1
|
Hasannezhad H, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int J Biol Macromol 2025; 294:139248. [PMID: 39740715 DOI: 10.1016/j.ijbiomac.2024.139248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes. Surface modification strategies to enhance its functional properties are also discussed. The review highlights the development of various chitosan-based nanocarriers, including nanoparticles, nanofibers, nanogels, and nanocomposites. It emphasizes their stability when combined with milk bioactive ingredients like lipids, peptides, lactose, and minerals. The gastrointestinal fate and safety of chitosan nanoparticles are critically evaluated, showcasing their potential for safe consumption in dairy-related applications. In drug delivery systems, chitosan exhibits excellent compatibility with milk-derived carbohydrates, proteins, and minerals, enabling the development of innovative drug delivery platforms. Additionally, its incorporation into smart packaging materials enhances the shelf-life and quality of dairy products. Chitosan-based biosensors offer precise contaminant detection in the milk industry by enabling precise detection of contaminants such as Bisphenol A, melamine, bacteria, drugs, antibiotics, toxins, heavy metals, and allergens, thus ensuring food safety and quality. Emerging trends, including the integration of artificial intelligence, advanced gene editing, and multifunctional chitosan, are discussed, offering insights into future personalized delivery systems and merging food and drug technologies. The review concludes by highlighting gaps in current research and offering recommendations for future exploration. These suggestions aim to optimize chitosan's unique properties to address key challenges in the milk industry. This article serves as a valuable resource for researchers, industry professionals, and policymakers aiming to innovate within the dairy sector using chitosan-based technologies.
Collapse
Affiliation(s)
- Hossein Hasannezhad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
2
|
Luo T, Wei Z, Xue C. Novel food-grade water-in-water emulsion fabricated by amylopectin and tara gum: Property evaluation and stability analysis. Carbohydr Polym 2025; 348:122937. [PMID: 39567153 DOI: 10.1016/j.carbpol.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
To surmount the limitation of the instability of the currently reported water-in-water (W/W) emulsions, novel W/W emulsionss were constructed using amylopectin (AMP) and tara gum (TG) as the phases, and differently shaped ovalbumin (OVA) particles were used as stabilizers to improve the stability of W/W emulsions. Experiments displayed that the conformation of OVA could be changed by heating treatment, thus forming fibrous or spherical OVA particles that had the potential to stabilize TG-in-AMP (TG/AMP) emulsions. The emulsions had the best stability when the pH was 4 and the concentration of OVA particles was 3 %. Moreover, since ovalbumin fibril (OVAF) had better adsorption at the water-water interface than ovalbumin sphere (OVAS), OVAF-stabilized TG/AMP emulsion (OF-TE) had a relatively denser interfacial layer and exhibited more satisfactory ionic stability and physical stability than OVAS-stabilized TG/AMP emulsion (OS-TE). The rheological results demonstrated that OVAF and OVAS had little effect on the viscosity of TG/AMP emulsions. In brief, OVAF was more effective in improving the stability of TG/AMP emulsions than OVAS, and OF-TE did not show phase separation for at least 5 days. This study may be of great significance in improving the stability of food-grade W/W emulsions.
Collapse
Affiliation(s)
- Tian Luo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
3
|
Tan G, Hou J, Meng D, Zhang H, Han X, Li H, Wang Z, Ghamry M, Rayan AM. 3D printing cassava starch-ovalbumin intelligent labels: Co-pigmentation effects of gallic acid on anthocyanins. Int J Biol Macromol 2024; 281:135684. [PMID: 39393990 DOI: 10.1016/j.ijbiomac.2024.135684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/10/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
Anthocyanins are often chosen as signal converters of intelligent labels. However, they are degraded by high-temperature oxidation in the process of intelligent label preparation. The color fading seriously affects the sensitivity of color development. In this study, a green 3D printing intelligent label preparation technique was developed, in which gallic acid (GA) was added to a blueberry anthocyanin (BA) solution to enhance the color of the co-pigment to ensure the color sensitivity. The combined effect of GA-BA reduced the fade rate of the anthocyanins from 35.13 % to 26.44 % at 90 °C. The printing ink has shear-thinning viscosity characteristics and yield stresses in the range of 500-600 MPa for high-quality printing. Structural analysis revealed that GA-BA co-pigmentation enhanced the interaction between ovalbumin and cassava starch. In addition, the method of 3D printing to prepare labels was conducive to solving the problem of waste in traditional labeling process. The results of freshness testing of sea shrimp proved that labels can be applied to fresh boxes to reflect the freshness of food. We provide a method for enhancing the color of 3D-printed smart ink to prepare intelligent labels with reproducible and customizable batch shapes.
Collapse
Affiliation(s)
- Guixin Tan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingjie Hou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dekun Meng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiue Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
4
|
Alavi F, Ciftci ON. Increasing the bioavailability of curcumin using a green supercritical fluid technology-assisted approach based on simultaneous starch aerogel formation-curcumin impregnation. Food Chem 2024; 455:139468. [PMID: 38850979 DOI: 10.1016/j.foodchem.2024.139468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 06/10/2024]
Abstract
A green approach based on simultaneous starch aerogel formation-curcumin impregnation via supercritical fluid technology was used to increase the bioavailability of curcumin. The loading amounts of curcumin were 16.4, 21.4, and 24.9 mg/g of aerogel for the 25% Amyl-loaded, 55% Amyl-loaded, and 72% Amyl-loaded samples, respectively. Curcumin-loaded aerogels showed the eventual distribution of curcumin in the hydrophobic area of the internal structure of the aerogels. In vitro gastrointestinal release profiles demonstrated the enhanced curcumin release from the curcumin-loaded aerogel formulations produced by the SC-CO2 technology over free curcumin. After intestinal digestion, the percentage of released curcumin from 25% Amyl-loaded, 55% Amyl-loaded, and 72% Amyl-loaded was 7.2, 12.1, and 12.1%, respectively, while the release of native curcumin was only 0.5%. Caco-2 cell permeation studies revealed superior bioavailability of curcumin from the curcumin-loaded aerogels. Curcumin-loaded aerogels exhibited improved storage stability than free curcumin.
Collapse
Affiliation(s)
- Farhad Alavi
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA; Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA.
| |
Collapse
|
5
|
Tang T, Ninh Le T, Li J, Su Y, Gu L, Chang C, Yang Y. Immunomodulatory activity of ovotransferrin-chlorogenic acid complexes enhanced by high-intensity ultrasound (HIU): A structure-function relationship study. Int J Biol Macromol 2024; 278:134635. [PMID: 39134190 DOI: 10.1016/j.ijbiomac.2024.134635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
This study investigated the impact of high-intensity ultrasound (HIU) treatment on the physiochemical, conformational, and immunomodulatory activity of the OVT-CA complex, emphasizing the structure-function relationship. HIU treatment reduced particle size, improved dispersion, and increased electronegativity of the complex. It facilitated binding between OVT and CA, achieving a maximum degree of 45.22 mg/g CA grafting and reducing interaction time from 2 h to 15 min. HIU-induced cavitation and shear promoted the exposure of -SH and unfolding of OVT, leading to increased surface hydrophobicity of the complex and transformation of its structure from β-sheet to α-helix. Additionally, CA binds to OVT in the C-lobe region, and HIU treatment modulates the intermolecular forces governing the complex formation, particularly by reinforcing hydrogen bonding, hydrophobic interactions, and introducing electrostatic interactions. Furthermore, HIU treatment increased the immunomodulatory activity of the complex, which was attributed to complex structural changes facilitating enhanced cell membrane affinity, antigen recognition, and B-cell epitope availability. Hierarchical cluster and Pearson correlation analysis confirmed that HIU treatment duration had a greater impact than power on both the structure and activity of the complex, and an optimal HIU treatment duration within 30 min was found to be crucial for activity enhancement. Moreover, structural changes, including ζ-potential, particle size/turbidity, and surface hydrophobicity, were closely correlated with immunomodulatory activity. This study highlights the potential application of HIU in developing protein-polyphenol immunomodulatory agents for public health and food nutrition.
Collapse
Affiliation(s)
- Tingting Tang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Faculty of Science, National University of Singapore, S14 Science Drive 2, Singapore 117542, Singapore
| | - Thanh Ninh Le
- Faculty of Science, National University of Singapore, S14 Science Drive 2, Singapore 117542, Singapore; Thai Nguyen University of Agriculture and Forestry, Quyet Thang commune, Thai Nguyen city 24119, Viet Nam
| | - Junhua Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yujie Su
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuihua Chang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanjun Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Liu Y, Yin R, Tian Y, Xu S, Meng X. Curcumin nanopreparations: recent advance in preparation and application. Biomed Mater 2024; 19:052009. [PMID: 39189065 DOI: 10.1088/1748-605x/ad6dc7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Curcumin is a natural polyphenolic compound extracted from turmeric with antibacterial, antioxidant, antitumor, preventive and therapeutic neurological disorders and a variety of bioactivities, which is widely used in the field of food and medicine. However, the drawbacks of curcumin such as poor aqueous solubility and stability have limited the practical application of curcumin. To overcome these defects and enhance its functional properties, various nanoscale systems (liposomes, polymer nanoparticles, protein nanoparticles, solid lipid nanoparticles, metal nanoparticles, etc) have been extensively employed for curcumin encapsulation and delivery. Despite the rapid development of curcumin nanoformulations, there is a lack of comprehensive reviews on their preparation and properties. This review provides an overview of the construction of curcumin nano-delivery systems, mechanisms of action, nanocarrier preparation methods and the applications of curcumin nanocarriers in the food and pharmaceutical fields to provide a theoretical basis and technological support for the efficient bio-utilization, product development and early clinical application of curcumin.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Rui Yin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Yuan Tian
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Shujun Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Xin Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| |
Collapse
|
7
|
Kreczmer B, Dyba B, Barbasz A, Rudolphi-Szydło E. Curcumin's membrane localization and disruptive effects on cellular processes - insights from neuroblastoma, leukemic cells, and Langmuir monolayers. Sci Rep 2024; 14:16636. [PMID: 39025941 PMCID: PMC11258145 DOI: 10.1038/s41598-024-67713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
In therapies, curcumin is now commonly formulated in liposomal form, administered through injections or creams. This enhances its concentration at the cellular level compared to its natural form ingestion. Due to its hydrophobic nature, curcumin is situated in the lipid part of the membrane, thereby modifying its properties and influencing processes The aim of the research was to investigate whether the toxicity of specific concentrations of curcumin, assessed through biochemical tests for the SK-N-SH and H-60 cell lines, is related to structural changes in the membranes of these cells, caused by the localization of curcumin in their hydrophobic regions. Biochemical tests were performed using spectrophotometric methods. Langmuir technique were used to evaluate the interaction of the curcumin with the studied lipids. Direct introduction of curcumin into the membranes alters their physicochemical parameters. The extent of these changes depends on the initial properties of the membrane. In the conducted research, it has been demonstrated that curcumin may exhibit toxicity to human cells. The mechanism of this toxicity is related to its localization in cell membranes, leading to their dysfunction. The sensitivity of cells to curcumin presence depends on the saturation level of their membranes; the more rigid the membrane, the lower the concentration of curcumin causes its disruption.
Collapse
Affiliation(s)
- Barbara Kreczmer
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Cracow, Poland.
| | - Barbara Dyba
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Cracow, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Cracow, Poland
| | - Elżbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Cracow, Poland
| |
Collapse
|
8
|
Li J, Wang X, Chang C, Gu L, Su Y, Yang Y, Agyei D, Han Q. Chicken Egg White Gels: Fabrication, Modification, and Applications in Foods and Oral Nutraceutical Delivery. Foods 2024; 13:1834. [PMID: 38928777 PMCID: PMC11202995 DOI: 10.3390/foods13121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Chicken egg white (EW) proteins possess various useful techno-functionalities, including foaming, gelling or coagulating, and emulsifying. The gelling property is one of the most important functionalities of EW proteins, affecting their versatile applications in the food and pharmaceutical industries. However, it is challenging to develop high-quality gelled foods and innovative nutraceutical supplements using native EW and its proteins. This review describes the gelling properties of EW proteins. It discusses the development and action mechanism of the physical, chemical, and biological methods and exogenous substances used in the modification of EW gels. Two main applications of EW gels, i.e., gelling agents in foods and gel-type carriers for nutraceutical delivery, are systematically summarized and discussed. In addition, the research and technological gaps between modified EW gels and their applications are highlighted. By reviewing the new modification strategies and application trends of EW gels, this paper provides insights into the development of EW gel-derived products with new and functional features.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xuechun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
9
|
Rao S, Jia C, Lu X, Yu Y, Wang Z, Yang Z. Acid-Heat-Induced Fabrication of Nisin-Loaded Egg White Protein Nanoparticles: Enhanced Structural and Antibacterial Stability. Foods 2024; 13:1741. [PMID: 38890971 PMCID: PMC11172011 DOI: 10.3390/foods13111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
As a natural cationic peptide, Nisin is capable of widely inhibiting the growth of Gram-positive bacteria. However, it also has drawbacks such as its antimicrobial activity being susceptible to environmental factors. Nano-encapsulation can improve the defects of nisin in food applications. In this study, nisin-loaded egg white protein nanoparticles (AH-NEn) were prepared in fixed ultrasound-mediated under pH 3.0 and 90 °C. Compared with the controls, AH-NEn exhibited smaller particle size (112.5 ± 2.85 nm), smaller PDI (0.25 ± 0.01), larger Zeta potential (24 ± 1.18 mV), and higher encapsulation efficiency (91.82%) and loading capacity (45.91%). The turbidity and Fourier transform infrared spectroscopy (FTIR) results indicated that there are other non-covalent bonding interactions between the molecules of AH-NEn besides the electrostatic forces, which accounts for the fact that it is structurally more stable than the controls. In addition, by the results of fluorescence intensity, differential scanning calorimetry (DSC), and X-ray diffraction (XRD), it was shown that thermal induction could improve the solubility, heat resistance, and encapsulation of nisin in the samples. In terms of antimicrobial function, acid-heat induction did not recede the antimicrobial activity of nisin encapsulated in egg white protein (EWP). Compared with free nisin, the loss rate of bactericidal activity of AH-NEn was reduced by 75.0% and 14.0% following treatment with trypsin or a thermal treatment at 90 °C for 30 min, respectively.
Collapse
Affiliation(s)
- Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Caochen Jia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Xiangning Lu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Yisheng Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
10
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Deraz NM, Drweesh EA, El-Gharbawy SM. Alleviative effect of betaine against copper oxide nanoparticles-induced hepatotoxicity in adult male albino rats: histopathological, biochemical, and molecular studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:47. [DOI: 10.1186/s43088-024-00505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 08/14/2024] Open
Abstract
AbstractBackgroundCopper oxide nanoparticles (CuO-NPs) have gained interest due to their availability, efficiency, and their cost-effectiveness. Betaine is an essential methyl donor and takes part in various physiological activities inside the body; it is found to have protective and curative effects against various liver diseases. The present study aimed to evaluate the hepatotoxic effect of CuO-NPs on adult male albino rats and the ability of betaine to alleviate such hepatotoxicity.MethodsForty adult male albino Wister rats were grouped into 4 groups (10 rats/group): group I a negative control, group II (CuO-NPs) injected with CuO-NPs intra peritoneal by insulin needle (0.5 mg/kg/day), group III (betaine + CuO-NPs) administered betaine orally by gavage needle (250 mg/kg/day 1 h before CuO-NPs) and CuO-NPs (0.5 mg/kg/day) finally, group IV (betaine) administered betaine orally by gavage needle (250 mg/kg/day) for consecutive 28 days. Blood and liver samples were gathered and processed for biochemical, molecular, histopathological, and immunohistochemical investigations.ResultsGroup II displayed a marked rise in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) levels. Furthermore, there is an excessive upregulation of the inflammatory biomarkers interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). On the other hand, substantial reduction in glutathione (GSH) levels and significant downregulation at glutathione peroxidase (GPx) mRNA gene expression. Regarding the histopathological deviations, there were severe congestion, dilatation and hyalinization of blood vessels, steatosis, hydropic degeneration, hepatocytic necrosis, increased binucleation, degenerated bile ducts, hyperplasia of ducts epithelial lining, and inflammatory cells infiltration. Immunohistochemically, there was a pronounced immunoreactivity toward IL-1β. Luckily, the pre-administration of betaine was able to mitigate these changes. MDA was dramatically reduced, resulting in the downregulation of IL-1β and TNF-α. Additionally, there was a considerable rise in GSH levels and an upregulation of GPx. Histopathological deviations were substantially improved as diminished dilatation, hyalinization and congestion of blood vessels, hepatocytes, and bile ducts are normal to some extent. In addition, IL-1β immunohistochemical analysis revealed marked decreased intensity.ConclusionBetaine can effectively reduce the hepatotoxicity caused by CuO-NPs via its antioxidant properties and its ability to stimulate the cell redox system.
Collapse
|
11
|
Alavi F, Ciftci ON. Green and single-step simultaneous composite starch aerogel formation-high bioavailability curcumin particle formation. Int J Biol Macromol 2024; 264:129945. [PMID: 38311127 DOI: 10.1016/j.ijbiomac.2024.129945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
The high porosity and specific surface area of aerogels offer an ideal platform for loading bioactive molecules. In the present study, the microstructure of the bio-based starch aerogels was modulated by the incorporation of chitosan. The starch hydrogel precursors were prepared from high amylose corn starch in the presence of 0, 0.50, and 0.75 wt% chitosan. Afterward, a green single-step simultaneous aerogel formation-curcumin deposition method was applied to impregnate curcumin into the aerogels through supercritical carbon dioxide (SC-CO2) drying technology. Composite starch/chitosan aerogels showed a more open porous structure and lighter weight than the neat starch counterpart. Confocal microscopy and fluorescence spectroscopy analysis confirmed curcumin molecules' attachment to the aerogels' hydrophobic cavities. The impregnation capacity was 24-27 mg curcumin per gram of aerogel depending on the composition of the aerogels. The loading of curcumin in the aerogels significantly enhanced the bioaccessibility of curcumin in the simulated gastrointestinal fluid by almost 30-fold when compared to the unloaded curcumin. Furthermore, the bioaccessibility of the curcumin loaded in starch-chitosan composite aerogels was higher than that in neat starch aerogels. While unloaded curcumin showed an undetectable intestinal Caco-2 cell transportation, curcumin-loaded aerogels revealed a cumulative curcumin passing of 0.15-0.23 μg/mL.
Collapse
Affiliation(s)
- Farhad Alavi
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA; Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA.
| |
Collapse
|
12
|
Altemimi AB, Farag HAM, Salih TH, Awlqadr FH, Al-Manhel AJA, Vieira IRS, Conte-Junior CA. Application of Nanoparticles in Human Nutrition: A Review. Nutrients 2024; 16:636. [PMID: 38474764 DOI: 10.3390/nu16050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nanotechnology in human nutrition represents an innovative advance in increasing the bioavailability and efficiency of bioactive compounds. This work delves into the multifaceted dietary contributions of nanoparticles (NPs) and their utilization for improving nutrient absorption and ensuring food safety. NPs exhibit exceptional solubility, a significant surface-to-volume ratio, and diameters ranging from 1 to 100 nm, rendering them invaluable for applications such as tissue engineering and drug delivery, as well as elevating food quality. The encapsulation of vitamins, minerals, and antioxidants within NPs introduces an innovative approach to counteract nutritional instabilities and low solubility, promoting human health. Nanoencapsulation methods have included the production of nanocomposites, nanofibers, and nanoemulsions to benefit the delivery of bioactive food compounds. Nutrition-based nanotechnology and nanoceuticals are examined for their economic viability and potential to increase nutrient absorption. Although the advancement of nanotechnology in food demonstrates promising results, some limitations and concerns related to safety and regulation need to be widely discussed in future research. Thus, the potential of nanotechnology could open new paths for applications and significant advances in food, benefiting human nutrition.
Collapse
Affiliation(s)
- Ammar B Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Halgord Ali M Farag
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Tablo H Salih
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Farhang H Awlqadr
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
| | | | - Italo Rennan Sousa Vieira
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| |
Collapse
|
13
|
Zhou C, Huang C, Li L, Tian Y, Zhang J, Lin L, Li C, Ye Y. Apricot polysaccharides as new carriers to make curcumin nanoparticles and improve its stability and antibacterial activity. J Food Sci 2024; 89:881-899. [PMID: 38193203 DOI: 10.1111/1750-3841.16901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
Apricot polysaccharides (APs) as new types of natural carriers for encapsulating and delivering active pharmaceutical ingredients can achieve high-value utilization of apricot pulp and improve the solubility, the stability, and the antibacterial activity of insoluble compounds simultaneously. In this research, the purified APs reacted with bovine serum albumin (BSA) by the Maillard reaction, and with d-α-tocopheryl succinate (TOS) and pheophorbide A (PheoA) by grafting to fabricate two materials for the preparation of curcumin (Cur)-encapsulated AP-BSA nanoparticles (CABNs) and Cur-embedded TOS-AP-PheoA micelles (CTAPMs), respectively. The biological activities of two Cur nano-delivery systems were evaluated. APs consisted of arabinose (22.36%), galactose (7.88%), glucose (34.46%), and galacturonic acid (31.32%) after the optimized extraction. Transmission electron microscopy characterization of CABNs and CTAPMs displayed a discrete and non-aggregated morphology with a spherical shape. Compared to the unencapsulated Cur, the release rates of CABNs and CTAPMs decreased from 87% to 70% at 3 h and from 92% to 25% at 48 h, respectively. The antioxidant capacities of CABNs and CTAPMs were significantly improved. The CTAPMs exhibited a better antibacterial effect against Escherichia coli than CABNs due to the synergistic photosensitive effect between Cur and PheoA.
Collapse
Affiliation(s)
- Chunka Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chuanqing Huang
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Lu Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yunong Tian
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jin Zhang
- Gaoyao District Comprehensive Emergency Rescue Center, Zhaoqing, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, China
- Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| |
Collapse
|
14
|
Tang T, Lv Y, Su Y, Li J, Gu L, Yang Y, Chang C. The differential non-covalent binding of epicatechin and chlorogenic acid to ovotransferrin and the enhancing efficiency of immunomodulatory activity. Int J Biol Macromol 2024; 259:129298. [PMID: 38199555 DOI: 10.1016/j.ijbiomac.2024.129298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Seeking safe and environmentally friendly natural immunomodulators is a pressing requirement of humanity. This study investigated the differential binding characteristics of two polar polyphenols (PP), namely epicatechin (EC) and chlorogenic acid (CA), to ovotransferrin (OVT), and explored the relationship between structural transformations and immunomodulatory activity of OVT-PP complexes. Results showed that CA exhibited a stronger affinity for OVT than EC, mainly driven by hydrogen bonds and van der Waals forces. Complexation-induced conformational variations in OVT, including static fluorescence quenching, increased microenvironment polarity surrounding tryptophan and tyrosine residues, and the transition from disordered α-helix to stable β-sheet. Furthermore, the structural conformation transformation of OVT-PP complexes facilitated the enhancement of immunomodulatory activity, with the OVT-CA (10:2) complex demonstrating the best immunomodulatory activity. Principal component analysis (PCA) and Pearson correlation analysis revealed the immunomodulatory activities of the OVT-PP complexes were influenced by surface hydrophobicity (negatively correlated), β-sheet percentage and polyphenol binding constants. It could be inferred that PP complexation increased the surface polarity of OVT, consequently enhancing its immunomodulatory activity by promoting cell membrane affinity and antigen recognition. This study provides valuable guidance for effectively utilizing polyphenol-protein complexes in enhancing immunomodulatory activity.
Collapse
Affiliation(s)
- Tingting Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanqi Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
15
|
Weaver E, Macartney RA, Irwin R, Uddin S, Hooker A, Burke GA, Wylie MP, Lamprou DA. Liposomal encapsulation of amoxicillin via microfluidics with subsequent investigation of the significance of PEGylated therapeutics. Int J Pharm 2024; 650:123710. [PMID: 38097147 DOI: 10.1016/j.ijpharm.2023.123710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
With an increasing concern of global antimicrobial resistance, the efforts to improve the formulation of a narrowing library of therapeutic antibiotics must be confronted. The liposomal encapsulation of antibiotics using a novel and sustainable microfluidic method has been employed in this study to address this pressing issue, via a targeted, lower-dose medical approach. The study focusses upon microfluidic parameter optimisation, formulation stability, cytotoxicity, and future applications. Particle sizes of circa. 130 nm, with viable short-term (28-day) physical stability were obtained, using two different non-cytotoxic liposomal formulations, both of which displayed suitable antibacterial efficacy. The microfluidic method allowed for high encapsulation efficiencies (≈77 %) and the subsequent in vitro release profile suggested high limits of antibiotic dissociation from the nanovessels, achieving 90% release within 72 h. In addition to the experimental data, the growing use of poly(ethylene) glycol (PEG) within lipid-based formulations is discussed in relation to anti-PEG antibodies, highlighting the key pharmacological differences between PEGylated and non-PEGylated formulations and their respective advantages and drawbacks. It's surmised that in the case of the formulations used in this study, the addition of PEG upon the liposomal membrane would still be a beneficial feature to possess owing to beneficial features such as stability, antibiotic efficacy and the capacity to further modify the liposomal membrane.
Collapse
Affiliation(s)
- Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Robyn A Macartney
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Nanotechnology & Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York Street, Belfast BT15 1ED, UK
| | - Robyn Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shahid Uddin
- Immunocore Ltd, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - Andrew Hooker
- Immunocore Ltd, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - George A Burke
- Nanotechnology & Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York Street, Belfast BT15 1ED, UK
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
16
|
Chang C, Li X, Li J, Su Y, Gu L, Xiong W, Yang Y. Fabrication mechanism and functional properties of ovalbumin fibrils prepared by acidic heat treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7127-7135. [PMID: 37380626 DOI: 10.1002/jsfa.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 06/29/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Ovalbumin (OVA), accounting for 50% of proteins in egg white, is a kind of high-quality protein with excellent nutritional and processing functions. Acid heat treatment will induce the deformation and filtration of OVA, endowing it with improved functionality. However, the molecular kinetic process during the fibrillation of OVA and the application of the fabricated OVA fibrils (OVAFs) have not been thoroughly studied and revealed. RESULTS In this study, the fabrication mechanism and the application OVAFs as an interfacial stabilizer and polyphenol protector were investigated. Acidic (pH 3.0) heat treatment was used to induce the fibrillation of OVA, and thioflavin T fluorescence intensity, molecular weight distribution, and the tertiary and secondary structures of OVAF samples were recorded to determine the fibrillation efficiency and the molecular mechanism. The results showed that, in the initial stage of fibrillation, OVA first hydrolyzed to oligopeptides, accompanied by the exposure of hydrophobic domains. Then, oligopeptides were connected by disulfide bonds to form primary fibril monomers. Hydrophobic interaction and hydrogen bonding may participate in the further polymerization of the fibrils. The fabricated OVAFs were characterized by a β-sheet-rich structure and possessed improved emulsifying, foaming, and polyphenol protection ability. CONCLUSION The research work was meaningful for exploring the application of globular water-soluble OVA in an emerging nutritious food with novel texture and sensory properties. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cuihua Chang
- Jiangnan University, Wuxi, People's Republic of China
| | - Xin Li
- School of Life Sciences, Yanti University, Yantai, People's Republic of China
| | - Junhua Li
- Jiangnan University, Wuxi, People's Republic of China
| | - Yujie Su
- Jiangnan University, Wuxi, People's Republic of China
| | - Luping Gu
- Jiangnan University, Wuxi, People's Republic of China
| | - Wen Xiong
- Hunan Jiapin Jiawei Technology Development Group Co. LTD, Hunan, People's Republic of China
| | - Yanjun Yang
- Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
17
|
Carpintero M, Marcet I, Zornoza M, Rendueles M, Díaz M. Effect of Birch Sap as Solvent and Source of Bioactive Compounds in Casein and Gelatine Films. MEMBRANES 2023; 13:786. [PMID: 37755208 PMCID: PMC10536005 DOI: 10.3390/membranes13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Birch sap consists of a natural water-based solution with valuable compounds such as minerals, sugars, organic acids and phenolic compounds that can be used advantageously in the preparation of edible films. In this study, gelatine- and casein-based films were prepared using birch sap as biopolymer solvent and source of bioactive compounds with the aim of developing new bioactive materials for food packaging. The physical, mechanical, barrier, antioxidant and iron-chelating properties of the obtained films were investigated. Birch sap enhanced the mechanical properties of the films by increasing puncture strength and flexibility, as well as their ultraviolet-visible light barrier properties. In addition, the presence of bioactive compounds endowed the birch sap films with an antioxidant capacity of almost 90% and an iron-chelating capacity of 40-50% with respect to the control films. Finally, to test these films as food packaging material, a photosensitive curcumin solution was packed and exposed to ultraviolet light. Tested films were able to protect curcumin against photodegradation, and the presence of bioactive compounds inside the birch-sap-enriched materials offered an additional 10% photoprotective effect compared to control films. Results showed the potential of birch sap as an environmentally friendly biopolymer solvent and plasticizer that can improve the mechanical and photoprotective properties of the prepared materials.
Collapse
Affiliation(s)
| | | | | | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julian Clavería 8, 33006 Oviedo, Spain; (M.C.); (I.M.); (M.D.)
| | | |
Collapse
|
18
|
Dong X, Zhang YQ. A Novel Mechanically Robust and Biodegradable Egg White Hydrogel Membrane by Combined Unidirectional Nanopore Dehydration and Annealing. Int J Mol Sci 2023; 24:12661. [PMID: 37628842 PMCID: PMC10454319 DOI: 10.3390/ijms241612661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
A homogeneous egg white obtained by high-speed shearing and centrifugation was dehydrated into a fragile and water-soluble egg white glass (EWG) by unidirectional nanopore dehydration (UND). After EWG annealing, it can become an egg white hydrogel membrane (EWHM) that is water-insoluble, flexible, biocompatible, and mechanically robust. Its tensile strength, elongation at break, and the swelling ratio are about 5.84 MPa, 50-110%, and 60-130%, respectively. Protein structure analysis showed that UND caused the rearrangement of the protein molecules to form EWG with random coil and α-helix structures. The thermal decomposition temperature of the EWG was 309.25 °C. After EWG annealing at over 100 or 110 °C for 1.0 h or 45 min, the porous network EWHM was mainly composed of β-sheet structures, and the thermal decomposition temperature increased to 317.25-318.43 °C. Their 12-day residues in five proteases ranged from 1% to 99%, and the order was pepsin > neutral protease > papain > trypsin > alkaline protease. Mouse fibroblast L929 cells can adhere, grow, and proliferate well on these EWHMs. Therefore, the combined technology of UND and annealing for green and novel processing of EWHM has potential applications in the field of biomimetic and biomedical materials.
Collapse
Affiliation(s)
- Xuan Dong
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, RM702-2303, No. 199, Renai Road, Industrial Park, Suzhou 215123, China;
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, RM702-2303, No. 199, Renai Road, Industrial Park, Suzhou 215123, China
| | - Yu-Qing Zhang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, RM702-2303, No. 199, Renai Road, Industrial Park, Suzhou 215123, China;
| |
Collapse
|
19
|
Zhang J, Wang H, Ai C, Lu R, Chen L, Xiao J, Teng H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit Rev Food Sci Nutr 2023; 64:11124-11145. [PMID: 37427580 DOI: 10.1080/10408398.2023.2232880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flavonoid compounds exhibit a wide range of health benefits as plant-derived dietary components. Typically, co-consumed with the food matrix,they must be released from the matrix and converted into an absorbable form (bioaccessibility) before reaching the small intestine, where they are eventually absorbed and transferred into the bloodstream (bioavailability) to exert their biological activity. However, a large number of studies have revealed the biological functions of individual flavonoid compounds in different experimental models, ignoring the more complex but common relationships established in the diet. Besides, it has been appreciated that the gut microbiome plays a crucial role in the metabolism of flavonoids and food substrates, thereby having a significant impact on their interactions, but much progress still needs to be made in this area. Therefore, this review intends to comprehensively investigate the interactions between flavonoids and food matrices, including lipids, proteins, carbohydrates and minerals, and their effects on the nutritional properties of food matrices and the bioaccessibility and bioavailability of flavonoid compounds. Furthermore, the health effects of the interaction of flavonoid compounds with the gut microbiome have also been discussed.HIGHLIGHTSFlavonoids are able to bind to nutrients in the food matrix through covalent or non-covalent bonds.Flavonoids affect the digestion and absorption of lipids, proteins, carbohydrates and minerals in the food matrix (bioaccessibility).Lipids, proteins and carbohydrates may favorably affect the bioavailability of flavonoids.Improved intestinal flora may improve flavonoid bioavailability.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Rui Lu
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| |
Collapse
|
20
|
Fu JJ, Fu DW, Zhang GY, Zhang ZH, Xu XB, Song L. Fabrication of glycated yeast cell protein via Maillard reaction for delivery of curcumin: improved environmental stability, antioxidant activity, and bioaccessibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2544-2553. [PMID: 36571448 DOI: 10.1002/jsfa.12413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The application of curcumin (CUR) in the food industry is limited by its instability, hydrophobicity and low bioavailability. Yeast cell protein (YCP) is a by-product of spent brewer's yeast, which has the potential to deliver bioactive substances. However, the environmental stresses such as pH, salt and heat treatment has restricted its application in the food industry. Maillard reaction as a non-enzymatic browning reaction can improve protein stability under environmental stress. RESULTS The CUR was successfully encapsulated into the hydrophobic core of YCP/glycated YCP (GYCP) and enhanced by hydrogen bonding, resulting in static fluorescence quenching of YCP/GYCP. The average diameter and dispersibility of GYPC-CUR nanocomplex were significantly improved after glucose glycation (121.40 nm versus 139.70 nm). Moreover, the encapsulation capacity of CUR was not influenced by glucose glycation. The oxidative stability and bioaccessibility of CUR in nanocomplexes were increased compared with free CUR, especially complexed with GYCP conjugates. CONCLUSION Steric hindrance provided by glucose conjugation improved the enviriomental stability, oxidative activity and bioaccessibility of CUR in nanocomplexes. Thus, glucose-glycated YCP has potential application as a delivery carrier for hydrophobic compounds in functional foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Dong-Wen Fu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Guang-Yao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhi-Hui Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Xian-Bing Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
21
|
Wasilewska A, Bielicka M, Klekotka U, Kalska-Szostko B. Nanoparticle applications in food - a review. Food Funct 2023; 14:2544-2567. [PMID: 36799219 DOI: 10.1039/d2fo02180c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The use of nanotechnology in the food industry raises uncertainty in many respects. For years, achievements of nanotechnology have been applied mainly in biomedicine and computer science, but recently it has also been used in the food industry. Due to the extremely small (nano) scale, the properties and behavior of nanomaterials may differ from their macroscopic counterparts. They can be used as biosensors to detect reagents or microorganisms, monitor bacterial growth conditions, increase food durability e.g. when placed in food packaging, reducing the amount of certain ingredients without changing the consistency of the product (research on fat substitutes is underway), improve the taste of food, make some nutrients get better absorbed by the body, etc. There are companies on the market that are already introducing nanoparticles into the economy to improve their functionality, e.g. baby feeding bottles. This review focuses on the use of nanoparticles in the food industry, both organic (chitosan, cellulose, proteins) and inorganic (silver, iron, zinc oxide, titanium oxide, etc.). The use of nanomaterials in food production requires compliance with all legal requirements regarding the safety and quantity of nano-processed food products described in this review. In the future, new methods of testing nanoparticles should be developed that would ensure the effectiveness of compounds subjected to, for example, nano-encapsulation, i.e. whether the encapsulation process had a positive impact on the specific properties of these compounds. Nanotechnology has revolutionized our approach towards food engineering (from production to processing), food storage and the creation of new materials and products, and the search for new product applications.
Collapse
Affiliation(s)
- A Wasilewska
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Str. Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - M Bielicka
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Str. Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - U Klekotka
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - B Kalska-Szostko
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
22
|
Zhang Y, Guo Y, Liu F, Luo Y. Recent development of egg protein fractions and individual proteins as encapsulant materials for delivery of bioactives. Food Chem 2023; 403:134353. [DOI: 10.1016/j.foodchem.2022.134353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
23
|
Wang Y, Chen X, Xu X, Du M, Wu C. Reducing disulfide bonds as a robust strategy to facilitate the self-assembly of cod protein fabricating potential active ingredients-nanocarrier. Colloids Surf B Biointerfaces 2023; 222:113080. [PMID: 36542952 DOI: 10.1016/j.colsurfb.2022.113080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
In this study, a novel method was developed to encapsulate hydrophobic compounds by self-assembly of cod protein (CP) triggered by breaking disulfide bonds. Curcumin (Cur), a representative lipid-soluble polyphenol, was selected as a model to evaluate the potential of CP nanoparticles as novel and accessible nanocarriers. Results showed that the protein structure gradually unfolded with increasing dithiothreitol (DTT) concentration, indicating that S-S cleavage was conducive to forming a looser structure. The resultant unfolded CP exposed more hydrophobic sites, facilitating its interaction with hydrophobic compounds. The encapsulation efficiency (EE) of formed CP-Cur nanoparticles was relatively high, reaching 99.09%, 98.8%, and 89.77% when the mass ratios of CP to Cur were 20:1, 10:1, and 5:1 (w/v), respectively. The hydrophobic interaction, weak van der Waals, and hydrogen bond were the forces contributing to the formation of CP-Cur nanoparticles, whereas the hydrophobic interaction played a crucial role. The CP-Cur complex exhibited increased stability and a homogeneous-stable structural phase. Thus, this research not only proposed a novel and simple encapsulation method of hydrophobic bioactive compounds but also provided a theoretical reference for the application of reductants in food or pharmacy system.
Collapse
Affiliation(s)
- Yuying Wang
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science, Dalian Polytechnic University, Dalian 116034, China; College of Food Science, Jilin University, Changchun 130015, China
| | - Xufei Chen
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Wu
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
24
|
Liu H, Huang R, Zhao X, Yang S, He F, Qin W, Huang J, Yu G, Feng Y, Li J, Liao C. Ca2+/pH-triggered gelation of Pickering emulsion in vitro digestion: Visualization and sustained-release performance. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
25
|
Fabrication, Evaluation, and Antioxidant Properties of Carrier-Free Curcumin Nanoparticles. Molecules 2023; 28:molecules28031298. [PMID: 36770966 PMCID: PMC9920916 DOI: 10.3390/molecules28031298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Curcumin (Cur), a natural hydrophobic polyphenolic compound, exhibits multiple beneficial biological activities. However, low water solubility and relative instability hinder its application in food fields. In this study, carrier-free curcumin nanoparticles (CFC NPs) were prepared by adding the DMSO solution of Cur into DI water under continuous rapid stirring. The morphology of CFC NPs was a spherical shape with a diameter of 65.25 ± 2.09 nm (PDI = 0.229 ± 0.107), and the loading capacity (LC) of CFC NPs was as high as 96.68 ± 0.03%. The thermal property and crystallinity of CFC NPs were investigated by XRD. Furthermore, the CFC NPs significantly accelerated the release of Cur in vitro owing to its improved water dispersibility. Importantly, CFC NPs displayed significantly improved DPPH radical scavenging activity. Overall, all these results suggested that CFC NPs would be a promising vehicle to widen the applications of Cur in food fields.
Collapse
|
26
|
Li J, Zhai J, Chang C, Yang Y, Drummond CJ, Conn CE. Protective effect of surfactant modified phytosterol oleogels on loaded curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:135-142. [PMID: 35833377 DOI: 10.1002/jsfa.12122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Oleogels represent one of the most important carriers for the delivery of lipophilic nutraceuticals. Phytosterols (PS), plant-derived natural sterol compounds, are preferred for oleogel preparation due to their self-assembly properties and health function. However, the relationship between the physical properties of PS-based oleogels and the chemical stability of loaded bioactive compounds is still unclear. RESULTS The influence of lecithin (LC) and glycerol monostearate (GMS) on the physical properties of PS-based oleogels made of liquid coconut oil and the stability of curcumin as a model bioactive loaded in the oleogels was investigated. Results showed that the flow consistency index was much higher for GMS-containing oleogels than that for LC-containing oleogels. The optical microscopy and X-ray scattering analysis showed that the addition of GMS in the PS oleogels promoted the formation of a crystal mixture with different crystal polymorph structures, whereas LC addition promoted the formation of needle-like crystals of PS. Using curcumin as a model lipophilic nutraceutical, the GMS-enriched PS oleogels with high crystallinity and flow consistency index exhibited a good retention ratio and scavenging activity of the loaded curcumin when stored at room temperature. CONCLUSION This study shows that enhancing the firmness of oleogels made from PS and liquid coconut oil is beneficial to the retention and chemical stability of a loaded bioactive (curcumin). The findings of the study will boost the development of PS-based oleogel formulations for lipophilic nutraceutical delivery. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, Australia
| |
Collapse
|
27
|
Ovalbumin, an outstanding food hydrocolloid: Applications, technofunctional attributes, and nutritional facts, A systematic review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Development of Antifungal Films from Nanocomplexes Based on Egg White Protein Nanogels and Phenolic Compounds. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Yang M, Liu J, Guo J, Yang X, Liu C, Zhang M, Li Y, Zhang H, Zhang T, Du Z. Tailoring the physicochemical stability and delivery properties of emulsions stabilized by egg white microgel particles via glycation: Role of interfacial particle network and digestive metabolites. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
An overview of the functional properties of egg white proteins and their application in the food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022; 10:biomedicines10092055. [PMID: 36140156 PMCID: PMC9495787 DOI: 10.3390/biomedicines10092055] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The low water solubility of pharmacoactive molecules limits their pharmacological potential, but the solubility parameter cannot compromise, and so different approaches are employed to enhance their bioavailability. Pharmaceutically active molecules with low solubility convey a higher risk of failure for drug innovation and development. Pharmacokinetics, pharmacodynamics, and several other parameters, such as drug distribution, protein binding and absorption, are majorly affected by their solubility. Among all pharmaceutical dosage forms, oral dosage forms cover more than 50%, and the drug molecule should be water-soluble. For good therapeutic activity by the drug molecule on the target site, solubility and bioavailability are crucial factors. The pharmaceutical industry’s screening programs identified that around 40% of new chemical entities (NCEs) face various difficulties at the formulation and development stages. These pharmaceuticals demonstrate less solubility and bioavailability. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. According to the Classification of Biopharmaceutics, Class II and IV drugs (APIs) exhibit poor solubility, lower bioavailability, and less dissolution. Various technologies are discussed in this article to improve the solubility of poorly water-soluble drugs, for example, the complexation of active molecules, the utilization of emulsion formation, micelles, microemulsions, cosolvents, polymeric micelle preparation, particle size reduction technologies, pharmaceutical salts, prodrugs, the solid-state alternation technique, soft gel technology, drug nanocrystals, solid dispersion methods, crystal engineering techniques and nanomorph technology. This review mainly describes several other advanced methodologies for solubility and bioavailability enhancement, such as crystal engineering, micronization, solid dispersions, nano sizing, the use of cyclodextrins, solid lipid nanoparticles, colloidal drug delivery systems and drug conjugates, referring to a number of appropriate research reports.
Collapse
|
32
|
Liu T, Zhao Y, Wu N, Chen S, Xu M, Du H, Yao Y, Tu Y. Egg white protein-based delivery system for bioactive substances: a review. Crit Rev Food Sci Nutr 2022; 64:617-637. [PMID: 35930299 DOI: 10.1080/10408398.2022.2107612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Some bioactive substances in food have problems such as poor solubility, unstable chemical properties and low bioavailability, which limits their application in functional food. Recently, many egg white protein-based delivery carriers have been developed to improve the chemical stability, biological activity and bioavailability of bioactive substances. This article reviewed the structure and properties of several major egg white proteins commonly used to construct bioactive substance delivery systems. Several common carrier types based on egg white proteins, including hydrogels, emulsions, micro/nanoparticles, aerogels and electrospinning were then introduced. The biological functions of common bioactive substances, the limitations, and the role of egg white protein-based delivery systems were also discussed. At present, whole egg white protein, ovalbumin and lysozyme are most widely used in delivery systems, while ovotransferrin, ovomucoid and ovomucin are less developed and applied. Egg white protein-based nanoparticles are currently the most commonly used delivery carriers. Egg white protein-based hydrogels, emulsions, and microparticles are also widely used. Future research on the application of various egg white proteins in developed new delivery systems will provide more choices for the delivery of various bioactive substances.
Collapse
Affiliation(s)
- Tiantian Liu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
33
|
Chen S, Zhen S. Interaction Mechanism of Mangiferin and Ovalbumin Based on Spectrofluorimetry and Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mangiferin (MAG) is a kind of polyphenol with many bioactivities. However, its application in medicines and functional foods is restricted because of its poor aqueous solubility and stability. The construction of a MAG/protein complex is an effective way to solve this bottleneck. In this study, the interaction of MAG and ovalbumin (OVA) was systematically investigated by spectrofluorimetry, and their binding mode was clarified based on molecular docking. The results suggested that MAG could cause the static fluorescence quenching of OVA with the quenching constant ( Kq) of >2 × 1010 L/(mol·s). Their binding performance increased with increasing temperature, and the binding-site number ( n) was close to 1. The thermodynamic analysis indicated that the binding was a spontaneous process, which was mainly driven by hydrophobic force. During this process, there was no apparent change in the microenvironment surrounding the tyrosine and tryptophan residues of OVA. The molecular docking results demonstrated the hydrophobic interaction and hydrogen bonding in the complex, which well-confirmed the results of the fluorescence experiments.
Collapse
Affiliation(s)
- Si Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Shiyu Zhen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
34
|
Ahmed IA, Mikail MA, Zamakshshari NH, Mustafa MR, Hashim NM, Othman R. Trends and challenges in phytotherapy and phytocosmetics for skin aging. Saudi J Biol Sci 2022; 29:103363. [PMID: 35813113 PMCID: PMC9260296 DOI: 10.1016/j.sjbs.2022.103363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Free radicals, oxidative stress, and inflammation contribute to the etiology of most chronic diseases. Natural products can be incorporated into cosmetics, cosmeceuticals, and nutricosmetics to tackle inflammation-related diseases. The use of alternative green extraction solvents such as natural deep eutectic solvents and electrochemically reduced water is trending. Delivery systems are important for the enhancement of the bioavailability, stability, solubility, and controlled release profile of the bioactives.
Oxidative stress and inflammation mostly contribute to aging and age-related conditions including skin aging. The potential of natural products in the form of naturally-derived cosmetics, cosmeceuticals, and nutricosmetics have, however, not been fully harnessed. This review, thus, critically analyzes the potential roles of natural products in inflammation-related skin aging diseases due to the increasing consumers’ concerns and demands for efficacious, safe, natural, sustainable, and religiously permitted alternatives to synthetic products. The information and data were collated from various resources and literature databases such as PubMed, Science Direct, Wiley, Springer, Taylor and Francis, Scopus, Inflibnet, Google, and Google Scholar using relevant keywords and Medical Subject Headings (MeSH). The role of green extraction solvents as promising alternatives is also elucidated. The potential enhancements of the bioavailability, stability, solubility and controlled release profile of the bioactives using different delivery systems are also presented. The current potential global market value, motivators, drivers, trends, challenges, halal, and other regulatory certifications for cosmeceuticals and nutricosmetics are equally discussed. The adoption of the suggested extractions and delivery systems would enhance the stability, bioavailability, and target delivery of the bioactives.
Collapse
|
35
|
Ma Z, Guo A, Jing P. Advances in dietary proteins binding with co-existed anthocyanins in foods: Driving forces, structure-affinity relationship, and functional and nutritional properties. Crit Rev Food Sci Nutr 2022; 63:10792-10813. [PMID: 35748363 DOI: 10.1080/10408398.2022.2086211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins, which are the labile flavonoid pigments widely distributed in many fruits, vegetables, cereal grains, and flowers, are receiving intensive interest for their potential health benefits. Proteins are important food components from abundant sources and present high binding affinity for small dietary compounds, e.g., anthocyanins. Protein-anthocyanin interactions might occur during food processing, ingestion, digestion, and bioutilization, leading to significant changes in the structure and properties of proteins and anthocyanins. Current knowledge of protein-anthocyanin interactions and their contributions to functions and bioactivities of anthocyanin-containing foods were reviewed. Binding characterization of dietary protein-anthocyanins complexes is outlined. Advances in understanding the structure-affinity relationship of dietary protein-anthocyanin interaction are critically discussed. The associated properties of protein-anthocyanin complexes are considered in an evaluation of functional and nutritional values.
Collapse
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Guo
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Tao X, Shi H, Cao A, Cai L. Understanding of physicochemical properties and antioxidant activity of ovalbumin-sodium alginate composite nanoparticle-encapsulated kaempferol/tannin acid. RSC Adv 2022; 12:18115-18126. [PMID: 35874031 PMCID: PMC9245490 DOI: 10.1039/d2ra02708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this research, ovalbumin (OVA) and sodium alginate (SA) were used as the materials to prepare an OVA–SA composite carrier, which protected and encapsulated the hydrophobic kaempferol (KAE) and the hydrophilic tannic acid (TA) (OVA–SA, OVA–TA–SA, OVA–KAE–SA, and OVA–TA–KAE–SA). Results showed that the observation of small diffraction peaks in carriers proved the successful encapsulation of KAE/TA. The protein conformation of the composite nanoparticles changed. OVA–TA–SA composite nanoparticles had the highest α-helix content and the fewest random coils, so the protein structure of it had the strongest stability. OVA–TA–KAE–SA composite nanoparticles had the strongest system stability and thermal stability, which might be due to the synergistic effect of the two polyphenols, suggesting the encapsulation of KAE/TA increased the system stability and the thermal stability of OVA–SA composite nanoparticles. Additionally, the composite nanoparticles were endowed with antioxidant ability and antibacterial ability (against Staphylococcus aureus and Escherichia coli) in the order OVA–TA–SA > OVA–TA–KAE–SA > OVA–KAE–SA based on the difference in antibacterial diameter (D, mm) and square (S, mm2), indicating that polyphenols enhanced the antibacterial and antioxidant ability of OVA–SA composite nanoparticles, and the enhancement effect of TA was stronger than that of KAE. These results provide a theoretical basis for the application of OVA–SA composite nanoparticles in the delivery of bioactive compounds. Ovalbumin (OVA) and sodium alginate (SA) were used as materials to prepare an OVA–SA composite carrier, which encapsulated the hydrophobic kaempferol (KAE) and the hydrophilic tannic acid (TA) (OVA–SA, OVA–TA–SA, OVA–KAE–SA, and OVA–TA–KAE–SA).![]()
Collapse
Affiliation(s)
- Xiaoya Tao
- Ningbo Research Institute, College of Biosystems Engineering and Food Science, Zhejiang University Ningbo 315100 China +86 571 88982726 +86 571 88982726.,Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Hang Shi
- College of Food Science and Engineering, Bohai University Jinzhou 121013 China
| | - Ailing Cao
- Hangzhou Customs District Hangzhou 310007 China
| | - Luyun Cai
- Ningbo Research Institute, College of Biosystems Engineering and Food Science, Zhejiang University Ningbo 315100 China +86 571 88982726 +86 571 88982726
| |
Collapse
|
37
|
Yang Y, Zhang M, Li J, Su Y, Gu L, Yang Y, Chang C. Construction of egg white protein particle and rhamnolipid based emulsion gels with β-sitosterol as gelation factor: The application in cookie. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Tao X, Shi H, Cao A, Cai L. Influence of polyphenol-metal ion-coated ovalbumin/sodium alginate composite nanoparticles on the encapsulation of kaempferol/tannin acid. Int J Biol Macromol 2022; 209:1288-1297. [PMID: 35460758 DOI: 10.1016/j.ijbiomac.2022.04.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022]
Abstract
In this research, ovalbumin (OVA) and sodium alginate (SA) were used as the materials to prepare OVA-SA composite carriers, which protected and encapsulated the hydrophobic kaempferol (KAE) and the hydrophilic tannic acid (TA). To achieve the purpose of targeted delivery, the TA-Fe3+ coating film was prepared. Results showed that the observation of small diffraction peaks in carriers proved the formation of TA/Fe3+ coating film on the surface of four composite nanoparticles (pOVA, pOVA-SA, pOVA-KAE-SA, and pOVA-KAE-TA-SA). The protein structure of the composite nanoparticles coated with TA/Fe3+ changed, and the order of the changes was pOVA-KAE > pOVA > pOVA-KAE-SA > pOVA-KAE-TA-SA > pOVA-SA. This phenomenon is due to the fact that the chromophore -C=O and the auxo-chromophore -OH are in the opposite position in the benzene ring of TA, and the two substituents have opposite effects and synergize, resulting in the different degrees of redshift of the composite nanoparticle λmax. Additionally, pOVA-SA had the highest α-helix content and the lowest random coils, conferring the protein structure the strongest stability. The coating of TA/Fe3+ increased the system stability and the thermal stability of the composite nanoparticles. Additionally, the carriers were endowed with antioxidant activity, and their antibacterial ability against Staphylococcus aureus and Escherichia coli was pOVA-KAE-TA-SA > pOVA-KAE-SA > pOVA-KAE > pOVA-SA > pOVA based on the difference in antibacterial diameter (D, mm) and square (S, mm2). pOVA-KAE-TA-SA had the strongest antioxidant activity and antibacterial ability, which improved the bioavailability of TA/KAE. These results provide a theoretical basis for the application of OVA-SA composite nanoparticles in the delivery of bioactive compounds.
Collapse
Affiliation(s)
- Xiaoya Tao
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National & Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Hang Shi
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Ailing Cao
- Hangzhou Customs District, Hangzhou 310007, China.
| | - Luyun Cai
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National & Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Zhang T, Yuan Y, Chai J, Wu X, Saini RK, Liu J, Shang X. How does dextran sulfate promote the egg white protein to form transparent hydrogel?the gelation mechanism and molecular force changes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Cheng Y, Liu D, Zeng M, Chen J, Mei X, Cao X, Liu J. Milk β-casein as delivery systems for luteolin: Multi-spectroscopic, computer simulations, and biological studies. J Food Biochem 2022; 46:e14133. [PMID: 35332561 DOI: 10.1111/jfbc.14133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
β-Casein, a highly amphiphilic calcium-sensitive phosphoprotein, has specific features that promote its application as a nanocarrier for hydrophobic bioactives. Luteolin is a flavonoid with rich biological activities existing in vegetables and fruits. It is important to understand the interaction of β-casein with luteolin for the development of β-casein-based delivery systems. Here, the interaction mode between luteolin and β-casein was investigated with multispectral techniques, computer simulation, and biological methods. The results demonstrated that luteolin could bind to β-casein spontaneously which is driven by hydrophobic interactions and statically quench the intrinsic fluorescence of β-casein. Molecular docking and molecular dynamics simulation showed that β-casein formed a stable complex with luteolin. It could be concluded that luteolin was encapsulated in β-casein micelles and exhibited higher antioxidant activity than luteolin alone. These results would be helpful to understand the interaction mechanism of luteolin with β-casein and indicated that β-casein micelles were very promising as delivery vehicles for luteolin. PRACTICAL APPLICATIONS: Adding bioactive compounds to food is an efficient method of functional food processing, and protein is an excellent natural carrier for these substances. β-Casein is a milk protein with a unique amphiphilic structure that makes it a natural nanocarrier for active ingredients. This study created β-casein nanocarriers and encapsulated luteolin based on the interaction mechanism between β-casein with luteolin. Luteolin encapsulated in β-casein micelles demonstrated higher antioxidant activity when compared to free luteolin. This research will provide useful data for the development of functional foods based on β-casein and luteolin in the food industry.
Collapse
Affiliation(s)
- Ye Cheng
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Dan Liu
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Meng Zeng
- Tianjin Academy of Environmental Sciences, Tianjin, P.R. China
| | - Junliang Chen
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Xueying Mei
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Jianli Liu
- School of Life Science, Liaoning University, Shenyang, P.R. China
| |
Collapse
|
41
|
Effects of Grafting Degree on the Physicochemical Properties of Egg White Protein-Sodium Carboxymethylcellulose Conjugates and Their Aerogels. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To improve the mechanical strength and oil-loading performances of egg white protein (EWP) aerogel, the effects of different grafting degrees on the modification of EWP by sodium carboxymethylcellulose (CMC-Na) were investigated. After different dry-heat treatment durations (0, 12, 24, 36, and 48 h), the EWP/CMC-Na conjugates with different grafting degrees (noted as EC0, EC12, EC24, EC36, and EC48, respectively) were obtained. Subsequently, the physicochemical properties of the conjugates, as well as the microstructure, mechanical properties, pore parameters, emulsification properties and oil-carrying properties of the conjugated aerogels, were characterized. The results showed that EC12 (with a grafting degree of 8.35%) aerogel possessed a uniform structure, the largest specific surface area, and the best emulsification performance. This facilitated a more robust aerogel (2.05 MPa) with nearly three times the mechanical strength of EWP aerogel. Moreover, this had a positive influence on the efficient loading and stable retention of oil. EC12 aerogel thus achieved an oil absorption capacity of 5.46 g/g aerogel and an oil holding capacity of 31.95%, and both values were nearly 1.7 times higher than those of EWP aerogel. In general, the EWP-based aerogel with a grafting degree of 8.35% had the best mechanical and oil-loading properties.
Collapse
|
42
|
Bashash M, Varidi M, Varshosaz J. Sucrose stearate based niosomes as an alternative to ordinary vehicles for efficient curcumin delivery. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01309-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Chang C, Li J, Su Y, Gu L, Yang Y, Zhai J. Protein particle-based vehicles for encapsulation and delivery of nutrients: Fabrication, digestion, and release properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.106963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Elbialy NS, Aboushoushah SF, Mohamed N. Bioinspired synthesis of protein/polysaccharide-decorated folate as a nanocarrier of curcumin to potentiate cancer therapy. Int J Pharm 2021; 613:121420. [PMID: 34958897 DOI: 10.1016/j.ijpharm.2021.121420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Curcumin is a promising anticancer agent, but its clinical utilization has been hindered by its low solubility and bioaccessibility. To overcome these obstacles, we developed a natural protein-polysaccharide nanocomplex made from casein nanoparticles coated with a double layer of alginate and chitosan and decorated with folic acid (fCs-Alg@CCasNPs) for use as a nanocarrier for curcumin. The developed nanoformulation showed a drug encapsulation efficiency = 75%. The measured size distribution of fCs-Alg@CCasNPs was 333.8 ± 62.35 nm with a polydispersity index (PDI) value of 0.179. The recorded zeta potential value of fCs-Alg@CCasNPs was 28.5 mV. Morphologically, fCs-Alg@CCasNPs appeared spherical, as shown by transmission electron microscopy (TEM). The successful preparation of fCs-Alg@CCasNPs was confirmed by Fourier transform infrared (FTIR) spectroscopy of all the constituents forming the nanoformulation. Further in vitro investigations indicated the stability of fCs-Alg@CCasNPs as well as their controlled and sustained release of curcumin in the tumor microenvironment. Compared with free curcumin, fCs-Alg@CCasNPs induced a higher cytotoxic effect against a pancreatic cancer cell line. The in vivo pharmacokinetics of fCs-Alg@CCasNPs showed a significant AUC0-24 = 2307 ng.h/ml compared to 461 ng.h/ml of free curcumin; these results indicated high curcumin bioavailability in plasma. The in vivo results of tumor weight, the amount of DNA damage measured by comet assay and histopathological examination revealed that treating mice with fCs-Alg@CCasNPs (either intratumorally or intraperitonially) prompted higher therapeutic efficacy against Ehrlich carcinoma than treatment with free curcumin. Therefore, the incorporation of curcumin with protein/polysaccharide/folate is an innovative approach that can synergistically enhance curcumin bioavailability and potentiate cancer therapy with considerable biosafety.
Collapse
Affiliation(s)
- Nihal S Elbialy
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Samia F Aboushoushah
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Noha Mohamed
- Associate Professor Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
45
|
Characterization of curcumin-loaded lecithin-chitosan bioactive nanoparticles. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
An S, Wang L, Zhou P, Luo Z, Feng R, Li X. Construction of Hohenbuehelia serotina polysaccharides-mucin nanoparticles and their sustain-release characteristics under simulated gastrointestinal digestion in vitro. Int J Biol Macromol 2021; 191:1-8. [PMID: 34537291 DOI: 10.1016/j.ijbiomac.2021.09.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
In this study, Hohenbuehelia serotina polysaccharides-mucin nanoparticles (HSP-MC NPs) were fabricated based on hydrogen bonding and hydrophobicity effects for improving the bioavailability of HSP. The structural characteristics and morphology of HSP-MC NPs prepared by different conditions were respectively identified and observed. The results showed that HSP-MC NPs (HSP/MC, 1/1, w/w) presented the optimal physicochemical characteristics, with the encapsulation efficiency of 88.09 ± 0.01%, average particle size of 509.4 ± 9.76 nm and zeta potential of -20.6 ± 0.7 mV. Furthermore, HSP-MC NPs (HSP/MC, 1/1, w/w), belonged to non-crystalline substances, exhibited the excellent physicochemical stabilities against temperature, pH and ionic strength, and had the uniform spherical morphological characteristics. In addition, under simulated gastrointestinal digestion in vitro, HSP-MC NPs (HSP/MC, 1/1, w/w) showed the good sustained release performances, that might effectively improve the absorption rate of HSP. The present research is meaningful for designing the polysaccharides-loaded nano-delivery system based on natural non-toxic carrier that can be used in function food field.
Collapse
Affiliation(s)
- Siying An
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Peng Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhen Luo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Ru Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xiaoyu Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Nanobiotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
47
|
Poloxamer 188-based nanoparticles improve the anti-oxidation and anti-degradation of curcumin. Food Chem 2021; 375:131674. [PMID: 34848087 DOI: 10.1016/j.foodchem.2021.131674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022]
Abstract
Curcumin (CUR) is a food additive approved by World Health Organization. But the shortcomings, such as poor water solubility, easy oxidation and degradation, limit its application. In this study, the CUR-loaded poloxamer188-based nanoparticles (CUR/PTT NPs) were fabricated to improve the stability and water solubility of CUR. Studies found the spherical CUR/PTT NPs had an average size of 98.71 ± 0.64 nm. Stability experiments displayed CUR/PTT NPs were extremely stable in different conditions. XRD analysis indicated the changes of crystal structures of CUR might be the main cause of the improved water solubility. Reducing power and anti-degradation tests suggested CUR/PTT NPs could improve the anti-oxidation and anti-degradation of CUR. Additionally, the results of body weight gains, hematological examination, organ coefficients, hematoxylin and eosin staining demonstrated CUR/PTT NPs bearing the excellent in vivo bio-security. Therefore, this study may provide a new idea for the combination of food industry and nanoparticles.
Collapse
|
48
|
Structural interplay between curcumin and soy protein to improve the water-solubility and stability of curcumin. Int J Biol Macromol 2021; 193:1471-1480. [PMID: 34742837 DOI: 10.1016/j.ijbiomac.2021.10.210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Curcumin has a wide range of pharmacological activities, but its poor water solubility, chemical instability, and low bioavailability extensively limit the further application in food and pharmaceutical systems. In this study, the potential of using soy protein (SP) to interact with, encapsulate and protect hydrophobic curcumin (Cur) by pH-shift method was evaluated. Results indicated that SP structure experienced a typical pathway from unfolding to refolding during the pH-shifting process (pH 7-12-7), which clearly expressed the encapsulation process of Cur by pH-shift method into SP. Then the physicochemical and morphological properties of soy protein-encapsulated curcumin nanoparticles (SP-Cur) were investigated. Fluorescence measurements and Isothermal Titration Calorimetry showed that the combination of Cur and SP was a spontaneous reaction with a decrease in Gibbs free energy, which was mainly driven by hydrophobic interaction. Fourier Transform Infra-Red and Ultraviolet Spectroscopy further showed that the Cur had successfully embedded into SP. SP-Cur had a spherical shape-like structure and relatively small size (d < 100 nm). The encapsulation efficiency of Cur showed a concentration-dependent manner, which could be as high as 97.43%. In addition, the SP-Cur exhibited enhanced thermal stability and photostability.
Collapse
|
49
|
Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9322282. [PMID: 34746313 PMCID: PMC8570876 DOI: 10.1155/2021/9322282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
The emerging science of nanotechnology sparked a research attention in its potential benefits in comparison to the conventional materials used. Oral products prepared via nanoparticles (NPs) have garnered great interest worldwide. They are used commonly to incorporate nutrients and provide antimicrobial activity. Formulation into NPs can offer opportunities for targeted drug delivery, improve drug stability in the harsh environment of the gastrointestinal (GI) tract, increase drug solubility and bioavailability, and provide sustained release in the GI tract. However, some issues like the management of toxicity and safe handling of NPs are still debated and should be well concerned before their application in oral preparations. This article will help the reader to understand safety issues of NPs in oral drug delivery and provides some recommendations to the use of NPs in the drug industry.
Collapse
Affiliation(s)
- Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Li J, Wang C, Chang C, Jiao H, Su Y, Gu L, Yang Y, Yu H. Changes in stability and in vitro digestion of egg-protein stabilized emulsions and β-carotene gels in the presence of sodium tripolyphosphate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5591-5598. [PMID: 33709411 DOI: 10.1002/jsfa.11210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Egg proteins are effective emulsifiers and gelators in food systems. However, the physicochemical stability and control release properties of egg-protein stabilized emulsions and gels need to be further improved. The potential of sodium tripolyphosphate (St) to improve the functionality of egg proteins was evaluated. RESULTS The emulsions with St had smaller particle sizes and higher zeta potential, leading to better physical stability. Furthermore, the oxidation stability increased with increasing St contents, possibly due to its metal chelating capacity and the improved emulsifying activity of whole-egg dispersions. Phosphate had a positive impact on the chemical stability of β-carotene in whole-egg liquids and gels, decreasing the degradation during thermal treatment. The gel made with St was firm and broke down slowly, leading to a low rate of digestion and β-carotene release in simulated gastric fluid. CONCLUSION This study shows that St is useful to improve the egg proteins stabilized emulsions and gels, which is applicable in the development of emulsion-based food grade gel products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Han Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haitao Yu
- School of Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| |
Collapse
|