose: Impacts of different thermal treatment temperatures on flavor. Food Res Int 2023; 165:112512. [PMID: 36869515 DOI: 10.1016/j.foodres.2023.112512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Wheat gluten protein hydrolysates were prepared by Flavourzyme, followed by xylose-induced Maillard reaction at different temperatures (80 °C, 100 °C and 120 °C). The MRPs were subjected to analysis of physicochemical characteristics, taste profile and volatile compounds. The results demonstrated that UV absorption and fluorescence intensity of MRPs significantly increased at 120 °C, suggesting formation of a large amount of Maillard reaction intermediates. Thermal degradation and cross-linking simultaneously occurred during Maillard reaction, while thermal degradation of MRPs played a more predominant role at 120 °C. MRPs exhibited high umami and low bitter taste at 120 °C, accompanied by the high content of umami amino acids and low content of bitter amino acids. Furans and furanthiols with pronounced meaty flavor served as the main volatile compounds in MRPs at 120 °C. Overall, high temperature-induced Maillard reaction of wheat gluten protein hydrolysates and xylose is a promising strategy for the generation of potential plant-based meat flavoring.
Collapse
|
22
|
Zhou T, Xia X, Cui H, Zhai Y, Zhang F, Hayat K, Zhang X, Ho CT. Cysteine-Induced pH-Dependent Formation of Thiols and Sulfides or 2-Acetylthiazole and Pyrazines during Thermal Treatment of N-(1-Deoxy-d-xylulos-1-yl)-alanine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2472-2481. [PMID: 36696632 DOI: 10.1021/acs.jafc.2c08360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The influence of pH was studied on volatile flavor formation during thermal treatment of an Amadori rearrangement product (ARP) with or without the addition of cysteine (Cys). The formation of thiols and sulfides or 2-acetylthiazole and pyrazines induced by Cys during thermal degradation of ARP was pH-dependent. At low pH levels, the hydrolysis of Cys to hydrogen sulfide (H2S) was promoted, giving rise to the increase of thiols and sulfides with an obvious meaty aroma. However, alkaline conditions were beneficial for enhancing the cyclization or transformation of imine to the enol structure, which strengthened the formation of 2-acetylthiazole and pyrazines with a roasted and nutty aroma. The imine was derived from the nucleophilic addition of Cys and methylglyoxal (MGO) and subsequent decarboxylation. At pH 8, Cys-induced variation of the flavor profile was weakened during thermal degradation of ARP. Accordingly, the combinational effect of pH and added Cys could be beneficial for achieving the desirable flavors during thermal processing of ARP.
Collapse
Affiliation(s)
- Tong Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Xue Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Yun Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Foxin Zhang
- Anhui QiangWang Flavouring Food Co. Ltd., Fuyang, Anhui 236500, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
23
|
Effect of Aliphatic Aldehydes on Flavor Formation in Glutathione-Ribose Maillard Reactions. Foods 2023; 12:foods12010217. [PMID: 36613433 PMCID: PMC9818664 DOI: 10.3390/foods12010217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The Maillard reaction (MR) is affected by lipid oxidation, the intermediate products of which are key to understanding this process. Herein, nine aliphatic aldehyde−glutathione−ribose models were designed to explore the influence of lipid oxidation products with different structures on the MR. The browning degree, fluorescence degree, and antioxidant activity of the MR products were determined, and the generated volatile organic compounds (VOCs) and nonvolatile compounds were analyzed by gas chromatography-mass spectrometry and ultra-performance liquid chromatography-mass spectrometry. A total of 108 VOCs and 596 nonvolatile compounds were detected. The principal component and hierarchical clustering analyses showed that saturated aldehydes mainly affected the VOCs generated by the MR, while unsaturated aldehydes significantly affected the nonvolatile compounds, which changed the taste attributes of the MR products. Compared with the control group, the addition of unsaturated aldehydes significantly increased the sourness score and decreased the umami score. In addition, the addition of unsaturated aldehydes decreased the antioxidant activity and changed the composition of nonvolatile compounds, especially aryl thioethers and medium chain fatty acids, with a strong correlation with umami and sourness in the electronic tongue analysis (p < 0.05). The addition of aliphatic aldehydes reduces the ultraviolet absorption of the intermediate products of MR browning, whereas saturated aldehydes reduce the browning degree of the MR products. Therefore, the flavor components of processed foods based on the MR can be effectively modified by the addition of lipid oxidation products.
Collapse
|
24
|
Untargeted Profiling and Differentiation of Volatiles in Varieties of Meat Using GC Orbitrap MS. Foods 2022; 11:foods11243997. [PMID: 36553738 PMCID: PMC9777611 DOI: 10.3390/foods11243997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Volatile compounds play vital roles in food sensory attributes and food quality. An analysis of volatile compounds could illustrate the sensory attributes at the microscale level. Here, untargeted profiling approaches for volatiles in five most-consumed meat species were established using headspace SPME-GC/high resolution Orbitrap MS. An extended high-resolution database of meat volatile compounds was established to enhance the qualification accuracy. Using sulfur-containing compounds, aldehydes, and ketones as the research model, the parameters including fiber coating types, extraction temperature, extraction time, and desorbing time were optimized. Principle component analysis, volcano analysis and partial least squares discriminant analysis were applied to run the classification and the selection of discriminant markers between meat varieties, respectively. Different varieties could be largely distinguished according to the volatiles' profiles. 1-Octen-3-ol, 1-octen-3-one, 2-pentyl furan and some other furans degraded from n-6 fatty acids would contribute to distinguishing duck meat from other categories, while methyl esters mainly from oleic acid as well as dimethyl sulfoxide and carbon disulfide possibly produced from the sulfur-containing amino acids contributed to the discrimination of beef. Therefore, volatiles' profiling not only could interpret the aroma style in meat but also could be another promising method for meat differentiation and authentication.
Collapse
|
25
|
Zhou T, Xia X, Cui H, Hayat K, Zhang X, Ho CT. Competitive Formation of 2,3-Butanedione and Pyrazines through Intervention of Added Cysteine during Thermal Processing of Alanine-Xylose Amadori Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15202-15212. [PMID: 36444759 DOI: 10.1021/acs.jafc.2c07026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The intervention of cysteine (Cys) on the formation of 2,3-butanedione and pyrazines was evaluated during the thermal processing of the alanine-xylose Amadori compound (AX-ARP). With the involvement of Cys, the competitive formation of 2,3-butanedione and pyrazines was induced. The formation of 2,3-butanedione in the AX-ARP/Cys model was suppressed due to the inhibitory effect of the precursors of 2,3-butanedione like deoxypentosones, while the added Cys in the AX-ARP/Cys model competed with the recovered alanine (Ala) to capture glyoxal and methylglyoxal to make up for the absence of pyrazines in the AX-ARP model at an initial pH value of 7. The content of pyrazines increased from 0 up to 16.48 μg/L (120 °C, 120 min). Exogenous Cys itself showed lower reactivity with 2,3-butanedione through the Strecker degradation reaction; while the pH was increased to 8, the degradative products of Cys were facilitated to consume the residual 2,3-butanedione giving rise to the formation of 2,4,5-trimethylthiazole at 120 °C. It was the degradative products of Cys that accelerated the reaction for consumption of 2,3-butanedione rather than Cys itself. Additionally, the inhibitory effect of Cys on 2,3-butanedione formation was weakened under a basic condition, while the promotional effect on the formation of pyrazines was further boosted. With more Cys participating in the process of AX-ARP thermal degradation, the formation of 2,3-butanedione was further inhibited, while the yields of pyrazines were increased.
Collapse
Affiliation(s)
- Tong Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Xue Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
26
|
Characterization and difference of lipids and metabolites from Jianhe White Xiang and Large White pork by high-performance liquid chromatography–tandem mass spectrometry. Food Res Int 2022; 162:111946. [DOI: 10.1016/j.foodres.2022.111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
|
27
|
Liu B, Li N, Chen F, Zhang J, Sun X, Xu L, Fang F. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates. Compr Rev Food Sci Food Saf 2022; 21:5153-5170. [PMID: 36287032 DOI: 10.1111/1541-4337.13050] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/14/2022] [Accepted: 09/04/2022] [Indexed: 01/28/2023]
Abstract
Recent scientific evidence indicates that protein hydrolysates contain bioactive peptides that have potential benefits for human health. However, the bitter-tasting hydrophobic peptides in protein hydrolysates negatively affect the sensory quality of resulting products and limit their utilization in food and pharmaceutical industries. The approaches to reduce, mask, and remove bitter taste from protein hydrolysates have been extensively reported. This review paper focuses on the advances in the knowledge regarding the structure-bitterness relationship of peptides, the release mechanism of bitter peptides, and the debittering methods for protein hydrolysates. Bitter tastes generating with enzymatic hydrolysis of protein is influenced by the type, concentration, and bitter taste threshold of bitterness peptides. A "bell-shaped curve" is used to describe the relationship between the bitterness intensity of the hydrolysates and the degree of hydrolysis. The bitter receptor perceives bitter potencies of bitter peptides by the hydrophobicity recognition zone. The intensity of bitterness is influenced by hydrophobic and electronic properties of amino acids and the critical spatial structure of peptides. Compared to physicochemical debittering (i.e., selective separation, masking of bitter taste, encapsulation, Maillard reaction, and encapsulation) and other biological debittering (i.e., enzymatic hydrolysis, enzymatic deamidation, plastein reaction), enzymatic hydrolysis is a promising debittering approach as it combines protein hydrolyzation and debittering into a one-step process, but more work should be done to advance the knowledge on debittering mechanism of enzymatic hydrolysis and screening of suitable proteases. Further study can focus on combining physicochemical and biological approaches to achieve high debittering efficiency and produce high-quality products.
Collapse
Affiliation(s)
- Boye Liu
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Nana Li
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Jingsi Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210014, People's Republic of China
| | - Xiaorui Sun
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Lei Xu
- Nestlé Product Technology Center, Nestlé Health Science, Bridgewater, NJ, 08807, USA
| | - Fang Fang
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
28
|
Wei S, Cui H, Hayat K, Zhang X, Ho CT. Glycine-Xylose Amadori Compound Formation Tracing through Maillard Browning Inhibition by 2-Threityl-thiazolidine-4-carboxylic Acid Formation from Deoxyosone and Exogenous Cysteine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12164-12171. [PMID: 36124743 DOI: 10.1021/acs.jafc.2c04961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The browning inhibition of cysteine on the Maillard reaction of glycine-xylose performed under stepwise increased temperature was investigated. The browning degrees of the final products prepared with cysteine addition at different time points were found dissimilar, and the addition time point of cysteine yielding the lightest browning products was consistent with the time when the glycine-xylose Amadori rearrangement product (GX-ARP) reached its maximum yield. To clarify the reason for browning inhibition caused by cysteine, the evolution of key browning precursors formed in the GX-ARP model with cysteine involved was investigated by HPLC with a diode array detector. The results on the browning degree of the thermal reaction products of GX-ARP with cysteine addition showed great inhibition of α-dicarbonyl generation, which resulted in a significant increase in the activation energy of GX-ARP conversion to browning formation during heat treatment. Strong evidence suggested that the additional cysteine got involved in GX-ARP degradation and reacted with the deoxyosones derived from GX-ARP to yield cyclic 2-threityl-thiazolidine-4-carboxylic acid (TTCA). TTCA formation shunted the degradation of deoxyosones into short-chain α-dicarbonyls, which were important browning precursors, and consequently inhibited the Maillard browning.
Collapse
Affiliation(s)
- Shangjie Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
29
|
Zheng F, Basit A, Zhuang H, Chen J, Zhang J, Chen W. Biochemical characterization of a novel acidophilic β-xylanase from Trichoderma asperellum ND-1 and its synergistic hydrolysis of beechwood xylan. Front Microbiol 2022; 13:998160. [PMID: 36199370 PMCID: PMC9527580 DOI: 10.3389/fmicb.2022.998160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Acidophilic β-xylanases have attracted considerable attention due to their excellent activity under extreme acidic environments and potential industrial utilizations. In this study, a novel β-xylanase gene (Xyl11) of glycoside hydrolase family 11, was cloned from Trichoderma asperellum ND-1 and efficiently expressed in Pichia pastoris (a 2.0-fold increase). Xyl11 displayed a maximum activity of 121.99 U/ml at pH 3.0 and 50°C, and exhibited strict substrate specificity toward beechwood xylan (Km = 9.06 mg/ml, Vmax = 608.65 μmol/min/mg). The Xyl11 retained over 80% activity at pH 2.0–5.0 after pretreatment at 4°C for 1 h. Analysis of the hydrolytic pattern revealed that Xyl11 could rapidly convert xylan to xylobiose via hydrolysis activity as well as transglycosylation. Moreover, the results of site-directed mutagenesis suggested that the Xyl11 residues, Glu127, Glu164, and Glu216, are essential catalytic sites, with Asp138 having an auxiliary function. Additionally, a high degree of synergy (15.02) was observed when Xyl11 was used in association with commercial β-xylosidase. This study provided a novel acidophilic β-xylanase that exhibits excellent characteristics and can, therefore, be considered a suitable candidate for extensive applications, especially in food and animal feed industries.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Fengzhen Zheng,
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, The Children’s Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Weiqing Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
30
|
Liu S, Sun H, Ma G, Zhang T, Wang L, Pei H, Li X, Gao L. Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Front Nutr 2022; 9:973677. [PMID: 36172529 PMCID: PMC9511141 DOI: 10.3389/fnut.2022.973677] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
During food processing, especially heating, the flavor and color of food change to a great extent due to Maillard reaction (MR). MR is a natural process for improving the flavor in various model systems and food products. Maillard reaction Products (MRPs) serve as ideal materials for the production of diverse flavors, which ultimately improve the flavor or reduce the odor of raw materials. Due to the complexity of the reaction, MR is affected by various factors, such as protein source, hydrolysis conditions, polypeptide molecular weight, temperature, and pH. In the recent years, much emphasis is given on conditional MR that could be used in producing of flavor-enhancing peptides and other compounds to increase the consumer preference and acceptability of processed foods. Recent reviews have highlighted the effects of MR on the functional and biological properties, without elaborating the flavor compounds obtained by the MR. In this review, we have mainly introduced the Maillard reaction-derived flavors (MF), the main substances producing MF, and detection methods. Subsequently, the main factors influencing MF, from the selection of materials (sugar sources, protein sources, enzymatic hydrolysis methods, molecular weights of peptides) to the reaction conditions (temperature, pH), are also described. In addition, the existing adverse effects of MR on the biological properties of protein are also pointed out.
Collapse
|
31
|
Xie A, Sun J, Wang T, Liu Y. Visualized detection of quality change of cooked beef with condiments by hyperspectral imaging technique. Food Sci Biotechnol 2022; 31:1257-1266. [PMID: 35992322 PMCID: PMC9385930 DOI: 10.1007/s10068-022-01115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 11/04/2022] Open
Abstract
The heat treatment and seasoning of meat are indispensable before its consumption. In this work, the spectral characteristics of cooked meat and condiments were analysed by hyperspectral imaging (HSI) technology. The spectral reflectance of spices was significantly lower than that of meat protein, and that the spectral reflectance of protein regularly increased upon heating at 800-956 nm range. PCA pre-process and SVM models were used to predict beef moisture (R 2 = 0.912) and tenderness (R 2 = 0.771) based on 100 beef data. Mapping technology clearly showed the dynamic change of meat tenderness during heating, and the performance of 3D mapping was better than that of 2D mapping. Based on 750 nm/900 nm ratio image and machine-vision method, spice uniformity was accurately calculated. Thus, the quality of cooked meat and condiments distribution can be simultaneously evaluated by HSI. This technology can be used in the intelligent production of complex meat products in the future.
Collapse
Affiliation(s)
- Anguo Xie
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473000 Henan China
- College of Food and Bio-Engineering, Henan University of Science and Technology, Luoyang, 471000 Henan China
| | - Jing Sun
- College of Food and Bio-Engineering, Henan University of Science and Technology, Luoyang, 471000 Henan China
| | - Tingmin Wang
- College of Food and Bio-Engineering, Henan University of Science and Technology, Luoyang, 471000 Henan China
| | - Yunhong Liu
- College of Food and Bio-Engineering, Henan University of Science and Technology, Luoyang, 471000 Henan China
| |
Collapse
|
32
|
Reduced Asynchronism between Regenerative Cysteine and Fragments of Deoxyosones Promoting Formation of Sulfur-containing Compounds through Extra-added Xylose and Elevated Temperature during Thermal Processing of 2‑Threityl-Thiazolidine-4-Carboxylic Acid. Food Chem 2022; 404:134420. [DOI: 10.1016/j.foodchem.2022.134420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
33
|
Wang Y, Xie J, Zhang C, Xu Y, Yang X. Effect of lipid on formation of Maillard and
lipid‐Maillard
meaty flavour compounds in heated cysteine‐xylose‐methyl linoleate system. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yutong Wang
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Jianchun Xie
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Chenping Zhang
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Yuxia Xu
- School of Light Industry Beijing Technology and Business University (BTBU) Beijing China
| | - Xuelian Yang
- School of Food and Health Beijing Technology and Business University (BTBU) Beijing China
| |
Collapse
|
34
|
Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem 2022; 393:133416. [DOI: 10.1016/j.foodchem.2022.133416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 12/28/2022]
|
35
|
Zheng Z, Zhang M, Liu W, Liu Y. Effect of beef tallow, phospholipid and microwave combined ultrasonic pretreatment on Maillard reaction of bovine bone enzymatic hydrolysate. Food Chem 2022; 377:131902. [PMID: 34974407 DOI: 10.1016/j.foodchem.2021.131902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022]
Abstract
The effects of beef tallow, phospholipid, microwave, and ultrasonic pretreatment (MUP) on the Maillard reaction process, the sensory characteristics of Maillard reaction products (MRPs), and the composition and content of volatile compounds were studied. Maillard reaction of the sample was more intense after MUP, but more hydrophobic amino acids were generated, resulting in relatively high sourness in MRPs. Beef tallow encapsulation has no significant effect on the sensory characteristics of MRPs. The content of volatile compounds in MRPs added with phospholipids increased significantly, and the content of sulfur compounds (especially furan and furanthiol) increased most significantly. Hexanal, Nonanal, 2-Hexylfuran, 2-Hexylthiophene, and 1-Octanol were positively correlated with the value of umami and saltiness of MRPs. The addition of phospholipids after MUP and beef tallow encapsulation helps to increase the saltiness and umami of MRPs, reduce astringency, and produce more sulfur and other flavor compounds.
Collapse
Affiliation(s)
- Zhiliang Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Wenchao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Yaping Liu
- Guangdong Galore Food Co., Ltd., 528447 Zhongshan, Guangdong, China
| |
Collapse
|
36
|
Zheng AR, Wei CK, Ni ZJ, Thakur K, Zhang JG, Wei ZJ. Gut modulatory effects of flaxseed derived Maillard reaction products in Sprague-Dawley rats during sub-chronic toxicity. Food Chem Toxicol 2022; 165:113115. [DOI: 10.1016/j.fct.2022.113115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
37
|
Sohail A, Al-Dalali S, Wang J, Xie J, Shakoor A, Asimi S, Shah H, Patil P. Aroma compounds identified in cooked meat: A review. Food Res Int 2022; 157:111385. [DOI: 10.1016/j.foodres.2022.111385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
|
38
|
Characterization of Taste Compounds and Sensory Evaluation of Soup Cooked with Sheep Tail Fat and Prickly Ash. Foods 2022; 11:foods11070896. [PMID: 35406983 PMCID: PMC8997404 DOI: 10.3390/foods11070896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/27/2022] Open
Abstract
Sheep tail fat and prickly ash play an important role in improving the umami taste of mutton soup. In this work, the effects of prickly ash on key taste compounds in stewed sheep tail fat soup were investigated. Results showed that the taste intensity of sheep tail fat soup cooked with 0.2% prickly ash increased significantly. The concentration of organic acids and free amino acids in sheep tail fat soup significantly increased with the addition of prickly ash. The concentration of succinic acid (2.637 to 4.580 mg/g) and Thr (2.558 to 12.466 mg/g) increased the most among organic acids and amino acids, respectively. Spearman’s correlation analysis elucidated that seven taste compounds were positively correlated (correlation coefficient > 0.7) with the overall taste intensity of the soup sample including Thr, Asp, oxalic acid, lactic acid, citric acid, succinic acid, and ascorbic acid. Additional experiments and quantitative descriptive analysis further confirmed that Asp, lactic acid and citric acid were the key taste compounds to improve saltiness and umami taste in sheep tail fat soup with prickly ash.
Collapse
|
39
|
Analysis of key precursor peptides and flavor components of flaxseed derived Maillard reaction products based on iBAQ mass spectrometry and molecular sensory science. Food Chem X 2022; 13:100224. [PMID: 35146413 PMCID: PMC8802846 DOI: 10.1016/j.fochx.2022.100224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/02/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Peptides-MRPs had high umami, mouthfulness, and continuity enhancement. DLSFIP and ELPGSP accounted for 42.22% and 20.41% of total consumption. Sulfur and nitrogen flavors was dependent on cysteine and peptides, respectively. This study also revealed the flavor formation mechanism of flaxseed derived MRPs.
Flaxseed derived Maillard reaction products (MRPs) have typical meaty flavor, but there is no report on comparison of their amino acids and peptides reactivity. The peptides and amino acids of flaxseed protein hydrolysates were separately collected by G-15 gel chromatography. Taste dilution analysis (TDA) showed that peptides-MRPs had high umami, mouthfulness, and continuity enhancement. Further, LC-MS/MS revealed that flaxseed protein hydrolysates consumed 41 peptides after Maillard reaction. Particularly, DLSFIP (Asp-Leu-Ser-Phe-Ile-Pro) and ELPGSP (Glu-Leu-Pro-Gly-Ser-Pro) accounted for 42.22% and 20.41% of total consumption, respectively. Aroma extract dilution analysis (AEDA) indicated that formation of sulfur-containing flavors was dependent on cysteine, while peptides were more reactive than amino acids for nitrogen-containing heterocycles. On the other hand, 11 flavor compounds with flavor dilution (FD) ≥ 64 were identified for flaxseed derived MRPs, such as 2-methylthiophene, 2-methyl-3-furanthiol, furfural, 2-furfurylthiol, 3-thiophenethiol, thieno[3,2-b] thiophene, 2,5-thiophenedicarboxaldehyde, 2-methylthieno[2,3-b] thiophene, 1-(2-methyl-3-furylthio)-ethanethiol, 2-methylthieno[3,2-b] thiophene, and bis(2-methyl-3-furyl)-disulfide. In addition, we further demonstrated the flavors formation mechanism of flaxseed derived MRPs.
Collapse
|
40
|
Sasanam S, Rungsardthong V, Thumthanaruk B, Wijuntamook S, Rattananupap V, Vatanyoopaisarn S, Puttanlek C, Uttapap D, Mussatto SI. Production of process flavorings from methionine, thiamine with d-xylose or dextrose by direct extrusion: Physical properties and volatile profiles. J Food Sci 2022; 87:895-910. [PMID: 35122252 DOI: 10.1111/1750-3841.16060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
Abstract
The conventional method to produce process flavoring is non-continuous, time consuming, and generates a high volume of effluent. This research aimed to evaluate the use of methionine, thiamine, and reducing sugars to develop process flavorings by direct extrusion, as a potential alternative to the conventional method. The mixed substrates consisted of methionine: d-xylose (MX), methionine: dextrose (MD), thiamine: d-xylose (TX), and thiamine: dextrose (TD) at 80:20 w/w. Three barrel temperatures of the extruder were controlled at 65, 80, and 50°C, respectively, a screw speed of 30 rpm and feed rate at 3 kg/hr. Appearance, pH, odor, and taste description of the product from each mixture were determined. Volatile compounds, possibly occurred from the Maillard reaction during the extrusion were analyzed by gas chromatography-mass spectrometry. The products exhibited different levels of meaty odor and bitter taste. Those obtained from MD showed the highest L* (lightness, 85.37) and frequency for just-about-right in terms of taste (33.33%) and odor (60.00%). Products from MX and MD presented the highest frequency for intense taste, and higher frequency for color compared to TX and TD. More volatile compounds were detected from the use of methionine than from thiamine. The key meaty odor compounds such as dimethyl disulfide, dimethyl trisulfide, methional, and methanethiol were found in the samples from MX and MD, while only dimethyl disulfide was detected in the mixture of TX and TD. Finally, the results demonstrated that direct extrusion reaction from methionine and d-xylose or dextrose is a highly efficient method to produce meaty process flavorings. PRACTICAL APPLICATION: The manuscript describes the production of process flavorings that exhibited meaty flavors by extrusion process. Physical properties, volatile profiles, and sensory evaluation of the products from methionine, thiamine, d-xylose, and glucose were evaluated. The extruded products from methionine and dextrose exhibited acceptable color, taste, and odor and presented many volatiles compounds contributing to meaty flavors. The results revealed the high potential to use a direct extrusion process with very low effluent, compared to the conventional method, to produce meaty flavors for industrial application.
Collapse
Affiliation(s)
- Sirinapa Sasanam
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Vilai Rungsardthong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Benjawan Thumthanaruk
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | | | | | - Savitri Vatanyoopaisarn
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Chureerat Puttanlek
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Dudsadee Uttapap
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkhuntian, Bangkok, Thailand
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| |
Collapse
|
41
|
Bile Acids, Gut Microbes, and the Neighborhood Food Environment-a Potential Driver of Colorectal Cancer Health Disparities. mSystems 2022; 7:e0117421. [PMID: 35103491 PMCID: PMC8805634 DOI: 10.1128/msystems.01174-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bile acids (BAs) facilitate nutrient digestion and absorption and act as signaling molecules in a number of metabolic and inflammatory pathways. Expansion of the BA pool and increased exposure to microbial BA metabolites has been associated with increased colorectal cancer (CRC) risk. It is well established that diet influences systemic BA concentrations and microbial BA metabolism. Therefore, consumption of nutrients that reduce colonic exposure to BAs and microbial BA metabolites may be an effective method for reducing CRC risk, particularly in populations disproportionately burdened by CRC. Individuals who identify as Black/African American (AA/B) have the highest CRC incidence and death in the United States and are more likely to live in a food environment with an inequitable access to BA mitigating nutrients. Thus, this review discusses the current evidence supporting diet as a contributor to CRC disparities through BA-mediated mechanisms and relationships between these mechanisms and barriers to maintaining a low-risk diet.
Collapse
|
42
|
Impacts of thermal treatment, xylose and cysteine addition on aroma compounds profile in lactic acid bacterium fermented pork hydrolysates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Effects of sugars on the flavor and antioxidant properties of the Maillard reaction products of camellia seed meals. Food Chem X 2021; 11:100127. [PMID: 34485895 PMCID: PMC8405971 DOI: 10.1016/j.fochx.2021.100127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
MRPs were obtained by heating camellia seed meal hydrolysates, and different sugars. The ratio of essential amino acids in R-MRPs was increased and the antioxidant activity was the highest. MR could improve the flavor and antioxidant activity of camellia seed meal.
In the present study, camellia seed meal Maillard reaction products (MRPs) were prepared using camellia seed meal protein as a raw material. The effects of MR on protein structure and volatile components of camellia seed meal were investigated by fluorescence, UV absorption, infrared spectroscopy, and gas chromatography-mass spectrometry. Not only the change of amino acid content in MRPs, but also the antioxidant capacity of MRPs and the antioxidant capacity after in vitro digestion were determined. Our result showed that the ratio of essential amino acids in R-MRPs was increased and the antioxidant activity was the highest. For the potential of MRPs as flavoring, our sensory evaluation results showed improved flavor and antioxidant activity of camellia seed meal after MR which can be used as flavoring agents at industrial level.
Collapse
|
44
|
Zhai Y, Cui H, Zhang Q, Hayat K, Wu X, Deng S, Zhang X, Ho CT. Degradation of 2-Threityl-Thiazolidine-4-Carboxylic Acid and Corresponding Browning Accelerated by Trapping Reaction between Extra-Added Xylose and Released Cysteine during Maillard Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10648-10656. [PMID: 34463101 DOI: 10.1021/acs.jafc.1c03727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2-Threityl-thiazolidine-4-carboxylic acid (TTCA), a nonvolatile precursor of flavor and color, is considered to be more stable than its isomeric Amadori compound (ARP). The degradation behavior of TTCA favors higher temperatures and pH. In order to adjust and control the thermal degradation of TTCA to improve its food processing adaptability, a TTCA-Xyl thermal reaction model was constructed to explore the effect of extra-added Xyl on the thermal degradation behavior of TTCA. The results confirmed that the extra-added Xyl was involved in the degradation pathway of TTCA and accelerated its depletion, thus promoting the formation of characteristic downstream products of TTCA including some α-dicarbonyl compounds, and consequently accelerating the browning formation. The isotope-labeling technique was further applied to confirm that the added Xyl could trap the Cys released from the decomposition of ARP and formed additional TTCA, which could promote the movement of chemical equilibrium and gradually accelerate the degradation rate of TTCA as well as melanoidins formation. The higher pH value could even promote this phenomenon.
Collapse
Affiliation(s)
- Yun Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Qiang Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Shibin Deng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Chi-Tang Ho
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Flavouring Food Co., LTD, No. 1 Shengli Road, Jieshou, Anhui 236500, P. R. China
| |
Collapse
|
45
|
Cui H, Yu J, Zhai Y, Feng L, Chen P, Hayat K, Xu Y, Zhang X, Ho CT. Formation and fate of Amadori rearrangement products in Maillard reaction. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Bai Y, Liang Y, Li G, Wu S, Wang G, Li Y, Liu Y, Chen C. Metal-ion-assisted structural and anomeric analysis of Amadori compounds by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8960. [PMID: 33002251 DOI: 10.1002/rcm.8960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/30/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The Maillard reaction plays an important role in food, physiology and traditional Chinese medicine, and its primary reaction products are formed through Amadori rearrangement by reducing sugars and amino acids. The analysis of the characteristic fragmentation and of the glycosidic bond configuration of Amadori compounds will promote their fast discovery and identification by mass spectrometry. METHODS Four Amadori compounds that reduce disaccharides and proline/tryptophan were used to investigate the fragmentation mechanisms via tandem mass spectrometry (MS/MS) with different alkali metal ion adducts. Cu2+ could be used to distinguish glycosidic bond configurations of the reducing disaccharides in the full-scan mass spectra. Quantum calculations were also conducted for a single Amadori compound with Cu2+ for analysis of the most optimized configurations and binding energies of metal complexes. RESULTS MS/MS analysis of Amadori-alkali metal complexes revealed that the radius of the alkali metal ions had profound effects on the degree of fragmentation of such compounds, among which lithium-cationized ions produced the most extensive fragmentation. Amadori compounds with different glycosidic bonds formed differently proportioned metal complexes with Cu2+ , and the complexity of the copper complexes containing tryptophan moieties was higher than that of those containing proline moieties in the mass spectra. Quantum calculations showed that Amadori compounds with β-configurations can form more binding sites with Cu2+ than those with α-configurations, thus making the metal complex with a single ligand more stable. In addition, the chelation of tryptophan with copper ions increased the coordination binding energy, which showed that α-configured Amadori compounds were readily able to form multi-ligand copper complexes. CONCLUSIONS Metal-ion-assisted analysis provides crucial information for structural and anomeric analysis of Amadori compounds by electrospray ionization mass spectrometry. Elucidation of binding sites and binding energies by quantum calculations has significantly improved the knowledge of metal complexes in the gas phase and provides background information for determining the glycosidic configuration of Amadori isomers.
Collapse
Affiliation(s)
- Yunpeng Bai
- Center of Scientific Research, Maoming People's Hospital, Maoming, 525000, China
| | - Yuqiang Liang
- Emergency Department, Maoming People's Hospital, Maoming, 525000, China
| | - Guode Li
- Department of Cardiology, Maoming People's Hospital, Maoming, 525000, China
| | - Shuixing Wu
- School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Guangwen Wang
- Center of Scientific Research, Maoming People's Hospital, Maoming, 525000, China
| | - Yingbang Li
- Center of Scientific Research, Maoming People's Hospital, Maoming, 525000, China
| | - Yanling Liu
- School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Chunbo Chen
- Center of Scientific Research, Maoming People's Hospital, Maoming, 525000, China
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, 525000, China
| |
Collapse
|
47
|
The Maillard Reaction as Source of Meat Flavor Compounds in Dry Cured Meat Model Systems under Mild Temperature Conditions. Molecules 2021; 26:molecules26010223. [PMID: 33406782 PMCID: PMC7795100 DOI: 10.3390/molecules26010223] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Flavor is amongst the major personal satisfaction indicators for meat products. The aroma of dry cured meat products is generated under specific conditions such as long ripening periods and mild temperatures. In these conditions, the contribution of Maillard reactions to the generation of the dry cured flavor is unknown. The main purpose of this study was to examine mild curing conditions such as temperature, pH and aw for the generation of volatile compounds responsible for the cured meat aroma in model systems simulating dry fermented sausages. The different conditions were tested in model systems resembling dry fermented sausages at different stages of production. Three conditions of model system, labeled initial (I), 1st drying (1D) and 2nd drying (2D) and containing different concentrations of amino acid and curing additives, as well as different pH and aw values, were incubated at different temperatures. Changes in the profile of the volatile compounds were investigated by solid phase microextraction and gas chromatography mass spectrometry (SPME-GS-MS) as well as the amino acid content. Seventeen volatile compounds were identified and quantified in the model systems. A significant production of branched chain volatile compounds, sulfur, furans, pyrazines and heterocyclic volatile compounds were detected in the model systems. At the drying stages, temperature was the main factor affecting volatile production, followed by amino acid concentration and aw. This research demonstrates that at the mild curing conditions used to produce dry cured meat product volatile compounds are generated via the Maillard reaction from free amino acids. Moreover, in these conditions aw plays an important role promoting formation of flavor compounds.
Collapse
|
48
|
Zheng J, Guo H, Ou J, Liu P, Huang C, Wang M, Simal-Gandara J, Battino M, Jafari SM, Zou L, Ou S, Xiao J. Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Gao P, Xia W, Li X, Liu S. Optimization of the Maillard reaction of xylose with cysteine for modulating aroma compound formation in fermented tilapia fish head hydrolysate using response surface methodology. Food Chem 2020; 331:127353. [DOI: 10.1016/j.foodchem.2020.127353] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022]
|
50
|
Zhai Y, Cui H, Hayat K, Hussain S, Tahir MU, Deng S, Zhang Q, Zhang X, Ho CT. Transformation between 2-Threityl-thiazolidine-4-carboxylic Acid and Xylose-Cysteine Amadori Rearrangement Product Regulated by pH Adjustment during High-Temperature Instantaneous Dehydration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10884-10892. [PMID: 32902964 DOI: 10.1021/acs.jafc.0c04287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
2-Threityl-thiazolidine-4-carboxylic acid (TTCA) was found to be the predominant product rather than the Amadori rearrangement product (ARP) during the formation of xylose-cysteine-derived (Xyl-Cys-derived) Maillard reaction intermediates (MRIs) through a thermal reaction coupled with vacuum dehydration. To regulate the existence forms of Xyl-Cys-derived MRIs, an effective method carried out by pH adjustment during high-temperature instantaneous dehydration through spray-drying was proposed in this research to promote the conversion from TTCA to ARP. The increased inlet air temperature of spray-drying could properly facilitate the shift of chemical equilibrium between the MRIs and promote the transformation from TTCA to ARP while raising the total yield of TA (TTCA + ARP). The conversion to ARP was increased to 20.83% at 190 °C of hot blast compared to the product without spray-drying (6.03%). The conversion from TTCA to ARP was further facilitated in the pH range of 7.5-9.5. When the pH of the aqueous reactants was adjusted to 9.5, the equilibrium conversion to ARP was improved to 47.23% after spray-drying, which accounted for 59.48% of the TA formation. Accordingly, MRIs with different TTCA/ARP proportions could be selectively obtained by pH adjustment of the stock solution during high-temperature instantaneous dehydration of spray-drying.
Collapse
Affiliation(s)
- Yun Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Khizar Hayat
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Usman Tahir
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shibin Deng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qiang Zhang
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Flavouring Food Co., Ltd., No. 1 Shengli Road, Jieshou, Anhui 236500, P. R. China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|