1
|
Fu M, Zhang Y, Chen H, Peng X, Kan J. Effects of three hydrophilic colloids on gelatinization, retrogradation properties, microstructure of highland barley starch and the quality of highland barley noodles. Food Chem 2025; 476:143424. [PMID: 39986071 DOI: 10.1016/j.foodchem.2025.143424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
The impact of xanthan gum (XG), sodium alginate (ALG), and carrageenan (CGN) on the gelatinization, rejuvenation, microstructure, and noodle quality of highland barley was investigated. The XG-HBS mixture demonstrated superior dilatancy, gelatinization viscosity, and dynamic moduli compared to ALG and CGN, suggesting that XG enhances starch water absorption and swelling. Furthermore, LF-NMR results indicated that hydrophilic colloids reduced T23 and increased T22, signifying a shift from free water to bound water, this also indicates that the hydrophilic colloids can inhibit the formation and long-term regeneration of short-range ordered structures. Scanning electron microscopy revealed that XG resulted in a denser network structure than the other samples. Furthermore, XG, ALG, and CGN reduced cooking loss and improved noodle hardness. These findings underscore that incorporating hydrophilic colloids is an effective strategy to enhance the quality of highland barley starch and improve highland barley-based pasta products.
Collapse
Affiliation(s)
- Mingze Fu
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Yi Zhang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Huijing Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Xiaowei Peng
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Hu N, Qi W, Zhu J, Zhao F, Zheng M, Zhao C, Yan J, Liu J. Effect of endogenous protein on starch before and after post-harvest ripening of corn: Structure, pasting, rheological and digestive properties. Food Chem 2025; 473:143039. [PMID: 39879752 DOI: 10.1016/j.foodchem.2025.143039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
This work revealed the effects of endogenous proteins on the structural, physicochemical, and digestive properties of starch in corn before and after ripening and explored the binding mechanism of proteins with starch. The microstructure showed that the postharvest ripening process resulted in a thinning of the protein layer on the surface of starch particle. After the removal of protein, the uniformity of the sample surface increased, with tiny pores. The proportion of double helix structure of starch were significantly reduced, while the proportion of amorphous structure and the thickness (da) of the amorphous region were significantly increased. The gelatinization enthalpy, gelatinization viscosity value, consistency coefficient, elasticity, and rapid digestibility of starch (RDS) were all significantly increased. Due to the weakening of the interaction between starch (including amylose and amylopectin) and protein in post-ripened corn, the effect of protein removal on the structure and properties of unripened samples was more significant.
Collapse
Affiliation(s)
- Nannan Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; School of Life Science, Changchun Sci-Tech University, Changchun, Jilin, 130600, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Weihua Qi
- School of Life Science, Changchun Sci-Tech University, Changchun, Jilin, 130600, China
| | - Jinying Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Fuyin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China; National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Jiannan Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China.
| |
Collapse
|
3
|
Li T, Zhang Y, Yu X, Chen J, Wang C, Zhang D, Ma C. Konjac glucomannan molecular weight: A critical factor in shaping the physicochemical and digestive properties of sweet potato starch matrices. Int J Biol Macromol 2025; 305:140953. [PMID: 39954899 DOI: 10.1016/j.ijbiomac.2025.140953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The molecular weight (Mw) of non-starch polysaccharides exerts a significant impact on the interaction mechanisms between non-starch polysaccharides and starch, as well as on the resultant modification effects of starch. This study primarily focused on examining how konjac glucomannan (KGM) with varying Mw affects the physicochemical and digestive characteristics of sweet potato starch (SPS), additionally exploring the intermolecular interactions between KGM and SPS. The findings indicated that a higher Mw of KGM produced an enhancement in the viscosity peak of SPS and inhibited the pasting process to a greater extent. Moreover, the viscoelasticity of the composite gel improved with increasing Mw, resulting in a denser and stabler structure. Additionally, the content of resistant starch increased following the addition of KGM, compared to pure starch (19.81 % ± 0.58), which partially suppressed the digestibility of SPS; Notably, this inhibitory effect intensified with higher Mw. Regarding relative crystallinity, it exhibited an inverse relationship with the Mw of KGM, with pure starch displaying the highest relative crystallinity at 12.2 %. In summary, the physicochemical and digestive properties of starch can be altered by the addition of KGM, irrespective of its Mw. These findings contribute to a deeper comprehension of how non-starch polysaccharides interact with starch.
Collapse
Affiliation(s)
- Ting Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yingjuan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiaowei Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Junzhi Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
4
|
Gong X, Li J, Liu Z, Xu X, Li Y, Zhang Y, Wang F, Tong LT. Effects of psyllium polysaccharide with different molecular weights on the digestibility, physicochemical properties of rice starch, and interaction forces between them. Int J Biol Macromol 2025; 309:142911. [PMID: 40203949 DOI: 10.1016/j.ijbiomac.2025.142911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
The effects of psyllium polysaccharides (PP) with different molecular weights (Mw) on the physicochemical characteristics, interaction forces, and digestibility of rice starch (RS) are methodically examined in this work. High-Mw PP (H-PP) (3.83 × 106 Da), medium-Mw PP (M-PP) (8.39 × 104 Da), and low-Mw PP (L-PP) (9.28 × 103 Da) were fractionated, characterized, and added to RS to clarify their effect on starch digestion. The results indicate that H-PP exhibited the most pronounced inhibitory effect on enzymatic hydrolysis, leading to a significant reduction in the estimated glycemic index (eGI) by enhancing the crystalline structure and short-range molecular order of RS. Mechanistic investigation revealed that PP molecules interact with RS through hydrogen bonding and electrostatic interactions, forming a structural barrier that impedes enzymatic accessibility. The intensity of these interactions was greatest in RS-H-PP and gradually decreased in RS-M-PP and RS-L-PP, corresponding with an increase in starch digestibility. These findings provide mechanistic insights into the molecular interactions regulating polysaccharide-starch systems and establish a theoretical basis for the development of functional starch-based foods with controlled glycemic responses.
Collapse
Affiliation(s)
- Xue Gong
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Jiaxin Li
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Zhigang Liu
- Fengyi (Shanghai) Biotechnology R&D Center Co., Ltd, Shanghai 201200, China
| | - Xuebing Xu
- Fengyi (Shanghai) Biotechnology R&D Center Co., Ltd, Shanghai 201200, China
| | - Yang Li
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yue Zhang
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
5
|
Cen Q, Fan J, Hui F, Hu W, Yu S, Liu M, Shi T, Ren Y, Zeng X, Qin L. Influence and underlying mechanism of soluble dietary fiber derived from Ganoderma Lucidum-fermented sweet potato residue on the physicochemical-digestive characteristics of wheat starch. Int J Biol Macromol 2025; 309:142801. [PMID: 40185443 DOI: 10.1016/j.ijbiomac.2025.142801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Chronic overconsumption of starchy foods has been associated with health risks including cardiovascular diseases and diabetes. Soluble dietary fiber (SDF) presents a promising solution for modifying starch-based food products. In this study, SDF extracted from sweet potato residue (SPR) before and after fermentation with Ganoderma lucidum was incorporated into wheat starch (WS) at varying proportions (0.2 %-0.8 %). Compared with unfermented SDF, the fermented SDF exhibited stronger intermolecular interactions and physical entanglement with WS. As the concentration of fermented SDF increased, the ratio of free water in the gel system increased, while the leaching of amylose (16.64 %-13.68 %), hardness (444-288 g) and chewiness (254.83-170.61) gradually decreased, resulting in the disruption of the WS network structure, increased crystallinity and thermal stability, and inhibition of starch retrogradation. Additionally, the content of resistant starch increased (44.87 %-51.15 %), and the starch digestibility rate decreased. This research furnishes a theoretical foundation for enhancing the resource utilization of SPR and developing functional starch-based foods with improved starch properties and low glycemic index.
Collapse
Affiliation(s)
- Qin Cen
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Jin Fan
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Fuyi Hui
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China; Sugarcane research institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China
| | - Wenkang Hu
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Shan Yu
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Mingzhu Liu
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Tingting Shi
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Yanjie Ren
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Xuefeng Zeng
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China; Sugarcane research institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China.
| | - Likang Qin
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China; Sugarcane research institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China.
| |
Collapse
|
6
|
Khramova DS, Vityazev FV, Zueva NV, Chistiakova EA. Impact of pectin or xanthan addition to mashed potatoes gelled with κ-carrageenan on texture and rheology, oral processing behavior, bolus properties and in mouth starch digestibility. Int J Biol Macromol 2025; 308:142349. [PMID: 40120903 DOI: 10.1016/j.ijbiomac.2025.142349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/14/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Oral processing behavior affects starch bioavailability, but the impact of the oral phase on starch digestibility in potato dishes enriched with polysaccharides has not been clearly established. Therefore, pectin (1 %) or xanthan (1 %) were added to mushed potatoes (MP), which was gelled with κ-carrageenan (0.6 %), to produce the samples named MP-CarP MP-CarX, and MP-Car, respectively. Rheological, textural, sensory and electromyographic tests were conducted on the samples, along with bolus analysis. Both pectin and xanthan softened MP by 23 and 30 %, respectively, and reduced gel strength. The MP-CarP and MP-CarX were orally processed for shorter chewing times; however, their boluses exhibited a 20 % increase in cohesiveness. Chewing the MP-CarP highly enhanced salivation, resulting in a 45 % increase in bolus fragmentation, while the MP-CarX had the highest cohesiveness and lowest fragmentation. The variations in oral processing of MP with pectin or xanthan resulted in differing levels of starch hydrolysis and glucose release in the mouth. Chewing the MP-CarX resulted in lower levels of these processes, highlighting the importance of considering the oral phase of digestion when studying the hypoglycemic effects of polysaccharides. This is essential for developing new and effective approaches to improving glycemic control by incorporating fibers into commonly consumed starchy foods.
Collapse
Affiliation(s)
- Daria S Khramova
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia.
| | - Fedor V Vityazev
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia
| | - Natalya V Zueva
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia
| | - Elizaveta A Chistiakova
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia
| |
Collapse
|
7
|
Zhang Y, He H, Feng S, Bi J, Huang X, Xiong J, Chen L, Chen H, Li X, Chen L, Sun J, Liu K. Effect of grapefruit peel pectin on the structure, pasting characteristics, and in vitro digestibility of starch under different moisture content and temperature. Int J Biol Macromol 2025; 307:142284. [PMID: 40112973 DOI: 10.1016/j.ijbiomac.2025.142284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
This study aims to explore the effects of hydrothermal treatment (HT)-assisted grapefruit peel pectin on the physicochemical, morphological, thermal, and pasting characteristics and in vitro digestibility of corn starch under varying temperatures and moisture content. Morphological analysis revealed that pectin uniformly coated starch granules, forming protective layers and rearranging crystalline structures. Fourier transform infrared spectroscopy and 13C nuclear magnetic resonance confirmed alterations in molecular order, with increases in single-helix structures and reductions in double-helix structures. X-ray diffraction and differential scanning calorimetry highlighted significant reductions in crystallinity and changes in thermal properties, indicating compact structural arrangements. Pasting and in vitro digestibility results revealed HT-C/P@60/80 exhibiting the highest resistant starch content and the lowest rapidly digestible starch content. Molecular docking and dynamics simulations demonstrated that pectin binds to α-amylase, then potentially inhibiting its catalytic activity. These findings highlight the role of pectin in altering starch properties for better food applications.
Collapse
Affiliation(s)
- Yugang Zhang
- Department of Endocrinology, Zhujiang Hospital/The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Hai He
- Heinz Mehlhorn Academician Workstation, Key Laboratory of Tropical Translational Medicine of Ministry of Education, International Collaborative Research Center for the Development and Utilization of Tropical Food for Special Medical Purpose, School of Public Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Shuyuan Feng
- Department of Endocrinology, Zhujiang Hospital/The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Jianqiao Bi
- Department of Endocrinology, Zhujiang Hospital/The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Xuejuan Huang
- Department of Endocrinology, Zhujiang Hospital/The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Jiaying Xiong
- Department of Endocrinology, Zhujiang Hospital/The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong, 510515, China
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital/The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Xiaoxi Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital/The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China.
| | - Kun Liu
- Department of Endocrinology, Zhujiang Hospital/The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China; Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Xue H, Gao H, Fang S, Hao Z, Liao X, Tan J. Understanding the role of Radix Paeoniae Alba polysaccharide for corn starch gel amelioration: Physicochemical, structural, and digestive properties. Int J Biol Macromol 2025; 295:139564. [PMID: 39778828 DOI: 10.1016/j.ijbiomac.2025.139564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/15/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
To ameliorate the limitations of corn starch (CS) processing, Radix Paeoniae Alba polysaccharide (RPAP) was used to modulate the physicochemical and digestive properties of CS. The main purpose of this paper is to investigate the effects of RPAP on the pasting, rheological, thermal, structural, and digestive properties of CS. The results show that the addition of RPAP could increase the peak viscosity and final viscosity of CS gel, and RPAP could increase the apparent viscosity, storage modulus, loss modulus, hardness, and strength of CS gel, implying that RPAP can effectively improve the pasting and viscoelasticity properties of CS. Moreover, RPAP could be bound to CS through non-covalent interaction, and RPAP could improve the relative crystallinity and thermal stability, whereas decreased the spin relaxation time (T2) of CS from 312.16 to 203.25 ms. The microstructure of CS-RPAP gels showed a honeycomb-like porous structure, and RPAP could increase the pore size and thickness of CS-RPAP gels. Furthermore, RPAP could inhibit the digestibility of CS, while increased the resistant starch (RS) content. The findings can provide important references for expanding the application of starch-based products in various fields including food industry, pharmaceuticals, textiles, papermaking, and biodegradable materials.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Saisai Fang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
9
|
Almeida RLJ, Santos NC, de Brito ACO, Leite ACN, Morais JRF, de Oliveira BF, da Silva PB, da Silva YTF, da Silva Freitas RV, do Bonfim KS, de Sousa ABB, de Figueiredo MJ, da Costa GA, de Assis Cavalcante J, Dos Santos Pereira T. Dual modification of starch: Synergistic effects of ozonation and pulsed electric fields on structural, rheological, and functional attributes. Food Chem 2025; 464:141718. [PMID: 39447264 DOI: 10.1016/j.foodchem.2024.141718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Study evaluated the influence of ozonization (O3) time combined with pulsed electric fields (PEF) on the modification of bean starch structure. O₃ was used at a concentration of 0.045 g/L for 60 min (Oz1) and 120 min (Oz2) both individually and in combination with 30 kV/cm (P30). Carbonyl content was higher than the carboxyl content, especially with prolonged treatment times (Oz2), indicating partial oxidation. Additionally, higher levels of amylose and degrees of polymerization (DP ≥ 37 and DP 25-36) were observed in the oxidized starches, with significant changes only when combined with PEF. The main morphological and structural modifications included the presence of agglomerates, partial gelatinization, reduced crystallinity, and lower IR1047/1022 in the granules treated with PEF + O3. Oxidized starches exhibited higher solubility, resulting in lower values for rheological parameters, with PEF + 2 h of O3 (Oz2P) standing out. It can be used as prebiotics, controlled release agents and a texturizer for gluten-free foods.
Collapse
Affiliation(s)
| | - Newton Carlos Santos
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | | - Ana Carolina Nóbrega Leite
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | | | | | | | | | | - Karina Soares do Bonfim
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Alison Bruno Borges de Sousa
- Department of Agroindustry, Federal Institute of Education, Science and Technology of Pernambuco, Belo Jardim, PE, Brazil
| | - Maria José de Figueiredo
- Department of Agro-industrial Management and Technology, Federal University of Paraiba, Bananeiras, PB, Brazil
| | | | | | - Tamires Dos Santos Pereira
- Department of Agroindustry, Federal Institute of Education, Science and Technology of Piaui, Uruçuí, PI, Brazil
| |
Collapse
|
10
|
Zheng Y, You L, Wang W, Qin X, Chen Z, Zhang R, Zhao J, Li S. High molecular weight soluble dietary fiber of corn bran exhibits stronger inhibitions in digestibility and short-term retrogradation of corn starch than low molecular weight soluble fiber. Food Chem X 2025; 26:102341. [PMID: 40129731 PMCID: PMC11931310 DOI: 10.1016/j.fochx.2025.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Starch-dietary fiber interactions regulate starch processing and digestion, though the effects of varying molecular weight dietary fibers remain insufficiently studied. This study investigates how corn bran-derived soluble dietary fibers (SDFs) with distinct molecular weights influence corn starch (CS) processing, retrogradation, and digestibility. Results revealed that adding 5 % (W/W, based on the dry weight of CS) high molecular weight soluble dietary fiber (HM-SDF) or low molecular weight soluble dietary fiber (LM-SDF) significantly reduced amylose leaching, peak viscosity, retrogradation value, and retrogradation enthalpy during CS pasting. HM-SDF and LM-SDF decreased the thixotropic ring area by 55.8 % and 16.5 %, respectively, and inhibited the formation of ordered structures in CS. The HM-SDF-CS complex contained the least rapidly digestible starch at 68.26 %, indicating it more effectively slows starch digestion. These findings enhance our understanding of how SDF molecular weight distribution modulates starch-based foods, offering insights into potential applications for improved food processing and digestibility.
Collapse
Affiliation(s)
- Yuqian Zheng
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| | - Lixin You
- School of Life Science, Changchun Sci-Tech University, Changchun, Jilin 130600, China
| | - Wenyan Wang
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| | - Xiaoyan Qin
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| | - Zhilong Chen
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| | - Ruining Zhang
- Agriculture College, Yanbian University, Yanbian 133002, China
| | - Jun Zhao
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| | - Sheng Li
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| |
Collapse
|
11
|
Luo Y, Zhou Y, Xiao N, Xie X, Li L. Partial gelatinization treatment affects the structural, gelatinization, and retrogradation characteristics of maize starch-dietary fiber complexes. Food Res Int 2025; 202:115799. [PMID: 39967122 DOI: 10.1016/j.foodres.2025.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/08/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
The effect of partial gelatinization (PG) treatment on the structural, gelatinization, and retrogradation characteristics of maize starch (MS)-dietary fiber (pectin, PE; konjac glucomannan, KG) complex was conducted. The result suggests that PG treatment shows an obvious effect in improving thermal stability, decreasing the viscoelastic, inhibiting starch gelatinization and retrogradation of the MS-PE/KG complex. The decreased breakdown viscosity, storage modulus, apparent viscosity, setback value, and hardness value could confirm these results. Furthermore, PG treatment had a better effect on inhibiting the gelatinization and retrogradation of the MS-0.3 %PE complex than other complexes. This result was proved by reduced setback value (by 78.96 %) and hardness value (by 54.46 % and 44.00 % during cold storage at 1 and 14 days, respectively). 0.3 %PE interacts with starch molecules through hydrogen bonding and electrostatic forces during PG treatment forming a strong starch granule structure to impede starch gelatinization and retrogradation. Moreover, the lighter iodine staining, the obvious coating thin layer, and the thicker fluorescence layer have appeared in the MS-PE/KG complex. The relative crystallinity and the short-range order degree of the MS-PE/KG complex were significantly decreased. The current findings provide the theoretical basis for MS modification to improve the quality and prolong the shelf-life of starch-based foods.
Collapse
Affiliation(s)
- Yunmei Luo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuhao Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Yu P, Kang X, Liu P, Wu Z, Cheng Y, Cui B, Gao W. Comparing the Structural and Physicochemical Properties of Highland Barley β-Glucan from Different Sources: A Focus on Color. Foods 2025; 14:316. [PMID: 39856981 PMCID: PMC11764907 DOI: 10.3390/foods14020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Herein, β-glucan (BG) was extracted from different colored varieties of highland barley (HB, Hordeum vulgare), defined as BBG, WBG, and LBG depending on the colors of black, white, and blue and their molecular structure and physicochemical properties were investigated through a series of technical methods. The high-performance anion-exchange chromatography (HPAEC) results indicated the extracted BBG, LBG, and WBG mainly comprised glucose regardless of color. The molecular weight (Mw) of BBG, LBG, and WBG were 55.87 kDa, 65.19 kDa, and 81.59 kDa, respectively. 4-Glc(p), 3-Glc(p), and t-Glc(p) accounted for a larger proportion (>90%) of the total methylated residues according to gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, Fourier transform infrared (FT-IR) spectroscopy revealed that the β-linkage of LBG had a greater capacity to develop stronger hydrogen bonds, due to the absence of 3,4-Glc(p). Among them, LBG had a low particle size distribution and a high shear viscosity, showing obvious round aggregates on its surface. Meanwhile, BBG presented a high peak viscosity (PV) and thermal stability. Based on the differences in their molecular structure, it could be concluded that there were different physicochemical properties among BBG, LBG, and WBG.
Collapse
Affiliation(s)
- Ping Yu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China; (P.Y.); (X.K.); (P.L.); (Z.W.); (Y.C.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Xuemin Kang
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China; (P.Y.); (X.K.); (P.L.); (Z.W.); (Y.C.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Pengfei Liu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China; (P.Y.); (X.K.); (P.L.); (Z.W.); (Y.C.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Zhengzong Wu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China; (P.Y.); (X.K.); (P.L.); (Z.W.); (Y.C.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Yue Cheng
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China; (P.Y.); (X.K.); (P.L.); (Z.W.); (Y.C.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China; (P.Y.); (X.K.); (P.L.); (Z.W.); (Y.C.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Wei Gao
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China; (P.Y.); (X.K.); (P.L.); (Z.W.); (Y.C.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| |
Collapse
|
13
|
Zhang W, Shi D, Dong W, Li H, Liu X. Effects of glutathione on the physicochemical properties of high hydrostatically pressure gelatinized maize starch. Food Chem X 2025; 25:102158. [PMID: 39867217 PMCID: PMC11761819 DOI: 10.1016/j.fochx.2025.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
This research prepared gelatinized waxy maize starch (WMS), low-amylose maize starch (LAS), and high-amylose maize starch (HAS) with different glutathione (GSH) content (5, 10, and 15 %) using high hydrostatic pressure (HHP) at 600 MPa. Scanning electron microscopy (SEM) revealed damaged morphology of WMS and complete swelled granules of LAS and HAS with different degree of gelatinization (DG) values, 92.86, 59.36, and 17.45 %, respectively. Fourier transform infrared spectroscopy (IR spectra), laser confocal micro-Raman (LCM-Raman) spectroscopy, and X-ray diffraction (XRD) results suggested that the crystallinity content of gelatinized WMS and HAS with addition of GSH was higher than that of LAS, and the gelatinized LAS and HAS were mainly of C type and V type, respectively. The resistant starch of LAS (25.15 %) and HAS (34.76 %) increased with GSH addition. The crosslinking between GSH and amylose/amylopectin caused changes in physicochemical properties. This study will provided theoretical basis for GSH usage in food industry.
Collapse
Affiliation(s)
- Wei Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, China
| | - Danxia Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, China
| | - Wenming Dong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, China
| | - Hong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agricultural University, Kunming 650500, China
| |
Collapse
|
14
|
Zhao Y, Wang J, He R, Ren Y, Fu J, Zeng Y, Zhang K, Zhong G. Integrative experimental and computational analysis of the impact of KGM's polymerization degree on wheat starch's pasting and retrogradation characteristics. Carbohydr Polym 2024; 346:122570. [PMID: 39245477 DOI: 10.1016/j.carbpol.2024.122570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
This study investigated the influence of Konjac Glucomannan (KGM) with varying degrees of polymerization (DKGMx) on the gelatinization and retrogradation characteristics of wheat starch, providing new insights into starch-polysaccharide interactions. This research uniquely focuses on the effects of DKGMx, utilizing multidisciplinary approaches including Rapid Visco Analysis (RVA), Differential Scanning Calorimetry (DSC), rheological testing, Low-Field Nuclear Magnetic Resonance (LF-NMR), and molecular simulations to assess the effects of DKGMx on gelatinization temperature, viscosity, structural changes post-retrogradation, and molecular interactions. Our findings revealed that higher degrees of polymerization (DP) of DKGMx significantly enhanced starch's pasting viscosity and stability, whereas lower DP reduced viscosity and interfered with retrogradation. High DP DKGMx promoted retrogradation by modifying moisture distribution. Molecular simulations revealed the interplay between low DP DKGMx and starch molecules. These interactions, characterized by increased hydrogen bonds and tighter binding to more starch chains, inhibited starch molecular rearrangement. Specifically, low DP DKGMx established a dense hydrogen bond network with starch, significantly restricting molecular mobility and rearrangement. This study provides new insights into the role of the DP of DKGMx in modulating wheat starch's properties, offering valuable implications for the functional improvement of starch-based foods and advancing starch science.
Collapse
Affiliation(s)
- Yi Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Juan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Rui He
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuanyuan Ren
- College of Food Science, Southwest University, Chongqing 400715, China; Sichuan Province Institute of Food Fermentation Industries Co., Ltd., Chengdu 611130, China
| | - Jin Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yunjun Zeng
- Chongqing Grain and Oil Quality Supervision and Inspection Station, Chongqing 400026, China
| | - Kangyi Zhang
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Geng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Yan Y, Fang J, Zhu X, Ji X, Shi M, Niu B. Effect of extrusion using plasma-activated water on the structural, physicochemical, antioxidant and in vitro digestive properties of yam flour. Food Chem 2024; 460:140687. [PMID: 39106813 DOI: 10.1016/j.foodchem.2024.140687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
The synergistic effects of plasma-activated water (PAW) and twin-screw extrusion (TSE) on the structural, physicochemical, antioxidant, and digestive properties of yam flour (YF) were studied. Compared to common TSE, PAW-TSE reduced the protein, starch, and polyphenol contents, swelling power, and gel property of YF, while PAW-TSE enhanced the flavonoid content, whiteness index, solubility, and antioxidant property of YF. Moreover, the results of structural characterization and differential scanning calorimetry indicated that the long-range or short-range ordering, and gelatinization enthalpy of starch in YF were reduced after PAW-TSE, while the structure ordering of proteins in YF increased. Furthermore, the in vitro digestibility results demonstrated a reduction in the rate of enzymatic hydrolysis, coupled with an increase in total contents of slowly digestible and resistant starch after PAW-TSE. It should be noted that TSE using PAW prepared by a longer plasma treatment resulted in a more significant improvement effect on YF.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, PR China.
| | - Jiao Fang
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaopei Zhu
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
16
|
Kang J, Sun X, Yu S, Wang Z, Zhang J, Zhao Y, Wang S, Guo Q. Effects of galactomannans of varied structural features on the functional characteristics and in vitro digestibility of wheat starch. Int J Biol Macromol 2024; 281:136295. [PMID: 39370075 DOI: 10.1016/j.ijbiomac.2024.136295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
This study explores the effects of four natural galactomannans (GMs) with varying degrees of branching (fenugreek gum, guar gum, tara gum and locust bean gum) on the functional properties and in vitro digestibility of wheat starch (WS). Results from rapid viscosity analysis (RVA) and low-field nuclear magnetic resonance (LF-NMR) analysis revealed that GMs with lower branching degrees were correlated with higher paste viscosity, peak viscosity, and greater water-holding capacity in the WS-GM mixtures. Additionally, these lower branching GMs more effectively inhibited amylose leaching during starch gelatinization, leading to a softer gel texture and increased transparency of the mixtures. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis demonstrated that starch mixtures containing lower branching GMs exhibited reduced relative crystallinity and enthalpy values during aging. Furthermore, the incorporation of lower branching GMs resulted in decreased starch digestibility in vitro, thereby enhanced resistant starch content. These findings highlight the potential of selectively branched GMs to modulate the functional properties and nutritional profile of WS, providing a promising approach for the development of starch-based products with improved health benefits.
Collapse
Affiliation(s)
- Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaopei Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Yu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zeyu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yi Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
17
|
Luo Y, Zhou Y, Liu H, Liu X, Xie X, Li L. Insight into the multi-scale structure and retrogradation of corn starch by partial gelatinization synergizing with epicatechin/epigallocatechin gallate. Food Chem 2024; 453:139568. [PMID: 38754353 DOI: 10.1016/j.foodchem.2024.139568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Starch retrogradation is of great importance to the quality of starch-based food. This study investigated the effect of partial gelatinization (PG) synergizing with polyphenol (epicatechin, EC; epigallocatechin gallate, EGCG) on the multi-scale structure and short/long-term retrogradation of corn starch (CS). The PG synergizing with EC/EGCG substantially suppressed the short/long-term retrogradation properties of CS. These could be confirmed by the decreased storage modulus and viscosity, the relative crystallinity (1.54%, 3.56%), and the retrogradation degree (9.99%, 20.18%) of CS during storage for 1, 14 days after PG synergizing with EGCG and EC, respectively. This is because PG treatment promoted the hydrogen bond interaction between disordered starch molecules and EC/EGCG. These were proven by the larger aggregation, more and brighter fluorescents, and the reduced long/short-range order structures in CS after PG synergizing with EC/EGCG. This study is helpful for the development of foods with enhanced nutrition and low-retrogradation.
Collapse
Affiliation(s)
- Yunmei Luo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuhao Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Haocheng Liu
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Guangzhou 510640, China
| | - Xuwei Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
He Y, Wang C, Liu Y, Chen J, Wei Y, Chen G. Pickering emulsions stabilized by cellulose nanofibers with tunable surface properties for thermal energy storage. Int J Biol Macromol 2024; 280:136013. [PMID: 39326606 DOI: 10.1016/j.ijbiomac.2024.136013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Cellulose nanofibers (CNFs) have been widely used as a renewable emulsifier to stabilize two immiscible liquids due to their intrinsic amphiphilicity and excellent emulsifying ability. However, it remains challenging to fully understand the effects of carboxylate group content and surface charge density on the emulsifying ability of CNFs and the stability of Pickering emulsion. Herein, carboxymethylated CNFs were extracted from bleached kraft pulp using etherification reaction and high-pressure homogenization, allowing for easy surface charge density and size adjustment by changing sodium chloroacetate content and homogenization cycles. The optimizing CNFs possessed a high Zeta potential (-71.2 mV) and a suitable carboxylate group content (1.81 mmol/g), which enabled CNFs to irreversibly adsorb at the hydrophobic paraffin wax (PW) droplet surface and form interfacial steric barriers, providing large electrostatic repulsion between the PW droplets against coalescence. Thus, the CNF-stabilized PW emulsions could be stored for more than 6 months. Moreover, the phase change enthalpy of the freeze-dried emulsion is as high as 193.7 J/g, which provides the emulsion to reversibly store and release heat. This work provides a comprehensive insight into the interfacial stability mechanism of CNFs as stabilizers and facilitates the potential application in thermal energy storage.
Collapse
Affiliation(s)
- Yingying He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunyu Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yijun Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Jinxuan Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuan Wei
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Gang Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
19
|
Wang L, Huang Y, Ren Y, Wang H, Ding Y, Ren G, Wang T, Li Z, Qiu J. Effect of ethanol addition on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes. Food Chem 2024; 451:139350. [PMID: 38663246 DOI: 10.1016/j.foodchem.2024.139350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
The effects of ethanol on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes (e-TBSQ and e-TBSR) were investigated. Ethanol restricted the gelatinization of Tartary buckwheat starch (TBS), which resulted an increase in ∆H, G' and G" as well as a decrease in apparent viscosity of e-TBSQ and e-TBSR. The particle size, scanning electron microscopy and X-ray diffraction results showed that ethanol influenced the morphological structure of TBS granules and the starch crystalline structure in e-TBSQ and e-TBSR changed from B-type to V-type when the ethanol concentration was 25%. Saturation transfer difference-nuclear magnetic resonance results revealed that ethanol weakened the binding ability of quercetin/rutin to TBS in e-TBSQ and e-TBSR, leading to a change in the binding site on the quercetin structural unit. The residual ungelatinized TBS granules in e-TBSQ and e-TBSR induced a high slowly digestible starch content, and thus displayed a "resistant-to-digestion".
Collapse
Affiliation(s)
- Libo Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China.
| | - Yilin Huang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yanjuan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Haoran Wang
- College of Food Science and Engineering, Beijing University of Agriculture, Changping, Beijing 102206, China
| | - Yue Ding
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Tongtong Wang
- Institute of Quality Standard and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zaigui Li
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Ju Qiu
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China.
| |
Collapse
|
20
|
Xiong M, Chen B, Chen Y, Li S, Fang Z, Wang L, Wang C, Chen H. Effects of soluble dietary fiber from pomegranate peel on the physicochemical properties and in-vitro digestibility of sweet potato starch. Int J Biol Macromol 2024; 273:133041. [PMID: 38857720 DOI: 10.1016/j.ijbiomac.2024.133041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
The effects of soluble dietary fiber (SDF) from pomegranate peel obtained through enzyme (E-SDF) and alkali (A-SDF) extractions on the structural, physicochemical properties, and in vitro digestibility of sweet potato starch (SPS) were investigated. The expansion degree of SPS granules, pasting viscosity, gel strength and hardness were decreased after adding E-SDF. The setback was accelerated in the presence of A-SDF but E-SDF delayed this effect during the cooling of the starch paste. However, the addition of A-SDF significantly reduced the breakdown of SPS and improved the freeze-thaw stability of starch gels, even at low concentrations (0.1 %), while E-SDF showed the opposite result. The structural characterization of SDF-SPS mixtures showed that A-SDF can help SPS form an enhanced microstructure compared with E-SDF, while polar groups such as hydroxyl group in E-SDF may bind to leached amylose through hydrogen bonding, leading to a decrease in SPS viscoelasticity. In addition, the results of in vitro digestion analysis indicated that A-SDF and E-SDF could decreased the digestibility of SPS and increased the content of resistant starch, especially when 0.5 % E-SDF was added. This study provides a new perspective on the application of SDF from pomegranate peel in improving starch-based foods processing and nutritional characteristics.
Collapse
Affiliation(s)
- Min Xiong
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Bin Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yanli Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Lina Wang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Caixia Wang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| |
Collapse
|
21
|
Gong X, Li J, Liu Z, Xu X, Wang A, Nie M, Lin R, Tian Y, Zhang X, Wang L, Liu L, Li Y, Wang F, Tong LT. Developing high resistant starch content rice noodles with superior quality: A method using modified rice flour and psyllium fiber. Int J Biol Macromol 2024; 272:132779. [PMID: 38825268 DOI: 10.1016/j.ijbiomac.2024.132779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The effects of high-resistant starch (RS) content rice flour, psyllium husk powder (PHP), and psyllium powder (PP) on the edible quality and starch digestibility of rice noodles were investigated in this study. High-RS rice noodles showed lower digestibility but poor edible quality. With the addition of PHP and PP, high-RS rice noodles' cooking and texture quality were improved significantly, especially the breakage rates, cooking losses, and chewiness (P < 0.05). Compared to traditional white rice noodle's estimated glycemic index (eGI) of 86.69, the eGI values for 5PHP-RN and 5PHP-2PP-RN were significantly decreased to 66.74 and 65.77, achieving a medium GI status (P < 0.05). This resulted from the high amylose and lipid content in the modified rice flour and psyllium, leading to increase of starch crystallinity. Besides, based on the analysis of Pearson's correlation, it can be found that PHP rich in insoluble dietary fiber (IDF) could improve high-RS noodle cooking and texture quality better, while PP rich in soluble dietary fiber (SDF) can further reduce the RDS content and its starch digestibility. Therefore, utilizing modified rice flour with an appropriate addition of PHP and PP can be considered an effective strategy for producing superior-quality lower glycemic index rice noodles.
Collapse
Affiliation(s)
- Xue Gong
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Jiaxin Li
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Zhigang Liu
- Fengyi (Shanghai) Biotechnology R&D Center Co., Ltd., Shanghai 201200, China
| | - Xuebing Xu
- Fengyi (Shanghai) Biotechnology R&D Center Co., Ltd., Shanghai 201200, China
| | - Aixia Wang
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Mengzi Nie
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Ran Lin
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yu Tian
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xiya Zhang
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yang Li
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
22
|
Yan B, Chen T, Tao Y, Zhang N, Zhao J, Zhang H, Chen W, Fan D. Fabrication, Functional Properties, and Potential Applications of Mixed Gellan-Polysaccharide Systems: A Review. Annu Rev Food Sci Technol 2024; 15:151-172. [PMID: 37906941 DOI: 10.1146/annurev-food-072023-034318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Gellan, an anionic heteropolysaccharide synthesized by Sphingomonas elodea, is an excellent gelling agent. However, its poor mechanical strength and high gelling temperature limit its application. Recent studies have reported that combining gellan with other polysaccharides achieves desirable properties for food- and biomaterial-related applications. This review summarizes the fabrication methods, functional properties, and potential applications of gellan-polysaccharide systems. Starch, pectin, xanthan gum, and konjac glucomannan are the most widely used polysaccharides in these composite systems. Heating-cooling and ionic-induced cross-linking approaches have been used in the fabrication of these systems. Composite gels fabricated using gellan and various polysaccharides exhibit different functional properties, possibly because of their distinct molecular interactions. In terms of applications, mixed gellan-polysaccharide systems have been extensively used in texture modification, edible coatings and films, bioactive component delivery, and tissue-engineering applications. Further scientific studies, including structural determinations of mixed systems, optimization of processing methods, and expansion of applications in food-related fields, are needed.
Collapse
Affiliation(s)
- Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tiantian Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
23
|
Qi K, Cao S, Li C. Possible interaction between pectin and gluten alters the starch digestibility and texture of wheat bread. Int J Biol Macromol 2024; 269:131907. [PMID: 38677676 DOI: 10.1016/j.ijbiomac.2024.131907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
This study incorporated citrus pectin in wheat bread, aiming to develop breads with both desirable texture and slow starch digestibility. Results showed that starch digestibility in wheat bread decreased over the addition of pectin, and the maximum starch digested amount decreased by 6.6 % after the addition of 12 % pectin (wheat flour weight basis). The addition of pectin transferred part of the rapidly digestible starch into slowly digestible starch, and reduced the binding rate constant between slowly digestible starch and digestive enzymes, resulting in overall reduced starch digestibility. Furthermore, the addition of 4 % pectin contributed to the development of wheat bread with softer texture and increased specific volume. Mechanistically, the lowered starch digestibility of wheat bread after the pectin addition was due to (1) residual outermost swollen layer of starch granules, (2) protein and pectin interactions, and (3) increased short-range ordering of starch. This study, therefore, suggests that the addition of an appropriate amount of citrus pectin has the potential to develop bread with both a low glycemic index and desirable texture.
Collapse
Affiliation(s)
- Kaixin Qi
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Senbin Cao
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
24
|
Wang Z, Zhang S, Wang H, Huang J, Wang L. Effect of synergistic fermentation of Saccharomyces cerevisiae and Lactobacillus plantarum on thermal properties of hyaluronic acid-wheat starch system. Int J Biol Macromol 2024; 267:131542. [PMID: 38608973 DOI: 10.1016/j.ijbiomac.2024.131542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Hyaluronic acid (HA), as a multifunctional hydrophilic polysaccharide, is potentially beneficial in improving the thermal stability of fermented modified starches, but relevant insights at the molecular level are lacking. The aim of this study was to investigate the effect of different levels (0 %, 3 %, 6 %, 9 %, 12 % and 15 %) of HA on the structural, thermal and pasting properties of wheat starch co-fermented with Saccharomyces cerevisiae and Lactobacillus plantarum. We found that the addition of HA increased the median particle size of fermented starch granules from 16.387 to 17.070 μm. Meanwhile, the crystallinity of fermented starch was negatively correlated with the HA content, decreasing from 14.70 % to 12.80 % (p < 0.05). Fourier transform infrared spectroscopy results confirmed that HA interacted with starch granules and water molecules mainly through hydrogen bonding. Thermal analyses showed that the thermal peak of the composite correlated with the HA concentration, reaching a maximum of 73.17 °C at 12 % HA. In addition, HA increases the pasting temperature, reduces the peak, breakdown and setback viscosities of starch. This study demonstrates the role of HA in improving the thermal stability of fermented starch, providing new insights for traditional fermented food research and the application of HA in food processing.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Sijie Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Huiping Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Luyang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
25
|
Feng H, Cheng B, Lim J, Li B, Li C, Zhang X. Advancements in enhancing resistant starch type 3 (RS3) content in starchy food and its impact on gut microbiota: A review. Compr Rev Food Sci Food Saf 2024; 23:e13355. [PMID: 38685870 DOI: 10.1111/1541-4337.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Resistant starch type 3 (RS3), often found in cooked starchy food, has various health benefits due to its indigestible properties and physiological functions such as promoting the abundance of gut beneficial microbial flora and inhibiting the growth of intestinal pathogenic bacteria. However, it is challenging to develop starchy food with high RS3 content. This review aims to provide a detailed overview of current advancements to enhance RS3 content in starchy food and its effects of RS3 on gut microbiota. These approaches include breeding high-amylose cereals through gene editing techniques, processing, enzyme treatments, storage, formation of RS3 nanoparticles, and the incorporation of bioactive compounds. The mechanisms, specific conditions, advantages, and disadvantages associated with each approach and the potential effects of RS3 prepared by different methods on gut microbiota are summarized. In conclusion, this review contains important information that aims to provide guidelines for developing an efficient RS3 preparation process and promote the consumption of RS3-enriched starchy foods to improve overall health outcomes.
Collapse
Affiliation(s)
- Hongyan Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Bo Cheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jongbin Lim
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea
| | - Baoguo Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
26
|
Cai S, Su Q, Zhou Q, Duan Q, Huang W, Huang W, Xie X, Chen P, Xie F. Purple rice starch in wheat: Effect on retrogradation dependent on addition amount. Int J Biol Macromol 2024; 268:131788. [PMID: 38657931 DOI: 10.1016/j.ijbiomac.2024.131788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
While individual starch types may not possess the ideal gelatinization and retrogradation properties for specific applications, the amalgamation of multiple starch varieties might bestow desirable physicochemical properties upon resulting starch-based products. This study explored the impact of incorporating purple rice starch (PRS), as a novel starch variant (up to 15 % PRS), on the gelatinization and retrogradation (within 14 days) of regular wheat starch (WS). Rheological and texture assessments demonstrated that the introduction of PRS diminished the viscoelasticity and hardness of fresh WS paste. Additionally, in the case of retrograded WS pastes stored at 4 °C for 1-14 days, the incorporation of 10 % or 15 % PRS effectively retarded the reduction in transparency and significantly reduced hardness, retrogradation degree, the ratio of absorbance at 1047/1017 cm-1, and relative crystallinity. Notably, 10 % PRS results in a more pronounced effect. Conversely, 5 % PRS induced an opposing impact on retrograded WS post-storage. Moreover, scanning electron microscopy revealed that as the proportion of PRS increased, the microstructure of gelatinized WS-PRS closely resembled that of pure PRS. In conclusion, the diverse effects of varying PRS proportions on WS alter the texture and characteristics of starch-based foods, underscoring the potential of starch blending for improved applications.
Collapse
Affiliation(s)
- Shuqing Cai
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qiqi Su
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qian Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiuping Xie
- Guangxi Rongshui Yuanbaoshan Miao Run Special Liquor Industry Co., Ltd, Liuzhou 545399, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
27
|
Xu C, Cheng K, Kang Y, Cheng C, Zhang C, Shang L. Deacetylated Konjac Glucomannan with a Slower Hydration Rate Delays Rice Digestion and Weakens Appetite Response. Molecules 2024; 29:1681. [PMID: 38611960 PMCID: PMC11013606 DOI: 10.3390/molecules29071681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
The physical characteristics of chyme during gastrointestinal digestion are considered to significantly affect nutrient digestion and absorption (such as glucose diffusion), which has an impact on postprandial satiety. The present study aims to analyze the hydration rate (HR) and rheological properties of deacetylated konjac glucomannan (DKGM) at different degrees and then explore their effects on rice texture, digestive properties, and the subjects' post-meal appetite. The present results show that, as the deacetylation degree (DD) of KGM increased, the intersection point of the viscoelastic modulus shifted to a high shear rate frequency, and as the swelling time of the DKGM was prolonged, its HR decreased significantly. The results of the in vitro gastrointestinal digestion tests show that the hardness and chewability of the rice in the fast-hydration group (MK1) were remarkably reduced. In contrast, the slow-hydration group (MK5) exhibited an outstanding ability to resist digestion. The kinetics of starch hydrolysis revealed that the HR of the rice in the fast-hydration group was 1.8 times faster than that of the slow-hydration group. Moreover, it was found that the subjects' appetite after the meal was highly related to the HR of the MK. Their hunger (p < 0.001), desire to eat (p < 0.001), and prospective food consumption (p < 0.001) were significantly inhibited in the slow-hydration group (MK5) compared to the control. This study explored the nutritional effects of the hydration properties derived from the DKGM, which may contribute to modifying the high glycemic index food and provide ideas for the fabrication of food with enhanced satiating capacity.
Collapse
Affiliation(s)
- Chenfeng Xu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445002, China; (C.X.); (K.C.); (C.C.); (C.Z.)
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445002, China
| | - Kaixuan Cheng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445002, China; (C.X.); (K.C.); (C.C.); (C.Z.)
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445002, China
| | - Yu Kang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Hubei Minzu University, Enshi 445002, China;
| | - Chao Cheng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445002, China; (C.X.); (K.C.); (C.C.); (C.Z.)
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445002, China
| | - Chi Zhang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445002, China; (C.X.); (K.C.); (C.C.); (C.Z.)
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445002, China
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445002, China; (C.X.); (K.C.); (C.C.); (C.Z.)
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445002, China
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Hubei Minzu University, Enshi 445002, China;
| |
Collapse
|
28
|
Yu Y, Hao Z, Wang B, Deng C, Hu J, Bian Y, Wang T, Zheng M, Yu Z, Zhou Y. Effects of two celery fibers on the structural properties and digestibility of glutinous rice starch: A comparative study. Int J Biol Macromol 2024; 264:130776. [PMID: 38471614 DOI: 10.1016/j.ijbiomac.2024.130776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
The present study focused on the extraction of water-soluble dietary fiber (CSDF) and water-insoluble dietary fiber (CIDF) from celery. It investigated their effects on glutinous rice starch's (GRS) physicochemical, structural, and digestive properties. The results showed that as the addition of the two dietary fibers increased, they compounded with GRS to varying degrees, with the complexing index reaching 69.41 % and 60.81 %, respectively. The rheological results indicated that the two dietary fibers reduced the viscosity of GRS during pasting and inhibited the short-term regrowth of starch. The FTIR and XRD results revealed that the two fibers interacted with GRS through hydrogen bonding, effectively inhibiting starch retrogradation. Furthermore, both fibers increased the pasting temperature of GRS, thus delaying its pasting and exhibiting better thermal stability. Regarding digestibility, the starch gels containing dietary fibers exhibited significantly reduced digestibility, with RS significantly increased by 8.15 % and 8.95 %, respectively. This study provides insights into the interaction between two dietary fibers and GRS during processing. It enriches the theoretical model of dietary fiber-starch interaction and provides a reference for the application development of starch-based functional foods.
Collapse
Affiliation(s)
- Yiyang Yu
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Baixue Wang
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changyue Deng
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jingwei Hu
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiran Bian
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Taosuo Wang
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
29
|
Wang Y, McClements DJ, Peng X, Xu Z, Meng M, Ji H, Zhi C, Ye L, Zhao J, Jin Z, Chen L. Effects of crosslinking agents on properties of starch-based intelligent labels for food freshness detection. Int J Biol Macromol 2024; 261:129822. [PMID: 38307437 DOI: 10.1016/j.ijbiomac.2024.129822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
The impact of citric acid, carboxymethyl cellulose, carboxymethyl starch, sodium trimetaphosphate, or soybean protein on the crosslinking of starch-based films was examined. These crosslinking starch films were then used to create pH-sensitive food labels using a casting method. Blueberry anthocyanins were incorporated into these smart labels as a pH-sensitive colorimetric sensor. The mechanical properties, moisture resistance, and pH responsiveness of these smart labels were then examined. Crosslinking improved the mechanical properties and pH sensitivity of the labels. These different crosslinking agents also affected the hydrophobicity of the labels to varying degrees. Soybean protein was the only additive that led to labels that could sustain their structural integrity after immersion in water for 12 h. Because it increased the hydrophobicity of the labels, which decreased their water vapor permeability, moisture content, swelling index, and water solubility by 47 %, 29 %, 52 % and 10 %, respectively. The potential of using these labels to monitor the freshness of chicken breast was then examined. Only the films containing soybean protein exhibited good pH sensitivity, high structural stability, and low pigment leakage. This combination of beneficial attributes suggests that the composite films containing starch and soybean protein may be most suitable for monitoring meat freshness.
Collapse
Affiliation(s)
- Yun Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., Zhongshan 528400, China
| | - Hangyan Ji
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chaohui Zhi
- Changzhou Longjun Skypurl Environmental Protection Industrial Development Co., Ltd., Changzhou 213100, China
| | - Lei Ye
- Changzhou Longjun Skypurl Environmental Protection Industrial Development Co., Ltd., Changzhou 213100, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Dávila León R, González‐Vázquez M, Lima‐Villegas KE, Mora‐Escobedo R, Calderón‐Domínguez G. In vitro gastrointestinal digestion methods of carbohydrate-rich foods. Food Sci Nutr 2024; 12:722-733. [PMID: 38370076 PMCID: PMC10867469 DOI: 10.1002/fsn3.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
The trend toward healthier food products has led to an increase in the research of in vitro gastrointestinal digestion methods. Among the most used models, static models are the simplest. Most static models have three stages: oral, gastric, and intestinal, simulating the enzymatic, electrolyte, pH, temperature, and bile salt conditions. The studies that have taken the most notice are those related to antioxidant activity, followed by those dealing with proteins and carbohydrates using most of them static in vitro digestion models. The number of these studies has increased over the years, passing from 45 to 415 in a 10-year period (2012-2023) and showing an interest in knowing the impact of food on human health. Nevertheless, published papers report different methodologies and analytical approaches. This review discusses the similarities and differences between the published static in vitro gastrointestinal digestion methods, with a focus on carbohydrates, finding that the most used protocol is Infogest, but with differences, mainly in the type of enzymes and their activity. Regarding in vitro gastrointestinal digestion of carbohydrates, many of the published studies are related to food and biomacromolecules, being the oral phase the most omitted, while the intestinal phase in the most diverse. Other methodologies to study the intestinal phase have been recommended, but the number of in vitro digestion studies using these methodologies (RSIE and BBMV) is still scarce but could represent a good alternative to analyze carbohydrates foods when combining with Infogest. More studies are required in this area.
Collapse
Affiliation(s)
- Rebeca Dávila León
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | | | | - Rosalva Mora‐Escobedo
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | |
Collapse
|
31
|
Cheng Y, Su C, Wei S, Zhao J, Wei F, Liu X, Wang H, Wu X, Feng C, Meng J, Cao J, Yun S, Xu L, Geng X, Chang M. The Effects of Naematelia aurantialba on the Pasting and Rheological Properties of Starch and the Research and Development of Soft Candy. Foods 2024; 13:247. [PMID: 38254548 PMCID: PMC10814479 DOI: 10.3390/foods13020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
To study the effects of Naematelia aurantialba (NA) on the rheological and gelatinization properties of starch, the processing methods of NA were diversified. In this study, the gelatinization and rheological properties of corn starch (CS) and edible cassava starch (ECS) were investigated by adding NA with different mass fractions. Starch soft candy was prepared using NA, CS, and ECS as the main raw materials. Rheological studies showed that both CS-NA and ECS-NA exhibited elastic modulus (G') > viscosity modulus (G″), implying elastic behavior. G' was such that CS+1%NA > CS+5%NA > CS+3%NA > CS > CS+2%NA > CS+4%NA > ECS+4%NA > ECS+3%NA > ECS+5%NA > ECS+2%NA > ECS+1%NA > ECS. The gelatinization implied showed that after adding NA, the pasting temperature of CS-NA and ECS-NA increased by 1.33 °C and decreased by 2.46 °C, while their breakdown values decreased by 442.35 cP and 866.98 cP, respectively. Through a single-factor test and orthogonal test, the best formula of starch soft candy was as follows: 0.4 f of NA, 10 g of white granulated sugar, a mass ratio of ECS to CS of 20:1 (g:g), 0.12 g of citric acid, 1 g of red date power, and 16 mL of water. The soft candy was stable when stored for two days. This study offers a new direction for the research and development of NA starch foods.
Collapse
Affiliation(s)
- Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Cuixin Su
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Shijie Wei
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Jing Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Fen Wei
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Xiaolong Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Hanbing Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Xiaoyue Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Mingchang Chang
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| |
Collapse
|
32
|
Lin X, Liu Y, Wang R, Dai J, Wang L, Zhang J. Extraction of pectins from renewable grapefruit (Citrus paradisi) peels using deep eutectic solvents and analysis of their structural and physicochemical properties. Int J Biol Macromol 2024; 254:127785. [PMID: 37931867 DOI: 10.1016/j.ijbiomac.2023.127785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/10/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
This study presents an innovative attempt to extract high-quality pectins from grapefruit (Citrus paradisi) peels by using deep eutectic solvents (DESs) as extraction agents. The maximum yield of betaine-citric acid (BC)-extracted pectin (BC-P) reached 36.47 % under the optimum process conditions: an L/S ratio of 25 mL/g, a pH of 2.0, and a temperature of 85 °C for 120 min. The yield of BC-P was significantly higher than HCl-extracted pectin (HCl-P, 8.76 %) under a pH of 2.0. In addition, the structural, physicochemical, and emulsifying properties of the purified pectins (BC-P and HCl-P) and commercial pectin (CP) were comparatively analyzed. Results showed that BC-P exhibited higher RG-I value, more arabinan side-chains, bigger Mw and Mn value than HCl-P. Moreover, the viscosity, G' and G'' of BC-P were significantly higher than those of HCl-P and CP. More importantly, BC-P demonstrated better emulsifying activity and stability compared to HCl-P and CP. When the concentration of BC-P was increased to 1.50 %, a stable emulsion containing a 50 % soybean oil fraction could be obtained. Our results confirmed that DESs can be considered as high-effective agents for pectin extraction. Pectins extracted from grapefruit peels can be as a promising natural emulsifiers that can be used in the food industry.
Collapse
Affiliation(s)
- Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yuezhe Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jincheng Dai
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
33
|
Abdollahzadeh A, Vazifedoost M, Didar Z, Haddadkhodaprast MH, Armin M. Comparison of the effect of hydroxyl propyl methyl cellulose, pectin, and concentrated raisin juice on gluten-free bread based on rice and foxtail millet flour. Food Sci Nutr 2024; 12:439-449. [PMID: 38268869 PMCID: PMC10804086 DOI: 10.1002/fsn3.3741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 01/26/2024] Open
Abstract
The nutritional and technological challenges of gluten-free (GF) bread have increased the need for its modification due to the growing demand for this product, especially from celiac patients. Therefore, the present study aims at evaluating the influence of hydroxyl propyl methyl cellulose (HPMC) at 1% and 2% levels, pectin at 1.5% and 2.5% levels, and concentrated raisin juice (CRJ) at 3% and 4% levels on the dough rheological properties and quality of GF bread based on rice and millet flour. The GF bread prepared with HPMC and incorporating CRJ had higher water absorption, dough development time, and dough stability. In addition, the firmness of GF bread during 24-72 h after baking in the presence of 1% HPMC with 3% and 4% CRJ followed by 2.5% pectin incorporating 3% and 4% CRJ showed a significant decrease compared to the control sample. Further, the color index of GF bread was improved with the addition of HPMC and pectin and the L* index decreased in all GF breads with CRJ. The highest volume was occupied by bread containing 1% HPMC. The results demonstrated that GF bread could be produced from a mixture of rice and millet flour and its technological quality was improved by using 1% HPMC and 3% CRJ. Therefore, it has the necessary potential for high-scale production and consumption among members of the society.
Collapse
Affiliation(s)
| | - Mohsen Vazifedoost
- Department of Food Science and Technology, Neyshabur BranchIslamic Azad UniversityNeyshaburIran
| | - Zohreh Didar
- Department of Food Science and Technology, Neyshabur BranchIslamic Azad UniversityNeyshaburIran
| | | | - Mohammad Armin
- Department of Agronomy and plant Breeding, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| |
Collapse
|
34
|
Wedamulla NE, Fan M, Choi YJ, Kim EK. Combined effect of heating temperature and content of pectin on the textural properties, rheology, and 3D printability of potato starch gel. Int J Biol Macromol 2023; 253:127129. [PMID: 37778578 DOI: 10.1016/j.ijbiomac.2023.127129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Three-dimensional (3D) printing is one of the emerging techniques which fabricates customized foods with desired sensory characteristics. Rheological properties of 3D printing materials are vitally important in printability which govern the flowability and structural stability. Due to its unique gel-forming characteristics, potato starch has been extensively used in myriad food applications, such as 3D printing. However, little attention has been paid to the combined effect of heating temperature and pectin addition on the properties of potato starch gels. Thus, this study investigated the impact of different pectin contents (1, 1.5, and 2 %) on printability and the rheological and textural properties of potato starch gels heated at different temperatures (70, 80, and 90 °C). The gel heating temperature governs pectin-driven modifications in potato starch gels. Pectin addition increased the 3D printability, viscosity, storage modulus, hardness, gumminess, and springiness of starch gel at higher temperatures (80 °C and 90 °C). In contrast, at lower temperatures (70 °C), pectin addition decreased printability, viscosity, storage modulus, hardness, gumminess, and springiness. Therefore, the gel heating temperature influences the impact of pectin on printability, rheology, and textural properties. Accordingly, the combined effects of pectin and heating temperature should be considered in pectin-based 3D food-printing ink formulations.
Collapse
Affiliation(s)
- Nishala Erandi Wedamulla
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea; Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Food Science and Technology, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| | - Meiqi Fan
- Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Young-Jin Choi
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea; Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Eun-Kyung Kim
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea; Nutritional Education Major, Graduate School of Education, Dong-A University, Busan 49315, Republic of Korea; Nutrinomics Lab. Co., Ltd., Busan 49315, Republic of Korea.
| |
Collapse
|
35
|
Almeida RLJ, Santos NC, Muniz CES, da Silva Eduardo R, de Almeida Silva R, Ribeiro CAC, da Costa GA, de Figueiredo MJ, Galdino PO, Dos Santos ES. Red rice starch modification - Combination of the non-thermal method with a pulsed electric field (PEF) and enzymatic method using α-amylase. Int J Biol Macromol 2023; 253:127030. [PMID: 37742893 DOI: 10.1016/j.ijbiomac.2023.127030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
The objective of this study was to investigate the dual modification of red rice starch using pulsed electric field (PEF) and α-amylase, focusing on morpho-structural, thermal, and viscoamylographic properties. Native starch (Control) underwent various treatments: PEF at 30 kV cm-1 (PEF30), α-amylase at 9.0 U mg-1 (AA0), and a combination of both (PEF30 + α and α + PEF30). The PEF30 + α treatment exhibited the highest degree of digestion (10.66 %) and resulted in morphological changes in the starch granules, which became elongated and curved, with an increased average diameter of 50.49 μm compared to the control. The starch was classified as type A, with a maximum reduction in crystallinity of up to 21.17 % for PEF30. The deconvolution of FT-IR bands indicated an increase in the double helix degree (DDH) for PEF30 and AA0, while the degree of order (DO) was reduced for PEF30, AA0, and PEF30 + α. DSC analysis revealed significant modifications in gelatinization temperatures, particularly for PEF30, and these changes were supported by a reduction in gelatinization enthalpy (ΔH) of up to 28.05 % for AA0. These findings indicate that both individual and combined treatments promote a decrease in starch gelatinization and facilitate the process, requiring less energy. Differences were observed between the formulations subjected to single and alternating dual treatments, highlighting the influence of the order of PEF application on the structural characteristics of starch, especially when applied before the enzymatic treatment (PEF + α). Regarding the viscoamylographic parameters, it was observed that AA0 presented higher values than the control, indicating that α-amylase enhances the firmness of the paste. The double modification with PEF + α was more effective in reducing syneresis and starch retrogradation, leading to improvements in paste properties. This study provided significant insights into the modification of red rice starch using an efficient and environmentally friendly approach.
Collapse
Affiliation(s)
| | - Newton Carlos Santos
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cecilia Elisa Sousa Muniz
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Raphael da Silva Eduardo
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | | | | | | - Maria José de Figueiredo
- Department of Agro-industrial Management and Technology, Federal University of Paraiba, Bananeiras, PB, Brazil
| | | | | |
Collapse
|
36
|
Xu L, Ren J, Wang X, Bai Z, Chai S, Wang X. Effects of sugar beet pectin on the pasting, rheological, thermal, and microstructural properties of wheat starch. Int J Biol Macromol 2023; 253:127328. [PMID: 37820921 DOI: 10.1016/j.ijbiomac.2023.127328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The effects of addition of sugar beet pectin (SBP) on the pasting, rheological, thermal, and microstructural properties of wheat starch (WS) were investigated. Results revealed that SBP addition significantly increased the peak viscosity, trough viscosity, breakdown value, final viscosity, and setback value of WS, whereas decreased the pasting temperature. SBP raised the swelling power (from 13.44 to 21.32 g/g) and endothermic enthalpy (ΔH, from 8.17 to 8.98 J/g), but decreased the transparency (from 9.70 % to 1.37 %). Regarding rheological properties, WS-SBP mixtures exhibited a pseudo-plastic behavior, and SBP enhanced the viscoelasticity, but decreased the deformability. Particle size distribution analysis confirmed that SBP promoted the swelling of WS granules. Fourier-transform infrared spectroscopy results suggested that the interactions between SBP and WS did not involve covalent bonding, and the formation of ordered structure was inhibited by SBP addition. Additionally, scanning electron microscopy observation found that the gel network of WS-SBP mixtures became more irregular, pore size gradually decreased, and the wall became thinner as the SBP concentration increased. These results indicated that SBP is a promising non-starch polysaccharide that can enhance the processing properties of WS.
Collapse
Affiliation(s)
- Lei Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China.
| | - Jinyun Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Xin Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Zhaoliang Bai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Shihao Chai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Xiaole Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| |
Collapse
|
37
|
Zhang S, Yue M, Yu X, Wang S, Zhang J, Wang C, Ma C. Interaction between potato starch and barley β-glucan and its influence on starch pasting and gelling properties. Int J Biol Macromol 2023; 253:126840. [PMID: 37696374 DOI: 10.1016/j.ijbiomac.2023.126840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The interactions between potato starch (PtS) and barley β-glucan (BBG) were investigated by preparing PtS-BBG mixtures, and the pasting, rheological, gelling and structural properties were evaluated. Rapid viscosity analysis suggested that BBG reduced the peak and breakdown viscosity, while increasing the setback viscosity of PtS. PtS-12%BBG showed the lowest leached amylose content (12.02 ± 0.36 %). The particle size distribution pattern of PtS was not changed with the addition of BBG, and the median diameter of PtS-12%BBG (88.21 ± 0.41 μm) was smaller than that of PtS (108.10 ± 6.26 μm). Rheological results showed that PtS and PtS-BBG gels exhibited weak gel behaviors, and BBG could remarkably affect the elastic and viscous modulus of PtS gels. Textural analysis suggested that the strength and hardness of PtS gels were increased when few BBG (<6 %, w/w) was present in the system. BBG improved the freeze-thaw stability of PtS gels. Structural analysis indicated that hydrogen bonds were the main force in the PtS-BBG systems. These results indicated that BBG interacted with starch via hydrogen bonds, which delayed starch gelatinization and improved gelling properties of PtS gels. Overall, this study gained insights into starch-polysaccharide interactions and revealed the possible applications of BBG in food processing.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Minghui Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiaowei Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Sihua Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
38
|
Chen H, Wang X, Jin D, Liu M, Wu X, Jiang Y, Fang Y, Lin Q, Ding Y. Characterization, in vitro digestibility and release properties of starch-linoleic acid-sodium alginate composite film. Food Res Int 2023; 174:113647. [PMID: 37981361 DOI: 10.1016/j.foodres.2023.113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
This study aimed to improve the complexing degree, digestibility and controlled release properties of the potato starch (PS)-linoleic acid (LA) complexes by encapsulating PS-LA complexes to sodium alginate (AG) beads. The results revealed that AG had a positive effect on the complexing index, R1047/1022 values, relative crystallinity, enthalpy and morphological structure of PS-LA-AG films, especially for PS-LA-AG film with the PS-LA: AG of 5:1. The in vitro digestion and hydrolysis kinetic analysis indicated that AG addition reduced the digestibility of PS-LA-AG films to a higher slowly digestible starch content and resistant starch content and a lower equilibrium hydrolysis percentage and kinetic constant. Furthermore, in vivo release study of PS-LA-AG films indicated a restrained release in simulated gastrointestinal conditions. Consequently, the results indicated that AG addition significantly improved the inclusion efficiency for the complex formation between PS and LA, which was beneficial for the design of resistant films to entrap and control release of unsaturated fatty.
Collapse
Affiliation(s)
- Huirong Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoyan Wang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Danni Jin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Mingyue Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaonian Wu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yuling Jiang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023,China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
39
|
Pinto AM, Hobden MR, Brown KD, Farrimond J, Targett D, Corpe CP, Ellis PR, Todorova Y, Socha K, Bahsoon S, Haworth C, Marcel M, Nie X, Hall WL. Acute effects of drinks containing blackcurrant and citrus (poly)phenols and dietary fibre on postprandial glycaemia, gut hormones, cognitive function and appetite in healthy adults: two randomised controlled trials. Food Funct 2023; 14:10163-10176. [PMID: 37902089 DOI: 10.1039/d3fo03085g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
(Poly)phenol (PP)-rich blackcurrant (BC) extracts reduce postprandial glucose concentrations. Combinations with other fruit (poly)phenols and fruit fibre may enhance the effect. This study investigated the acute effects of combinations of BC extracts, high (H-BC) and low (L-BC) (poly)phenol concentrations, sweet orange extracts (SO) and fibre-rich orange pulp (F) in reducing postprandial glycaemia. In two randomised, double-blind, crossover design studies, healthy participants consumed seven types of 200 mL beverages: in the GLU-FX trial, H-BC (1600 mg PP); L-BC (800 mg PP); SO (800 mg PP); BC + SO (1600 mg PP) or CON (placebo); in the GLU-MIX trial, BC + F (800 mg PP), F (1.5 g fibre), or CON2 (placebo), immediately followed by consumption of 75 g available carbohydrate (starch and sugars). Blood was sampled at baseline and postprandially to measure changes in glucose, insulin, and gut hormones; appetite changes were assessed by visual analogue scales and, in GLU-MIX, ad libitum food intake and cognitive function were assessed. Twenty-nine and thirty-seven adults completed GLU-FX and GLU-MIX, respectively. L-BC reduced early postprandial glycaemia (0-30 min) with no differences in glucose incremental Cmax or total glycaemic response. No significant effect was observed following other drinks relative to CON. L-BC and H-BC drinks inhibited insulin secretion up to 30 min and GIP up to 120 min. In GLU-MIX, BC + F improved some indicators of cognitive function but not all. Measures of appetite were unaffected. The impact of (poly)phenol-rich BC extracts on total postprandial glycaemia in healthy participants was minimal and not enhanced when administered in combination with an orange (poly)phenol extract or orange pulp. Clinical Trials registered at https://www.clinicaltrials.gov: NCT03184064 (GLU-FX) and NCT03572296 (GLU-MIX).
Collapse
Affiliation(s)
- Ana M Pinto
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
- Laboratório de Nutrição, Instituto de Saúde Ambiental, Laboratório Associado TERRA, Centro Académico de Medicina de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Mark R Hobden
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Katherine D Brown
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
- Lucozade Ribena Suntory (UK), 2 Longwalk Road, Stockley Park, Uxbridge UB11 1BA, UK
| | - Jonathan Farrimond
- Lucozade Ribena Suntory (UK), 2 Longwalk Road, Stockley Park, Uxbridge UB11 1BA, UK
| | - Darren Targett
- Primoris Contract Solutions Ltd., 22 Redwood Drive, Ascot, Berkshire, SL5 0LW, UK
| | - Christopher P Corpe
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Peter R Ellis
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, SE1 9NH, London, UK
| | - Yvanna Todorova
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Klaudia Socha
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Shatha Bahsoon
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Claudia Haworth
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Morgane Marcel
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Xirui Nie
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Wendy L Hall
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
40
|
Chen Z, Nie M, Xi H, He Y, Wang A, Liu L, Wang L, Yang X, Dang B, Wang F, Tong LT. Effect of continuous instant pressure drop treatment on the rheological properties and volatile flavor compounds of whole highland barley flour. Food Res Int 2023; 173:113408. [PMID: 37803747 DOI: 10.1016/j.foodres.2023.113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Continuous instant pressure drop (CIPD) treatment effectively reduces microbial contamination in whole highland barley flour (WHBF). Base on it, this study further investigated its effects on flour properties (especially rheological properties) and volatile compounds (VOCs) profile of WHBF, and compared it with that of ultraviolet-C (UV-C), ozone and hot air (HA) treatments. The results showed that the damaged starch content (6.0%) of CIPD-treated WHBF was increased, leading to a rough surface and partial aggregation of starch particle, thereby increasing the particle size (18.06 μm of D10, 261.46 μm of D50 and 534.44 μm of D90). Besides, CIPD treatment exerted a positive influence on the structure and rheological properties of WHBF, including an elevation in pasting temperature and viscosity. Notably, CIPD-treated WHBF exhibited higher storage modulus and loss modulus compared to the other three groups of sterilization treatments, contributing to the formulation of a better-defined and stable gel strength (tan δ = 0.38). UV-C and ozone, as cold sterilization techniques, also induced alterations in specific characteristics of WHBF. UV-C treatment led to changes in WHBF's crystallinity, while ozone treatment caused modifications in the secondary protein structure of WHBF. A total of 68 VOCs were identified in raw WHBF (including 3 acids, 19 alcohols, 25 aldehydes, 1 alkene, 8 esters, 2 ethers, 3 furans, and 7 ketones). The maximum flavor-contributing VOC in CIPD-treated WHBF remained dimethyl sulfide monomer (cabbage aroma), consistent with the raw WHBF. Conversely, in HA-treated WHBF, the maximum flavor-contributing VOC shifted to 2-furanmethanethiol monomer (roasted coffee aroma), altering the initial flavor presentation. These findings will provide strong support for the application of CIPD technology in the powdery foods industry.
Collapse
Affiliation(s)
- Zhiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Huihan Xi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yue He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xijuan Yang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai 810016, China
| | - Bin Dang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai 810016, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
41
|
Zhai Y, Zhang H, Xing J, Sang S, Zhan X, Liu Y, Jia L, Li J, Luo X. Long-Term Retrogradation Properties and In Vitro Digestibility of Waxy Rice Starch Modified with Pectin. Foods 2023; 12:3981. [PMID: 37959100 PMCID: PMC10648783 DOI: 10.3390/foods12213981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, the blending of hydrocolloids and natural starch to improve the properties of natural starch has become a research hotspot. In this study, the effects of pectin (PEC) on the retrogradation properties and in vitro digestibility of waxy rice starch (WRS) were investigated. The results showed that PEC could significantly (p < 0.05) reduce the retrogradation enthalpy and reduce the hardness of WRS gel. X-ray diffraction results indicated that PEC could reduce the relative crystallinity of the composite system, and the higher the PEC content, the lower the relative crystallinity. When the PEC content was 10%, the relative crystallinity of the composite system was only 10.6% after 21 d of cold storage. Fourier transform infrared spectroscopy results proved that the interaction between PEC and WRS was mainly a hydrogen bond interaction. Furthermore, after 21 d of cold storage, the T23 free water signal appeared in the natural WRS paste, while only a small free water signal appeared in the compound system with 2% PEC addition. Moreover, addition of PEC could reduce the starch digestion rate and digestibility. When the content of PEC increased from 0% to 10%, the digestibility decreased from 82.31% to 71.84%. This study provides a theoretical basis for the further application of hydrocolloids in starch-based foods.
Collapse
Affiliation(s)
- Yuheng Zhai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.Z.); (H.Z.)
| | - Hao Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.Z.); (H.Z.)
| | - Jiali Xing
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China;
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China (Y.L.); (L.J.)
| | - Xinyan Zhan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China (Y.L.); (L.J.)
| | - Yanan Liu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China (Y.L.); (L.J.)
| | - Lingling Jia
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China (Y.L.); (L.J.)
| | - Jian Li
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaohu Luo
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.Z.); (H.Z.)
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China (Y.L.); (L.J.)
| |
Collapse
|
42
|
Cheng Y, Chen Q, Wang Z, Zeng M, Qin F, Chen J, He Z. Effects of different food ingredients and additives on the digestibility of extruded and roller-dried maize starch and its application in low glycemic index nutritional formula powder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6483-6490. [PMID: 37219070 DOI: 10.1002/jsfa.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/27/2023] [Accepted: 05/21/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Complex interactions that occur among starch, protein, and fat during food processing affect the taste, texture, and digestibility of starch-based food. The physicochemical properties of starch, in particular its slow digestibility, are greatly influenced by processing techniques such as extrusion and roller-drying. This study investigated the effects of various food ingredients and additives on the digestion properties of maize starch treated with extrusion and roller drying. It designed a nutritional formula to develop low glycemic index products. RESULTS The extruded group containing raw maize starch, soybean protein isolate, soybean oil, lecithin and microcrystalline cellulose in the ratio of 580:250:58:20:3 had the best slow digestion properties. Nutritional formulas were designed at the above ratio, with supplements including calcium casein peptide, multi-vitamins, sodium ascorbate, fructooligosaccharides, xylitol, and peanut meal. The sample containing 10% peanut meal and a 1:3 ratio of fructooligosaccharides and xylitol additions obtained the highest sensory evaluation scores. An obvious slow digestion effect was observed in samples produced from the optimal formula. CONCLUSION The results of the present study could contribute to the development and production of a low glycemic index, nutritional powder. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
43
|
Ek P, Gu BJ, Richter JK, Dey D, Saunders SR, Ganjyal GM. High methoxyl pectin can improve the extrusion characteristics and increase the dietary fiber content of starch-cellulose extrudates. J Food Sci 2023; 88:4156-4168. [PMID: 37623924 DOI: 10.1111/1750-3841.16742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Improving total dietary fiber content while maintaining the texture/expansion of extruded products is a challenge. Pectin has a dual function; it is a source of dietary fiber and it also functions as a hydrocolloid, which could improve the texture of high-fiber extruded foods. The objective of this study was to evaluate the impacts of pectin types from citrus peel on the expansion characteristics of starch-cellulose extrudates. High and low methoxyl pectin (HMP and LMP) was added to the starch-cellulose mixtures and extruded using a twin-screw extruder. The pasting properties of raw mixtures, extrusion properties, microstructure, and dietary fiber contents of the extrudates were studied. The inclusion of HMP in raw material improved the peak viscosity (629.7 ± 8.1 to 754.7 ± 80.1 mPa s) and maintained the final viscosity compared to the control (starch-cellulose mixture alone), unlike LMP. HMP relatively maintained the extrusion process parameters such as torque, back pressure, and specific mechanical energy as the control. Interestingly, the addition of 7% of HMP had a similar expansion ratio (3.41 ± 0.08 to 2.35 ± 0.06) compared to the control (3.46 ± 0.08 to 2.32 ± 0.09) under the extrusion conditions studied. The total dietary fiber content improved from 12.22 ± 0.01% to 18.26 ± 0.63% (w/w). HMP maintained the expansion characteristic of starch-cellulose extrudates and improved its total dietary fiber content relative to LMP. Adding HMP to the mixtures improved the extensibility of the melt, favoring bubble growth and expansion of the starch-cellulose extrudates. Fourier transform infrared spectroscopy data suggested that there could be intermolecular interactions between starch, cellulose, and pectin, but the nature of these interactions needs further investigation. PRACTICAL APPLICATION: The study provides practical information on the influence of the addition of high and low methoxyl pectin on starch-cellulose extrudates. The results can help the industry to produce snack products that are more nutritious but are still well accepted by the consumers.
Collapse
Affiliation(s)
- Pichmony Ek
- School of Food Science, Washington State University, Pullman, Washington, USA
- Faculty of Chemical and Food Engineering, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Bon-Jae Gu
- School of Food Science, Washington State University, Pullman, Washington, USA
- Department of Food Science and Technology, Food and Feed Extrusion Research Center, Kongju National University, Yesan, Chungnam, Republic of Korea
| | - Jana K Richter
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Debomitra Dey
- School of Food Science, Washington State University, Pullman, Washington, USA
- CW Brabender Instruments Inc., South Hackensack, New Jersey, USA
| | - Steven R Saunders
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
44
|
Zhang X, Liu Z, Wang L, Lan X, He G, Jia D. Effect of hydroxypropyl distarch phosphate on the retrogradation properties of sterilized pea starch jelly and its possible mechanism. Int J Biol Macromol 2023; 247:125629. [PMID: 37399874 DOI: 10.1016/j.ijbiomac.2023.125629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Due to the high content of amylose in pea starch (PS), PS jelly is prone to retrogradation during storage and its quality reduces subsequently. Hydroxypropyl distarch phosphate (HPDSP) shows a potential inhibitory effect on the retrogradation of starch gel. Based on this, five retrograded PS-HPDSP blends containing 1 %, 2 %, 3 %, 4 % and 5 % (w/w, based on the weight of PS) of HPDSP were prepared, and their long-range, short-range ordered structure and retrogradation properties, and the possible interaction between PS and HPDSP were investigated. The addition of HPDSP significantly reduced the hardness of PS jelly and maintained its springiness during cold storage, and this effect was enhanced with HPDSP dosage being from 1 % to 4 %. The presence of HPDSP destroyed both short-range ordered structure and long-range ordered structure. Rheological results indicated that all the gelatinized samples were typical non-Newtonian fluids with shear-thinning characteristics and HPDSP increased their viscoelasticity in a dose-dependent manner. In conclusion, HPDSP delays the retrogradation of PS jelly mainly by combining with amylose in PS through hydrogen bonds and steric hindrance.
Collapse
Affiliation(s)
- Xueer Zhang
- College of Biomass Science & Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenyu Liu
- College of Biomass Science & Engineering, Sichuan University, Chengdu 610065, China
| | - Ling Wang
- Sichuan Branch of Shenzhen Ziteng Intellectual Property Agency Co., Ltd., Chengdu 610065, China
| | - Xuyue Lan
- Pepsi Foods (China) Co., Ltd., Shanghai 200023, China
| | - Guiping He
- College of Biomass Science & Engineering, Sichuan University, Chengdu 610065, China
| | - Dongying Jia
- College of Biomass Science & Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
45
|
Wang X, Fang J, Cheng L, Gu Z, Hong Y. Interaction of starch and non-starch polysaccharides in raw potato flour and their effects on thickening stability. Int J Biol Macromol 2023; 242:124702. [PMID: 37146859 DOI: 10.1016/j.ijbiomac.2023.124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
The present study sought to explore the potential of raw potato flour prepared from two common potato varieties (Atlantic and Favorita) as a thickener and the underlying mechanisms of its thickening stability based on the chemical component content, chemical group, starch, pectin, cell wall integrity, and the cell wall strength of raw potato flour. The raw potato flour prepared from Favorita potato (FRPF) showed great potential as a thickener with a valley viscosity/peak viscosity of 97.24 %. Additionally, the viscosity of FRPF after heat treatment, acid treatment and shear treatment was maintained at 70.73 %, 65.99 % and 78.89 % of the original viscosity, respectively, which is better than that of ARPF (44.98 %, 47.03 % and 61.57 %, respectively). The results also revealed that high pectin content, cell wall integrity and strength contributed significantly to the thickening stability of potato meal, which was achieved by limiting the swelling and disintegration of starch. Finally, the correctness of the principle was verified using the raw potato flour prepared from four types of potatoes (Heijingang, Innovator, Qingshu No. 9, and Guinongshu No. 1). Overall, the development of thickener from raw potato flour has broadened the variety of clean label additives in the food industry.
Collapse
Affiliation(s)
- Xu Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiahui Fang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
46
|
Zhang S, Yue M, Wang S, Zhang J, Zhang D, Wang C, Chen S, Ma C. Insights into the modification of physicochemical properties and digestibility of pea starch gels with barley β-glucan. J Food Sci 2023; 88:2833-2844. [PMID: 37219380 DOI: 10.1111/1750-3841.16615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
The influences of barley β-glucan (BBG) on the physicochemical properties and in vitro digestibility of pea starch were investigated. BBG was found to decrease pasting viscosity in a concentration dependent manner and inhibited the aggregation of pea starch. After the presence of BBG, the gelatinization enthalpy of pea starch was decreased (from 7.83 ± 0.03 to 5.55 ± 0.22 J/g), whereas the gelatinization temperature was enhanced (from 62.64 ± 0.01 to 64.52 ± 0.14°C) according to the differential scanning calorimeter results. In addition, BBG inhibited the swelling of pea starch and amylose leaching. When amylose leached out from pea starch to form a BBG-amylose barrier, starch gelatinization was inhibited. The starch gels exhibited weak gels and shear thinning behaviors by rheological tests results. The interaction between BBG and amylose led to lower viscoelasticity and texture parameters in pea starch gels. The structure analysis results unveiled that the force between BBG and amylose was mainly hydrogen bonds. Pea starch hydrolysis was inhibited when BBG was present in the system, which was connected with the restricted starch gelatinization. These results obtained in the study would supply insights into incorporating BBG into various food systems.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Minghui Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Sihua Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Jing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Chengjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| |
Collapse
|
47
|
Hedayati S, Ansarifar E, Tarahi M, Tahsiri Z, Baeghbali V, Niakousari M. Influence of Persian Gum and Almond Gum on the Physicochemical Properties of Wheat Starch. Gels 2023; 9:460. [PMID: 37367131 DOI: 10.3390/gels9060460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, the influence of different levels (0.1, 0.2, and 0.3% w/w) of Persian gum or almond gum were incorporated into wheat starch, and their influences on water absorption, freeze-thaw stability, microstructure, pasting, and textural properties were investigated. The SEM micrographs revealed that the addition of hydrocolloids to starch leads to the formation of denser gels with smaller pores. The water absorption of starch pastes was improved in the presence of gums, and samples containing 0.3% almond gum had the highest water absorption. The rapid visco analyzer (RVA) data showed that the incorporation of gums significantly affected the pasting properties by increasing the pasting time, pasting temperature, peak viscosity, final viscosity, and setback and decreasing breakdown. In all the pasting parameters, the changes caused by almond gum were more obvious. Based on TPA measurements, hydrocolloids were able to improve the textural properties of starch gels, such as firmness and gumminess but decreased the cohesiveness, and springiness was not affected by the incorporation of gums. Moreover, the freeze-thaw stability of starch was enhanced by the inclusion of gums, and almond gum exhibited better performance.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Elham Ansarifar
- Social Determinants of Health Research Center, Department of Public Health, School of Health, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran
| | - Zahra Tahsiri
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran
| | - Vahid Baeghbali
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Medway, Kent ME4 4TB, UK
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran
| |
Collapse
|
48
|
Zang Y, Du C, Xin R, Cao Y, Zuo F. Anti-diabetic effect of modified 'Guanximiyou' pummelo peel pectin on type 2 diabetic mice via gut microbiota. Int J Biol Macromol 2023; 242:124865. [PMID: 37207756 DOI: 10.1016/j.ijbiomac.2023.124865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
This study aimed to investigate the mechanisms of nature and modified 'Guanximiyou' pummelo peel pectin (GGP and MGGP) in alleviating T2DM through in vitro and in vivo. After modification, pectin was transformed from high methoxy pectin (HMP) to low methoxy pectin (LMP), and the content of galacturonic acid was increased. These made MGGP have stronger antioxidant capacity and better inhibition effect on corn starch digestion in vitro. In vivo experiments have shown that both GGP and MGGP inhibited the development of diabetes after 4 weeks of ingestion. However, MGGP can more effectively reduce blood glucose and regulate lipid metabolism, and has significant antioxidant capacity and the ability to promote SCFAs secretion. In addition, 16S rRNA analysis showed that MGGP changed the composition of intestinal microbiota in diabetic mice, decreased the abundance of Proteobacteria, and increased the relative abundance of Akkermansia, Lactobacillus, Oscillospirales and Ruminococcaceae. The phenotypes of the gut microbiome also changed accordingly, indicating that MGGP can inhibit the growth of pathogenic bacteria, alleviate intestinal functional metabolic disorders and reverse the potential risk of related complications. Altogether, our findings demonstrate that MGGP, as a dietary polysaccharide, may inhibit the development of diabetes by reversing the imbalance of gut microbiota.
Collapse
Affiliation(s)
- Yanqing Zang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Chao Du
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Ru Xin
- Heilongjiang Nursing College, Daqing, Heilongjiang 150086, China
| | - Yang Cao
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Feng Zuo
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
49
|
Starch digestion retarded by wheat protein hydrolysates with different degrees of hydrolysis. Food Chem 2023; 408:135153. [PMID: 36527925 DOI: 10.1016/j.foodchem.2022.135153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Wheat protein hydrolysates (WPH) were prepared by pepsin hydrolysis for 30, 60, and 120 min (WPH30, WPH60, and WPH120). The mixed system of rice starch and WPH was hydrothermally treated to explore the effect of WPH with different degrees of hydrolysis on starch digestion. WPH reduced the first-order rate coefficient (k) of starch digestion. Especially, WPH30 reduced the k value the most and formed the highest slowly digestible starch content due to the entanglement of starch chains and long-chain peptides. WPH60 and WPH120 with more hydrophobic peptides and polar amino acids than WPH30 tended to form hydrogen bonds with starch molecules due to less steric hindrance. Particularly, the complexation of WPH60 promoted the formation of dense aggregate structure and hindered the enzymatic hydrolysis of starch to a certain extent, thereby increasing the resistant starch content. These findings provide significant guidance for the preparation of hypoglycemic reformed food.
Collapse
|
50
|
Xie S, Li H, Li N, Liu Z, Xu D, Hu L, Mo H. Lentinus edodes Powder Improves the Quality of Wheat Flour Gluten Sticks. Foods 2023; 12:foods12091755. [PMID: 37174294 PMCID: PMC10177975 DOI: 10.3390/foods12091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Spicy wheat flour gluten sticks are delicious and affordable puffed snacks for young adults and even minors in China, and have a relatively simple nutritional quality. L. edodes powder (LEP) is rich in nutrients and boasts a variety of biological activities. This study evaluated the effects of different concentrations of LEP addition on the quality of wheat flour gluten sticks. The gelatinization results of the products showed that the peak viscosity decreased from 454 cP to 251 cP; the breakdown value decreased from 169 cP to 96 cP; and the setback value decreased from 381 cP to 211 cP. With the increase in LEP, the radial expansion rate (RER) of L. edodes gluten sticks (LSGS) first increased and then decreased, reaching a maximum value of 1.388 in the 10% LEP group. The oil absorption rate (OAR) of LSGS increased from 5.124% to 14.852% with the increase in the amount of LEP. Additionally, texture profile analysis showed that the hardness value increased from 1148.898 to 2055.492 g; the chewiness value increased from 1010.393 to 1499.233; and the springiness value decreased from 1.055 to 0.612. Through X-ray diffraction (XRD), it was found that the crystal type was transformed from A-type crystal to B-type and V-type crystals. Low field nuclear magnetic resonance (LF-NMR) results showed that the moisture distribution in the products was basically bound water. The scanning electron microscopy (SEM) results showed that, with the increase in the LEP amount, the surface of the products changed from rough to smooth. Sensory evaluation results indicated that the products with 10% LEP helped to maintain better taste and quality of LSGS, with an average score of 7.628, which was the most popular among consumers. This study not only increases the possible raw materials for use in extruded puffed food, but also provides a new possibility for the production of high-quality edible fungi extruded products.
Collapse
Affiliation(s)
- Suya Xie
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| | - Hongbo Li
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| | - Na Li
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Xu
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| | - Liangbin Hu
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| | - Haizhen Mo
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|