1
|
Shahrajabian MH, Sun W. Study Rapid, Quantitative, and Simultaneous Detection of Drug Residues and Immunoassay in Chickens. Rev Recent Clin Trials 2025; 20:2-17. [PMID: 39171469 DOI: 10.2174/0115748871305331240724104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 08/23/2024]
Abstract
Different levels of residual drugs can be monitored within a relatively safe range without causing harm to human health if the appropriate dosing methodology is considered and the drug withdrawal period is controlled during poultry and livestock raising. Antimicrobials are factors that can suppress the growth of microorganisms, and antibiotic residues in livestock farming have been considered as a potential cause of antimicrobial resistance in animals and humans. Antimicrobial drug resistance is associated with the capability of a microorganism to survive the inhibitory effects of the antimicrobial components. Antibiotic residue presence in chicken is a human health concern due to its negative effects on consumer health. Neglected aspects related to the application of veterinary drugs may threaten the safety of both humans and animals, as well as their environment. The detection of chemical contaminants is essential to ensure food quality. The most important antibiotic families used in veterinary medicines are β-lactams (penicillins and cephalosporins), tetracyclines, chloramphenicols, macrolides, spectinomycin, lincosamide, sulphonamides, nitrofuranes, nitroimidazoles, trimethoprim, polymyxins, quinolones, and macrocyclics (glycopeptides, ansamycins, and aminoglycosides). Antibiotic residue presence is the main contributor to the development of antibiotic resistance, which is considered a chief concern for both human and animal health worldwide. The incorrect application and misuse of antibiotics carry the risk of the presence of residues in the edible tissues of the chicken, which can cause allergies and toxicity in hypersensitive consumers. The enforcement of the regulation of food safety depends on efficacious monitoring of antimicrobial residues in the foodstuff. In this review, we have explored the rapid detection of drug residues in broilers.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| |
Collapse
|
2
|
Liu Y, Jin Z, Sun D, Zheng J, Xu B, Lan T, Zhao Q, He Y, Li J, Zhang Y, Cui Y. Preparation of monoclonal antibody against rhoifolin and its application in enzyme-linked immunosorbent assay of rhoifolin and diosmin. Talanta 2025; 281:126871. [PMID: 39276572 DOI: 10.1016/j.talanta.2024.126871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Both rhoifolin and diosmin belong to flavonoids, which are widely present in citrus. Diosmin is not only used in the medical field in the world, but also used as a dietary supplement in the United States. Rhoifolin has a similar structure to diosmin and also exhibits antioxidant and anti-inflammatory properties. In this study, an anti-rhoifolin monoclonal antibody was prepared and an indirect competitive enzyme-linked immunosorbent assay (icELISA) method was established. The half-maximal inhibitory concentration (IC50) of icELISA was determined to be 4.83 ng/mL, and the detection range was 0.97-33.87 ng/mL. The results of UPLC-MS/MS and icELISA generally demonstrate consistency. Moreover, by exploiting the cross-reactivity of the antibody, diosmin in tablets can be detected by icELISA. The results demonstrate that the developed method has good accuracy, reproducibility, and broad application prospects.
Collapse
Affiliation(s)
- Yifan Liu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Zihui Jin
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Di Sun
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Jiexin Zheng
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Bo Xu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Tianyu Lan
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Qiyang Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Jing Li
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| | - Yongliang Cui
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| |
Collapse
|
3
|
Zhang J, Wang Y, Wurjihu S, Ruan H, Huang Y, Guo M, Kong D, Luo J, Yang M. Comprehensive analysis of neonicotinoids in Chinese commercial honey and pollen: A corresponding health risk assessment for non-targeted organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170937. [PMID: 38360305 DOI: 10.1016/j.scitotenv.2024.170937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Neonicotinoids are broad-spectrum and highly effective insecticides that work by affecting neural activity in insects. Neonicotinoids are systemic pesticides that are absorbed by plants, transported, and accumulated in plant tissues, including nectar and pollen. Currently, there is a lack of a comprehensive assessment of the level of neonicotinoid contamination and the associated health risks to non-targeted organisms in commercial honey and pollen produced in China. This study collected 160 batches of honey and 26 batches of pollen from different regions and plant sources in China, analyzed the residue patterns of neonicotinoid pesticides, and comprehensively evaluated the exposure risks to non-targeted organisms including bees (adults and larvae) and humans. Furthermore, this study addresses this imperative by establishing a high-throughput, rapid, and ultra-sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on broad-spectrum monoclonal antibodies to detect and quantify neonicotinoids, with validation conducted using the LC-MS/MS method. The findings indicated that 59.4 % of honey samples contained at least one of eight neonicotinoids, and the ic-ELISA rapid detection and calculation method could detect all the samples containing neonicotinoids. Additionally, the dietary risk assessment for humans and honeybees indicates that the consumption of a specific quantity of honey may not pose a health risk to human due to neonicotinoid intake. However, the Risk Quotient values for imidacloprid to adult bees and bee larvae, as well as clothianidin to bee larvae, were determined to be 2.22, 5.03, and 1.01, respectively-each exceeding 1. This highlights the elevated risk of acute toxicity posed by imidacloprid and clothianidin residues to honey bees. The study bears significant implications for the safety evaluation of non-targeted organisms in the natural food chain. Moreover, it provides scientific guidance for protecting the diversity and health of the ecosystem.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanbaga Wurjihu
- Plastic Surgery Hospital and Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Haonan Ruan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Dandan Kong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
4
|
Zhao Q, Ding M, Pei D, Qi X, Mao Y, Huang X, Song L, Zuo J, Yang H, Zhang X. Development of a monoclonal antibody-based lateral flow immunoassay for the detection of benzoic acid in liquid food. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6229-6238. [PMID: 37943077 DOI: 10.1039/d3ay01403g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
To monitor benzoic acid (BA) residues in liquid food samples, a monoclonal antibody (mAb)-based lateral flow immunoassay (LFA) was developed in this study. First, 2-aminobenzoic acid (2-AA), 3-aminobenzoic acid (3-AA), and 4-aminobenzoic acid (4-AA) were conjugated to BSA and used as immunogens. After cell fusion, mAb 6D8 from 4-AA-BSA performed best with an IC50 value of 0.21 mg L-1 using 3-AA-OVA as a heterogeneous antigen, which represented a 3.4-fold improvement compared with the homogeneous antigen 4-AA-BSA. Subsequently, eight kinds of CGNPs with sizes varying from 20.94 nm to 90.00 nm were synthesized for screening the suitable size to develop a sensitive LFA. Finally, a sensitive LFA based on colloidal gold (23.27 nm) nanoparticles was developed for screening BA with a cut-off value of 4 mg L-1, which could meet the requirement of BA detection in milk, Fanta, Sprite, Coca-Cola, and Smart samples.
Collapse
Affiliation(s)
- Qiuyan Zhao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan 450002, China.
| | - Mingyue Ding
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan 450002, China.
| | - Dangshuai Pei
- Weinan Animal Health Workstation, Weinan, Shaanxi 714000, China
| | - Xiuhua Qi
- Department of Agriculture and Rural Affairs of Urumqi, 299 Junggar Street, Urumqi City, Xinjiang 830063, China
| | - Yexuan Mao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan 450002, China.
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan 450002, China.
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan 450002, China.
| | - Jingnan Zuo
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan 450002, China.
| | - Huijuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Xiya Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan 450002, China.
| |
Collapse
|
5
|
A Novel Metabolite as a Hapten to Prepare Monoclonal Antibodies for Rapid Screening of Quinoxaline Drug Residues. Foods 2022; 11:3305. [PMCID: PMC9602011 DOI: 10.3390/foods11203305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Quinoxalines (Qx) are chemically synthesized antibacterial drugs with strong antibacterial and growth-promoting effects. Qx is heavily abused by farmers, resulting in large residues in animal-derived foods, which pose a serious threat to human health. Desoxyquinoxalines (DQx), which have the highest residue levels, have been identified as the major toxicant and have become a new generation of residue markers. In this study, we prepared monoclonal antibodies (mAb) based on a new generation metabolite (desoxymequindox, DMEQ) and establish an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) for the rapid determination of Qx residues in food. The mAb exhibited high sensitivity with half maximal inhibitory concentration (IC50) and a linear range of 2.84 µg/L and 0.8–12.8 µg/L, respectively. Additionally, the cross-reactivity (CR) of the mAb showed that it recognized multiple DQx to varying levels. The limits of detection (LOD), limits of quantification (LOQ), and recoveries for the ic-ELISA assay of pork, swine liver, swine kidney, chicken, and chicken liver were 0.48–0.58 µg/kg, 0.61–0.90 µg/kg, and 73.7–107.8%, respectively, and the coefficients of variation (CV) were less than 11%. The results of the ic-ELISA showed a good correlation with LC–MS/MS in animal-derived foods. This suggests that this analytical method can be used for the rapid screening of QX residues.
Collapse
|
6
|
Wang L, Niu J, Wei P, Feng Y, Ding M, He C, Ma Y, Zhu Y, Li J, Huang L, Zhang X. Rapid determination of 2,4-diaminopyrimidine residues through sample pretreatment using immunomagnetic bead purification along with HPLC-UV. Food Chem 2022; 376:131835. [PMID: 34980530 DOI: 10.1016/j.foodchem.2021.131835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
To reduce matrix interference and realize simultaneous detection of multiple homologous compounds (trimethoprim (TMP), diaveridine (DVD), ormetoprim (OMP), baquiloprim (BQP), and aditoprim (ADP) in pig, cattle, chicken, and fish muscles), an immunomagnetic bead (IMB)-based sample purification pretreatment with HPLC-UV was developed. A broad-spectrum monoclonal antibody (mAb, named 14C6) was prepared and conjugated with carboxylic-acid-functionalized magnetic nanoparticles using the active ester method to obtain IMBs for sample purification. The extraction solvent was optimized based on the extraction efficiency. Good linearity was observed for all the five analytes (10-200 μg/kg) with the LOD and LOQ of 5 and 10 μg/kg, respectively. The mean recoveries ranged from 62.5% to 76.9%, while the coefficient of variation was <12.2%. The IMB method afforded greater sample purification and enrichment than those achieved with the SPE column-based conventional method. Hence, the IMB-based sample purification is a useful tool to determine 2,4-diaminopyrimidine residues in edible animal tissues.
Collapse
Affiliation(s)
- Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Pengyuan Wei
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Yilei Feng
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Mingyue Ding
- Henan Province Engineering Research Center for Food Safety Control of Processing and Circulation, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Chaojun He
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Yongjie Ma
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Yaolei Zhu
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Jia Li
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| | - Xiya Zhang
- Henan Province Engineering Research Center for Food Safety Control of Processing and Circulation, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, PR China.
| |
Collapse
|
7
|
Xiao J, Yang H, Qin L, Liang J, Li L, Fan X, Peng D. Rapid detection of fluoroquinolones residues in aquatic products based on a gold-labeled microwell immunochromatographic assay. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Objectives
Fluoroquinolones (FQs) are widely used in aquaculture, and their residues have caused many problems threatening human health. Here, this study aims to develop a colloidal gold immunochromatographic strip based on gold-labeled microwells to screen the residues of FQs on site.
Materials and Methods
The Protein A Magarose Beads affinity chromatography method was adopted to purify the ascites against FQs. By using a strategy of heterologous coating antigen, different coating antigens are applied to detect FQs. The gold-labeled microwell immunochromatographic assay was used to improve the sensitivity of the test strip by the advanced reaction of antigen and antibody.
Results
The antibodies were verified to be of high purity up to 99%, and the titer reached 1:1,024,000. The combination (enoxacin-OVA and the antibody) detected the 4 banned FQs (pefloxacin, PEF; norfloxacin, NOR; lomefloxacin, LOM; ofloxacin, OFL) with IC50 values ranging from 1.3 to 2.1 ng/mL and cross-reactions ranging from 67.3 to 106.1%. The analysis of spiked crucian carp, silver carp, grass carp, and shrimp samples showed that the limit of detection for PEF, NOR, LOM, and OFL was 4 µg/kg. A comparative study with LC–MS/MS demonstrated that the assay provides an effective screening tool for the rapid detection of FQs residues.
Conclusions
The results indicated that the test strip can realize full coverage recognition of the 4 banned FQs and has good accuracy, specificity, reproducibility, and stability; therefore, they are more suitable for rapid detection of FQs in aquatic products.
Collapse
Affiliation(s)
- Jiaxu Xiao
- National Reference Laboratory of Veterinary Drug Residues/Key Laboratory of Ministry of Agriculture for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China
| | - Hongfei Yang
- National Reference Laboratory of Veterinary Drug Residues/Key Laboratory of Ministry of Agriculture for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China
| | - Liangni Qin
- National Reference Laboratory of Veterinary Drug Residues/Key Laboratory of Ministry of Agriculture for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China
| | - Jixiang Liang
- National Reference Laboratory of Veterinary Drug Residues/Key Laboratory of Ministry of Agriculture for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China
| | - Long Li
- National Reference Laboratory of Veterinary Drug Residues/Key Laboratory of Ministry of Agriculture for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China
| | - Xiaohui Fan
- Wuhan Shangcheng Biotechnology Co., Ltd, Wuhan, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues/Key Laboratory of Ministry of Agriculture for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Development of a Highly Sensitive and Specific Monoclonal Antibody Based on Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Determination of Zearalenone in Food and Feed Samples. Toxins (Basel) 2022; 14:toxins14030220. [PMID: 35324717 PMCID: PMC8950616 DOI: 10.3390/toxins14030220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
Zearalenone (ZEN) contamination in food and feed is prevalent and has severe effects on humans and animals post-consumption. Therefore, a sensitive, specific, rapid, and reliable method for detecting a single residue of ZEN is necessary. This study aimed to establish a highly sensitive and specific ZEN monoclonal antibody (mAb) and an indirect competitive enzyme-linked immunosorbent assay (icELISA) for the detection of ZEN residues in food and feed. The immunogen ZEN-BSA was synthesized via the amino glutaraldehyde (AGA) and amino diazotization (AD) methods and identified using 1H nuclear magnetic resonance (1H NMR), a high-resolution mass spectrometer (HRMS), and an ultraviolet spectrometer (UV). The coating antigens ZEN-OVA were synthesized via the oxime active ester (OAE), formaldehyde (FA), 1,4-butanediol diglycidyl ether (BDE), AGA, and AD methods. These methods were used to screen the best antibody/antigen combination of a heterologous icELISA. Balb/c mice were immunized with a low ZEN-BSA dose at long intervals and multiple sites. Suitable cell fusion mice and positive hybridoma cell lines were screened using a homologous indirect non-competitive ELISA (inELISA) and an icELISA. The ZEN mAbs were prepared by inducing ascites in vivo. The immunological characteristics of ZEN mAbs were then assessed. The standard curves of the icELISA for ZEN were constructed under optimal experimental conditions, and the performance of the icELISA was validated. The two ZEN-BSA immunogens (conjugation ratios, 11.6:1 (AGA) and 9.2:1 (AD)) were successfully synthesized. Four hybridoma cell lines (2B6, 4D9, 1A10, and 4G8) were filtered, of which 2B6 had the best sensitivity and specificity. The mAb 2B6-based icELISA was then developed. The limit of detection (LOD), the 50% inhibitive concentration (IC50), and the linear working range (IC20 to IC80) values of the icELISA were 0.76 μg/L, 8.69 μg/L, and 0.92–82.24 μg/L, respectively. The cross-reactivity (CR) of the icELISA with the other five analogs of ZEN was below 5%. Three samples were spiked with different concentrations of ZEN and detected using the icELISA. The average intra-assay recoveries, inter-assay recoveries, intra-assay coefficients of variations (CVs), and inter-assay CVs were 93.48–99.48%, 94.18–96.13%, 12.55–12.98%, and 12.53–13.58%, respectively. The icELISA was used to detect ZEN in various samples. The results were confirmed using high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) (correlation coefficient, 0.984). The proposed icELISA was highly sensitive, specific, rapid, and reliable for the detection of ZEN in food and feed samples.
Collapse
|
9
|
Atta AH, Atta SA, Nasr SM, Mouneir SM. Current perspective on veterinary drug and chemical residues in food of animal origin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15282-15302. [PMID: 34981398 DOI: 10.1007/s11356-021-18239-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The marked increase in the demand for animal protein of high quality necessitates protecting animals from infectious diseases. This requires increasing the use of veterinary therapeutics. The overuse and misuse of veterinary products can cause a risk to human health either as short-term or long-term health problems. However, the biggest problem is the emergence of resistant strains of bacteria or parasites. This is in addition to economic losses due to the discarding of polluted milk or condemnation of affected carcasses. This paper discusses three key points: possible sources of drug and chemical residues, human health problems, and the possible method of control and prevention of veterinary drug residues in animal products.
Collapse
Affiliation(s)
- Attia H Atta
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Shimaa A Atta
- Immunology Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Soad M Nasr
- Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza, 12622, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
10
|
Wang X, Wang Y, Wang S, Hou J, Cai L, Fan G. Indirect Competitive ELISA for the Determination of Total Chromium Content in Food, Feed and Environmental Samples. Molecules 2022; 27:1585. [PMID: 35268684 PMCID: PMC8911876 DOI: 10.3390/molecules27051585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: This study aimed to prepare monoclonal antibodies (mAbs) with high immunoreactivity, sensitivity, and specificity for the chelate (Cr(III)-EDTA) of trivalent chromium ion (Cr(III)) and ethylenediamine tetraacetic acid (EDTA). Further, the study established an indirect competitive enzyme-linked immunosorbent assay (icELISA) for detecting the total chromium content in food, feed, and environmental samples. Methods: Hapten Cr(III)-iEDTA was synthesized by chelating Cr(III) with isothiocyanatebenzyl-EDTA (iEDTA). Immunogen Cr(III)-iEDTA-BSA formed by chelating Cr(III)-iEDTA with bovine serum albumin (BSA), and coating antigen Cr(III)-iEDTA-OVA formed by chelating Cr(III)-iEDTA with ovalbumin (OVA) were prepared using the isothiocyanate method and identified by ultraviolet spectra (UV) and inductively coupled plasma optical emission spectrometry (ICP-OES). Balb/c mice were immunized with the Cr(III)-iEDTA-BSA, and the anti Cr(III)-EDTA mAb cell lines were screened by cell fusion. The Cr(III)-EDTA mAbs were prepared by induced ascites in vivo, and their immunological characteristics were assessed. Results: The immunogen Cr(III)-iEDTA-BSA was successfully synthesized, and the molecular binding ratio of Cr(III) to BSA was 15.48:1. Three hybridoma cell lines 2A3, 2A11, and 3D9 were screened, among which 2A3 was the best cell line. The 2A3 secreted antibody was stable after six passages, the affinity constant (Ka) was 2.69 × 109 L/mol, its 50% inhibition concentration (IC50) of Cr(III)-EDTA was 8.64 μg/L, and it had no cross-reactivity (CR%) with other heavy metal ion chelates except for a slight CR with Fe(III)-EDTA (1.12%). An icELISA detection method for Cr(III)-EDTA was established, with a limit of detection (LOD) of 1.0 μg/L and a working range of 1.13 to 66.30 μg/L. The average spiked recovery intra-assay rates were 90% to 109.5%, while the average recovery inter-assay rates were 90.4% to 97.2%. The intra-and inter-assay coefficient of variations (CVs) were 11.5% to 12.6% and 11.1% to 12.7%, respectively. The preliminary application of the icELISA and the comparison with ICP-OES showed that the coincidence rate of the two methods was 100%, and the correlation coefficient was 0.987. Conclusions: The study successfully established an icELISA method that meets the requirements for detecting the Cr(III)-EDTA chelate content in food, feed, and environmental samples, based on Cr(III)-EDTA mAb, and carried out its preliminary practical application.
Collapse
Affiliation(s)
- Xiaofei Wang
- Xinxiang Institute of Engineering, College of Bioengineering, Xinxiang 453700, China; (X.W.); (S.W.)
| | - Yanan Wang
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| | - Shuyun Wang
- Xinxiang Institute of Engineering, College of Bioengineering, Xinxiang 453700, China; (X.W.); (S.W.)
| | - Jie Hou
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| | - Linlin Cai
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| | - Guoying Fan
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| |
Collapse
|
11
|
Xiang T, Xu X, Xu L, Liu L, Xu C, Kuang H. Gold-based immunochromatographic strip assay for detecting dimethomorph in vegetables. NEW J CHEM 2022. [DOI: 10.1039/d1nj05652b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gold-based immunochromatographic strip assay for detecting dimethomorph in vegetables.
Collapse
Affiliation(s)
- Tongyue Xiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
12
|
Development of a New Monoclonal Antibody against Brevetoxins in Oyster Samples Based on the Indirect Competitive Enzyme-Linked Immunosorbent Assay. Foods 2021; 10:foods10102398. [PMID: 34681447 PMCID: PMC8535115 DOI: 10.3390/foods10102398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 01/14/2023] Open
Abstract
The consumption of shellfish contaminated with brevetoxins, a family of ladder-frame polyether toxins formed during blooms of the marine dinoflagellate Karenia brevis, can cause neurotoxic poisoning, leading to gastroenteritis and neurotoxic effects. To rapidly monitor brevetoxin levels in oysters, we generated a broad-spectrum antibody against brevetoxin 2 (PbTx-2), 1 (PbTx-1), and 3 (PbTx-3) and developed a rapid indirect competitive enzyme-linked immunosorbent assay (icELISA). PbTx-2 was reacted with carboxymethoxylamine hemihydrochloride (CMO) to generate a PbTx-2-CMO hapten and reacted with succinic anhydride (HS) to generate the PbTx-2-HS hapten. These haptens were conjugated to keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA) to prepare immunogen and coating antigen reagents, respectively, using the active ester method. After immunization and cell fusion, a broad-spectrum monoclonal antibody (mAb) termed mAb 1D3 was prepared. The 50% inhibitory concentration (IC50) values of the icELISA for PbTx-2, PbTx-1, and PbTx-3 were 60.71, 52.61, and 51.83 μg/kg, respectively. Based on the broad-spectrum mAb 1D3, an icELISA was developed to determine brevetoxin levels. Using this approach, the limit of detection (LOD) for brevetoxin was 124.22 μg/kg and recoveries ranged between 89.08% and 115.00%, with a coefficient of variation below 4.25% in oyster samples. These results suggest that our icELISA is a useful tool for the rapid monitoring of brevetoxins in oyster samples.
Collapse
|
13
|
Wang Z, Zheng P, Wang J, He S, Ren Z, Zhang Y, Xiong J, Jiang H. Indirect competitive enzyme-linked immunosorbent assay based on a broad-spectrum monoclonal antibody for tropane alkaloids detection in pig urine, pork and cereal flours. Food Chem 2021; 337:127617. [PMID: 32799156 DOI: 10.1016/j.foodchem.2020.127617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
In this study, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on a broad-spectrum monoclonal antibody for tropane alkaloids (TAs) was established for the rapid screening of atropine, scopolamine, homatropine, apoatropine, anisodamine, anisodine and L-hyoscyamine residues in pig urine, pork and cereal flour samples through a simple sample preparation procedure. The half inhibitory concentrations of atropine, homatropine, L-hyoscyamine, apoatropine, scopolamine, anisodamine and anisodine were 0.05, 0.07, 0.14, 0.14, 0.24, 5.30 and 10.15 ng mL-1, respectivelyThe detection and quantitative limits of this method for TAs in samples were 0.18-73.18 and 0.44-74.77 μg kg-1. The spiked recoveries ranged from 69.88% to 147.93%, and the coefficient of variations were less than 14%. Good correlation (R2 = 0.9929) between the results of the ic-ELISA and the high performance liquid chromatography-tandem mass spectrometry support the reliability of the developed ic-ELISA method.
Collapse
Affiliation(s)
- Zile Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Pimiao Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianyi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shuang He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhenhui Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yanfang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jincheng Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
14
|
Wen K, Bai Y, Wei Y, Li C, Shen J, Wang Z. Influence of Small Molecular Property on Antibody Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10944-10950. [PMID: 32854496 DOI: 10.1021/acs.jafc.0c04333] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibodies with high titer and affinity to small molecules are critical in the field of vaccines against drugs of abuse, antidotes to toxins, and immunoassays for compounds. However, little is known regarding how properties of small molecules have influence and which molecular descriptors could indicate the degree of the antibody response. On the basis of our previous study, we designed and synthesized two groups of hapten molecules with varied hydrophobicity to investigate the relationship between the properties of the small molecules and the antibody response in terms of titer and affinity. We found that the magnitude of the antibody response was positively correlated with the degree of molecular hydrophobicity and related descriptors. This study provides insight into the immunological characteristics of small molecules themselves and useful clues to produce high-quality antibodies against small molecules.
Collapse
Affiliation(s)
- Kai Wen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Yuchen Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Yujie Wei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Chenglong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| |
Collapse
|
15
|
Lai X, Lv X, Zhang G, Xiong Z, Lai W, Peng J. Highly Specific Anti-tylosin Monoclonal Antibody and Its Application in the Quantum Dot Bead-Based Immunochromatographic Assay. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01846-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Jin G, Wu X, Cui G, Liu L, Kuang H, Xu C. Development of an ic-ELISA and Immunochromatographic Strip Assay for the Detection of Diacetoxyscirpenol in Rice. ACS OMEGA 2020; 5:17876-17882. [PMID: 32743158 PMCID: PMC7391247 DOI: 10.1021/acsomega.9b02496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/28/2019] [Indexed: 06/01/2023]
Abstract
Diacetoxyscirpenol (DAS) is a highly toxic type A trichothecene, a natural contaminant in food and animal feed, which is a serious hazard to human and animal health. An anti-DAS mAb, 3H10, with high sensitivity and specificity, was prepared, and an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and a lateral-flow immunochromatographic strip (ICA strip) were developed for rapid testing of DAS in rice samples. The 50% inhibitory concentration and limit of detection of ic-ELISA were 5.97 and 0.78 ng/mL, respectively. The recovery of rice samples ranged from 99.4 to 110.7%, demonstrating that the analytical method can be used to detect rice samples. The cutoff value of the lateral-flow ICA strip to DAS was 500 ng/g. The developed immunoassay method can provide an effective method of initially detecting and screening DAS in food and feed samples.
Collapse
Affiliation(s)
- Guohao Jin
- State
Key Lab of Food Science and Technology, School of Food Science and
Technology, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic
of China
| | - Xiaoling Wu
- State
Key Lab of Food Science and Technology, School of Food Science and
Technology, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic
of China
| | - Gang Cui
- YanCheng
Teachers University, Yancheng 224100, People’s Republic
of China
| | - Liqiang Liu
- State
Key Lab of Food Science and Technology, School of Food Science and
Technology, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic
of China
| | - Hua Kuang
- State
Key Lab of Food Science and Technology, School of Food Science and
Technology, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic
of China
| | - Chuanlai Xu
- State
Key Lab of Food Science and Technology, School of Food Science and
Technology, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic
of China
| |
Collapse
|
17
|
Liang X, Li J, Zhong L, Liu B, Wang N, Wang Z, Zou M, Zhang Q. Highly broad-specific and sensitive direct competitive enzyme-linked immunosorbent assay for screening multi-antibacterial synergists: assay optimization and application to animal-derived food. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2019.1704401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Xiao Liang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Jinyan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Lijuan Zhong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Baotao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Nannan Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Qidi Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| |
Collapse
|
18
|
Wang Z, Guo L, Liu L, Kuang H, Xiao J, Xu C. Development and comparison of two nanomaterial label-based lateral flow immunoassays for the detection of five antibacterial synergists. NEW J CHEM 2020. [DOI: 10.1039/d0nj03734f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Label is a significant factor when analyzing the performance of lateral flow immunoassays (LFIAs). Thus, this study developed two nanomaterial label-based LFIA and compared their analytical performance in practical applications.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Jing Xiao
- NHC Key Laboratory of Food Safety Risk Assessment
- China National Center for Food Safety Risk Assessment
- Beijing
- People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| |
Collapse
|