1
|
Zhang R, Zhou L, Zhang W. Insight into the effects of ultrasound-assisted intermittent tumbling on the gelation properties of myofibrillar proteins: Conformational modifications, intermolecular interactions, rheological properties and microstructure. ULTRASONICS SONOCHEMISTRY 2024; 110:107059. [PMID: 39250863 DOI: 10.1016/j.ultsonch.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
The aim of the present study was to evaluate the effects of ultrasound-assisted intermittent tumbling (UT) at 300 W, 20 kHz and 40 min on the conformation, intermolecular interactions and aggregation of myofibrillar proteins (MPs) and its induced gelation properties at various tumbling times (4 and 6 h). Raman results showed that all tumbling treatments led the helical structure of MPs to unfold. In comparison to the single intermittent tumbling treatment (ST), UT treatment exerted more pronounced effects on strengthening the intermolecular hydrogen bonds and facilitating the formation of an ordered β-sheet structure. When the tumbling time was the same, UT treatment caused higher surface hydrophobicity, fluorescence intensity and disulfide bond content in the MPs, inducing the occurrence of hydrophobic interaction and disulfide cross-linking between MPs molecules, thus forming the MPs aggregates. Additionally, results from the solubility, particle size, atomic force microscopy and SDS-PAGE further indicated that, relative to the ST treatment, UT treatment was more potent in promoting the polymerization of myosin heavy chain. The MPs aggregates in the UT group were more uniform than those in the ST group. During the gelation process, the pre-formed MPs aggregates in the UT treatment increased the thermal stability of myosin, rendering it more resistant to heat-induced unfolding of the myosin rod region. Furthermore, they improved the protein tail-tail interaction, resulting in the formation of a well-structured gel network with higher gel strength and cooking yield compared to the ST treatment.
Collapse
Affiliation(s)
- Ruyu Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Liang X, Zhao Z, Zhang J, Kong B, Li X, Cao C, Zhang H, Liu Q, Shen L. Effect of microwave vacuum drying time on the quality profiles, microstructures and in vitro digestibility of pork chip snacks. Meat Sci 2024; 216:109555. [PMID: 38850886 DOI: 10.1016/j.meatsci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
In present study, the quality profiles, microstructures and in vitro digestibility of pork chip snacks (PCS) prepared by microwave vacuum drying (MVD) under different drying times (20, 21, 22, 23, and 24 min) were investigated. The results revealed significant decreases in the moisture content and L*-value of PCS, while the protein/ash contents, a*-value, and b*-value of PCS markedly increased with prolonged MVD time (P < 0.05). Additionally, as MVD time extended from 20 to 24 min, the textural characteristics of PCS, particularly brittleness and crunchiness, initially increased and then gradually decreased (P < 0.05). Scanning electron microscopy (SEM) images showed that a moderate MVD time (22 min) resulted in the formation of larger pores in PCS, enhancing brittleness and crunchiness. However, excessive MVD time (24 min) led to the melting of these pores, subsequently reducing the brittleness and crunchiness of PCS. Furthermore, in vitro protein digestibility of PCS gradually decreased with increasing MVD time, primarily attributed to increased protein aggregation, as indicated by changes in sulfhydryl contents. In summary, our findings highlight that PCS subjected to 22 min of MVD exhibited the highest overall acceptability. This study provides a novel strategy for the application of MVD in the processing of meat snacks.
Collapse
Affiliation(s)
- Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Liuyang Shen
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Noh E, Lee KG. Effects of ultrasound on the structural, physicochemical, and emulsifying properties of aquafaba extracted from various legumes. Food Chem 2024; 451:139438. [PMID: 38678652 DOI: 10.1016/j.foodchem.2024.139438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
This study investigated the effect of ultrasound (20-60 min, 40 kHz, 280 W) on the structural, physicochemical, and emulsifying properties of aquafaba extracted from various legumes (chickpea [CH], yellow soybean [YSB], black soybean [BSB], small black bean [SBB]). The hydrophobic amino acids and protein secondary structures (α-helix, random coil) significantly increased with sonication time (p < 0.05). The particle size of aquafaba was reduced by ultrasound (p < 0.05). A total of 27 volatile compounds were identified. Most volatiles increased with sonication time, and beany flavor was lowest in CH and SBB. The EAI, ESI, adsorbed proteins, and zeta-potential increased, while emulsion droplet size decreased in all legumes by ultrasound. The overall emulsifying properties were the highest in SBB sonicated for 40 min. This study discusses the applicability of ultrasound to aquafaba and provides insights into the functional properties and potential of aquafaba as a plant-based natural emulsifier.
Collapse
Affiliation(s)
- Eunjeong Noh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
4
|
Qu G, Yang F, Zhang H, Liu Y, He X, Liu F, Sun S, Luo Z. Protein of yak milk residue: Structure, functionality, and the effects on the quality of non-fat yogurt. Food Chem X 2024; 22:101452. [PMID: 38808161 PMCID: PMC11130682 DOI: 10.1016/j.fochx.2024.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
The purpose of this study was to compare the structural and functional of protein from yak milk residue, which collected from different elevations (MRP1 and MRP2) in Tibet, as well as their potential for enhancing the quality of non-fat yogurt. The results showed that MRP1 exhibited higher levels of β-sheet, turbidity, particle size, and gel properties. MRP2 had better flexibility, emulsification, foaming, water/oil absorption capacity. The addition of MRP1 (3%) could improve texture and sensory properties of yogurt. Although MRP2 yogurt had higher hardness, gumminess, chewiness and water holding capacity, poor mouthfeel. Rheological test showed that MRPs yogurt exhibited typical gel-like and shear-thinning behavior. Moreover, the fortification of non-fat yogurts with MRP1 brought the formation of larger protein clusters with a more tightly knit network of smaller pores. These results indicate that MRP1 can be used as a fat substitute to improve the quality of non-fat yogurt.
Collapse
Affiliation(s)
- Guangfan Qu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feiyan Yang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Hanzhi Zhang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yanfeng Liu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xudong He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Fei Liu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Shuguo Sun
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China
| |
Collapse
|
5
|
Wang K, Sun H, Cui Z, Wang J, Hou J, Lu F, Liu Y. Lactoferrin-Chitosan Composite Hydrogels Induced by Microbial Transglutaminase: Potential Delivery Systems for Thermosensitive Bioactive Substances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14302-14314. [PMID: 38865607 DOI: 10.1021/acs.jafc.4c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this work, lactoferrin (LF)-chitosan (CS) composite hydrogels with good loading capacity of thermosensitive bioactive substances were successfully obtained by microbial transglutaminase (MTG)-induced cross-linking. We evaluated the rheological, textural, and microstructural characteristics of the composite hydrogels under different conditions. The results demonstrated that the concentrations of LF and CS as well as the amount of MTG could regulate the textural properties, rheological properties, and water holding capability. The results of FTIR and fluorescence spectroscopy indicated that the main interactions within the composite gel were hydrogen and isopeptide bonds. Additionally, in vitro digestion simulation results verified that riboflavin kept stable in stomach due to the protection of LF-CS composite hydrogels and was released in small intestine. These results suggested that thermosensitive bioactive substance could be encapsulated and delivered by the LF-CS composite hydrogel, which could be applied in lots of potential applications in functional food as a new material.
Collapse
Affiliation(s)
- Kangning Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhihan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
6
|
Tao Y, Xu J, Zhang N, Jiao X, Yan B, Zhao J, Zhang H, Chen W, Fan D. Unraveling the binding mechanisms of transglutaminase and substrate subjected to microwaves: Molecular docking and molecular dynamic simulations. Food Chem 2024; 443:138568. [PMID: 38301564 DOI: 10.1016/j.foodchem.2024.138568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Previous studies showed that transglutaminase (TGase) and microwaves acted synergistically to improve the functional properties of proteins. The mechanism behind this has yet to be elucidated. In this study, the phenomenon of microwaves enhancing TGase activity was experimentally validated. Molecular docking and molecular dynamics simulations revealed that moderate microwaves (105 and 108 V/m) increased the structural flexibility of TGase and promoted the orientation of the side chain carboxylate anion group on Asp255, driving the reaction forward. Also, TGase underwent partial transformation from α-helix to turns or coils at 105 and 108 V/m, exposing more residues in the active site and facilitating the binding of the substrate (CBZ-Gln-Gly) to TGase. However, 109 V/m microwaves completely destroyed the TGase structure, inactivating the enzyme. This study provides insights into the molecular mechanisms underlying the interactions between TGase and substrate subjected to microwaves, promoting the future applications of TGase and microwaves in food processing.
Collapse
Affiliation(s)
- Yuan Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiawei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xidong Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Wang X, Wang Y, Wang X, Xing Y, Kuang C, Luo K, Cheng Y, Wang S. Influence of substrate aggregation state on the enzymatic-induced crosslinking of soy protein isolate. Food Chem 2024; 442:138484. [PMID: 38271913 DOI: 10.1016/j.foodchem.2024.138484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Transglutaminase (TGase) induced-crosslinking of soy protein isolate (SPI) was markedly influenced by the substrate aggregation state. Results showed that appropriate heating significantly accelerated the TGase crosslinking, and the 7S and 11S acidic subunits were more susceptible to the enzyme than the 11S basic proteins. The content of ε-(γ-glutamyl)-lysine isopeptide bonds increased from 4.74 to 8.61 μmol/g protein when the heating intensity was increased from 75 °C for 15 min to 95 °C for 30 min, due to sufficient unfolding of the protein structure. Rheological data indicated that the gel formed from the SPI heated at 95 °C for 30 min exhibited the best properties, with a 60 % increase in the storage modulus compared with the unheated sample. However, excessive heating (95 °C, 60-120 min) caused severe aggregation of SPI and formation of insoluble aggregates, resulting in poor crosslinking efficiency and weaker gel properties.
Collapse
Affiliation(s)
- Xufeng Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Yuqi Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Xiongshi Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Yunhao Xing
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Chuyu Kuang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Kaiyun Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Ren Z, Huang X, Shi L, Liu S, Yang S, Hao G, Qiu X, Liu Z, Zhang Y, Zhao Y, Weng W. Characteristics and potential application of myofibrillar protein from golden threadfin bream (Nemipterus virgatus) complexed with chitosan. Int J Biol Macromol 2023; 240:124380. [PMID: 37044323 DOI: 10.1016/j.ijbiomac.2023.124380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
The strategies to broaden the applications of proteins involve their modification with polysaccharides. However, the characteristics and application of myofibrillar proteins (MPs) from golden threadfin bream (Nemipterus virgatus) complexed with chitosan (CS) are still unclear. Therefore, the characteristics of MPs complexed with CS and their application were investigated at different MP/CS ratios (100:0-80:20 (w/w)). The turbidity of MP/CS complexes was small at the MP/CS ratio of 95:5 (w/w). Besides, CS addition induced changes in MP structure to make it hydrophilic. Secondary structure analysis showed that α-helix and β-turn interconverted with β-sheet and random coil after the addition of CS. Additionally, the thermal stability of MP/CS mixtures enhanced after the addition of CS and the MP/CS mixtures at the ratio of 95:5 (w/w) had a relatively compact structure. High internal phase emulsions (HIPEs) prepared at the MP/CS ratio of 95:5 (w/w) were relatively stable compared to those at the other ratios. Consequently, MP/CS mixtures at suitable ratios possess the potential ability to prepare HIPEs. These results exhibit that MP/CS mixtures may be applied for constructing food-graded emulsion delivery systems with a high internal phase in the food industry.
Collapse
Affiliation(s)
- Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Xianglan Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Gengxin Hao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Xujian Qiu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
9
|
Liu L, Huang Y, Zhang X, Zeng J, Zou J, Zhang L, Gong P. Texture analysis and physicochemical characteristics of fermented soymilk gel by different lactic acid bacteria. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Zhang T, Wang J, Feng J, Liu Y, Suo R, Ma Q, Sun J. Effects of ultrasonic-microwave combination treatment on the physicochemical, structure and gel properties of myofibrillar protein in Penaeus vannamei (Litopenaeus vannamei) surimi. ULTRASONICS SONOCHEMISTRY 2022; 90:106218. [PMID: 36356497 PMCID: PMC9650070 DOI: 10.1016/j.ultsonch.2022.106218] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study was to evaluate the effects of single ultrasound (360 W, 20 min), single microwave (10 W/g, 120 s) and ultrasonic-microwave combination treatment on shrimp surimi gel properties. The structure and physicochemical properties of myofibrillar protein (MP) were also determined. Low-field nuclear magnetic resonance showed that the fluidity of water molecules and the moisture content decreased, the stability and water holding capacity (WHC) increased after single ultrasound, single microwave and ultrasonic-microwave combination treatment. Compared with the traditional water bath treatment, ultrasound and microwave treatment reduced the total sulfhydryl content and promoted the formation of intermolecular disulfide bonds and hydrophobic interactions, which improved the compactness of the network structure of shrimp surimi gel. Moreover, Fourier transform infrared spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that these treatments not only inhibited the degradation of MP, but also decreased the α-helix content and increased the β-sheet content. The three treatments also significantly reduced the particle size and decreased the solubility of MP. Overall, the effect of ultrasonic-microwave combination treatment was superior to that of either single treatment.
Collapse
Affiliation(s)
- Tong Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jiaqi Feng
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| |
Collapse
|
11
|
Gong H, Liu J, Wang L, You L, Yang K, Ma J, Sun W. Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Crit Rev Food Sci Nutr 2022; 64:4202-4218. [PMID: 36305316 DOI: 10.1080/10408398.2022.2139660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications.HIGHLIGHTSThe current status and findings of research on direct current magnetic field in meat processing are presented.Several physical strategies to modify the microstructure and functional properties of MPs.The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.
Collapse
Affiliation(s)
- Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jiao Liu
- College of Life Science, South-Central MinZu University, Wuhan, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
12
|
Xiong Z, Shi T, Jin W, Bao Y, Monto AR, Yuan L, Gao R. Gel performance of surimi induced by various thermal technologies: A review. Crit Rev Food Sci Nutr 2022; 64:3075-3090. [PMID: 36193875 DOI: 10.1080/10408398.2022.2130154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heating is a vital step in the gelation of surimi. Conventional water bath heating (WB) has the advantages of easy operation and low equipment requirements. However, the slow heat penetration during WB may lead to poor gel formation or gels prone to deterioration, especially with one-step heating. The two-step WB is time-consuming, and a large amount of water used tends to cause environmental problems. This review focuses on key factors affecting the quality of surimi gels in various heating technologies, such as surimi protein structure, chemical forces, or the activity of endogenous enzymes. In addition, the relationships between these factors and the gel performance of surimi under various heating modes are discussed by analyzing the heating temperature and heating rate. Compared with WB, the gel performance can be improved by controlling the heating conditions of microwave heating and ohmic heating, which are mainly achieved by changing the molecular structure of myofibrillar proteins or the activity of endogenous enzymes in surimi. Nevertheless, the novel thermal technologies still face several limitations and further research is needed to realize large-scale industrial production. This review provides ideas and directions for developing heat-induced surimi products with excellent gel properties.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
13
|
Wu Y, Mu R, Li G, Li M, Lv W. Research progress in fluid and semifluid microwave heating technology in food processing. Compr Rev Food Sci Food Saf 2022; 21:3436-3454. [PMID: 35686487 DOI: 10.1111/1541-4337.12978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Microwave is a form of electromagnetic radiation that has high penetration and heating efficiency in food processing. Uneven heating is the main problem of microwave processing, especially in solid foods. Fluid and semifluid media, which are good carriers in microwave processing, have uniform dielectric properties and good material fluidity. Herein, we review the development, application prospects, and limitations of microwave in fluid and semifluid food processing and the research progress in microwave heating with steam as carrier. The mixture of generated steam and tiny micro droplets from food material under the action of microwave can absorb microwave and transfer heat evenly, which effectively improves the uniformity of microwave heating. Due to the relatively uniform dielectric properties and consistent texture of fluid and semifluid food materials, uneven heating phenomenon during their microwave processing can be significantly inhibited. Based on the development of microwave heating technology and equipment design, the microbial inactivation and enzyme inhibition in fluid and semifluid food were improved and food product with better retention of nutrients and sensory profile were produced. Also, microwave radiation can be used to prepare the printing material or process the printed product for 3D food printing, which enhances the added value of 3D printed products and the personalization of food manufacturing. In future research, intelligent control technology can be applied in the microwave processing of fluid and semifluid food materials for various applications. Therefore, the processing conditions can be adjusted automatically.
Collapse
Affiliation(s)
- Yiran Wu
- College of Engineering, China Agricultural University, Beijing, China
| | - Rongyi Mu
- College of Engineering, China Agricultural University, Beijing, China
| | - Guohua Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Mengge Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Fan S, Guo J, Wang X, Liu X, Chen Z, Zhou P. Effects of lipoxygenase/linoleic acid on the structural characteristics and aggregation behavior of pork myofibrillar protein under low salt concentration. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Wang F, Liu Y, Du C, Gao R. Current Strategies for Real-Time Enzyme Activation. Biomolecules 2022; 12:biom12050599. [PMID: 35625527 PMCID: PMC9139169 DOI: 10.3390/biom12050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Enzyme activation is a powerful means of achieving biotransformation function, aiming to intensify the reaction processes with a higher yield of product in a short time, and can be exploited for diverse applications. However, conventional activation strategies such as genetic engineering and chemical modification are generally irreversible for enzyme activity, and they also have many limitations, including complex processes and unpredictable results. Recently, near-infrared (NIR), alternating magnetic field (AMF), microwave and ultrasound irradiation, as real-time and precise activation strategies for enzyme analysis, can address many limitations due to their deep penetrability, sustainability, low invasiveness, and sustainability and have been applied in many fields, such as biomedical and industrial applications and chemical synthesis. These spatiotemporal and controllable activation strategies can transfer light, electromagnetic, or ultrasound energy to enzymes, leading to favorable conformational changes and improving the thermal stability, stereoselectivity, and kinetics of enzymes. Furthermore, the different mechanisms of activation strategies have determined the type of applicable enzymes and manipulated protocol designs that either immobilize enzymes on nanomaterials responsive to light or magnetic fields or directly influence enzymatic properties. To employ these effects to finely and efficiently activate enzyme activity, the physicochemical features of nanomaterials and parameters, including the frequency and intensity of activation methods, must be optimized. Therefore, this review offers a comprehensive overview related to emerging technologies for achieving real-time enzyme activation and summarizes their characteristics and advanced applications.
Collapse
|
16
|
Insight into the mechanism of myosin-fibrin gelation induced by non-disulfide covalent cross-linking. Food Res Int 2022; 156:111168. [DOI: 10.1016/j.foodres.2022.111168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022]
|
17
|
Yang H, Yan B, Meng L, Jiao X, Huang J, Gao W, Zhao J, Zhang H, Chen W, Fan D. Mathematical modeling of continuous microwave heating of surimi paste. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Wang H, Yang Z, Yang H, Xue J, Li Y, Wang S, Ge L, Shen Q, Zhang M. Comparative study on the rheological properties of myofibrillar proteins from different kinds of meat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Real-time in-situ quantification of protein secondary structures in aqueous solution based on ATR-FTIR subtraction spectrum. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Fang M, Luo X, Xiong S, Yin T, Hu Y, Liu R, Du H, Liu Y, You J. In vitro trypsin digestion and identification of possible cross-linking sites induced by transglutaminase (TGase) of silver carp (Hypophthalmichthys molitrix) surimi gels with different degrees of cross-linking. Food Chem 2021; 364:130443. [PMID: 34237618 DOI: 10.1016/j.foodchem.2021.130443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022]
Abstract
Surimi gels with different cross-linking degrees (18.52%, 34.67%, 62.87% and 79.11%) were prepared to identify the numbers and locations of lysine residues involved in TGase-induced cross-linking, and to reveal the quantity and location relationships among cross-linking degrees, cross-linking sites and digestion sites by using trypsin digestion, SDS-PAGE and LC-MS/MS methods. The results showed that with the increase in cross-linking degree from 18.52% to 79.11%, 1) the quantity of cross-linking sites gradually increased from 25 sites to 47 sites, 2) the main possible cross-linking domain moved from myosin head to rod, 3) the numbers of digestion sites first decreased from 1262 sites to 1194 sites, and then increased to 1302 sites, 4) the changes in the values of digestion sites were mainly concentrated in myosin rod and it was also the main region of digestion. This study can help exploring the relationship between enzymatic cross-linking and nutritional properties of food.
Collapse
Affiliation(s)
- Mengxue Fang
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaoying Luo
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tao Yin
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yang Hu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ru Liu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hongying Du
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Youming Liu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Juan You
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
21
|
Qian S, Dou P, Wang J, Chen L, Xu X, Zhou G, Zhu B, Ullah N, Feng X. Effect of MTGase on silver carp myofibrillar protein gelation behavior after peroxidation induced by peroxyl radicals. Food Chem 2021; 349:129066. [PMID: 33556728 DOI: 10.1016/j.foodchem.2021.129066] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/24/2022]
Abstract
The objective of this study was to explore the oxidative modification induced by AAPH (2,2'-azobis (2-amidinopropane) dihydrochloride) on the microbial transglutaminase (MTGase) cross-linking reaction and gelling properties of silver carp myofibril protein (SCMP). Compared to AAPH treatment, MTGase addition resulted further changes of protein properties as evidenced by the decreasing free amino and thiol group content, the decreased secondary and tertiary structure, and the increasing storage modulus (G') and gel strength (P < 0.05). The proper oxidation induced by AAPH (5 mM) promoted the glutamine-lysine and disulfide cross-linking due to MTGase (10 U/g). Therefore, the quality of the SCMP gel was improved with a good water-holding capacity (WHC), gel strength and G'. This results could lay a theoretical foundation for the development of silver carp surimi products with good quality. Chemical compounds: (2,2'-azobis(2-amidinopropane)dihydrochloride (PubChem CID:76344); O-Phthalaldehyde (PubChem CID:4807); 5,5'-Dithiobis(2-Nitrobenzoic Acid) (PubChem CID:6254); 8-Anilino-1-naphthalenesulfonic acid (PubChem CID:1369); Acrylamide (PubChem CID: 6579); β-Mercaptoethanol (PubChem CID: 1567); Sodium dodecyl sulfate (PubChem CID:3423265).
Collapse
Affiliation(s)
- Shan Qian
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Peipei Dou
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Junlan Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinglian Xu
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanghong Zhou
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Niamat Ullah
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Zhao X, Xu X, Zhou G. Covalent chemical modification of myofibrillar proteins to improve their gelation properties: A systematic review. Compr Rev Food Sci Food Saf 2020; 20:924-959. [DOI: 10.1111/1541-4337.12684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Xue Zhao
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Animal Products Processing, MOA; Key Lab of Meat Processing and Quality Control, MOE; College of Food Science and Technology Nanjing Agricultural University Nanjing P.R. China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Animal Products Processing, MOA; Key Lab of Meat Processing and Quality Control, MOE; College of Food Science and Technology Nanjing Agricultural University Nanjing P.R. China
| | - Guanghong Zhou
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Animal Products Processing, MOA; Key Lab of Meat Processing and Quality Control, MOE; College of Food Science and Technology Nanjing Agricultural University Nanjing P.R. China
| |
Collapse
|
23
|
Xu Y, Xu X. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 20:458-500. [DOI: 10.1111/1541-4337.12665] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yujuan Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu P.R. China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu P.R. China
| |
Collapse
|
24
|
Effects of genipin concentration on cross-linked β-casein micelles as nanocarrier of naringenin: Colloidal properties, structural characterization and controlled release. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
|
26
|
Effects of sodium hexametaphosphate, sodium tripolyphosphate and sodium pyrophosphate on the ultrastructure of beef myofibrillar proteins investigated with atomic force microscopy. Food Chem 2020; 338:128146. [PMID: 33091990 DOI: 10.1016/j.foodchem.2020.128146] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022]
Abstract
Myofibrillar protein isolated from beef muscles were treated with 3 phosphates (Sodium Hexametaphosphate, sodium tripolyphosphate, sodium pyrophosphate) with different concentrations of 0.3%, 0.6%, 0.9%, 1.2% respectively. Protein solubility, surface hydrophobicity and reactive sulfhydryl group was determined. Atomic force microscopy was used to observe the microscopic protein surface. SDS-PAGE was carried out to determine the proteolysis of myofibrillar protein. The solubility and surface hydrophobic bond of myofibrillar protein was highly increased and the diameter decreased by SHMP, TSPP, STPP. Reactive sulfhydryl groups increased after SHMP addition, but slightly decreased in STPP and TSPP treated MP. TSPP and STPP had the same effect on myofibrillar microstructure and was different from SHMP. Three phosphates all caused MP unfolding. The MP gel complexity was increased, and roughness was decreased after phosphates addition, indicating phosphates helped to construct a more ordered and smoother gel microcosmic surface.
Collapse
|
27
|
Han Z, Cai MJ, Cheng JH, Sun DW. Effects of constant power microwave on the adsorption behaviour of myofibril protein to aldehyde flavour compounds. Food Chem 2020; 336:127728. [PMID: 32795782 DOI: 10.1016/j.foodchem.2020.127728] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/05/2023]
Abstract
This study explored the influence of constant power microwave on the adsorption ability of myofibril protein from beef to typical aldehyde flavour compounds. Results showed that there was a significant increasing trend in surface hydrophobicity and reactive sulfhydryls content of myofibril protein with an increase in microwave power and treatment time. The adsorption ability of myofibril protein to aldehyde flavour compounds increased with increasing microwave power and time. The percentage of free aldehyde flavour compounds was related to the content of surface hydrophobicity, and reactive and total sulfhydryls of myofibril protein under microwave conditions, which could be fitted according to the multilevel relational (MLR) model. Furthermore, the reduced interface energy was probably the driving force for myofibril protein-flavour compounds adsorption behaviour at the gas-liquid interface.
Collapse
Affiliation(s)
- Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Meng-Jie Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
28
|
Wang B, Du X, Kong B, Liu Q, Li F, Pan N, Xia X, Zhang D. Effect of ultrasound thawing, vacuum thawing, and microwave thawing on gelling properties of protein from porcine longissimus dorsi. ULTRASONICS SONOCHEMISTRY 2020; 64:104860. [PMID: 31948851 DOI: 10.1016/j.ultsonch.2019.104860] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 05/25/2023]
Abstract
Effect of new thawing methods (ultrasound thawing (UT), vacuum thawing, (VT), microwave thawing (MT)) on gelling properties of myofibrillar protein (MP) from porcine longissimus dorsi was investigated, compared with traditional thawing methods (water immersion thawing, (WT)) and fresh meat (FM). The results showed that a decrease in MP gelling properties of all thawing samples was observed. The increase in roughness of MP gel from all thawing samples explained that the flatter, smoother, and denser surface morphology of that from FM samples was destroyed based on the observation by atomic force microscopy. There was significant difference (P < 0.05) in all gel indicators (particle size, turbidity, whiteness, water-holding capacity (WHC), moisture distribution, rheological characteristics, surface morphology) of MP from MT samples and there was insignificant difference (P > 0.05) in turbidity, whiteness, WHC of MP from VT samples compared with that from FM samples. There was insignificant difference (P > 0.05) in gel properties between UT and VT. The effect of UT and VT (new thawing methods) on MP gelling properties was significantly lower (P < 0.05) than that of WT (traditional thawing methods), and the effect of that from MT was obviously compared with other thawing methods.
Collapse
Affiliation(s)
- Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangfei Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
29
|
Mu D, Li H, Li X, Zhu J, Qiao M, Wu X, Luo S, Yang P, Zhao Y, Liu F, Jiang S, Zheng Z. Enhancing laccase‐induced soybean protein isolates gel properties by microwave pretreatment. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongdong Mu
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
- Key Laboratory of Molecular Microbiology and Technology Ministry of Education College of Life Sciences Nankai University Tianjin China
| | - Haowen Li
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Xingjiang Li
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Jing Zhu
- State Key Laboratory of Tea Plant Biology and Utilization School of Science Anhui Agricultural University Hefei P.R. China
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology Ministry of Education College of Life Sciences Nankai University Tianjin China
| | - Xuefeng Wu
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Shuizhong Luo
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Peizhou Yang
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Yanyan Zhao
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Fengru Liu
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Shaotong Jiang
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| |
Collapse
|
30
|
Wei S, Yang Y, Feng X, Li S, Zhou L, Wang J, Tang X. Structures and properties of chicken myofibrillar protein gel induced by microwave heating. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sumeng Wei
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| | - Yuling Yang
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| | - Xiao Feng
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| | - Shanshan Li
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| | - Lei Zhou
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| | - Jingyu Wang
- Fuyang Normal University Fuyang 236037 China
| | - Xiaozhi Tang
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| |
Collapse
|
31
|
Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films. COATINGS 2019. [DOI: 10.3390/coatings9110736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydrates and proteins, may be formulated to improve their properties. The objective of this work was to evaluate the effect of protein cross-linking with transglutaminase (TG) of two varieties of quinoa protein isolate (Chenopodium quinoa) [Willd (QW), and Pasankalla (QP)] on the physicochemical and barrier properties of edible films based on chitosan (CT)-quinoa protein. The evaluated properties were water vapor permeability (WVP), solubility, adsorption, roughness determined by atomic force microscopy, and the interactions among the main film components determined by Raman spectroscopy. The results indicated that TG interacted with lysine of QW and QP. CT:QW (1:5, w/w) showed the lowest solubility (14.02 ± 2.17% w/w). WVP varied with the composition of the mixture. The WVP of CT:quinoa protein ranged from 2.85 to 9.95 × 10−11 g cm Pa−1 cm−2 s−1 without TG, whereas adding TG reduced this range to 2.42–4.69 × 10−11 g cm Pa−1 cm−2 s−1. The addition of TG to CT:QP (1:10, w/w) reduced the film surface roughness from 8.0 ± 0.5 nm to 4.4 ± 0.3 nm. According to the sorption isotherm, the addition of TG to CT-QW films improved their stability [monolayer (Xm) = 0.13 ± 0.02 %]. Films with a higher amount of cross-linking showed the highest improvement in the evaluated physical properties, but interactions among proteins that were catalyzed by TG depended on the protein source and profile.
Collapse
|