1
|
Wang F, Fu Q, Tang T, Liu Z, Ma X, Liu Y, Zhao M, Wang C, Du J, Wang B, Shi X. Dynamic changes in microbiota and metabolome of Kazakh cheese under traditional handicraft. Food Chem 2025; 483:144251. [PMID: 40222124 DOI: 10.1016/j.foodchem.2025.144251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/17/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Kazakh cheese is a traditional fermented dairy product. In this study, high-throughput sequencing, HS-SPME-GC-MS/MS, and untargeted metabolomics were employed to investigate the microbial succession and flavor profiles of Kazakh cheese under traditional handicraft. During processing, Lactobacillus and Acetobacter were the dominant bacterial genera, while Pichia and Kluyveromyces were the predominant yeast genera. The predominant volatile compounds identified across different stages were phenethyl alcohol, acetoin, hexanoic acid, and phenethyl acetate, with their maximum concentrations attained at the cheese during ripening (CR) stage. KEGG pathway enrichment analysis identified amino acid metabolism as the most significantly enriched pathway. Furthermore, Spearman correlation analysis revealed a significant association between Pichia, Lactobacillus, Lactococcus, Kluyveromyces, and flavor compounds, suggesting the crucial role of these microbes in flavor development. This study provides a theoretical foundation for enhancing the quality of traditional fermented Kazakh cheese and advancing Xinjiang's specialty dairy industry.
Collapse
Affiliation(s)
- Fangfang Wang
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Qingquan Fu
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Tiantian Tang
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Zimeng Liu
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xinyi Ma
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yinqi Liu
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Min Zhao
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Chenqiang Wang
- Guannong Testing Technology Co., Ltd, Tiemenguan 841007, Xinjiang, China
| | - Juan Du
- Xinjiang Sailimu Modern Agriculture Co., Ltd, Shuanghe 833408, Xinjiang, China
| | - Bin Wang
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Xuewei Shi
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
2
|
Fornazier EL, Sant Ana CT, da Silva Oliveira D, Costa NMB, Carneiro JCS, Silva PI. Biofortified Sweet Potato Submitted to Different Domestic Cooking Processes: Impact on β-Carotene Retention and Antioxidant Capacity. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:68. [PMID: 39946005 DOI: 10.1007/s11130-025-01318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 03/29/2025]
Abstract
Sweet potato (Ipomoea batatas) is a source of fiber, carbohydrates, minerals and phytochemicals such as carotenoids and phenolic compounds. Biofortification with provitamin A carotenoid improves the nutritional properties of sweet potatoes and can contribute to reducing the deficiency of this micronutrient, but cooking may affect its composition. In this context, this study aimed to evaluate the effect of seven different domestic cooking processes (deep frying, air frying, steaming, boiling, pressure cooking, baking, and microwave cooking) on the color, phenolic compounds, antioxidant activity, and real retention of β-carotene in biofortified sweet potatoes. The air frying was the process that promoted more remarkable changes on the color (p < 0.05). The air fryer was the most recommended domestic processes for maintaining phenolic compounds and antioxidant capacity, while the oven was the least recommended method (p < 0.05). Pressure cooking and boiling were the most recommended methods for greater β-carotene real retention, whereas air fryer resulted in the greatest β-carotene losses in biofortified sweet potatoes (p < 0.05). Different conventional cooking methods influence the degree of loss of phytochemicals present in biofortified sweet potatoes, which can impact the consumption of these nutrients, and the efficiency of the food biofortification program.
Collapse
Affiliation(s)
- Eduardo Lorencetti Fornazier
- Postgraduate Program in Food Science and Technology, Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, Alegre, ES, 29500-000, Brazil
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre, ES, 29500-000, Brazil
| | - Cíntia Tomaz Sant Ana
- Postgraduate Program in Food Science and Technology, Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, Alegre, ES, 29500-000, Brazil.
| | - Daniela da Silva Oliveira
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre, ES, 29500-000, Brazil
| | - Neuza Maria Brunoro Costa
- Postgraduate Program in Food Science and Technology, Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, Alegre, ES, 29500-000, Brazil
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre, ES, 29500-000, Brazil
| | - Joel Camilo Souza Carneiro
- Postgraduate Program in Food Science and Technology, Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, Alegre, ES, 29500-000, Brazil
- Department of Food Engineering, Federal University of Espírito Santo, Alegre, ES, 29500-000, Brazil
| | - Pollyanna Ibrahim Silva
- Postgraduate Program in Food Science and Technology, Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, Alegre, ES, 29500-000, Brazil
- Department of Food Engineering, Federal University of Espírito Santo, Alegre, ES, 29500-000, Brazil
| |
Collapse
|
3
|
He S, He S, Niu L, Sun C, Zeng Z, Xiao J. Effects of different roasting conditions on sugars profile, volatile compounds, carotenoids and antioxidant activities of orange-fleshed sweet potato. Food Chem X 2025; 25:102201. [PMID: 39901945 PMCID: PMC11788740 DOI: 10.1016/j.fochx.2025.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
The effects of different roasting conditions (180 °C/70 min (T180), 210 °C/50 min (T210), and 240 °C/30 min (T240) on the qualities of orange-fleshed sweet potato (OFSP) were explored. Changes in sugars and carotenoids were analyzed by GC-MS and LC-MS/MS, and volatile compounds were characterized by GC × GC/TOF-MS. The antioxidant activities (DPPH• and ABTS•+) and bioaccessibility of β-carotene after in vitro digestion were also evaluated. Results showed that sugar content increased with roasting temperature, with T240 showing the highest sugar content (817.53 mg/g). The greatest variety of sugar species was identified in T180, with maltose (53.51 %) and sucrose (25.70 %) being the predominant sugars. In addition, T210 produced the largest number of volatile compounds, with vanillin being key flavor compound. Regarding the antioxidant activities and bioaccessibility in vitro simulated digestion, their capacity was T180 > T210 > T240. In comparison, T210 appears to be the optimal roasting condition, offering a balanced sweetness profile, enhanced flavor complexity, and optimal retention of carotenoids.
Collapse
Affiliation(s)
- Sinian He
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Shengsheng He
- Agricultural Science Institute of Longyan, No. 205, Longteng North Road, Longyan 364000, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Chao Sun
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Zicong Zeng
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| |
Collapse
|
4
|
Lima FDA, Chagas PAM, Honorato ACS, da Silva EN, Aguiar ML, Guerra VG. Multifactorial evaluation of an ultra-fast process for electrospinning of recycled expanded polystyrene to manufacture high-efficiency membranes for nanoparticle air filtration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121352. [PMID: 38833930 DOI: 10.1016/j.jenvman.2024.121352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
The increased production of polystyrene waste has led to the need to find efficient ways to dispose of it. One possibility is the use of solid waste to produce filter media by the electrospinning technique. The aim of this work was to develop an ultra-fast electrospinning process applied to recycled polystyrene, with statistical evaluation of the influence of polymeric solution parameters (polymer concentration and percentage of DL-limonene) and process variables (flow rate, voltage, and type of support) on nanoparticle collection efficiency, air permeability, and fiber diameter. An extensive characterization of the materials and evaluation of the morphology of the fibers was also carried out. It was found that recycled expanded polystyrene could be used in electrospinning to produce polymeric membranes. The optimized condition that resulted in the highest nanoparticle collection efficiency was a polymer concentration of 13.5%, percentage of DL-limonene of 50%, voltage of 25 kV, and flow rate of 1.2 mL/h, resulting in values of 99.97 ± 0.01%, 2.6 ± 0.5 × 10-13 m2, 0.19 Pa-1, and 708 ± 176 nm for the collection efficiency of nanoparticles in the range from 6.38 to 232.9 nm, permeability, quality factor, and mean fiber diameter, respectively. All the parameters were found to influence collection efficiency and fiber diameter. The use of DL-limonene, a natural solvent, provided benefits including increased collection efficiency and decreased fiber size. In addition, the electrostatic filtration mechanism was evaluated using the presence of a copper grid as a support for the nanofibers. The findings demonstrated that an electrospinning time of only 5 min was sufficient to obtain filters with high collection efficiencies and low pressure drops, opening perspectives for the application of polystyrene waste in the development of materials with excellent characteristics for application in the area of atmospheric pollution mitigation.
Collapse
Affiliation(s)
- Felipe de Aquino Lima
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, C.P. 676, CEP, 13560-970, São Carlos, SP, Brazil
| | - Paulo Augusto Marques Chagas
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, C.P. 676, CEP, 13560-970, São Carlos, SP, Brazil
| | - Ana Carolina Sguizzato Honorato
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, C.P. 676, CEP, 13560-970, São Carlos, SP, Brazil
| | - Edilton Nunes da Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, C.P. 676, CEP, 13560-970, São Carlos, SP, Brazil
| | - Mônica Lopes Aguiar
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, C.P. 676, CEP, 13560-970, São Carlos, SP, Brazil
| | - Vádila Giovana Guerra
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, C.P. 676, CEP, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Jiang X, Zhang R, Yao Y, Yang Y, Wang B, Wang Z. Effect of cooking methods on metabolites of deep purple-fleshed sweetpotato. Food Chem 2023; 429:136931. [PMID: 37517223 DOI: 10.1016/j.foodchem.2023.136931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
The effects of different cooking methods on purple-fleshed sweetpotato (PFSP) metabolites were systematically explored, containing the changes of starch, soluble sugar, volatile organic compounds and non-target metabolites after steaming, boiling and baking. Compared to raw samples, the steamed samples showed the greatest changes in starch (degraded from 53.01% to 39.5%) and soluble sugar content (increased from 11.82% to 29.08%), while the baked samples showed insignificant changes in starch (51.06%). In total, 64 volatile organic compounds were identified in PFSP, with aldehydes decreasing and terpenes increasing after cooking. However, most of them were low in content and contributed weak aroma for PFSP. More importantly, 871 non-volatile metabolites were detected in PFSP, and 83.5% of which were well-preserved after cooking, while most of the changes were concentrated in phenylpropanoids, amino acids and carbohydrates. This study enriches the understanding of quality changes after PFSP cooking and helps consumers choose the right cooking method.
Collapse
Affiliation(s)
- Xia Jiang
- Food College, Shihezi University, Shihezi, 832000, Xinjiang Uygur Autonomous Region, China; Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China
| | - Rong Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China
| | - Yanqiang Yao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China; Hebei Normal University of Science & Technology, College of Agriculture and Biotechnology, Changli, Hebei 066600, China
| | - Yiling Yang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi, 832000, Xinjiang Uygur Autonomous Region, China.
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
6
|
Gao P, Zhang W, Zhao X, Xu C, Pang X, Fauconnier ML, Zhang S, Lv J. The effect of Maillard reaction on flavour development of protein hydrolysates from cheese. Food Chem 2023; 437:137569. [PMID: 39491246 DOI: 10.1016/j.foodchem.2023.137569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/20/2023] [Accepted: 09/21/2023] [Indexed: 11/05/2024]
Abstract
This study aims to explore the effect of the Maillard reaction (MR) on flavour development of cheese protein hydrolysates. In addition, the effects of proteolysis, lipolysis, and the degreasing process on the MR have been explored. Cheese protein hydrolysates subjected to different treatments were heated with glucose and xylose, and their amino reactant components, colour parameters, and volatile compounds were determined. The results showed that the MR significantly affected the content of free amino acids, peptides, and volatile flavours of cheese protein hydrolysates. Peptides below 1500 Da and most of the free amino acids were the important amino reactants during the MR. 3-Ethyl-2,5-dimethylpyrazine, 2,5-dimethylpyrazine, 2-undecanone and 2-heptanone were the key volatile components of the MR products. The results also indicated that N-terminal amino acids of the peptide chain were easier to be reacted than C-terminal amino acids and thus produce a pyrazine-like flavour in the MR.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenyuan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Dairy Science and Technology, Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Xiaoxuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chen Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marie-Laure Fauconnier
- Laboratoire de Chimie des Molecules Naturelles (LCMN), Gembloux Agro-Bio Tech, Universite de Liege, 2, Passage des Deportes, B-5030 Gembloux, Belgium
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Li G, Yan N, Li G, Wang J. Optimization of the Process for Green Jujube Vinegar and Organic Acid and Volatile Compound Analysis during Brewing. Foods 2023; 12:3168. [PMID: 37685101 PMCID: PMC10486836 DOI: 10.3390/foods12173168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Healthy fruit vinegar has become very popular recently in China. This study aimed to produce fruit vinegar with a good taste, high nutritional value, and strong functional properties from green jujube. This study investigated the optimization of the process for green jujube vinegar using response surface methodology. The optimum fermentation parameters for green jujube vinegar were determined as follows: initial alcoholicity 6%, acetobacter 8%, fermentation temperature 32 °C, and time 7 d. The organic acids of the optimized sample were evaluated by HPLC, and the volatile substances were identified and analyzed by HS-SPME and GC-MS during the fermentation and aging of the green jujube vinegar. The results showed that the variation trends of the different organic acids during the making of the green jujube vinegar were significantly different. Organic acids are the key flavor compounds of green jujube vinegar, and their changes were mainly attributed to microbial metabolism. In particular, the green jujube vinegar stood out in terms of volatile aroma compounds, including a total of 61 volatile compounds whose major components were acetic acid, isoamyl acetate, ethyl acetate, 3-hydroxy-2-butanone, methyl palmitate, and ethanol. The results can provide theoretical support for the production of green jujube vinegar.
Collapse
Affiliation(s)
- Guifeng Li
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Ni Yan
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Guoqin Li
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jing Wang
- Modern College of Humanities and Sciences, Shanxi Normal University, Linfen 041000, China
| |
Collapse
|
8
|
Zhang R, Chen H, Chen Y, Tang C, Jiang B, Wang Z. Impact of different cooking methods on the flavor and chemical profile of yellow-fleshed table-stock sweetpotatoes ( Ipomoea batatas L.). Food Chem X 2022; 17:100542. [PMID: 36824146 PMCID: PMC9941418 DOI: 10.1016/j.fochx.2022.100542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
This study investigated the impact of baking, boiling, and steaming on the taste, flavor, and chemical profile of yellow-fleshed sweetpotatoes (YFSP). Baked YFSP were sweeter, more palatable, and more flavorful than both steamed and boiled YFSP. Baking increased the YFSP soluble sugar content from 9.12% to 36.65%. Specifically, maltose increased by 200-fold and this possibly accounted for the sweetness of baked YFSP. From the Gas Chromatography-Mass Spectrometry analysis, the contents of furans and terpenes increased with baking, endowing baked YFSP with an aroma. On the contrary, boiling retained more carotenoids than the other cooking methods. Although cooking clearly altered YFSP, bioactive substances were predominantly preserved as only 72 out of 706 metabolites were identified as differentially accumulated metabolites between cooked and raw samples. Taken together, baked YFSP had high levels of sugars and volatile compounds, and the three cooking methods had little effect on chemical compounds. This comprehensive evaluation of cooked YFSP is a basis for sweetpotato processing and consumer choice.
Collapse
Affiliation(s)
- Rong Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China
| | - Haocheng Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China
| | - Yihang Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China,College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaochen Tang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China
| | - Bingzhi Jiang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China,Corresponding author at: Crops Research Institute, Guangdong Academy of Agricultural Sciences, No.18 Jinying West Second Street, Tianhe District, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
9
|
Yao Y, Zhang R, Jia R, Deng Y, Wang Z. Impact of different cooking methods on the chemical profile of orange-fleshed sweet potato (Ipomoea batatas L.). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Application of response surface methodology (RSM) for optimization of the supercritical CO2 extract of oil from Zanthoxylum bungeanum pericarp: Yield, composition and gastric protective effect. Food Chem X 2022; 15:100391. [PMID: 36211759 PMCID: PMC9532734 DOI: 10.1016/j.fochx.2022.100391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Supercritical carbon-dioxide (SC-CO2) extract is an effective technology for flavor components of Z. bungeanum pericarp. About 11.07 % oil yield can be obtained under the optimized parameters of 30 MPa, 43 °C, and 75 min. Limonene, linalool, hydroxy-α-sanshool and hydroxy-β-sanshool are the major flavor components of SZB. SZB supplementation could be employed as a gastric protective agent/additive for human health. Nineteen potential biomarkers were identified as the potential biomarkers contributed to the gastric protective effect of SZB.
Supercritical carbon-dioxide (SC-CO2) is a promising two-phase technology for flavor components (volatile oil and alkylamides) extract from Zanthoxylum bungeanum pericarp. However, the gastric protective effect of SC-CO2 extract from Z. bungeanum (SZB) have not been systematically investigated. In this study, response surface methodology (RSM) was employed to optimize the yield of SZB, and the average yield of 11.07 % were obtained under optimal parameters (30 MPa, 43 °C and time 75 min). Here, limonene, linalool and hydroxy-α-sanshool were identified as the main compounds of SZB by GC–MS and UPLC-Q-Extractive Orbitrap/MS analysis. When the gastric protective effect of SZB (5, 10 and 20 mg/kg, p.o.) were evaluated, significant increase in body weight and organ indexes of rat, and decreased gastric lesion were observed. Furthermore, nineteen serum metabolites were regarded as the potential biomarkers for the gastric protective effect of SZB. Collectively, this study provides a comprehensive perspective into the chemical composition analysis and gastric protective effect of Z. bungeanum SC-CO2 extract.
Collapse
|
11
|
Laveriano-Santos EP, López-Yerena A, Jaime-Rodríguez C, González-Coria J, Lamuela-Raventós RM, Vallverdú-Queralt A, Romanyà J, Pérez M. Sweet Potato Is Not Simply an Abundant Food Crop: A Comprehensive Review of Its Phytochemical Constituents, Biological Activities, and the Effects of Processing. Antioxidants (Basel) 2022; 11:antiox11091648. [PMID: 36139723 PMCID: PMC9495970 DOI: 10.3390/antiox11091648] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, sweet potato (Ipomoea batata L.; Lam.) is considered a very interesting nutritive food because it is rich in complex carbohydrates, but as a tubercle, contains high amounts of health-promoting secondary metabolites. The aim of this review is to summarize the most recently published information on this root vegetable, focusing on its bioactive phytochemical constituents, potential effects on health, and the impact of processing technologies. Sweet potato is considered an excellent source of dietary carotenoids, and polysaccharides, whose health benefits include antioxidant, anti-inflammatory and hepatoprotective activity, cardiovascular protection, anticancer properties and improvement in neurological and memory capacity, metabolic disorders, and intestinal barrier function. Moreover, the purple sweet potato, due to its high anthocyanin content, represents a unique food option for consumers, as well as a potential source of functional ingredients for healthy food products. In this context, the effects of commercial processing and domestic cooking techniques on sweet potato bioactive compounds require further study to understand how to minimize their loss.
Collapse
Affiliation(s)
- Emily P. Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Carolina Jaime-Rodríguez
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Johana González-Coria
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Joan Romanyà
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (J.R.); (M.P.)
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
- Correspondence: (J.R.); (M.P.)
| |
Collapse
|
12
|
Yang Y, Zhang X, Zou H, Chen J, Wang Z, Luo Z, Yao Z, Fang B, Huang L. Exploration of molecular mechanism of intraspecific cross-incompatibility in sweetpotato by transcriptome and metabolome analysis. PLANT MOLECULAR BIOLOGY 2022; 109:115-133. [PMID: 35338442 PMCID: PMC9072463 DOI: 10.1007/s11103-022-01259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Cross-incompatibility, frequently happening in intraspecific varieties, has seriously restricted sweetpotato breeding. However, the mechanism of sweetpotato intraspecific cross-incompatibility (ICI) remains largely unexplored, especially for molecular mechanism. Treatment by inducible reagent developed by our lab provides a method to generate material for mechanism study, which could promote incompatible pollen germination and tube growth in the ICI group. Based on the differential phenotypes between treated and untreated samples, transcriptome and metabolome were employed to explore the molecular mechanism of sweetpotato ICI in this study, taking varieties 'Guangshu 146' and 'Shangshu 19', a typical incompatible combination, as materials. The results from transcriptome analysis showed oxidation-reduction, cell wall metabolism, plant-pathogen interaction, and plant hormone signal transduction were the essential pathways for sweetpotato ICI regulation. The differentially expressed genes (DEGs) enriched in these pathways were the important candidate genes to response ICI. Metabolome analysis showed that multiple differential metabolites (DMs) involved oxidation-reduction were identified. The most significant DM identified in comparison between compatible and incompatible samples was vitexin-2-O-glucoside, a flavonoid metabolite. Corresponding to it, cytochrome P450s were the most DEGs identified in oxidation-reduction, which were implicated in flavonoid biosynthesis. It further suggested oxidation-reduction play an important role in sweetpotato ICI regulation. To validate function of oxidation-reduction, reactive oxygen species (ROS) was detected in compatible and incompatible samples. The green fluorescence was observed in incompatible but not in compatible samples. It indicated ROS regulated by oxidation-reduction is important pathway to response sweetpotato ICI. The results in this study would provide valuable insights into molecular mechanisms for sweetpotato ICI.
Collapse
Affiliation(s)
- Yiling Yang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiongjian Zhang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hongda Zou
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingyi Chen
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhangying Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhongxia Luo
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhufang Yao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Boping Fang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lifei Huang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
13
|
Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Res Int 2022; 151:110823. [PMID: 34980374 DOI: 10.1016/j.foodres.2021.110823] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Plant-based meat analogues (PBMA) are promising foods to address the global imbalance between the supply and demand for meat products caused by the increasing environmental pressures and growing human population. Given that the flavor of PBMA plays a crucial role in consumer acceptance, imparting meat-like flavor is of great significance. As a natural approach to generate meat-like flavor, the Maillard reaction involving food-derived peptides could contribute to the required flavor compounds, which has promising applications in PBMA formulations. In this review, the precursors of meat-like flavor are summarized followed by a discussion of the reactions and mechanisms responsible for generation of the flavor compounds. The preparation and analysis techniques for food-derived Maillard reacted peptides (MRPs) as well as their taste and aroma properties are discussed. In addition, the MRPs as meat flavor precursors and their potential application in the formulation of PBMA are also discussed. The present review provides a fundamental scientific information useful for the production and application of MRPs as meat flavor precursors in PBMA.
Collapse
|
14
|
Yuan L, Li G, Yan N, Wu J, Due J. Optimization of fermentation conditions for fermented green jujube wine and its quality analysis during winemaking. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:288-299. [PMID: 35068573 PMCID: PMC8758871 DOI: 10.1007/s13197-021-05013-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023]
Abstract
The objective was to study the optimization of fermentation conditions for fermented green jujube wine and quality analysis. This study investigated the fermentation process conditions, the changes in physicochemical indexes, antioxidant capacity and volatile compounds measured from green jujube wine during winemaking. The optimized conditions (the initial sugar, yeast addition, fermentation time and SO2 treatments) for green jujube wine were 24%, 0.3%, 8 d, 80 mg/L, respectively. The results showed that the variation trend of different substances in green jujube wine in different fermentation periods were different. In the process of alcohol fermentation, the green jujube wine had a high 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging ability, 2,2'-amino-di (2-ethyl-benzothiazoline sulphonic acid-6) ammonium salt (ABTS) free radical scavenging ability and reducing power. Furthermore, a total of 50 volatile compounds were identified in green jujube wine, in which the relative content of aldehydes, ketones, heterocyclic and aromatic compounds were significantly reduced after fermentation.
Collapse
Affiliation(s)
- Lu Yuan
- College of Food Science, Shanxi Normal University, Shanxi, China
| | - Guifeng Li
- College of Food Science, Shanxi Normal University, Shanxi, China
| | - Ni Yan
- College of Food Science, Shanxi Normal University, Shanxi, China
| | - Jianhu Wu
- College of Food Science, Shanxi Normal University, Shanxi, China
| | - Junjie Due
- College of Food Science, Shanxi Normal University, Shanxi, China
| |
Collapse
|
15
|
Sabah S, Sharifan A, Akhonzadeh Basti A, Jannat B, TajAbadi Ebrahimi M. Use of D-optimal combined design methodology to describe the effect of extraction parameters on the production of quinoa-barley malt extract by superheated water extraction. Food Sci Nutr 2021; 9:2147-2157. [PMID: 33841831 PMCID: PMC8020935 DOI: 10.1002/fsn3.2184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/15/2022] Open
Abstract
Superheated water extraction was applied to produce quinoa-barley malt extract. D-optimal combined design was used to optimize the extraction conditions (time (min), solid-water ratio and particle size to obtain maximum protein and carbohydrate content, and minimum turbidity and pH. Quinoa flour (10%-30%), barley malt flour (70%-90%), different particle sizes (F = 420 µm, G = 710 µm), time (15-45 min), and solid-water ratio (0.1-0.2) were selected as independent variable and protein, carbohydrate, turbidity, and pH as dependent factors. Polynomials models satisfactorily fitted the experimental data with the R 2 values of .9961, .9909, .9949, and .9987, respectively. The protein and carbohydrate value was affected by superheated water extraction parameters. Our results revealed that increasing quinoa/barley malt ratio has significant effect on the turbidity and pH. The optimum extraction conditions were quinoa flour (30%), barley malt flour (70%), solid-water ratio (0.2), time (45 min), and particle size (F = 420 µm).
Collapse
Affiliation(s)
- Samireh Sabah
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Anoshe Sharifan
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Behrooz Jannat
- Halal Research Center Islamic Republic of IranTehranIran
| | | |
Collapse
|
16
|
Li M, Sun H, Mu T, Tian S, Ji L, Zhang D, Li S, Ge X, Cheng J, Tian J. Preparation and quality characteristics of gluten‐free potato cake. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mei Li
- Gansu Innovation Center of Fruit and Vegetable Storage and Processing Agricultural Product Storage and Processing Research Institute Gansu Academy of Agricultural Sciences Lanzhou China
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Hong‐Nan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Tai‐Hua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Shi‐Long Tian
- Gansu Innovation Center of Fruit and Vegetable Storage and Processing Agricultural Product Storage and Processing Research Institute Gansu Academy of Agricultural Sciences Lanzhou China
| | - Lei‐Lei Ji
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Du‐Qin Zhang
- Academy of the National Food and Strategic Reserves Administration Beijing China
| | - Shou‐Qiang Li
- Gansu Innovation Center of Fruit and Vegetable Storage and Processing Agricultural Product Storage and Processing Research Institute Gansu Academy of Agricultural Sciences Lanzhou China
| | - Xia Ge
- Gansu Innovation Center of Fruit and Vegetable Storage and Processing Agricultural Product Storage and Processing Research Institute Gansu Academy of Agricultural Sciences Lanzhou China
| | - Jian‐Xin Cheng
- Gansu Innovation Center of Fruit and Vegetable Storage and Processing Agricultural Product Storage and Processing Research Institute Gansu Academy of Agricultural Sciences Lanzhou China
| | - Jia‐Chun Tian
- Gansu Innovation Center of Fruit and Vegetable Storage and Processing Agricultural Product Storage and Processing Research Institute Gansu Academy of Agricultural Sciences Lanzhou China
| |
Collapse
|
17
|
Azeem M, Mu TH, Zhang M. Influence of particle size distribution of orange-fleshed sweet potato flour on dough rheology and simulated gastrointestinal digestion of sweet potato-wheat bread. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Hong Q, Chen G, Wang Z, Chen X, Shi Y, Chen Q, Kan J. Impact of processing parameters on physicochemical properties and biological activities of Qingke (highland hull‐less barley) treated by steam explosion. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qingyue Hong
- College of Food Science Southwest University, Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
- Chinese‐Hungarian Cooperative Research Centre for Food Science Chongqing PR China
| | - Guangjing Chen
- Food and Pharmaceutical Engineering Institute Guiyang University Guiyang Guizhou PR China
| | - Zhirong Wang
- College of Food Science Southwest University, Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
- Chinese‐Hungarian Cooperative Research Centre for Food Science Chongqing PR China
| | - Xuhui Chen
- College of Food Science Southwest University, Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
- Chinese‐Hungarian Cooperative Research Centre for Food Science Chongqing PR China
| | - Yue Shi
- College of Food Science Southwest University, Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
- Chinese‐Hungarian Cooperative Research Centre for Food Science Chongqing PR China
| | - Qiaoli Chen
- College of Food Science Southwest University, Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
- Chinese‐Hungarian Cooperative Research Centre for Food Science Chongqing PR China
| | - Jianquan Kan
- College of Food Science Southwest University, Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
- Chinese‐Hungarian Cooperative Research Centre for Food Science Chongqing PR China
| |
Collapse
|
19
|
Makori SI, Mu TH, Sun HN. Total Polyphenol Content, Antioxidant Activity, and Individual Phenolic Composition of Different Edible Parts of 4 Sweet Potato Cultivars. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20936931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The quest to determine and use polyphenolic compounds present in fruits and vegetables as natural antioxidants has recently attracted much attention due to their beneficial health effects. In this study, the total polyphenol content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), antioxidant activity (AA), and individual polyphenol components of Simon No. 1, Yuzi No. 7, Shangshu 19, and Pushu 32 sweet potato cultivars (edible parts: leaf, stalk, stem, skin, and flesh) were investigated. TPC, TFC, and TAC values ranged from 440 ± 0.17-12080 ± 0.58 CAE mg/100 g DW, 94 ± 0.08-4210 ± 0.74 QE mg/100 g DW, and 7 ± 0.01-1010 ± 0.54 CGE mg/100 g DW, respectively. Yuzi No. 7 sweet potato cultivar contained significantly higher amounts of TPC, TFC, TAC, and AA in all its edible parts, followed by Pushu 32, Simon No. 1, and Shangshu 19 in that order. Regardless of the sweet potato cultivar used, TPC, TFC, and TAC of sweet potato leaves were significantly higher than those of other edible parts. High-performance liquid chromatography revealed 19 individual phenolic compounds. In general, 3,5-di- O-caffeoylquinic acid, astragalin, and cyanidin were the predominant phenolic acid, flavonoid, and anthocyanin compounds, respectively. The correlation analysis suggested that higher AA could be attributed to higher polyphenol content. Based on our results, edible parts of Yuzi No. 7 sweet potato cultivar presented the highest amounts of polyphenol content and AA suggesting the possibility of utilizing this cultivar by farmers and the food industry as a functional food product.
Collapse
Affiliation(s)
- Shadrack Isaboke Makori
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi, Kenya
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Hong-Nan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
20
|
Kim HJ, Woo KS, Lee HU, Nam SS, Lee BW, Kim MY, Lee YY, Lee JY, Kim MH, Lee B. Physicochemical Characteristics of Starch in Sweet Potato Cultivars Grown in Korea. Prev Nutr Food Sci 2020; 25:212-218. [PMID: 32676473 PMCID: PMC7333007 DOI: 10.3746/pnf.2020.25.2.212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/21/2020] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to investigate the structural and physicochemical properties of starch from seven sweet potato cultivars (Shinyulmi, Sinjami, Hogammi, Jeonmi, Jinyulmi, Juhwangmi, and Pungwonmi). Jeonmi and Jinyulmi had amylose contents of 40.04% and 37.39%, respectively, whereas Juhwangmi and Pungwonmihad amylose contents of 30.95% and 32.37%, respectively. As a result of amylopectin polymerization, the seven cultivars were found to have high (>48%) contents of the degree of polymerization (DP) 13∼24 fraction, whereas the DP≥37 fraction content was <3.45%. The level of resistant starch was highest in Jeonmi (>30%) and lowest in Pungwonmi (<5%). The in vitro digestibility of Pungwonmi was greater than that of the other cultivars. Starch X-ray patterns did not differ among the cultivars. The results of this study provide useful information for the food industry regarding the application of sweet potato starches.
Collapse
Affiliation(s)
- Hyun-Joo Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Gyeonggi 16613, Korea
| | - Koan Sik Woo
- Research Policy Bureau, Rural Development Administration, Jeonbuk 55365, Korea
| | - Hyeong-Un Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Jeonnam 58545, Korea
| | - Sang Sik Nam
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Jeonnam 58545, Korea
| | - Byong Won Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Gyeonggi 16613, Korea
| | - Min Young Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Gyeonggi 16613, Korea
| | - Yu-Young Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Gyeonggi 16613, Korea
| | - Jin Young Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Gyeonggi 16613, Korea
| | - Mi Hyang Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Gyeonggi 16613, Korea
| | - Byoungkyu Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Gyeonggi 16613, Korea
| |
Collapse
|
21
|
Cao M, Gao Q. Effect of dual modification with ultrasonic and electric field on potato starch. Int J Biol Macromol 2020; 150:637-643. [DOI: 10.1016/j.ijbiomac.2020.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 02/05/2023]
|
22
|
Zou Y, Zhang T, Wang G, Zhou M, Xiong Y, Huang S, Li H, Liu X. Microfluidic continuous flow synthesis of 1,5-ditosyl-1,5-diazocane-3,7-dione using response surface methodology. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Chen Z, Li X, Zhu Z, Zhao Z, Wang L, Jiang S, Rong Y. The optimization of accuracy and efficiency for multistage precision grinding process with an improved particle swarm optimization algorithm. INT J ADV ROBOT SYST 2020. [DOI: 10.1177/1729881419893508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
For metal rolling, the quality of final rolled productions (for instance, metal sheets and metal foils) is affected by steel roll’s cylindricity. In roll grinding process, grinding parameters, which typically involve multiple substages, determine the steel roll’s quality and the grinding efficiency. In this article, a modified particle swarm optimization was presented to dispose of roll grinding multi-objective optimization. The minimization of steel roll’s cylindrical error and maximization of grinding efficiency were optimization objectives. To build the correlation between grinding parameters and cylindrical error, the response surface model of cylindrical error was regressed from the operation data of machine tool. The improved particle swarm optimization was employed to the roll grinding parameter optimization, and the optimal compromise solutions between grinding efficiency and cylindrical error were obtained. Based on the optimal compromise solutions, engineers or computer were capable to determine the corresponding most efficient roll grinding parameters according to the requirement of the final cylindrical error specification. To validate the efficacy of the improved particle swarm optimization, the validation experiment was carried out on the practical roll grinding operation. The error between the calculated optimized cylindrical error and experimental cylindrical error is less than 7.73%.
Collapse
Affiliation(s)
- Zhanying Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
- State Key Lab of Tribology, Tsinghua University, Beijing, China
| | - Xuekun Li
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
- State Key Lab of Tribology, Tsinghua University, Beijing, China
| | - Zongyu Zhu
- Hiecise Precision Equipment Co., Ltd, Suzhou, China
| | - Zeming Zhao
- Hiecise Precision Equipment Co., Ltd, Suzhou, China
| | - Liping Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
- State Key Lab of Tribology, Tsinghua University, Beijing, China
| | - Sheng Jiang
- Hiecise Precision Equipment Co., Ltd, Suzhou, China
| | - Yiming Rong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
24
|
Kim MY, Lee BW, Lee HU, Lee YY, Kim MH, Lee JY, Lee BK, Woo KS, Kim HJ. Phenolic compounds and antioxidant activity in sweet potato after heat treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6833-6840. [PMID: 31385299 DOI: 10.1002/jsfa.9968] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The ability of heat treatment with a soaking solvent to increase soluble phenolic compounds due to the liberation or breakdown of the cell matrix has been investigated in various plants. This study investigated the changes in phenolic compounds and antioxidant activities of 12 sweet potato cultivars after heat treatment with distilled water or prethanol A. RESULTS The highest total polyphenol content (134.67 mg gallic acid equivalents/g extract residue) and flavonoid content (65.43 mg catechin equivalents/g extract residue) was observed in the 'Jami' (JM) cultivar after heat treatment with prethanol A. Higher polyphenol and flavonoid content was generally observed in the purple sweet potato cultivars. Salicylic acid was the major phenolic acid, followed by protocatechuic acid or chlorogenic acid in almost all untreated sweet potato cultivars. The salicylic acid, vanillic acid, gallic acid, and caffeic acid content of the sweet potatoes increased after the heat treatment, whereas the protocatechuic acid and chlorogenic acid content decreased. The highest 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis(3-ethyl benzothiazoline)-6-sulfonic acid (ABTS) radical scavenging activity levels were observed in the JM cultivar subjected to heat treatment with prethanol A (48.15 and 80.00 mg TE/g extract residue, respectively). CONCLUSION These results suggest that heat treatment with a soaking solvent is an efficient method to enhance the antioxidant characteristics of Korean sweet potato cultivars. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Byong Won Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Hyeong-Un Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Yu Young Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Mi Hyang Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Jin Young Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Byoung Kyu Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Koan Sik Woo
- Research Policy Bureau, Rural Development Administration, Jeonju, Republic of Korea
| | - Hyun-Joo Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| |
Collapse
|
25
|
Zhou W, Du J, Li W, Zhang Y, Jia H, Huang H, Wu G, Wu B, Li B. Evaluation of the disappearance of cyanogen and hydrogen cyanide in different soil types using gas chromatography–mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Beltrán Sanahuja A, De Pablo Gallego SL, Maestre Pérez SE, Valdés García A, Prats Moya MS. Influence of Cooking and Ingredients on the Antioxidant Activity, Phenolic Content and Volatile Profile of Different Variants of the Mediterranean Typical Tomato Sofrito. Antioxidants (Basel) 2019; 8:antiox8110551. [PMID: 31739458 PMCID: PMC6912581 DOI: 10.3390/antiox8110551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, six different sofrito formulations were compared with the raw recipe for total phenolic content (TPC), antioxidant activity tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) methods. The volatile profile was also obtained by the headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC–MS) procedure. The cooking process and the addition of herbs, and garlic improved the final content of antioxidant compounds compared to the basic recipe and the raw ingredients. The total volatile content was higher in the samples that contained rosemary and thymus. Some of the volatiles had proven antioxidant properties and for that reason the sofrito with rosemary with the higher volatile content was also the one with the higher antioxidant capacity and TPC. In conclusion, as well as the processing technique, the addition of selected typical Mediterranean herbs apart from given flavour can contribute to improving the nutritional antioxidant profile of dishes and be used as a natural method to increase the shelf-life of preparation.
Collapse
|
27
|
Kourouma V, Mu TH, Zhang M, Sun HN. Effects of cooking process on carotenoids and antioxidant activity of orange-fleshed sweet potato. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Enhanced L-methionine production by genetically engineered Escherichia coli through fermentation optimization. 3 Biotech 2019; 9:96. [PMID: 30800607 DOI: 10.1007/s13205-019-1609-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial fermentation for L-methionine (L-Met) production based on natural renewable resources is attractive and challenging. In this work, the effects of medium composition and fermentation conditions were investigated to improve L-Met production by genetically engineered Escherichia coli MET-3. Statistical optimization techniques including Plackett-Burman (PB) design and Box-Behnken design (BBD) were adopted first to optimize the culture medium. Results of PB-designed experiments indicated that the culture medium components including glucose, yeast extract, KH2PO4, and MgSO4.7H2O had significant effects on L-Met biosynthesis. With their best-predicted concentration established by BBD (glucose 37.43 g/L, yeast extract 0.95 g/L, KH2PO4 1.82 g/L, and MgSO4.7H2O 4.51 g/L), L-Met titer was increased to 3.04 g/L from less than 2.0 g/L. For further enhancement of L-Met biosynthesis, the fermentation conditions of batch cultivation carried out in a 5-L fermentor were optimized, and the optimum results were obtained at an agitation rate of 300 rpm, medium pH of 7.0, and induction temperature of 28 °C. Based on the optimization parameters, fed-batch fermentation with the modified medium was conducted. As a result, great improvement of L-Met titer (12.80 g/L) and yield (0.13 mol/mol) were achieved, with an increase of 38.53% and 30.0% compared with those of the basal medium, respectively. Furthermore, higher L-Met productivity of 0.261 g/L/h was obtained, representing 2.13-fold higher in comparison to the original medium. The results may provide a helpful reference for further study on strain improvement and fermentation control.
Collapse
|