1
|
Yang R, Wang C, Wu Z, Yu B, Yu X, Li C, Cao Y, Yuan C, Zhang Z, Zhao H, Cui B. Structural and gelation properties of soy protein isolates-Sesbania gum gels: effects of ultrasonic pretreatment and CaSO 4 concentration. Int J Biol Macromol 2025; 310:143215. [PMID: 40250667 DOI: 10.1016/j.ijbiomac.2025.143215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
This study aimed to investigate the influence of ultrasound treatment on the structural and gelation properties of soy protein isolate (SPI)-Sesbania gum (SG) composite gels induced by varying concentrations of CaSO4. The results showed that ultrasound treatment at amplitudes ranging from 20 % to 60 % for 10 min improved protein solubility, rheological properties and gel strength. The addition of CaSO4 (15 to 35 mM) further increased gel hardness but caused a decline in the water-holding capacity (WHC). Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) demonstrated that ultrasound treatment promoted the formation of a more homogenous and compact network in SPI-SG gels, improving WHC. Although higher concentrations of CaSO4 resulted in an uneven network with larger pores and reduced WHC, ultrasound treatment mitigated the loss. Moreover, analysis of intermolecular forces revealed that ultrasound treatment enhanced hydrophobic interactions and disulfide bonds within the mixed gels induced by CaSO4, leading to a stronger gel network. These findings provided a novel strategy for improving SPI-based gel properties and offer a theoretical basis for the application of SPI-SG complex in food processing.
Collapse
Affiliation(s)
- Ran Yang
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, and School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Inner Mongolia Fufeng Biotechnology Co., Ltd., Hohhot 010070, China
| | - Chenxi Wang
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, and School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, and School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Qiaoqi Food Technology Co., Ltd., Dezhou 253000, China
| | - Bin Yu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, and School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaodong Yu
- Weifang Meicheng Foodstuffs Co., Ltd., Weifang 261051, China
| | - Chunqiang Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yungang Cao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Chao Yuan
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, and School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zheng Zhang
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, and School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haibo Zhao
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, and School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, and School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
2
|
Manzoor MF, Waseem M, Diana T, Wang R, Ahmed Z, Mohamed Ahmed IA, Ali M, An-Zeng X. Ultrasound-assisted modification to improve the red pepper seed protein isolate structural, functional, and antioxidant properties. Int J Biol Macromol 2025; 309:143154. [PMID: 40233908 DOI: 10.1016/j.ijbiomac.2025.143154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/12/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
The study aims to extract protein from red pepper seeds and analyze the effect of ultrasound (US) on red pepper seed protein isolates (RPSPI) at pH 7 and 9. Circular dichroism (CD) spectroscopy analyzed structural changes in RPSPI, revealing that the increase in US treatment duration from 5 to 20 min was associated with decreased β-turn and α-helix while improving the β-sheet and random coil content. It demonstrates that US treatment stimulated protein unfolding and significantly disrupted distinct types of H bonds in the RPSPI, especially those involved in forming β-turns and α-helix. US treatment significantly improved the free sulfhydryl groups, revealing modified tertiary protein structures. The dissociation of large RPSPI aggregates into smaller ones significantly reduced the average particle size in aqueous suspensions. Ultimately, these changes enabled US-treated RPSPI samples to exhibit increased water solubility, emulsifying activity index, emulsifying stability index, water holding capacity, oil holding capacity, foaming characteristic, and foaming stability at pH 7 and 9, with maximum improvement of 25 %, 49.4 %, 45.11 %, 65.1 %, 46.2 %, 71.1 %, and 81.8 %, respectively. US treatments significantly increased the DPPH, ABTS, and OH scavenging ability (%) of RPSPI at pH 9, with a maximum improvement of 58 %, 33 %, and 36 %, respectively. Moreover, the principal component analysis demonstrated that the structural changes correlated with its functional and antioxidant properties.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China; Faculty of Sciences and Technology, ILMA University, Karachi, Pakistan.
| | - Muhammad Waseem
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Tazeddinova Diana
- Department of Technology and Catering Organization, South Ural State University, Chelyabinsk, Russian Federation
| | - Rui Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China
| | - Zahoor Ahmed
- Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan; College of Food and Nutrition, Anhui Agricultural University, Hefei, China
| | - Isam A Mohamed Ahmed
- Department of Food Sciences and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China
| | - Xin An-Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China.
| |
Collapse
|
3
|
Mushtaq M, Ayoub A, Banday JA, Rashid A, Rasheed N, Gani A. Nano-reduction of whey protein using ultra-sonication as a novel approach to improve its applicability in food industry. ULTRASONICS SONOCHEMISTRY 2025; 114:107230. [PMID: 39954361 PMCID: PMC11872402 DOI: 10.1016/j.ultsonch.2025.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 02/17/2025]
Abstract
The present study was carried to evaluate the effect of size reduction using ultrasonication on functionality and bioactivity of whey protein isolate (WPI). The results showed that ultrasonication was able to reduce particle size of whey from 1.025 µm to 549 nm. The polydispersity index and zeta potential increased subsequently upon ultrasonication from 0.22 to 0.48 and -12 to -21 mV confirming narrow range of particle size distribution and enhanced colloidal stability. The SEM of non-treated whey showed dense spherical structure whereas upon ultrasonication the structure of protein granules changes to polygon. Size of granule was reduced and distortion in shape was observed. The ultrasonicated and native whey were characterized for functional properties viz. foaming, emulsifying, water and oil absorption capabilities. The solubility and hydrophobicity of whey before and after ultrasonication were determined. The WPI had higher hydrophobicity than ultrasonicated WPI which could be owed to the protein unfolding due to acoustic cavitation effect of ultrasonication. Water and oil absorption capacity of WPI were also affected by ultrasonication, water absorption capacity was decreased whereas oil absorption capacity was increased upon ultrasonication. The nutraceutical properties of WPI viz. antioxidant, antimicrobial, antihypertensive, antilipidemic, and antiproliferative activities were also found to increase significantly upon ultrasonication. Overall the study suggests that nanoreduction is a novel approach to improve the applicability of WPI in the emerging functional food industry as the ultra-sonication was profusely able to tailor the functionality and physiological implications of WPI.
Collapse
Affiliation(s)
- Mehvesh Mushtaq
- Department of Chemistry, National Institute of Technology, Srinagar 190006 India.
| | - Aneesa Ayoub
- Department of Food Science and Technology, University of Kashmir 190006 India
| | - Javid A Banday
- Department of Chemistry, National Institute of Technology, Srinagar 190006 India
| | - Asif Rashid
- Department of Chemistry, National Institute of Technology, Srinagar 190006 India
| | - Nowsheen Rasheed
- Department of Food Science and Technology, University of Kashmir 190006 India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir 190006 India
| |
Collapse
|
4
|
Zhou L, Ali I, Manickam S, Goh BH, Tao Y, Zhang J, Tang SY, Zhang W. Ultrasound-induced food protein-stabilized emulsions: Exploring the governing principles from the protein structural perspective. Compr Rev Food Sci Food Saf 2025; 24:e70162. [PMID: 40119796 DOI: 10.1111/1541-4337.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
Consumers' growing demand for healthy and natural foods has led to a preference for products with fewer additives. However, the low emulsifying properties of natural proteins often necessitate the addition of emulsifiers in food formulations. Consequently, enhancing the emulsifying properties of proteins through various modification methods is crucial to meet modern consumer demands for natural food products. High-intensity ultrasound offers a green, efficient processing technology that significantly improves the emulsifying properties of proteins. This study explores how ultrasound treatment enhances the stability of protein-based emulsions by modifying protein structures. While ultrasonic treatment does not significantly affect the primary structure of proteins, it influences the secondary, tertiary, and quaternary structures depending on the type of protein, ultrasound parameters (type, intensity, and time), and treatment conditions. The results suggest that ultrasound treatment reduces α-helix content, decreases protein particle size, and increases β-sheet content, surface hydrophobicity, free sulfhydryl groups, and zeta potential, leading to a more stable protein-based emulsion. The reduced particle size and increased flexibility of proteins induced by ultrasound enable more rapid protein adsorption at the oil-water interface, resulting in smaller emulsion droplets. This contributes to the emulsion's improved stability during storage. Future research should focus on the large-scale application of ultrasonic treatment for protein modification to produce high-quality, natural foods that meet the evolving needs of consumers.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- School of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Israq Ali
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ye Tao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Siah Ying Tang
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Luo Y, Zhang L, Xie J, Chen J. Structural, physicochemical, and digestive properties of sea buckthorn seeds protein obtained from ultrasound-assisted extraction. J Food Sci 2025; 90:e70137. [PMID: 40111089 DOI: 10.1111/1750-3841.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
This study investigated the effects of ultrasound-assisted treatment with alkaline protease on the structural, physicochemical, and digestive properties of sea buckthorn seed protein (SBSP). Different ultrasound powers (250, 350, 450, 550, 650 W) and times (20, 25, 30, 35, 40 min) were applied to assess these effects. Among these treatments, the ultrasonic treatment of 350 W for 30 min led to an increase in surface hydrophobicity, a significant reduction in average particle size, and enhanced the solubility, emulsifying capacity, and foaming properties of SBSP. Furthermore, the secondary and tertiary structures of SBSP underwent changes during the ultrasound treatment, with a decrease in α-helix content and a 17.5% increase in β-sheet content. X-ray diffraction analysis revealed a reduction in SBSP crystallinity. The in vitro digestibility of the protein was also improved, while the content of undesirable volatile flavor compounds was reduced during extraction. Thus, ultrasound-assisted pretreatment proves to be an effective method for extracting SBSP, improving its functional properties, and providing important implications for the application of SBSP in food products.
Collapse
Affiliation(s)
- Yuhuan Luo
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Liyixia Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Jingjing Xie
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Jingjing Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| |
Collapse
|
6
|
Zhang J, Liu Y, Wang P, Zhao Y, Zhu Y, Xiao X. The Effect of Protein-Starch Interaction on the Structure and Properties of Starch, and Its Application in Flour Products. Foods 2025; 14:778. [PMID: 40077481 PMCID: PMC11899337 DOI: 10.3390/foods14050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Grains are an energy source for human beings, and the two main components-starch and protein-determine the application of grains in food. The structure and properties of starch play a decisive role in determining processing characteristics, nutritional properties, and application in grain-based foods. The interaction of proteins with starch greatly affects the structure, physicochemical, and digestive properties of the starch matrix. Scientists have tried to apply this effect to create foods tailored to specific needs. Therefore, studying the effect of protein on the structure and properties of starch in the starch-protein complexes will help in designing personalized and improved starch-based food. This paper reviews the latest research about the effects of endogenous and exogenous proteins on the structure and properties of starch, as well as factors influencing the interaction between protein and starch. This includes investigations of the chain and aggregation structure of proteins with starch, as well as assessments of impacts on thermal properties, rheology, gel texture properties, hydration properties, aging, and digestion. In addition, particular examples illustrating the effects of protein-starch interaction on starch properties in various foods are discussed, providing a reference for designing starch-protein foods that are rich in terms of nutrition and easier to process.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (Y.L.); (P.W.); (Y.Z.); (Y.Z.)
| |
Collapse
|
7
|
Rivera ÁER, Ulloa JA, Silvas JEU, Ramírez JCR, Vazquez JAR. Physicochemical, techno-functional, biochemical and structural characterization of a protein isolate from groundnut (Arachis hypogaea L.) paste treated with high-intensity ultrasound. Food Chem 2025; 464:141848. [PMID: 39509893 DOI: 10.1016/j.foodchem.2024.141848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
The objective of this research was to evaluate the effect of ultrasound (HISound) (200, 400 and 600 W; 15-30 min) on the physicochemical, biochemical and structural techno-functional properties of a groundnut paste protein isolate (GPPI). HISound increased the contents of free sulfhydryls (552.22 %), total sulfhydryls (124.68 %) and α-helix (389.75 %), as well as molecular flexibility (50.91 %), hydrophobic surface (38.99 %), and particle size (171.45 %) of GPPI, which improved protein solubility by 8.05 %, oil holding capacity by 73.54 %, emulsifying stability index by 226.25 % and foaming capacity by 216.00 %, compared with non-sonicated GPPI. Also, the microstructure analysis revealed smooth structures, with molecular weights in the range of 13.88-67.07 kDa. Pearson analysis determined some highly significant correlations (r ≥ 0.90, p < 0.01) between some GPPI protein properties. The improvement of GPPI properties by HISound could contribute to its use as an ingredient for human consumption.
Collapse
Affiliation(s)
- Ángel Efraín Rodríguez Rivera
- Doctorado en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela Km 9, 63780 Xalisco, Nayarit, Mexico
| | - José Armando Ulloa
- Doctorado en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela Km 9, 63780 Xalisco, Nayarit, Mexico; Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, 63155 Tepic, Nayarit, Mexico.
| | - Judith Esmeralda Urías Silvas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero, 1227 Zapopan, Jalisco, Mexico
| | - José Carmen Ramírez Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Carretera a Chapalilla Km 3.5, 63700 Compostela, Nayarit, Mexico
| | - Juan Alberto Resendiz Vazquez
- Escuela de Ingeniería y Ciencia, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
| |
Collapse
|
8
|
Gao X, Li A, Zhou C. l-Arginine and l-lysine improve the emulsifying and dissolution properties of pale, soft, exudative-like chicken myofibrillar proteins by modifying their conformations. Food Chem 2025; 463:141136. [PMID: 39255701 DOI: 10.1016/j.foodchem.2024.141136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Herein, we investigated the effect and potential mechanisms of l-arginine (Arg) and l-lysine (Lys) on the emulsifying and dissolution properties of pale, soft, exudative (PSE)-like chicken myofibrillar proteins (MPs). The findings revealed that Arg/Lys effectively enhanced the emulsion activity and emulsion stability indexes of PSE-like MPs, resulting in smaller and more uniform PSE-like MP-soybean oil emulsions. Arg/Lys increased the solubility, absolute potential, hydrophobicity, fluorescence intensity, and β-sheet content and decreased the turbidity, particle size, and β-turn and random coil content of PSE-like MPs. Additionally, Arg/Lys did not significantly affect the Schiff base, carbonyl group, and total sulfhydryl contents, but caused a red shift of the band near 299 nm, indicating conformational rather than primary structural changes. Altogether, these findings indicate that Arg/Lys improves the emulsifying and dissolution performances of PSE-like MPs by adjusting conformation and contributes to a better understanding of how Arg/Lys enhances the physicochemical properties of PSE-like sausages.
Collapse
Affiliation(s)
- Xun Gao
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Axiang Li
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Cunliu Zhou
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
9
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
10
|
Liu J, Wang Y, Shi W, Meng X, Mintah BK, Dabbour M, Zhang Z, He R, Ma H. How ultrasonication treatment drives the interplay between lysinoalanine inhibition and conformational performances: A case study on alkali-extracted rice residue protein isolate. J Food Sci 2024; 89:9015-9032. [PMID: 39503304 DOI: 10.1111/1750-3841.17494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Lysinoalanine (LAL) formed during alkaline extraction of rice residue protein (RRPI), which limited its application in the food industry. In this study, the influence of ultrasonication parameters (acoustic power density, ultrasound duration, and ultrasound temperature) on the inhibition of LAL formation and conformational attributes of RRPI during alkaline extraction was elucidated. The results suggested that the acoustic power density substantially modified the chemical interaction forces between RRPI molecules. At a power density of 60 W/L, the ionic bonds (14.37%) and hydrophobic interactions (49.28%) reached the maximum, while hydrogen bonds (15.29%) and disulfide bonds (21.06%) reached the minimum. Moreover, acoustic power density at 60 W/L caused a decrease of 18.02% and 12.2% in α-helix, and β-turn, respectively, shifting toward β-sheet, random coil, with an increase of 7.31% and 36.16%. Following ultrasonication, the protein particle size distribution curve shifted in the direction of smaller particle size, forming a relatively concentrated and uniform protein distribution. Sonication power, temperature, and time decreased the absolute value of Zeta potential. Furthermore, significant destruction in microstructure was elicited by sonication, which made the structure looser and more microparticles. Pearson correlation analysis suggested that the inhibition in the levels of LAL was most influenced by the increase of sulfhydryl groups and Zeta potential, as well as the reduction of α-helix content, in which the alteration of the total sulfhydryl group content had a great impact on the Zeta potential and the free sulfhydryl group. The principal component analysis demonstrated a notable correlation between the total sulfhydryl group and both the Zeta potential and free sulfhydryl group of RRPI.
Collapse
Affiliation(s)
- Jiarui Liu
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Yang Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Wangbin Shi
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Benjamin Kumah Mintah
- Department of Agro-Processing Technology and Food Bio-Sciences, CSIR College of Science and Technology (CCST), CSIR - Food Research Institute, Accra, Ghana
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Zhaoli Zhang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Manzoor MF, Zeng XA, Waseem M, Siddique R, Javed MR, Verma DK, Ali M. Soy protein-polyphenols conjugates interaction mechanism, characterization, techno-functional and biological properties: An updated review. Food Chem 2024; 460:140571. [PMID: 39079358 DOI: 10.1016/j.foodchem.2024.140571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 09/05/2024]
Abstract
Soy protein is a promising nutritional source with improved functionality and bioactivities due to conjugation with polyphenols (PP)-the conjugates between soy protein and PP held by covalent and noncovalent bonds. Different approaches, including thermodynamics, spectroscopy, and molecular docking simulations, can demonstrate the outcomes and mechanism of these conjugates. The soy protein, PP structure, matrix properties (temperature, pH), and interaction mechanism alter the ζ-potential, secondary structure, thermal stability, and surface hydrophobicity of proteins and also improve the techno-functional properties such as gelling ability, solubility, emulsifying, and foaming properties. Soy protein-PP conjugates also reveal enhanced in vitro digestibility, anti-allergic, antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Thus, these conjugates may be employed as edible film additives, antioxidant emulsifiers, hydrogels, and nanoparticles in the food industry. Future research is needed to specify the structure-function associations of soy protein-PP conjugates that may affect their functionality and application in the food industry.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Muhammad Waseem
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
12
|
Roosta F, Hematian Sourki A. Techno-functional, physicochemical and thermal characteristics of black chickpeas aquafaba under ultrasound pre-processing. Heliyon 2024; 10:e40149. [PMID: 39641039 PMCID: PMC11617878 DOI: 10.1016/j.heliyon.2024.e40149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/04/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Aquafaba is the liquid that remains from the cooking of beans in the canning industry, generally discarded as wastewater. This research aimed to optimize ultrasound pretreatment to enhance this by-product and introduce it as a high-added value product (known as liquid gold) in the food industry. The results showed that with the increase in the sonication time and amplitude, the extraction efficiency, soluble protein content, the density, and dry matter content of black chickpeas aquafaba increased significantly (p < 0.05). The results also demonstrated that foaming ability (in short ultrasonication times) and foam stability significantly increased with higher amplitude. The results of numerical optimization showed that ultrasound pre-treatment for 30 min with an amplitude of 72 % on black chickpeas before the cooking process created the best conditions for aquafaba extraction. Under these optimized conditions, the results yielded the highest values so that extraction efficiency, protein content, density, dry matter, foaming ability, and foam stability were 212.07 %, 3546.7 mg/kg, 1.038 g/mL, 4.76 %, 243.57 %, and 44.50 % respectively. Thermogravimetric and FT-IR analysis showed that the pre-sonication process not only makes aquafaba thermally stable, but also does not cause any structural changes in its chemical components. According to the favorable physicochemical characteristics of aquafaba, this product can benefit the food industry. It can be a material with high added value, profitable for the canning industry.
Collapse
Affiliation(s)
- Fatemeh Roosta
- Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, PO Box: 74135-111, Jahrom, Iran
| | - Abdollah Hematian Sourki
- Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, PO Box: 74135-111, Jahrom, Iran
| |
Collapse
|
13
|
Wu X, Li N, Dong Z, Yin Q, Rashed MMA, Zhu L, Dan C, Li X, Chen Z, Zhai K. Ultrasonic Treatment of Soybean Protein Isolate: Unveiling the Mechanisms for Gel Functional Improvement and Application in Chiba Tofu. ACS OMEGA 2024; 9:44588-44600. [PMID: 39524674 PMCID: PMC11541443 DOI: 10.1021/acsomega.4c06952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Soybean protein isolate (SPI) cannot meet the needs of modern food production due to various shortcomings. By change of its structural characteristics, its application in the food field may be increased. This study explored the impact of ultrasonic treatment on the structural and gelation properties of the SPI dispersions. By subjecting SPI to ultrasonic treatment at 0-800 W for 10 min, it was found that this treatment significantly reduced the particle size of SPI to 196 nm and caused an increase in its solubility, surface hydrophobicity, and sulfhydryl content as well as significant changes in the protein structure. At an optimal ultrasonic power of 200 W, SPI gels demonstrated an enhanced gelling ability, strength, and water-holding capacity, forming a more uniform and compact structure. Application in Chiba tofu showed that water retention, elasticity, and sensory quality were optimized at 200 W. The findings highlight that a sonication power of 200 W significantly improves the physicochemical and structural properties of SPI, resulting in a denser and more functional gel suitable for Chiba tofu production.
Collapse
Affiliation(s)
- Xiao Wu
- School
of Biological and Food Engineering, Suzhou
University, Suzhou 234000, China
- Engineering
Research Center for Development and High Value Utilization of Genuine
Medicinal Materials in North Anhui Province, Suzhou 234000, China
| | - Na Li
- School
of Biological and Food Engineering, Suzhou
University, Suzhou 234000, China
- Anhui
Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
| | - Zeng Dong
- School
of Biological and Food Engineering, Suzhou
University, Suzhou 234000, China
- Engineering
Research Center for Development and High Value Utilization of Genuine
Medicinal Materials in North Anhui Province, Suzhou 234000, China
| | - Qin Yin
- School
of Biological and Food Engineering, Suzhou
University, Suzhou 234000, China
- Engineering
Research Center for Development and High Value Utilization of Genuine
Medicinal Materials in North Anhui Province, Suzhou 234000, China
| | - Marwan M. A. Rashed
- School
of Biological and Food Engineering, Suzhou
University, Suzhou 234000, China
- Engineering
Research Center for Development and High Value Utilization of Genuine
Medicinal Materials in North Anhui Province, Suzhou 234000, China
| | - Lixiang Zhu
- School
of Biological and Food Engineering, Suzhou
University, Suzhou 234000, China
| | - Chuanlong Dan
- School
of Biological and Food Engineering, Suzhou
University, Suzhou 234000, China
| | - Xinyue Li
- School
of Biological and Food Engineering, Suzhou
University, Suzhou 234000, China
| | - Ziping Chen
- Anhui
Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
- Anhui
Province Product Quality Supervision and Inspection Institute, Hefei 230041, China
| | - Kefeng Zhai
- School
of Biological and Food Engineering, Suzhou
University, Suzhou 234000, China
- Engineering
Research Center for Development and High Value Utilization of Genuine
Medicinal Materials in North Anhui Province, Suzhou 234000, China
| |
Collapse
|
14
|
Geng Q, Zhou W, Zhang Y, Wu Z, Chen H. Effect of pH-Shift Treatment on IgE-Binding Capacity and Conformational Structures of Peanut Protein. Foods 2024; 13:3467. [PMID: 39517251 PMCID: PMC11545115 DOI: 10.3390/foods13213467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Hypoallergenic processing is an area worthy of continued exploration. In the treatment of the peanut protein (PP), pH shift was applied by acidic (pH 1.0-4.0) and alkaline (pH 9.0-12.0) treatment, after which the pH was adjusted to 7.0. Following pH-shift treatment, PP showed a larger particle size than in neutral solutions. SDS-PAGE, CD analysis, intrinsic fluorescence, UV spectra, and surface hydrophobicity indicated the protein conformation was unfolded with the exposure of more buried hydrophobic residues. Additionally, the IgE-binding capacity of PP decreased after pH-shift treatment on both sides. Label-free LC-MS/MS results demonstrated that the pH-shift treatment induced the structural changes on allergens, which altered the abundance of peptides after tryptic digestion. Less linear IgE-binding epitopes were detected in PP with pH-shift treatment. Our results suggested the pH-shift treatment is a promising alternative approach in the peanut hypoallergenic processing. This study also provides a theoretical basis for the development of hypoallergenic food processing.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenlong Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
15
|
Duan X, Subbiah V, Agar OT, Barrow CJ, Ashokkumar M, Dunshea FR, Suleria HAR. Optimizing extraction methods by a comprehensive experimental approach and characterizing polyphenol compositions of Ecklonia radiata. Food Chem 2024; 455:139926. [PMID: 38833868 DOI: 10.1016/j.foodchem.2024.139926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Brown seaweed Ecklonia radiata harbors valuable polyphenols, notably phlorotannins, prized for their health benefits. This study optimized phlorotannin extraction via conventional solvent extraction and ultrasound-assisted extraction methods, utilizing variable concentrations of ethanol. Employing fractional factorial designs, key variables were identified. Steepest ascent/descent method and central composite rotatable designs refined optimal conditions, enhancing phlorotannin and polyphenol yields, and antioxidant capacities. Under optimized conditions, phlorotannin contents reached 2.366 ± 0.01 and 2.596 ± 0.04 PGE mg/g, total polyphenol contents peaked at 10.223 ± 0.03 and 10.836 ± 0.02 GAE mg/g. Robust antioxidant activity was observed: DPPH and OH radical scavenging capacities measured 27.891 ± 0.06 and 17.441 ± 0.08 TE mg/g, and 37.498 ± 1.12 and 49.391 ± 0.82 TE mg/g, respectively. Reducing power capacities surged to 9.016 ± 0.02 and 28.110 ± 0.10 TE mg/g. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) analyses revealed enriched antioxidant compounds. Variations in polyphenol profiles were noted, potentially influencing antioxidant capacity nuances. This study illuminated the potential of E. radiata potential as a polyphenol source and offers optimized extraction methods poised to benefit various industries.
Collapse
Affiliation(s)
- Xinyu Duan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vigasini Subbiah
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Osman Tuncay Agar
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
| | | | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia.
| |
Collapse
|
16
|
Jiang SS, Li Q, Wang T, Huang YT, Guo YL, Meng XR. Utilizing ultrasound combined with quinoa protein to improve the texture and rheological properties of Chinese style reduced-salt pork meatballs (lion's head). ULTRASONICS SONOCHEMISTRY 2024; 109:106997. [PMID: 39032370 PMCID: PMC11325070 DOI: 10.1016/j.ultsonch.2024.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
This study aimed to investigate the effect of ultrasound treatment times (30 min and 60 min) and levels of quinoa protein (QPE) addition (1 % and 2 %) on the quality of Chinese style reduced-salt pork meatballs, commonly known as lion's head. The water-holding capacity (WHC), gel and rheology characteristics, and protein conformation were assessed. The results indicated that extending the ultrasound treatment time and elevating the quinoa protein content caused conspicuous improvements (P<0.05) in the cooking yield, WHC, textural characteristics, color difference, and salt-soluble protein (SSP) solubility of the meatballs. Furthermore, the structural alterations induced by the ultrasound treatment combined with quinoa protein addition included enhancement in β-sheet, β-turn, and random coil structure contents, along with a red-shift in the intrinsic fluorescence peak. Additionally, the storage (G') and loss modulus (G'') of the raw meatballs significantly enhanced (P<0.05), indicating a denser gel structure in parallel with the microstructure. In conclusion, the findings demonstrated that ultrasound combined with quinoa protein enhanced the WHC and texture properties of Chinese style reduced-salt pork meatballs by improving SSP solubility.
Collapse
Affiliation(s)
- Song-Song Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu 225127, PR China.
| | - Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yu-Tong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yun-Long Guo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiang-Ren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu 225127, PR China.
| |
Collapse
|
17
|
Gao Q, Yang YQ, Nie HN, Wang BQ, Peng X, Wang N, Li JK, Rao JJ, Xue YL. Investigating the impact of ultrasound on the structural, physicochemical, and emulsifying characteristics of Dioscorin: Insights from experimental data and molecular dynamics simulation. Food Chem 2024; 453:139581. [PMID: 38754354 DOI: 10.1016/j.foodchem.2024.139581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
This study investigated the impact of ultrasound treatment on dioscorin, the primary storage protein found in yam tubers. Three key factors, namely ultrasound power, duration, and frequency, were focused on. The research revealed that ultrasound-induced cavitation effects disrupted non-covalent bonds, resulting in a reduction in α-helix and β-sheet contents, decreased thermal stability, and a decrease in the apparent hydrodynamic diameter (Dh) of dioscorin. Additionally, previously hidden amino acid groups within the molecule became exposed on its surface, resulting in increased surface hydrophobicity (Ho) and zeta-potential. Under specific ultrasound conditions (200 W, 25 kHz, 30 min), Dh decreased while Ho increased, facilitating the adsorption of dioscorin molecules onto the oil-water interface. Molecular dynamics (MD) simulations showed that at lower frequencies and pressures, the structural flexibility of dioscorin's main chain atoms increased, leading to more significant fluctuations between amino acid residues. This transformation improved dioscorin's emulsifying properties and its oil-water interface affinity.
Collapse
Affiliation(s)
- Qi Gao
- College of Light Industry, Liaoning University, Shenyang 110036, China; Department of Regional Economic Development, Party School of Liaoning Provincial Party Committee, Shenyang 110161, China
| | - Yu-Qi Yang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Hao-Nan Nie
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Bing-Qing Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Xue Peng
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Ning Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Jiang-Kuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China
| | - Jia-Jia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - You-Lin Xue
- College of Light Industry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
18
|
Noh E, Lee KG. Effects of ultrasound on the structural, physicochemical, and emulsifying properties of aquafaba extracted from various legumes. Food Chem 2024; 451:139438. [PMID: 38678652 DOI: 10.1016/j.foodchem.2024.139438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
This study investigated the effect of ultrasound (20-60 min, 40 kHz, 280 W) on the structural, physicochemical, and emulsifying properties of aquafaba extracted from various legumes (chickpea [CH], yellow soybean [YSB], black soybean [BSB], small black bean [SBB]). The hydrophobic amino acids and protein secondary structures (α-helix, random coil) significantly increased with sonication time (p < 0.05). The particle size of aquafaba was reduced by ultrasound (p < 0.05). A total of 27 volatile compounds were identified. Most volatiles increased with sonication time, and beany flavor was lowest in CH and SBB. The EAI, ESI, adsorbed proteins, and zeta-potential increased, while emulsion droplet size decreased in all legumes by ultrasound. The overall emulsifying properties were the highest in SBB sonicated for 40 min. This study discusses the applicability of ultrasound to aquafaba and provides insights into the functional properties and potential of aquafaba as a plant-based natural emulsifier.
Collapse
Affiliation(s)
- Eunjeong Noh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
19
|
Liao H, Jiang T, Chen L, Wang G, Shen Q, Liu X, Ding W, Zhu L. Stability and 3D-printing performance of high-internal-phase emulsions based on ultrafine soybean meal particles. Food Chem 2024; 449:139172. [PMID: 38574522 DOI: 10.1016/j.foodchem.2024.139172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
There are numerous studies on the application of soybean whey protein in three-dimensional (3D) printing. In this study, the effects of soybean meal particles (5%, 6%, 7%, 8%, 9%, and 10%) and oil-phase concentrations (70%, 72%, 74%, 76%, and 78%) on the stability and 3D-printing performance of a soybean-meal-based high-internal-phase emulsion were investigated. The results showed that the particle size of the emulsion decreased with increasing soybean meal particle concentration, and that increasing the concentration of the oil phase improved the viscoelasticity of the emulsion. Rheological tests further showed that the higher storage modulus of the emulsion indicated better support and stability. The emulsion with 8% soybean meal-particles and 76% oil-phase concentration exhibited the best printing effect. This study provides an effective solution for the preparation of stabilized high-internal-phase emulsions of soybean meal particles suitable for 3D printing.
Collapse
Affiliation(s)
- Haiqiang Liao
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China
| | - Tianshu Jiang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lei Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China
| | - Guozhen Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China
| | - Qian Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China
| | - Xiuying Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China
| | - Wenping Ding
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China
| | - Lijie Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China.
| |
Collapse
|
20
|
Wang F, Li J, Qi Q, Mao Y, Yan X, Li X, Mu Y, Zhang H, Zhao C, Liu J. Structural, physicochemical and digestive properties of non-covalent and covalent complexes of ultrasound treated soybean protein isolate with soybean isoflavone. Food Res Int 2024; 189:114571. [PMID: 38876583 DOI: 10.1016/j.foodres.2024.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
The non-covalent and covalent complexes of ultrasound treated soybean protein isolate (SPI) and soybean isoflavone (SI) were prepared, and the structure, physicochemical properties and in vitro digestion characteristics of SPI-SI complexes were investigated. Ultrasonic treatment increased the non-covalent and covalent binding degree of SPI with SI, and the 240 W ultrasonic covalent complexes had higher binding efficiency. Appropriate ultrasonic treatment caused more uniform particle size distribution, lower average particle size and higher surface charge, which enhanced the free sulfhydryl groups and surface hydrophobicity, thus improving the stability, solubility and emulsifying properties of complexes. Ultrasonic treatment resulted in more disordered secondary structure, tighter tertiary conformation, higher thermal stability and stronger SPI-SI covalent interactions of complexes. These structural modifications of particles had important effects on the chemical stability and gastrointestinal digestion fate of SI. The ultrasonic covalent complexation had a greater resistance to heat-induced chemical degradation of SI and improved its chemical stability. Furthermore, the 240 W ultrasonic covalent complexes showed lower protein digestibility during digestion, and provided stronger protection for SI, which improved the digestion stability and antioxidant activity. Therefore, appropriate ultrasound promoted SPI-SI interactions to improve the stability and functional properties of complexes, which provided a theoretical basis for the development of new complexes and their applications in functional foods.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jinying Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Qi Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yuxuan Mao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xiaopian Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xinqi Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yanfei Mu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
21
|
Ravindran N, Kumar Singh S, Singha P. A comprehensive review on the recent trends in extractions, pretreatments and modifications of plant-based proteins. Food Res Int 2024; 190:114575. [PMID: 38945599 DOI: 10.1016/j.foodres.2024.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Plant-based proteins offer sustainable and nutritious alternatives to animal proteins with their techno-functional attributes influencing product quality and designer food development. Due to the inherent complexities of plant proteins, proper extraction and modifications are vital for their effective utilization. This review highlights the emerging sources of plant-based proteins, and the recent statistics of the techniques employed for pretreatment, extraction, and modifications. The pretreatment, extraction and modification approach to modify plant proteins have been classified, addressed, and the recent applications of such methodologies are duly indicated. Furthermore, this study furnishes novel perspectives regarding the potential impacts of emerging technologies on the intricate dynamics of plant proteins. A thorough review of 100 articles (2018-2024) shows the researchers' keen interest in investigating novel plant proteins and how they can be used; seeds being the main source for protein extraction, followed by legumes. Use of by-products as a protein source is increasing rapidly, which is noteworthy. Protein studies still lack knowledge on protein fraction, antinutrients, and pretreatments. The use of physical methods and their combination with other techniques are increasing for effective and environmentally friendly extraction and modification of plant proteins. Several studies explore the effect of protein changes on their function and nutrition, especially with a goal of replacing ingredients with plant proteins that have improved or enhanced qualities. However, the next step is to investigate the sophisticated modification methods for deeper insights into food safety and toxicity.
Collapse
Affiliation(s)
- Nevetha Ravindran
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| |
Collapse
|
22
|
Dnyaneshwar Patil N, Bains A, Kaur S, Yadav R, Ali N, Patil S, Goksen G, Chawla P. Influence of dual succinylation and ultrasonication modification on the amino acid content, structural and functional properties of Chickpea (Cicer arietinum L.) protein concentrate. Food Chem 2024; 445:138671. [PMID: 38367556 DOI: 10.1016/j.foodchem.2024.138671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Chickpea protein, a valuable plant-based source, offers versatile applications, yet the impact of modifications like succinylation and ultrasonication on its properties remains unclear. This study explored dual succinylation and ultrasonication modification to enhance its functionality and application. Modified chickpea protein with a degree of succinylation of 96.75 %, showed enhanced water holding capacity 39.83 %, oil holding capacity 54.02 %, solubility 7.20 %, and emulsifying capacity 23.17 %, compared to native protein. Despite reduced amino acid content (64.50 %), particularly lysine, succinylation increased sulfhydryl by 1.74 %, reducing hydrophobicity (Ho) by 41.87 % and causing structural changes. Ultrasonication further reduced particle size by 82.57 % and increased zeta potential and amino acid content (57.47 %). The dual-modified protein exhibited a non-significant increase in antimicrobial activity against Staphylococcus aureus (25.93 ± 1.36 mm) compared to the native protein (25.28 ± 1.05 mm). In conclusion, succinylation combined with ultrasonication offers a promising strategy to enhance chickpea protein's physicochemical properties for diverse applications.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara Punjab 144411, India
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children's Hospital, 7019 Yi Tian Road, Shenzhen 510038, China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara Punjab 144411, India.
| |
Collapse
|
23
|
Xu J, Yan S, Xu J, Qi B. Ultrasound-assisted modification of soybean protein isolate with L-histidine: Relationship between structure and function. ULTRASONICS SONOCHEMISTRY 2024; 107:106934. [PMID: 38834001 PMCID: PMC11179065 DOI: 10.1016/j.ultsonch.2024.106934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Herein, the effects of ultrasound-assisted L-histidine (L-His) on the physicochemical properties and conformation of soybean protein isolate (SPI) were investigated. Particle size, zeta potential, turbidity, and solubility were used to evaluate protein aggregation, and the relationship between structural and functional changes of the proteins was characterized using spectral analysis, surface hydrophobicity, emulsification, and antioxidant properties. After ultrasound-assisted L-His treatment, SPI exhibited a smaller particle size, higher solubility, and more homogeneous micromorphology owing to the decrease in alpha-helix content and subsequent increases in zeta potential and active sulfhydryl content. In addition, spectral analysis showed that L-His and SPI could form a complex, which changed the microenvironment of the amino acid residues in SPI, thus improving its emulsification and antioxidant properties. At the concentration of L-His was 0.3 % w/w, the nanocomplex had a smaller particle size (140.03 nm), higher ζ-potential (-23.63 mV), and higher emulsification stability (22.48 min).
Collapse
Affiliation(s)
- Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
24
|
Guo X, Wang Q, Yang Q, Gong Z, Wu Y, Liu X. Effects of molecular structure and charge state on the foaming and emulsifying properties of Spirulina protein isolates. Food Res Int 2024; 187:114407. [PMID: 38763661 DOI: 10.1016/j.foodres.2024.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Microalgae protein holds great potential for various applications in the food industry. However, the current knowledge regarding microalgae protein remains limited, with little information available on its functional properties. Furthermore, the relationship between its molecular structure and functional properties is not well defined, which limits its application in food processing. This study aims to addresses these gaps though an analysis of the emulsibility and foamability of various soluble protein isolates from two species of Spirulina (Arthospira platensis and Spirulina platensis), and the functional properties of Spirulina protein isolates in relation to its molecular structure and charge state. Results revealed that the degree of cross-linking and aggregation or folding and curling of protein tertiary structures was higher in the highly soluble Spirulina protein isolates (AP50% and SP50%) than in the low-solubility isolates (AP30% and SP30%). The foaming capacity (FC) of AP50% and SP50% was found to be lower than that of AP30% and SP30%. Spirulina protein isolates can stably adsorb at the air-water interface for at least 20 min and possessed good interfacial activity. A high pH value was found to promote cross-linking of protein particles at the oil-water interface, thereby reinforcing the internal network structure of emulsions and increasing viscosity. These findings provide preliminary insights for potential applications of Spirulina protein isolates in food production, especially towards quality improvement.
Collapse
Affiliation(s)
- Xiao Guo
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Qian Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - ZhiYong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, People's Republic of China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China.
| |
Collapse
|
25
|
Chen L, Zhang SB, Zhang SY. Effects of pH-shifting and ultrasound on the structural and emulsifying properties of peanut globulin fractions. Food Chem X 2024; 22:101390. [PMID: 38665630 PMCID: PMC11043870 DOI: 10.1016/j.fochx.2024.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This work investigated and compared the structural and emulsifying properties of peanut globulin fractions (conarachin and arachin) after ultrasonication (US) and pH2.5-shifting treatments, singly and in combination. Results showed that pH2.5-shifting was more effective in degrading peanut protein subunits and unfolding their structures than US treatment. Conarachin tended to aggregate during US and pH2.5-shifting treatments possibly due to higher free sulfhydryl content, while high molecular weight arachin tended to disaggregate during these treatments. pH2.5-shifting or US+pH2.5-shifting treatments significantly increased the surface hydrophobicity of conarachin (from 72 to 314) and arachin (from 336 to 888), which may be responsible for the enhancement of protein emulsifying activity. All treatments significantly improved the physical stability of arachin-stabilized emulsions with higher absolute potentials but lowered that of conarachin-stabilized emulsions. However, pH2.5-shifting or US+pH2.5-shifting treatments could improve the stability of conarachin-stabilized emulsions in the presence of salts.
Collapse
Affiliation(s)
- Lin Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Shao-Bing Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Shu-Yan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
26
|
Shah U, Bhattarai R, Al-Salami H, Blanchard C, Johnson SK. Advances in Extraction, Structure, and Physiochemical Properties of Sorghum Kafirin for Biomaterial Applications: A Review. J Funct Biomater 2024; 15:172. [PMID: 39057294 PMCID: PMC11278494 DOI: 10.3390/jfb15070172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 07/28/2024] Open
Abstract
Kafirin is an endosperm-specific hydrophobic protein found in sorghum grain and the waste by-product from sorghum biorefineries known as sorghum dried distillers' grain with solubles (DDGS). Because of kafirin's poor nutritional profile (negative nitrogen balance, slow digestibility, and lack of some essential amino acids), its direct human use as a food is restricted. Nevertheless, increased focus on biofuel production from sorghum grain has triggered a new wave of research to use sorghum DDGS kafirin as a food-grade protein for biomaterials with diverse applications. These applications result from kafirin's unique chemical nature: high hydrophobicity, evaporation-induced self-assembling capacity, elongated conformation, water insolubility, and low digestibility. Aqueous alcohol mixtures have been widely used for the extraction of kafirin. The composition, structure, extraction methodologies, and physiochemical properties of kafirin, emphasising its biomaterial functionality, are discussed in detail in this review. The literature survey reveals an in-depth understanding of extraction methodologies and their impact on structure functionality, which could assist in formulating materials of kafirin at a commercial scale. Ongoing research continues to explore the potential of kafirin and optimise its utilisation as a functional biomaterial, highlighting its valuable structural and physicochemical properties. Further studies should focus on covering gaps in the research as some of the current structural understanding comes from data on zein protein from maize.
Collapse
Affiliation(s)
- Umar Shah
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6845, Australia; (U.S.)
| | - Rewati Bhattarai
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6845, Australia; (U.S.)
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| | - Christopher Blanchard
- ARC ITTC for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Stuart K. Johnson
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6845, Australia; (U.S.)
| |
Collapse
|
27
|
Miao Q, He Y, Sun H, Olajide TM, Yang M, Han B, Liao X, Huang J. Effects of preheat treatment and syringic acid modification on the structure, functional properties, and stability of black soybean protein isolate. J Food Sci 2024; 89:3577-3590. [PMID: 38720591 DOI: 10.1111/1750-3841.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/14/2024]
Abstract
This study investigated preheated (25-100°C) black soybean protein isolate (BSPI) conjugated with syringic acid (SA) (25 and 50 µmol/g protein) under alkaline conditions, focusing on the structure, functional properties, and storage stability. The results revealed that the SA binding equivalent and binding rate on BSPI increased continuously as the preheat temperature increased. Additionally, preheating positively impacted the surface hydrophobicity (H0) of BSPI, with further enhancement observed upon SA binding. Preheating and SA binding altered the secondary and tertiary structure of BSPI, resulting in protein unfolding and increased molecular flexibility. The improvement in BSPI functional properties was closely associated with both preheating temperature and SA binding. Specifically, preheating decreased the solubility of BSPI but enhanced the emulsifying activity index (EAI) and foaming capacity (FC) of BSPI. Conversely, SA binding increased the solubility of BSPI with an accompanying increase in EAI, FC, foaming stability, and antioxidant activity. Notably, the BSPI100-SA50 exhibited the most significant improvement in functional properties, particularly in solubility, emulsifying, and foaming attributes. Moreover, the BSPI-SA conjugates demonstrated good stability of SA during storage, which positively correlated with the preheating temperature. This study proposes a novel BSPI-SA conjugate with enhanced essential functional properties, underscoring the potential of preheated BSPI-SA conjugates to improve SA storage stability. PRACTICAL APPLICATION: Preheated BSPI-SA conjugates can be used as functional ingredients in food or health products. In addition, preheated BSPI shows potential as a candidate for encapsulating and delivering hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Qianqian Miao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yiqing He
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Haiwen Sun
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tosin Michael Olajide
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Shanghai, China
| | - Minxin Yang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Bingyao Han
- Residential College, Shanghai University, Shanghai, China
| | - Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
28
|
Hussain Badar I, Wang Z, Chen Q, Liu Q, Ma J, Liu H, Kong B. Ultrasonic enhancement of structural and emulsifying properties of heat-treated soy protein isolate nanoparticles to fabricate flaxseed-derived diglyceride-based pickering emulsions. Food Chem 2024; 442:138469. [PMID: 38266416 DOI: 10.1016/j.foodchem.2024.138469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Flaxseed-derived diglyceride (DAG)-based Pickering emulsions were fabricated using soy protein isolate (SPI) nanoparticles as stabilizer. The SPI nanoparticles were prepared under the combined action of heating and ultrasound treatment. The SPI nanoparticles exposed to 600 W power exhibited the smallest particle size (133.36 nm) and zeta potential (-34.77 mV). Ultrasonic treatment did not significantly impact the polypeptide chain's primary structure but induced changes in the secondary structure. The Pickering emulsions stabilized with ultrasound-treated SPI nanoparticles showed smaller particle size, lower zeta potential, and improved emulsifying properties. Notably, at 450 W power, these emulsions showed a higher solid-liquid balance, reduced mean square displacement, backscattering fluctuations, and turbiscan stability index. Besides, they displayed a more compact microstructure with smaller droplets. In conclusion, SPI subjected to heating and 450 W ultrasound power resulted in the fabrication of DAG-based Pickering emulsions with enhanced microstructure and stability.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ziyi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
29
|
Cheng T, Zhang G, Sun F, Guo Y, Ramakrishna R, Zhou L, Guo Z, Wang Z. Study on stabilized mechanism of high internal phase Pickering emulsions based on commercial yeast proteins: Modulating the characteristics of Pickering particle via sonication. ULTRASONICS SONOCHEMISTRY 2024; 104:106843. [PMID: 38471387 PMCID: PMC10944291 DOI: 10.1016/j.ultsonch.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
The primary significance of this work is that the commercial yeast proteins particles were successfully used to characterize the high internal phase Pickering emulsions (HIPPEs). The different sonication time (0,3,7,11,15 min) was used to modulate the structure and interface characteristics of yeast proteins (YPs) that as Pickering particles. Immediately afterward, the influence of YPs particles prepared at different sonication time on the rheological behavior and coalescence mechanism of HIPPEs was investigated. The results indicate that the YPs sonicated for 7 min exhibited a more relaxed molecular structures and conformation, the smallest particle size, the highest H0 and optimal amphiphilicity (the three-phase contact (θ) was 88.91°). The transition from extended to compact conformations of YPs occurred when the sonication time exceeded 7 min, resulting in an augmentation of size of YPs particles, a reduction in surface hydrophobicity (H0), and an elevation in hydrophilicity. The HIPPEs stabilized by YPs particles sonicated for 7 min exhibited the highest adsorption interface protein percentage and a more homogeneous three-dimensional (3D) protein network, resulting in the smallest droplet size and the highest storage (G'). The HIPPEs sample that stabilized by YPs particles sonicated for 15 min showed the lowest adsorption protein percentage. This caused a reduction in the thickness of its interface protein layer and an enlargement in the droplet diameter (D [3,2]). It was prone to droplet coalescence according to the equation used to evaluate the coalescence probability of droplets (Eq (2)). And the non-adsorbed YPs particles form larger aggregation structures in the continuous phase and act as "structural agents" in 3D protein network. Therefore, mechanistically, the interface protein layer formed by YPs particles sonicated 7 min contributed more to HIPPEs stability. Whereas the "structural agents" contributed more to HIPPEs stability when the sonication time exceeded 7 min. The present results shed important new light on the application of commercial YPs in the functional food fields, acting as an available and effective alternative protein.
Collapse
Affiliation(s)
- Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guofang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | | | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Grain Industry Technology Innovation Center, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
30
|
Bai R, Li Z, Zhang L, Jiang S, Yu J, Madina A, Ye X, Yang C, Chen Y, Wang S, Ding W. Electron beam irradiation induced aggregation, structural and functional changes of soybean 11S globulin. Int J Biol Macromol 2024; 260:129585. [PMID: 38246473 DOI: 10.1016/j.ijbiomac.2024.129585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
This study investigated the effects of different irradiation doses of an electron beam (e-beam) (0, 2, 4, 6, 8, and 10 kGy) on the structure, emulsification, foaming, and rheological and gel properties of soybean 11S globulin. The irradiation treatment at 4 and 6 kGy significantly increased the solubility, surface hydrophobicity, disulfide bonding, and ζ-potential of 11S globulin, decreased the particle size of the protein solution, and effectively improved the emulsifying activity and foaming stability of the protein solution. Moreover, irradiation induced moderate cross-linking and aggregation of the proteins, thereby increasing the apparent viscosity and shear stress of the protein solution. In addition, the low-field NMR and microstructure analysis results revealed that protein gels formed a dense and homogeneous three-dimensional mesh structure after irradiation (6 kGy), along with increased content of bound water (T2b) and water not readily flowable (T21) and a decrease content of free water (T22). Overall, our results confirmed that e-beam irradiation could significantly improve the physicochemical properties of soybean 11S globulin. Our study thus provides a new technical means for the application of electron beam irradiation technology toward protein modification and broadens the high-value utilization of soybean 11S globulin in the food processing industry.
Collapse
Affiliation(s)
- Rong Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziwei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technology Co., Ltd, Yangling, Shaanxi 712100, China
| | - Aitmagambetova Madina
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunjie Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
31
|
Wang N, Wang W, Zhang H, Liu C, Wang L, Zhang N, Yu D. Self-assembly embedding of curcumin by alkylated rice bran protein. Int J Biol Macromol 2024; 262:129627. [PMID: 38266858 DOI: 10.1016/j.ijbiomac.2024.129627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Lysine-rich rice bran protein (RBP) can be used as raw material for alkylation modification to improve the self-assembly performance of protein. The results of 1H NMR, degree of alkylation, and DSC analysis showed that the alkyl chain was successfully attached to the RBP. The surface hydrophobicity and absolute ζ-potential increased. The three-dimensional structure of the alkylated RBP (ARBP) become more porous and ARBP-2 was selected as the material for embedding curcumin. The XRD results revealed that curcumin induced self-aggregation of ARBP-2 and the inclusion of curcumin was attained. The maximum encapsulation efficiency of curcumin was 82.67 % and the maximum loading amount was 171.37 g/100 g RBP. The results of atomic force microscopy (AFM), particle size, and polydispersity index (PDI) analyses revealed that the particles in the system were aggregated after curcumin was added. Curcumin was well protected by encapsulation in the self-assembled particles. Thus, this study provides a new strategy for the embedding and delivery of curcumin.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Weining Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Hairong Zhang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Chang Liu
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Liqi Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China; School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Na Zhang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
32
|
Li G, Tao R, Sun Y, Wang L, Li Y, Fan B, Wang F. Enhancing the Gelation Behavior of Transglutaminase-Induced Soy Protein Isolate(SPI) through Ultrasound-Assisted Extraction. Foods 2024; 13:738. [PMID: 38472850 DOI: 10.3390/foods13050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Gelation, as an important functional property of soy protein isolate (SPI), can be improved by some green technologies in food manufacturing, including ultrasound, ultrahigh pressure and microwave treatments. This work investigated the effect of an alkaline solubilisation step in SPI extraction combined with sonication on protein properties. The TGase-induced gel of the modified SPI was prepared to explore the effect of ultrasound on gel properties, including structures, strength, water-holding capacity and rheological properties. Additionally, the differences between traditional ultrasound modification of SPI and current modification methods were analyzed. The results showed that the ultrasonication-assisted extraction method could result in a significant increase in extraction rate from 24.68% to 42.25%. Moreover, ultrasound-assisted modification of SPI gels induced with transglutaminase (TGase) exhibited significant improvement in mechanical properties, such as texture, water-holding capacity and rheological properties, In particular, SPI extracted at 400 W ultrasound intensity for 180 s showed the best overall performance in terms of gel properties. Our method efficiently uniformizes gel structure, enhancing mechanical properties compared to conventional ultrasound methods, which reduced energy consumption and costs. These findings provide insights into the production of high-gelation SPI in food manufacturing.
Collapse
Affiliation(s)
- Gaolin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Tao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yufeng Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yurui Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
33
|
Luo S, Fu Y, Ye J, Liu C. Encapsulation of rutin in protein nanoparticles by pH-driven method: impact of rutin solubility and mechanisms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1804-1812. [PMID: 37867464 DOI: 10.1002/jsfa.13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND The use of rutin in the food industry is limited by its poor solubility. Encapsulation can be used as an effective way to improve polyphenol solubility. Proteins with high safety, biocompatibility and multiple binding sites are known as the most promising encapsulating carriers. Therefore, the improvement of rutin solubility by pH-driven encapsulation of rutin in soy protein isolate (SPI) nanoparticles, as well as the form of rutin after encapsulation and rutin-protein binding index were investigated. RESULTS SPI had a high encapsulation efficiency (87.5%) and loading amount (10.6%) for rutin. When the mass ratio of protein to rutin was 5:1, the highest concentration of rutin in solution was 3.27 g L-1 , which was a 51.57-fold increase compared to the original rutin. At this situation, rutin transformed from crystalline to amorphous form. During the formation of nanoparticles, SPI was in a dynamic change of unfolding and refolding. Rutin deprotonated in alkaline conditions increasing its solubility and bound to protein to form nanoparticles during the process of returning to neutral. Hydrophobic interactions and hydrogen bonding promoted the formation of the nanoparticles and there were at least 1-2 binding sites between rutin and each SPI molecule. CONCLUSION The results suggested that encapsulation of rutin in protein nanoparticles can effectively increase the solubility of rutin. This study may provide important information for the effective utilization of polyphenol functional foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yuteng Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Hu H, Feng Y, Zheng K, Shi K, Yang Y, Yang C, Wang J. The effect of subzero temperatures on the properties and structure of soy protein isolate emulsions. Food Chem 2024; 433:136829. [PMID: 37742511 DOI: 10.1016/j.foodchem.2023.136829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 09/26/2023]
Abstract
Different freezing temperatures (-5, -20, -40 and -80 ℃) could change soy protein isolate (SPI) structure and emulsion properties. After freezing at -5 ℃ and -20 ℃, the structure of the SPI loosened, the fluorescence intensity was red shifted, and the proportion of Phe, Tyr and Trp exposed increased. With decreasing temperature, the surface hydrophobicity (H0 × 100), the number of sulfhydryl groups and the number of disulfide bonds all rose, then fell (-40 ℃), and rose again (-80 ℃). The β-sheet content in the protein secondary structure increased from 32.71% (control) to 50.66% (-40 ℃) and then decreased to 37.05% (-80 ℃), while the β-turn and random coil contents showed the opposite pattern, which also confirmed aggregation. The emulsification performance of SPI after freezing treatment was decreased. The results of this study provide theoretical support for future production of frozen foods with added SPI.
Collapse
Affiliation(s)
- Haiyue Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yongli Feng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kaiwen Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kexin Shi
- Tangshan Food and Drug Comprehensive Inspection and Test Center, China
| | - Yutong Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jianming Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
35
|
Huang L, Chen Y, Ding S, Qu L, He R, Dai C. Emulsification and encapsulation properties of conjugates formed between whey protein isolate and carboxymethyl cellulose under acidic conditions. Food Chem 2024; 430:136995. [PMID: 37544152 DOI: 10.1016/j.foodchem.2023.136995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
In this study, carboxymethyl cellulose (CMC) was used to interact with whey protein isolate (WPI) to prepare conjugates as emulsifiers and embedding agents, which can be used under acidic conditions. Firstly, the effects of ratios and pH values on the formation of WPI-CMC conjugates were investigated. The turbidity and particle size of WPI were reduced in the presence of CMC at pH 4.6 (near the isoelectric point). Then the characterization of physicochemical properties indicated that electrostatic interactions played a major role in the formation of WPI-CMC conjugates, thereby changing the structure and function of conjugates. CMC and WPI reached the optimal aggregation state at pH 4.6 and a ratio of 4:1. The conjugates exhibited excellent emulsifying activity and stability for the oil-in-water emulsions. WPI-CMC conjugates also could provide protection to allicin by preventing degradation under environmental stresses, while maintaining its antioxidant activity.
Collapse
Affiliation(s)
- Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yu Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Shuang Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Lulu Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
36
|
Shao J, Yang J, Jin W, Huang F, Xiao J, Chen Y, Chen H, Geng F, Peng D, Deng Q. Regulation of interfacial mechanics of soy protein via co-extraction with flaxseed protein for efficient fabrication of foams and emulsions. Food Res Int 2024; 175:113673. [PMID: 38129022 DOI: 10.1016/j.foodres.2023.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Enrichment of plant proteins with functionality is of great importance for expanding their application in food formulations. This study proposed an innovation to co-enrich soy protein and flaxseed protein to act as efficient interfacial stabilizers for generating foams and emulsions. The structure, interfacial properties, and functionalities of the soy protein-flaxseed protein natural nanoparticles (SFNPs) obtained by alkali extraction-isoelectric precipitation (AE) and salt extraction-dialysis (SE) methods were investigated. Overall, the foamability of AE-SFNPs (194.67 %) was 1.45-fold that of SE-SFNPs, due to their more flexible structure, smaller particle size, and suitable surface wettability, promoting diffusion and adsorption at the air-water interface. AE-SFNPs showed higher emulsion stability (140.89 min), probably because the adsorbed AE-SFNPs with smaller size displayed soft particle-like properties and stronger interfacial flexibility, and therefore could densely and evenly arrange at the interface, facilitating the formation of a stiff and solid-like interfacial layer, beneficial for more stable emulsion formation. The findings may innovatively expand the applications of SFNPs as food ingredients.
Collapse
Affiliation(s)
- Jiaqi Shao
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Jing Yang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Fenghong Huang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Hongjian Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China.
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China.
| |
Collapse
|
37
|
Zhang B, Qi L, Xie X, Shen Y, Li J, Zhang B, Zhu H. Emulsifying properties of O/W emulsion stabilized by soy protein isolate and γ-polyglutamic acid electrostatic complex. J Food Sci 2024; 89:174-185. [PMID: 38051023 DOI: 10.1111/1750-3841.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
In order to improve the emulsifying properties of soy protein around isoelectric point, soy protein isolate (SPI) and γ-polyglutamic acid (γ-PGA) complexes were prepared by electrostatic interaction. The formation of SPI-γ-PGA electrostatic complex and emulsifying properties were investigated by monitoring turbidity, zeta potential, intrinsic fluorophores, emulsion characterization, and microstructure observation. The results showed that the formation of SPI-γ-PGA electrostatic complex was identified through turbidimetric analysis and zeta-potential measurement. Intrinsic fluorescence spectrum indicated internal structure changes of electrostatic complexes. Furthermore, SPI-γ-PGA complex-stabilized emulsions showed better stability with small droplet sizes and slow growth as well as the uniform microstructure around the isoelectric point (pH 4.0-5.0) than SPI-formed emulsions. Under the different thermal treatments and ionic strengths, emulsions stabilized by SPI-γ-PGA-soluble complex resulted in improved emulsion stability to environmental stresses. This may be attributed to the increased steric repulsion and electrostatic repulsion by SPI-γ-PGA complexes at oil-water interfaces. The findings derived from this research would provide theoretical reference about SPI-γ-PGA electrostatic complex that can be applied in acid beverages and developed a novel plant-based sustainable stabilizer for emulsions. PRACTICAL APPLICATION: The electrostatic interaction between SPI and γ-PGA improved the emulsifying characteristics of soy protein around isoelectric point. The results derived from this research would expand applications of SPI-γ-PGA-soluble electrostatic complex that can be applied in acid beverages, as well as a novel plant-based sustainable stabilizer for emulsions.
Collapse
Affiliation(s)
- Bei Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lei Qi
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinhua Xie
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yue Shen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jiahui Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Bobo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hongshuai Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
38
|
Yan J, Zhao S, Xu X, Liu F. Enhancing pea protein isolate functionality: A comparative study of high-pressure homogenization, ultrasonic treatment, and combined processing techniques. Curr Res Food Sci 2023; 8:100653. [PMID: 38204878 PMCID: PMC10776415 DOI: 10.1016/j.crfs.2023.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
Pea protein has attracted widespread attention due to its high nutritional value, low allergenicity, non-GMO status, and broad availability. However, compared to animal proteins, pea protein has inferior functional properties, which limits its application in the food industry. This study used pea protein isolate (PPI) as the main raw material and investigated the effects of high-pressure homogenization (HPH), ultrasonic treatment (US), and the combination of the two in different orders on the structure and function of PPI. The results showed that HPH or US promoted the transformation of PPI insoluble suspension into a uniform protein dispersion, significantly reducing particle size, unfolding the spatial structure, exposing more amino acid residues. These structural changes resulted in a substantial increase in the solubility, foaming capacity and emulsifying activity of PPI. Moreover, the combined treatments further impacted the properties of PPI, largely depending on the order of the processing steps; the combination of HPH-US exhibited the best functional characteristics.
Collapse
Affiliation(s)
- Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Sheliang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
39
|
Shen L, Pang S, Zhong M, Sun Y, Qayum A, Liu Y, Rashid A, Xu B, Liang Q, Ma H, Ren X. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. ULTRASONICS SONOCHEMISTRY 2023; 101:106646. [PMID: 37862945 PMCID: PMC10594638 DOI: 10.1016/j.ultsonch.2023.106646] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
The increasing focus on health and well-being has sparked a rising interest in bioactive components in the food, pharmaceutical, and nutraceutical industries. These components are gaining popularity due to their potential benefits for overall health. The growing interest has resulted in a continuous rise in demand for bioactive components, leading to the exploration of both edible and non-edible sources to obtain these valuable substances. Traditional extraction methods like solvent extraction, distillation, and pressing have certain drawbacks, including lower extraction efficiency, reduced yield, and the use of significant amounts of solvents or resources. Furthermore, certain extraction methods necessitate high temperatures, which can adversely affect certain bioactive components. Consequently, researchers are exploring non-thermal technologies to develop environmentally friendly and efficient extraction methods. Ultrasonic-assisted extraction (UAE) is recognized as an environmentally friendly and highly efficient extraction technology. The UAE has the potential to minimize or eliminate the need for organic solvents, thereby reducing its impact on the environment. Additionally, UAE has been found to significantly enhance the production of target bioactive components, making it an attractive method in the industry. The emergence of ultrasonic assisted extraction equipment (UAEE) has presented novel opportunities for research in chemistry, biology, pharmaceuticals, food, and other related fields. However, there is still a need for further investigation into the main components and working modes of UAEE, as current understanding in this area remains limited. Therefore, additional research and exploration are necessary to enhance our knowledge and optimize the application of UAEE. The core aim of this review is to gain a comprehensive understanding of the principles, benefits and impact on bioactive components of UAE, explore the different types of equipment used in this technique, examine the various working modes and control parameters employed in UAE, and provide a detailed overview of the blending of UAE with other emerging extraction technologies. In conclusion, the future development of UAEE is envisioned to focus on achieving increased efficiency, reduced costs, enhanced safety, and improved reliability. These key areas of advancement aim to optimize the performance and practicality of UAEE, making it a more efficient, cost-effective, and reliable extraction technology.
Collapse
Affiliation(s)
- Lipeng Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shuixiu Pang
- Zhongke Zhigu International Pharmaceutical Biotechnology (Guangdong) Co., Ltd, Guikeng Village, Chuangxing Avenue, Gaoxin District, Qingyuan, Guangdong 511538, China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
40
|
Ding S, Ye X, Qu L, Mu J, Huang L, Dai C. Modification of whey protein isolate by ultrasound-assisted pH shift for complexation with carboxymethylcellulose: Structure and interfacial properties. Int J Biol Macromol 2023; 252:126479. [PMID: 37625757 DOI: 10.1016/j.ijbiomac.2023.126479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The application of whey protein isolate (WPI) is limited because of its compact spherical structure. In this study, ultrasound-assisted pH shift was employed to modify WPI for complexation with carboxymethylcellulose (CMC). The foaming and emulsifying properties of WPI/CMC complexes were investigated. The results demonstrate that the pretreatment of ultrasound-assisted pH 12 shift increased the content of free sulfhydryl groups from 16.5 μmol/g to 34.7 μmol/g and enhanced protein hydrophobicity from 311.4 to 370.6 (p < 0.05). Compared to the complexes formed by untreated WPI and CMC, the complexes pretreated with ultrasound-assisted pH 12 shift had a smaller size of 293.4 nm and a more uniform distribution. Furthermore, WPI/CMC complexes pretreated by ultrasound-assisted pH 12 shift exhibited higher emulsifying activity and emulsion stability index, which were increased by 8.9 % and 42.6 % respectively, in comparison with the control group (p < 0.05). A positive correlation was found between the surface hydrophobicity of WPI and emulsifying activity of WPI/CMC complexes. Ultrasound-assisted pH 2 shift improved the foaming capacity of complexes by 28.3 % over the control (p < 0.05). All the results indicate that the interfacial properties of WPI/CMC complexes can be improved significantly by the combination of pH shift and ultrasound.
Collapse
Affiliation(s)
- Shuang Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Xiang Ye
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Lulu Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jing Mu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
41
|
Ma K, Zhang L, Sun X, Chen F, Zhu T. Correlationship between self-assembly behavior and emulsion stabilization of pea protein-high methoxyl pectin complexes treated with ultrasound at pH 2.0. ULTRASONICS SONOCHEMISTRY 2023; 100:106596. [PMID: 37722249 PMCID: PMC10511478 DOI: 10.1016/j.ultsonch.2023.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
This study investigated the effects of ultrasound on the self-assembly behavior of pea protein (PP)-high methoxyl pectin (HMP) complexes at pH 2.0 through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and intrinsic fluorescence analysis. The emulsion stabilization mechanism of PP-HMP treated with ultrasound (PP-HMP-US) was also elucidated. The results indicated that ultrasound increased the emulsifying activity index (EAI) and emulsifying stability index (ESI) of PP-HMP. Moreover, PP-HMP-US-based emulsions formed small, dispersed oil drops, which were stable during storage. PP-HMP- and PP-HMP-US-based emulsions did not demonstrate any creaming. The TEM results revealed that ultrasound can regulate the self-assembly behavior of PP and HMP to form spherical particles with a core-shell structure. This structure possessed low turbidity, a small particle size, and high absolute zeta potential values. The FTIR and intrinsic fluorescence spectra demonstrated that ultrasound increased the α-helix and β-sheet contents and exposed the tryptophan groups to more hydrophilic environments. Ultrasound also promoted the PP-HMP self-assembly through electrostatic interaction and improved its oil-water interfacial behavior, as indicated by the EAI and ESI values of PP-HMP-US-based emulsions. The current results provide a reference for the development of an innovative emulsifier prepared by ultrasound-treated protein-pectin complexes at low pH.
Collapse
Affiliation(s)
- Kaiyuan Ma
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Lifen Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Xiaoyang Sun
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tingwei Zhu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
42
|
Lei W, Zhu Y, Zhu X, Huang Y, Liu L, Lü M, Sun B. Effect of ultrasound treatment on thawing process of frozen tofu prepared with different salt coagulants. ULTRASONICS SONOCHEMISTRY 2023; 99:106578. [PMID: 37678065 PMCID: PMC10494460 DOI: 10.1016/j.ultsonch.2023.106578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
This study investigated the effects of ultrasound-assisted water thawing (UWT) at different power levels (0, 100, 150, 200, and 250 W) on the thawing rate and gel properties of frozen tofu made using three different salt coagulants (CaCl2, CaSO4, and MgCl2). Tofu produced with CaCl2 and CaSO4 elicited gel structures with dense and homogeneous networks, while that with MgCl2 had rough pores and irregular networks. UWT treatment significantly decreased thawing time by 30.9-53.5% compared to the control. Water holding capacity and scanning electron microscopy analyses demonstrated that UWT-100, UWT-150, and UWT-200 should be used to increase the amount of fixed water for CaCl2, CaSO4, and MgCl2. These findings suggest that appropriate ultrasonic treatment could improve the water retention capacity of the tofu network and make the gel network structure more compact. Additionally, protein structural analysis showed a decrease in the exposure of hydrophobic groups and reduced protein denaturation when tofu prepared with all the coagulants were thawed with UWT energies of 100-200 W ultrasonication. These findings offer theoretical support for improving the frozen tofu thawing process while ensuring optimal final product quality.
Collapse
Affiliation(s)
- Wenhua Lei
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Ying Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Linlin Liu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Mingshou Lü
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Binyu Sun
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| |
Collapse
|
43
|
Chen YL, Nie HN, Dong H, Gao Q, Peng X, Wang N, Chen X, Liu QZ, Li JK, Xu XB, Xue YL. Revealing the mechanism underlying the effects of γ-aminobutyric acid-dioscorin interactions on dioscorin structure and emulsifying properties by molecular dynamic simulations. Food Res Int 2023; 171:112982. [PMID: 37330840 DOI: 10.1016/j.foodres.2023.112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 06/19/2023]
Abstract
Many studies have shown that γ-aminobutyric acid (GABA) exhibits various beneficial biological activities, including gut-modulating, neuro-stimulating, and cardio-protecting activities. Naturally, GABA exists in small amounts in yam, which is primarily synthesized by the decarboxylation of L-glutamic acid in the presence of glutamate decarboxylase. Dioscorin, the major tuber storage protein of yam, has been shown to have good solubility and emulsifying activity. However, how GABA interacts with dioscorin and affects their properties has yet to be clarified. In this research, the physicochemical and emulsifying properties of GABA-fortified dioscorin, which was dried by spray drying and freeze drying, were studied. As results, the freeze-dried (FD) dioscorin produced more stable emulsions, while the spray-dried (SD) dioscorin adsorbed more rapidly to oil/water (O/W) interface. The fluorescence spectroscopy, ultraviolet spectroscopy and circular dichroism spectroscopy showed that GABA changed the structure of dioscorin, by exposing its hydrophobic groups. The addition of GABA significantly promoted the adsorption of dioscorin to the O/W interface and prevented droplets coalescence. The results of molecular dynamics simulation (MD) showed that GABA destroyed the H-bond network between dioscorin and water, increased surface hydrophobicity and finally improved the emulsifying properties of dioscorin.
Collapse
Affiliation(s)
- Yun-Long Chen
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Hao-Nan Nie
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Hui Dong
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Qi Gao
- College of Light Industry, Liaoning University, Shenyang 110036, China; Department of Regional Economic Development, Party School of Liaoning Provincial Party Committee, Shenyang 110161, China
| | - Xue Peng
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Ning Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Xueling Chen
- Institute for Farm Products Processing and Nuclear-agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | | | - Jiang-Kuo Li
- Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China
| | - Xiang-Bin Xu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - You-Lin Xue
- College of Light Industry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
44
|
Alfaro-Diaz A, Escobedo A, Luna-Vital DA, Castillo-Herrera G, Mojica L. Common beans as a source of food ingredients: Techno-functional and biological potential. Compr Rev Food Sci Food Saf 2023; 22:2910-2944. [PMID: 37182216 DOI: 10.1111/1541-4337.13166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Common beans are an inexpensive source of high-quality food ingredients. They are rich in proteins, slowly digestible starch, fiber, phenolic compounds, and other bioactive molecules that could be separated and processed to obtain value-added ingredients with techno-functional and biological potential. The use of common beans in the food industry is a promising alternative to add nutritional and functional ingredients with a low impact on overall consumer acceptance. Researchers are evaluating traditional and novel technologies to develop functionally enhanced common bean ingredients, such as flours, proteins, starch powders, and phenolic extracts that could be introduced as functional ingredient alternatives in the food industry. This review compiles recent information on processing, techno-functional properties, food applications, and the biological potential of common bean ingredients. The evidence shows that incorporating an adequate proportion of common bean ingredients into regular foods such as pasta, bread, or nutritional bars improves their fiber, protein, phenolic compounds, and glycemic index profile without considerably affecting their organoleptic properties. Additionally, common bean consumption has shown health benefits in the gut microbiome, weight control, and the reduction of the risk of developing noncommunicable diseases. However, food matrix interaction studies and comprehensive clinical trials are needed to develop common bean ingredient applications and validate the health benefits over time.
Collapse
Affiliation(s)
- Arturo Alfaro-Diaz
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Alejandro Escobedo
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | - Gustavo Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
45
|
Yu H, Xie J. Effect of different orthogonal double frequency ultrasonic assisted freezing on the quality of sea bass. Food Chem X 2023; 18:100704. [PMID: 37215196 PMCID: PMC10196802 DOI: 10.1016/j.fochx.2023.100704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
The ice crystals formed in the body of the fish after freezing will cause irreversible damage to the fish's tissues, resulting in a decline in the fish quality. Therefore, based on the single frequency and double frequency ultrasonic freezing technology, the influence of orthogonal ultrasonic on the sea bass quality was studied. The results showed that the orthogonal ultrasonic wave could effectively improve the utilization rate of ultrasonic. In addition, SEM images showed that the muscle tissue in the dual frequency orthogonal ultrasonic assisted freezing group (DOUAF-40 (H) 20 (V)) was more uniform and dense. DOUAF-40 (H) 20 (V) group did not cause excessive oxidation of myofibrin on the one hand, and on the other hand reduced the duration of lipid oxidation in fish. The results showed that the orthogonal ultrasonic freezing technology inhibited the impact on fish quality during the freezing process, which provided a reference for the food freezing industry to improve aquatic products.
Collapse
Affiliation(s)
- Huan Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
46
|
Chen ZL, Li Y, Wang JH, Wang R, Teng YX, Lin JW, Zeng XA, Woo MW, Wang L, Han Z. Pulsed electric field improves the EGCG binding ability of pea protein isolate unraveled by multi-spectroscopy and computer simulation. Int J Biol Macromol 2023:125082. [PMID: 37257538 DOI: 10.1016/j.ijbiomac.2023.125082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Understanding molecular mechanisms during protein modification is critical for expanding the application of plant proteins. This study investigated the conformational change and molecular mechanism of pea protein isolate (PPI) under pulsed electric field (PEF)-assisted (-)-Epigallocatechin-Gallate (EGCG) modification. The flexibility of PPI was significantly enhanced after PEF treatment (10 kV/cm) with decrease (23.25 %) in α-helix and increase (117.25 %) in random coil. The binding constant and sites of PEF-treated PPI with EGCG were increased by 2.35 times and 10.00 % (308 K), respectively. Molecular docking verified that PEF-treated PPI had more binding sites with EGCG (from 4 to 10). The number of amino acid residues involved in hydrophobic interactions in PEF-treated PPI-EGCG increased from 5 to 13. PEF-treated PPI-EGCG showed a significantly increased antioxidant activity compared to non-PEF-treated group. This work revealed the molecular level of PEF-assisted EGCG modification of PPI, which will be significant for the application of PPI in food industry.
Collapse
Affiliation(s)
- Ze-Ling Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Jin-Hua Wang
- Foshan Shunde Midea Washing Appliances MFG. CO., LTD, Foshan 528300, China
| | - Rui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yong-Xin Teng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jia-Wei Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China; Research Institute of Yangjiang, South China University of Technology, Yangjiang 529500, China
| | - Meng-Wai Woo
- Department of chemical and materials engineering, University of Auckland, Auckland 1010, New Zealand
| | - Ling Wang
- Macau University of Science and Technology, Macao, 999078, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
47
|
Yu J, Xiao K, Xu H, Li Y, Xue Q, Xue W, Zhang A, Wen X, Xu G, Huang X. Spectroscopic fingerprints profiling the polysaccharide/protein/humic architecture of stratified extracellular polymeric substances (EPS) in activated sludge. WATER RESEARCH 2023; 235:119866. [PMID: 36934542 DOI: 10.1016/j.watres.2023.119866] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Extracellular polymeric substances (EPS), with a stratified structure including tightly-bound EPS (TB-EPS), loosely-bound EPS (LB-EPS), and soluble EPS (S-EPS) surrounding the microbial cells, are known to vitally affect the physicochemical and biological functions of activated sludge in wastewater treatment. Polysaccharides (PS), proteins (PN), and humic acids (HA) are key components of EPS but their roles in constructing the multi-layer architecture are still unclear. This study explored the EPS characteristics in relation to the components using spectroscopic fingerprinting techniques. Ultraviolet-visible (UV-vis) spectra demonstrated stark difference between TB-EPS and other EPS. Fluorescence excitation-emission matrix (FEEM) and apparent quantum yield revealed further detailed differences. Fluorescence quotient analysis highlighted the dominance of TB-EPS, LB-EPS, and S-EPS in the excitation/emission wavelength (Ex/Em) region of Em = 350-400 nm, Em > 400 nm, and low-Stokes shift band (Em - Ex < 25 nm), respectively. Wavelength-wise prediction of the FEEM intensity was achieved through multiple linear regression against the chemical composition and variance partitioning analysis witnessed binary interactions of PS×HA and PS×PN in S-EPS, PN×HA and PS×PN in LB-EPS, and ternary interaction of PS×PN×HA in TB-EPS as well as the wavelength-specific fluorescence responses of these interactions. Further, X-ray photoelectron spectroscopy, infrared spectra, and circular dichroism spectra corroborated the differences in primary, secondary, and tertiary structures across the EPS layers. Ultrahigh-performance liquid chromatography-mass spectrometry detected molecular fragments confirming the multi-component hybridization among PS, PN, and HA. This study demonstrates a spectroscopic approach to sensitively fingerprint the fine structure of EPS, which has the potential for rapid monitoring of EPS and related sludge properties in wastewater treatment systems.
Collapse
Affiliation(s)
- Jinlan Yu
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Hao Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yitong Li
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenchao Xue
- Department of Energy, Environment, and Climate Change, School of Environment, Resources, and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Guoren Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Song H, Zhong M, Sun Y, Yue Q, Qi B. Ultrasound-assisted alkali removal of proteins from wastewater generated during oil bodies extraction. ULTRASONICS SONOCHEMISTRY 2023; 96:106436. [PMID: 37172539 DOI: 10.1016/j.ultsonch.2023.106436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
In this study, an ultrasonic-assisted alkaline method was used to remove proteins from wastewater generated during oil-body extraction, and the effects of different ultrasonic power settings (0, 150, 300, and 450 W) on protein recovery were investigated. The recoveries of the ultrasonically treated samples were higher than those of the samples without ultrasonic treatment, and the protein recoveries increased with increasing power, with a protein recovery of 50.10 % ± 0.19 % when the ultrasonic power was 450 W. Amino acid analysis showed that the amino acids comprising the recovered samples were consistent, regardless of the ultrasonic power used, but significant differences in the contents of amino acids were observed. No significant changes were observed in the protein electrophoretic profile using dodecyl polyacrylamide gel, indicating that sonication did not change the primary structures of the recovered samples. Fourier transform infrared and fluorescence spectroscopy revealed that the molecular structures of the samples changed after sonication, and the fluorescence intensity increased gradually with increasing sonication power. The contents of α-helices and random coils obtained at an ultrasonic power of 450 W decreased to 13.44 % and 14.31 %, respectively, whereas the β-sheet content generally increased. The denaturation temperatures of the proteins were determined using differential scanning calorimetry, and ultrasound treatment reduced the denaturation temperatures of the samples, which was associated with the structural and conformational changes caused by their chemical bonding. The solubility of the recovered protein increased with increasing ultrasound power, and a high solubility was essential in good emulsification. The emulsification of the samples was improved well. In conclusion, ultrasound treatment changed the structure and thus improved the functional properties of the protein.
Collapse
Affiliation(s)
- Hanyu Song
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Yue
- Heilongjiang Open University, Harbin, Heilongjiang 150030, China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
49
|
Yavuz UB, Erem E, Kilic-Akyilmaz M. Stabilization of Olive Oil in Water Emulsion with Dairy Ingredients by Pulsed and Continuous High Intensity Ultrasound. ACS OMEGA 2023; 8:11425-11432. [PMID: 37008147 PMCID: PMC10061600 DOI: 10.1021/acsomega.3c00227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Application of high intensity ultrasound (HIUS) for stabilization of olive oil in water emulsion with different dairy ingredients including sodium caseinate (NaCS) and whey protein isolate (WPI) was investigated. The emulsions were prepared by homogenization with a probe and then treated with either a second homogenization or HIUS at a different power level (20 and 50%) in pulsed or continuous mode for 2 min. The emulsion activity index (EAI), creaming index (CI), specific surface area (SSA), rheological properties, and droplet size of the samples were determined. The temperature of the sample rose when HIUS was applied in continuous mode and at increasing power level. HIUS treatment increased EAI and SSA of the emulsion and decreased droplet size and CI compared with those of the double-homogenized sample. Among the HIUS treatments, the highest EAI was found in the emulsion with NaCS that was treated at a power level of 50% in continuous mode, and the lowest one was obtained by HIUS applied at a power level of 20% in pulsed mode. SSA, droplet size, and span of the emulsion were not affected by HIUS parameters. Rheological properties of HIUS-treated emulsions were not different from those of the double-homogenized control sample. Continuous HIUS at 20% power level and pulsed HIUS at 50% power level reduced creaming in the emulsion after storage at a similar level. HIUS at a low power level or in pulsed mode can be preferred for heat sensitive materials.
Collapse
Affiliation(s)
- Ummu Busra Yavuz
- Department
of Food Engineering, Istanbul Technical
University, 34469 Istanbul, Türkiye
| | - Erenay Erem
- Department
of Food Engineering, Istanbul Technical
University, 34469 Istanbul, Türkiye
| | - Meral Kilic-Akyilmaz
- Department
of Food Engineering, Istanbul Technical
University, 34469 Istanbul, Türkiye
| |
Collapse
|
50
|
Gong W, Guo XL, Wang SJ, Huang HB, Zhu XM. Construction of high internal phase Pickering emulsions using cold plasma modified soy protein isolate-proanthocyanidin complex. Food Res Int 2023; 167:112664. [PMID: 37087249 DOI: 10.1016/j.foodres.2023.112664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Protein-based high internal phase Pickering emulsions (HIPPEs) feature numerous multi-functionalities and widespread applications. However, the direct use of native proteins for the constructions of HIPPEs is limited since it is fragile under various conditions. Here, cold plasma was used to modify soy protein isolates (SPI) to improve their surficial properties. Meanwhile, proanthocyanidins (PA) were applied to interact with cold plasma-treated SPI to form complex. Furthermore, the well-prepared SPI-PA complex was used to construct novel HIPPEs. Results showed cold plasma treatment significantly improved the functionalities of SPI, which were confirmed by surface hydrophobicity (H0 < 500), sulfhydryl (SH) groups and spectral analysis. Further, the emulsification and oxidation resistance of cold plasma treated SPI were enhanced after forming complex with PA. Soybean oils can be stabilized by SPI-PA complexes to form HIPPEs with a lipid oxidation inhibition rate of > 65%, creaming index (CI) > 80%, excellent rheological properties and better stability compared with conventional emulsion systems. Overall, this SPI-PA complexes provides a unique approach to improve the emulsification and oxidation resistance to engineer HIPPEs with versatile applications.
Collapse
|