1
|
Liu M, Wang X, Yang Y, Tu F, Yu L, Ma F, Wang X, Jiang X, Dou X, Li P, Zhang L. Authentication of Edible Oil by Real-Time One Class Classification Modeling. Foods 2025; 14:1235. [PMID: 40238483 PMCID: PMC11988667 DOI: 10.3390/foods14071235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Adulteration detection or authentication is considered a type of one-class classification (OCC) in chemometrics. An effective OCC model requires representative samples. However, it is challenging to collect representative samples from all over the world. Moreover, it is also very hard to evaluate the representativeness of collected samples. In this study, we blazed a new trail to propose an authentication method to identify adulterated edible oils without building a prediction model beforehand. An authentication method developed by real-time one-class classification modeling, and model population analysis was designed to identify adulterated oils in the market without building a classification model beforehand. The underlying philosophy of the method is that the sum of the absolute centered residual (ACR) of the good model built by only authentic samples is higher than that of the bad model built by authentic and adulterated samples. In detail, a large number of OCC models were built by selecting partial samples out of inspected samples using Monte Carlo sampling. Then, adulterated samples involved in the test of these good models were identified. Taking the inspected samples of avocado oils as an example, as a result, 6 out of 40 avocado oils were identified as adulterated and then validated by chemical markers. The successful identification of avocado oils adulterated with soybean oil, corn oil, or rapeseed oil validated the effectiveness of our method. The proposed method provides a novel idea for oils as well as other high-value food adulteration detection.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xueyan Wang
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yong Yang
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430040, China
| | - Fengqin Tu
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430040, China
| | - Li Yu
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fei Ma
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xuefang Wang
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaoming Jiang
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430040, China
| | - Xinjing Dou
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Peiwu Li
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liangxiao Zhang
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Son WY, Hwang J, Park JH, Kim JH, Ahmad R, Kim KS, Kim HW. Enhancement of Physicochemical and Functional Properties of Chicken Breast Protein Through Polyphenol Conjugation: A Novel Ingredient for Protein Supplements. Molecules 2025; 30:448. [PMID: 39942554 PMCID: PMC11821221 DOI: 10.3390/molecules30030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Polyphenol conjugation has emerged as a promising approach to enhance the technological properties and physiological benefits of food proteins. This study investigated the effects of polyphenol conjugation on the technological properties, antioxidant capacity, and in vitro digestibility of chicken breast (CB) proteins. Conjugation with (-)-epigallocatechin 3-gallate (EGCG) and tannic acid (TA) significantly reduced sulfhydryl content. EGCG conjugates exhibited higher turbidity and greater molecular weight aggregates (>245 kDa). Fourier-transform infrared spectroscopy (FTIR) revealed alterations in protein secondary structures, with shifts in amide I and II bands. Polyphenol conjugation significantly enhanced the water-holding capacity of chicken muscle proteins, particularly for CB-TA (3.29 g/g) and CB-EGCG (3.13 g/g) compared to the control (2.25 g/g). The emulsion stability index improved notably in CB-EGCG (96.23 min) and CB-TA (87.24 min) compared to the control (69.05 min). Color analysis revealed darker and more intense hues for CB-EGCG, while CB-TA maintained a lighter appearance, making it potentially preferable for industrial applications requiring neutral-colored powders. Moreover, polyphenol conjugation could enhance antioxidant capacity, particularly in conjugates with EGCG (p < 0.05). In vitro protein digestibility remained comparable across treatments (p > 0.05). Our findings could indicate the potential of chicken muscle protein-polyphenol conjugates as innovative ingredients for high-quality protein supplements.
Collapse
Affiliation(s)
- Woo-Young Son
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (W.-Y.S.); (J.H.)
| | - Jun Hwang
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (W.-Y.S.); (J.H.)
| | - Ju-Hyo Park
- Jungdam Co., Ltd., Suwon 16602, Republic of Korea;
| | - Ji-Han Kim
- Smart Foods, Ag Research, Palmerston North 4410, New Zealand; (J.-H.K.); (R.A.)
| | - Raise Ahmad
- Smart Foods, Ag Research, Palmerston North 4410, New Zealand; (J.-H.K.); (R.A.)
| | - Kyeong-Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Hyun-Wook Kim
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (W.-Y.S.); (J.H.)
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| |
Collapse
|
3
|
Cao J, Shi T, Wang Y, Wang J, Cao F, Yu P, Su E. Pecan (Carya illinoinensis (Wangenh.) K. Koch) nuts as an emerging source of protein: extraction, physicochemical and functional properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8756-8768. [PMID: 38940359 DOI: 10.1002/jsfa.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The increasing demand for sustainable alternatives to traditional protein sources, driven by population growth, underscores the importance of protein in a healthy diet. Pecan (Carya illinoinensis (Wangenh.) K. Koch) nuts are currently underutilized as plant-based proteins but hold great potential in the food industry. However, there is insufficient information available on pecan protein, particularly its protein fractions. This study aimed to explore the physicochemical and functional properties of protein isolate and the main protein fraction glutelin extracted from pecan nuts. RESULTS The results revealed that glutelin (820.67 ± 69.42 g kg-1) had a higher crude protein content compared to the protein isolate (618.43 ± 27.35 g kg-1), while both proteins exhibited amino acid profiles sufficient for adult requirements. The isoelectric points of protein isolate and glutelin were determined to be pH 4.0 and pH 5.0, respectively. The denaturation temperature of the protein isolate (90.23 °C) was higher than that of glutelin (87.43 °C), indicating a more organized and stable conformation. This is further supported by the fact that the protein isolate had a more stable main secondary structure than glutelin. Both proteins demonstrated improved solubility, emulsifying, and foaming properties at pH levels deviating from their isoelectric points in U-shaped curves. Compared to the protein isolate, glutelin displayed superior water and oil absorption capacity along with enhanced gelling ability. CONCLUSION The protein isolate and glutelin from pecan nuts exhibited improved stability and competitive functional properties, respectively. The appropriate utilization of these two proteins will support their potential as natural ingredients in various food systems. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Tingting Shi
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Jiahong Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Pengfei Yu
- Suining County Runqi Investment Co., Ltd, Xuzhou, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Bazzaz S, Abbasi A, Ghotbabad AG, Pourjafar H, Hosseini H. Novel Encapsulation Approaches in the Functional Food Industry: With a Focus on Probiotic Cells and Bioactive Compounds. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10364-7. [PMID: 39367980 DOI: 10.1007/s12602-024-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Bioactive substances can enhance host health by modulating biological reactions, but their absorption and utilization by the body are crucial for positive effects. Encapsulation of probiotics is rapidly advancing in food science, with new approaches such as 3D printing, spray-drying, microfluidics, and cryomilling. Co-encapsulation with bioactives presents a cost-effective and successful approach to delivering probiotic components to specific colon areas, improving viability and bioactivity. However, the exact method by which bioactive chemicals enhance probiotic survivability remains uncertain. Co-crystallization as an emerging encapsulation method improves the physical characteristics of active components. It transforms the structure of sucrose into uneven agglomerated crystals, creating a porous network to protect active ingredients. Likewise, electrohydrodynamic techniques are used to generate fibers with diverse properties, protecting bioactive compounds from harsh circumstances at ambient temperature. Electrohydrodynamic procedures are highly adaptable, uncomplicated, and easily expandable, resulting in enhanced product quality and functionality across various food domains. Furthermore, food byproducts offer nutritional benefits and technical potential, aligning with circular economy principles to minimize environmental impact and promote economic growth. Hence, industrialized nations can capitalize on the growing demand for functional foods by incorporating these developments into their traditional cuisine and partnering with businesses to enhance manufacturing and production processes.
Collapse
Affiliation(s)
- Sara Bazzaz
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghafouri Ghotbabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Viji P, Binsi PK, Sireesha S, S J L, Ninan G. Nutritional and physicochemical characteristics of Asiatic hard clam powder prepared by different cook-drying processes: a comparative study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5104-5113. [PMID: 38297456 DOI: 10.1002/jsfa.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Asiatic hard clam (Meretrix meretrix) is an underutilized bivalve resource. This study discusses dried clam powders prepared from this resource to enhance its utilization and improve nutritional security in protein-deficient populations. Dried clam powder was prepared from Asiatic hard clam and the effects of different pre-cooking methods (boil-dried clam powder, BDCP; steam-dried clam powder, SDCP; and microwave-dried clam powder, MDCP) on nutritional (proximate composition, amino acid profiling, mineral profiling, fatty acid profiling) and physicochemical qualities were investigated. RESULTS Different pre-cooking methods significantly influenced the characteristics of the clam powder. The MDCP sample showed the highest concentration of amino acids, polyunsaturated fatty acids, Na, K, Ca and Mg content compared to BDCP and SDCP. The boiling process led to a loss of nutritional quality in terms of amino acids and macrominerals. The MDCP displayed the highest solubility in water (30.10%) but its oil and water absorption characteristics were the lowest among all the samples. Boil-cooked clam powder displayed the highest oil binding (2.03 mL g-1 protein) capacity. Boiling and steaming processes resulted in malondialdehyde generation compared to microwaving. Different pre-cooking processes did not influence the colour attributes significantly, but the control sample prepared without pre-cooking (CCP) had a significantly lower L* value (32.34), resulting in a darker product. In vitro digestibility of the clam powder varied in the order MDCP > SDCP > BDCP > CCP. CONCLUSION The study demonstrated that nutritionally rich protein powder can be prepared from Asiatic hard clam. Based on the results, microwave pre-cooking is considered the best pre-cooking method to preserve the nutritional qualities of clam powder. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pankyamma Viji
- Visakhapatnam Research Centre of ICAR - Central Institute of Fisheries Technology, Pandurangapuram, Andhra University PO, Visakhapatnam, India
| | | | - Senapathi Sireesha
- Visakhapatnam Research Centre of ICAR - Central Institute of Fisheries Technology, Pandurangapuram, Andhra University PO, Visakhapatnam, India
| | - Laly S J
- ICAR - Central Institute of Fisheries Technology, Kochi, India
| | - George Ninan
- ICAR - Central Institute of Fisheries Technology, Kochi, India
| |
Collapse
|
6
|
Lee CC, Suttikhana I, Ashaolu TJ. Techno-Functions and Safety Concerns of Plant-Based Peptides in Food Matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12398-12414. [PMID: 38797944 DOI: 10.1021/acs.jafc.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plant-based peptides (PBPs) benefit functional food development and environmental sustainability. Proteolysis remains the primary method of peptide production because it is a mild and nontoxic technique. However, potential safety concerns still emanate from toxic or allergenic sequences, amino acid racemization, iso-peptide bond formation, Maillard reaction, dose usage, and frequency. The main aim of this review is to investigate the techno-functions of PBPs in food matrices, as well as their safety concerns. The distinctive characteristics of PBPs exhibit their techno-functions for improving food quality and functionality by contributing to several crucial food formulations and processing. The techno-functions of PBPs include solubility, hydrophobicity, bitterness, foaming, oil-binding, and water-holding capacities, which subsequently affect food matrices. The safety and quality of foodstuff containing PBPs depend on the proper source of plant proteins, the selection of processing approaches, and compliance with legal regulations for allergen labeling and safety evaluations. The safety concerns in allergenicity and toxicity were discussed. The conclusion is that food technologists must apply safe limits and consider potential allergenic components generated during the development of food products with PBPs. Therefore, functional food products containing PBPs can be a promising strategy to provide consumers with wholesome health benefits.
Collapse
Affiliation(s)
- Chi-Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkalı Avenue No: 28, Halkalı, Küçükçekmece, Istanbul 34303, Türkiye
| | - Itthanan Suttikhana
- Department of Multifunctional Agriculture, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice 2, Czechia
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
- Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam
| |
Collapse
|
7
|
López-Mártir KU, Armando Ulloa J, Urías-Silvas JE, Rosas-Ulloa P, Ramírez-Ramírez JC, Resendiz-Vazquez JA. Modification of the physicochemical, functional, biochemical and structural properties of a soursop seed (Annona muricata L.) protein isolate treated with high-intensity ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 105:106870. [PMID: 38579570 PMCID: PMC11004696 DOI: 10.1016/j.ultsonch.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
The obtained seeds from fruit processing are considered by-products containing proteins that could be utilized as ingredients in food manufacturing. However, in the specific case of soursop seeds, their usage for the preparation of protein isolates is limited. In this investigation a protein isolate from soursop seeds (SSPI) was obtained by alkaline extraction and isoelectric precipitation methods. The SSPI was sonicated at 200, 400 and 600 W during 15 and 30 min and its effect on the physicochemical, functional, biochemical, and structural properties was evaluated. Ultrasound increased (p < 0.05) up to 5 % protein content, 261 % protein solubility, 60.7 % foaming capacity, 30.2 % foaming stability, 86 % emulsifying activity index, 4.1 % emulsifying stability index, 85.4 % in vitro protein digestibility, 423.4 % albumin content, 83 % total sulfhydryl content, 316 % free sulfhydryl content, 236 % α-helix, 46 % β-sheet, and 43 % β-turn of SSPI, in comparison with the control treatment without ultrasound. Furthermore, ultrasound decreased (p < 0.05) up to 50 % particle size, 37 % molecular flexibility, 68 % surface hydrophobicity, 41 % intrinsic florescence spectrum, and 60 % random coil content. Scanning electron microscopy analysis revealed smooth structures of the SSPI with molecular weights ranging from 12 kDa to 65 kDa. The increase of albumins content in the SSPI by ultrasound was highly correlated (r = 0.962; p < 0.01) with the protein solubility. Improving the physicochemical, functional, biochemical and structural properties of SSPI by ultrasound could contribute to its utilization as ingredient in food industry.
Collapse
Affiliation(s)
- Kevin Ulises López-Mártir
- Maestría en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela, Xalisco 63780, Nayarit, Mexico
| | - José Armando Ulloa
- Maestría en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela, Xalisco 63780, Nayarit, Mexico; Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, Tepic 63155, Nayarit, Mexico.
| | - Judith Esmeralda Urías-Silvas
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Avenida Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| | - Petra Rosas-Ulloa
- Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, Tepic 63155, Nayarit, Mexico
| | - José Carmen Ramírez-Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Carretera Compostela-Chapalilla Km 3.5, Compostela 63700, Nayarit, Mexico
| | - Juan Alberto Resendiz-Vazquez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
| |
Collapse
|
8
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
9
|
John R, Bollinedi H, Jeyaseelan C, Padhi SR, Sajwan N, Nath D, Singh R, Ahlawat SP, Bhardwaj R, Rana JC. Mining nutri-dense accessions from rice landraces of Assam, India. Heliyon 2023; 9:e17524. [PMID: 37449133 PMCID: PMC10336429 DOI: 10.1016/j.heliyon.2023.e17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The Indian subcontinent is the primary center of origin of rice where huge diversity is found in the Indian rice gene pool, including landraces. North Eastern States of India are home to thousands of rice landraces which are highly diverse and good sources of nutritional traits, but most of them remain nutritionally uncharacterized. Hence, nutritional profiling of 395 Assam landraces was done for total starch, amylose content (AC), total dietary fiber (TDF), total protein content (TPC), oil, phenol, and total phytic acid (TPA) using official AOAC and standard methods, where the mean content for the estimated traits were found to be 75.2 g/100g, 22.2 g/100g, 4.67 g/100g, 9.8 g/100g, 5.26%, 0.40 GAE g/100g, and 0.34 g/100g for respectively. The glycaemic index (GI) was estimated in 24 selected accessions, out of which 17 accessions were found to have low GI (<55). Among different traits, significant correlations were found that can facilitate the direct and indirect selection such as estimated glycemic index (EGI) and amylose content (-0.803). Multivariate analyses, including principal component analysis (PCA) and hierarchical clustering analysis (HCA), revealed the similarities/differences in the nutritional attributes. Four principal components (PC) i.e., PC1, PC2, PC3, and PC4 were identified through principal component analysis (PCA) which, contributed 81.6% of the variance, where maximum loadings were from protein, oil, starch, and phytic acid. Sixteen clusters were identified through hierarchical clustering analysis (HCA) from which the trait-specific and biochemically most distant accessions could be identified for use in cultivar development in breeding programs.
Collapse
Affiliation(s)
- Racheal John
- Amity Institute of Applied Sciences, Amity University, Noida, India
| | | | | | | | | | | | | | | | | | - Jai Chand Rana
- Alliance of Bioversity International and CIAT – India Office, New Delhi, India
| |
Collapse
|
10
|
Cingöz A, Yildirim M. Effects of hydrolysis degree on the functional properties of hydrolysates from sour cherry kernel protein concentrate. FOODS AND RAW MATERIALS 2023. [DOI: 10.21603/2308-4057-2023-2-566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
During the processing of sour cherries into different foodstuffs, a large amount of kernels is produced as waste material, which creates a significant disposal problem for the food industry. Sour cherry kernels containing 25.3–35.5% of protein can be used as a functional protein source in food production. Therefore, we aimed to study the effects of hydrolysis degree on the sour cherry kernel protein hydrolysates.
Proteins were extracted from the defatted flour by isoelectric precipitation. The resulting protein concentrate was hydrolyzed (5, 10, and 15% hydrolysis) using Alcalase to yield hydrolysates. We determined their oil and water holding, emulsifying, gelation, and foaming properties, as well as apparent molecular weight distribution and proximate compositions.
No protein fractions greater than an apparent molecular weight of about 22 kDa were present in the hydrolysates. The hydrolysis of the protein concentrate mostly led to an increase in protein solubility. As the degree of hydrolysis increased from 5 to 15%, the water holding capacity of the hydrolysates decreased from 2.50 ± 0.03 to 2.03 ± 0.02 g water/g, indicating its deterioration.
The hydrolysates obtained at different degrees of hydrolysis had a better solubility than the intact protein concentrate. The oil holding capacity, the foaming stability, and the least gelation concentration of the protein concentrate could not be considerably improved by hydrolysis. In contrast, its emulsifying activity index and foaming capacity could be increased with a limited degree of hydrolysis (up to 10%).
Collapse
|
11
|
Belinska S, Nesterenko N, Moroz O, Bilokon T, Kepko V, Ivaniuta A, Shynkaruk O, Rudyk Y, Gruntovskyi M, Kharsika I. The effect of storage temperature on the quality of avocado fruits from different climatic zones. POTRAVINARSTVO 2023. [DOI: 10.5219/1850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Avocado is one of the most valuable products, as it is characterized by a high content of biologically active substances, including vitamins, mineral elements, fats, and dietary fibers. According to a complex of organoleptic and physicochemical indicators, the consumption properties of avocado fruits from different countries of origin, which are sold in Ukraine, have been investigated. Among the organoleptic indicators, the state of peel and pulp, taste, and smell has been determined according to the developed scoring scale. It has been established that the Haas type (Colombia) fruits have a light green pulp and a deep green peel that does not lag well behind the flesh, they are quite firm, the taste is watery, and there are no significant defects, the stem is not damaged. Haas (Israel) avocados had light green pulp and a brownish-black peel that separated from the flesh very well, with little evidence of pollination, a nice buttery flavour, and a nice texture. There is a slight peel defect (pollination mark) with an area of less than 4 cm2, which does not affect the fruit's flesh, and the stem is not damaged. The fruit of the Fuerte type (Israel) had a light green pulp and a deep-green peel that did not lag well behind the flesh, a somewhat grassy taste, and a loose flesh texture. The fruit had a defect in the peel (lens) with an area of less than 6 cm2, which does not affect the fruit's flesh, and the stem is not damaged. It has been found that the researched types of avocado fruits from different countries of origin differ in shape, size, and the ratio of peel, pulp, and stone. From the physicochemical parameters, the mass fraction of moisture, the content of dry soluble substances, active acidity, the content of ascorbic acid, and the fatty acid composition of lipids of avocado fruits have been determined.
Collapse
|
12
|
Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Processes (Basel) 2023. [DOI: 10.3390/pr11030840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The rapid growth of the global population and changes in lifestyle have led to a significant increase in food waste from various industrial, agricultural, and household sources. Nearly one-third of the food produced annually is wasted, resulting in severe resource depletion. Food waste contains rich organic matter, which, if not managed properly, can pose a serious threat to the environment and human health, making the proper disposal of food waste an urgent global issue. However, various types of food waste, such as waste from fruit, vegetables, grains, and other food production and processing, contain important bioactive compounds, such as polyphenols, dietary fiber, proteins, lipids, vitamins, organic acids, and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market. These bioactive compounds offer the potential to convert food waste into value-added products, and fields including nutritional foods, bioplastics, bioenergy, biosurfactants, biofertilizers, and single cell proteins have welcomed food waste as a novel source. This review reveals the latest insights into the various sources of food waste and the potential of utilizing bioactive compounds to convert it into value-added products, thus enhancing people’s confidence in better utilizing and managing food waste.
Collapse
|
13
|
Han L, Peng X, Cheng Y, Zhu Y, Huang Y, Zhang S, Qi B. Effects of catechin types found in tea polyphenols on the structural and functional properties of soybean protein isolate–catechin covalent complexes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Huang D, Li W, Li G, Zhang W, Chen H, Jiang Y, Li D. Effect of high-intensity ultrasound on the physicochemical properties of Tenebrio Molitor Protein. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Sert D, Rohm H, Struck S. Ultrasound-Assisted Extraction of Protein from Pumpkin Seed Press Cake: Impact on Protein Yield and Techno-Functionality. Foods 2022; 11:4029. [PMID: 36553771 PMCID: PMC9777787 DOI: 10.3390/foods11244029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Conventional solvent-based methods widely used for isolating plant proteins may deliver an unsatisfactory protein yield and/or result in protein degradation. The present study started with the optimization of pumpkin seed protein from press cake by alkaline extraction and subsequent isoelectric precipitation. Subsequently, extraction was supported by ultrasound under three conditions: ultrasonic treatment followed by alkaline extraction (US+AE), concomitant ultrasonic treatment and alkaline extraction (UAE), and alkaline extraction followed by ultrasonic treatment (AE+US). Compared to the control group, an increase in protein yield was achieved after ultrasonic treatment, while the highest protein yield was obtained with AE+US (57.8 ± 2.0%). Isolates with a protein content of 94.04 ± 0.77 g/100 g and a yield of 43.6 ± 0.97% were obtained under optimized conditions. Following ultrasonic treatment applied during extraction, solubility, foaming capacity, foam stability, and denaturation enthalpy of the isolated protein increased, and water binding capacity decreased as compared to non-sonicated samples. The d90 particle size percentile of the extracted suspensions was 376.68 ± 38.32 µm for the control experiments, and particle size was significantly reduced in ultrasound-assisted treatments down to d90 = 179.93 ± 13.24 µm for the AE+US treatment). Generally, ultrasonication resulted in a significant increase in protein yield and improved techno-functional properties of the isolates.
Collapse
Affiliation(s)
| | - Harald Rohm
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | | |
Collapse
|
16
|
Protein Isolate from Orange (Citrus sinensis L.) Seeds: Effect of High-Intensity Ultrasound on Its Physicochemical and Functional Properties. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
17
|
Physicochemical and functional properties of Pleurotus geesteranus proteins. Food Res Int 2022; 162:111978. [DOI: 10.1016/j.foodres.2022.111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
|
18
|
Characterization and application of a coating of starch extracted from avocado (Persea americana L. cv. Hass) seeds as an alternative to reduce acrylamide content in French fries. Food Sci Biotechnol 2022; 31:1547-1558. [PMID: 36278139 PMCID: PMC9582065 DOI: 10.1007/s10068-022-01140-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022] Open
Abstract
AbstractThe starch extracted from avocado (Persea americana L. cv. Hass) seeds was characterized and used in the preparation of an edible coating to reduce the oil uptake and acrylamide content in French fries. Starch characterization was carried out using Differential Scanning Calorimetry, Fourier transform infrared spectrophotometry, gelatinization, and scanning electron microscopy. Uncoated (UFF) and coated (CFF) French fries were compared and evaluated for moisture, water activity (Aw), fat, color, firmness, acrylamide content, and sensorial analysis. The extracted starch presented a high crystalline structure and good stability to mechanical work and heat treatments. The CFF French fries showed significantly higher Aw, color parameter a*, but lower luminosity and acrylamide content than UFF samples. Similarly, the CFF samples tended to decrease the fat content, although without statistical differences. Avocado seed starch can be an economical and technically feasible alternative to the food industry as an effective coating to reduce acrylamide content in French fries.
Collapse
|
19
|
Zhao Q, Hong X, Fan L, Liu Y, Li J. Solubility and emulsifying properties of perilla protein isolate: Improvement by phosphorylation in the presence of sodium tripolyphosphate and sodium trimetaphosphate. Food Chem 2022; 382:132252. [DOI: 10.1016/j.foodchem.2022.132252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/09/2022] [Accepted: 01/23/2022] [Indexed: 11/04/2022]
|
20
|
Esteve-Llorens X, Ita-Nagy D, Parodi E, González-García S, Moreira MT, Feijoo G, Vázquez-Rowe I. Environmental footprint of critical agro-export products in the Peruvian hyper-arid coast: A case study for green asparagus and avocado. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151686. [PMID: 34808165 DOI: 10.1016/j.scitotenv.2021.151686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Peru has become one of the world's main agricultural hubs for a wide range of fruits and vegetables. Two of these products, avocado and green asparagus, have raised attention in recent years in the international scene from an environmental perspective due to the high amounts of water they require, as well as the long air and marine freighting distances to export these products to Europe, Asia or the US. Consequently, the aim of the current study was to perform an environmental assessment of these two products using two life-cycle methods: carbon and water footprint. For the latter, water scarcity, acidification, eco-toxicity and eutrophication impact categories have been selected for assessment. Inventory data were gathered from six different companies located in different regions of the hyper-arid Peruvian coast. The results report that the products are not carbon intensive and are in line with other similar plant-based products. Conversely, the hyper-arid conditions of the cultivation sites require a large volume of groundwater to fulfill the needs of the crops. Interestingly, even though this may lead to overexploitation of groundwater resources in the absence of appropriate management policies, the low mobility of pollutants, namely pesticides, constitutes a natural barrier to protect the degradation of natural water bodies. Similarly, highly technified irrigation systems have allowed minimizing the amounts of water used per hectare. In conclusion, results from this study may be useful in more concise environmental assessment studies on food products and diets, considering the consumption of these Peruvian products in many countries in the world. Furthermore, results are also important at regional level since they depict the carbon and water performance of these products and can also be accompanied by cross-cutting certification schemes, including Product Environmental Footprint Category Rules Guidance.
Collapse
Affiliation(s)
- Xavier Esteve-Llorens
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Diana Ita-Nagy
- Peruvian Life Cycle Assessment and Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, 1801 Avenida Universitaria, San Miguel, Lima 15088, Peru
| | - Eduardo Parodi
- Peruvian Life Cycle Assessment and Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, 1801 Avenida Universitaria, San Miguel, Lima 15088, Peru
| | - Sara González-García
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - María Teresa Moreira
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Gumersindo Feijoo
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Ian Vázquez-Rowe
- Peruvian Life Cycle Assessment and Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, 1801 Avenida Universitaria, San Miguel, Lima 15088, Peru.
| |
Collapse
|
21
|
Santos NC, Almeida RLJ, de Medeiros MDFD, Hoskin RT, da Silva Pedrini MR. Foaming characteristics and impact of ethanol pretreatment in drying behavior and physical characteristics for avocado pulp powder obtained by foam mat drying. J Food Sci 2022; 87:1780-1795. [PMID: 35315074 DOI: 10.1111/1750-3841.16123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/18/2022] [Accepted: 02/27/2022] [Indexed: 12/21/2022]
Abstract
The objective of this study was to optimize the production of powdered avocado using foam mat drying. In order to achieve this, the effect of Emustab® (4, 6, and 8% w/w), goat's milk (10, 15, and 20% w/w), and whipping time (15, 20, and 25 min) on the foam physical properties of avocado pulp were evaluated. In addition, the influence of ethanol pretreatment on the drying kinetics, thermodynamic properties, and physicochemical characteristics of the powders was also assessed. An experimental design 23 with three central points was used in this study and optimized foam conditions were dried at 50, 60, and 70°C, with a fixed air speed of 1.5 m/s. Empirical and diffusive models (boundary conditions of the third type) were adjusted to the experimental data to describe the drying kinetics and to determine the process activation energy and thermodynamic properties. The final products were characterized regarding their physical properties. Optimized foam mat drying conditions were achieved when avocado pulp was whipped for 15 min and 8% of Emustab® and 20% of powdered goat milk were used as foaming agents. The use of an ethanol pretreatment and higher drying temperature (70°C) resulted in higher drying rate (1.6 × 102 /min) and shorter processing time (270 min). The ethanol pretreatment reduced the activation energy and Biot number and led to more uniform moisture distribution. The physical properties, such as water content, water activity, bulk, and tapped densities decreased with an increase in drying temperature and pretreatment with ethanol, whereas water absorption capacity increased. PRACTICAL APPLICATION: In this work, new information about the drying kinetics and mass transfer of the foam mat avocado pulp using ethanol as pretreatment is obtained. The results will contribute to the optimization production avocado foaming and powder. Ethanol pretreatment can represent an alternative to minimize the negative impacts on drying process and can be surely suggested as an industrial application.
Collapse
Affiliation(s)
- Newton Carlos Santos
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | | | | | - Roberta Targino Hoskin
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal-RN, Brazil.,Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | | |
Collapse
|
22
|
Sá AGA, Laurindo JB, Moreno YMF, Carciofi BAM. Influence of Emerging Technologies on the Utilization of Plant Proteins. Front Nutr 2022; 9:809058. [PMID: 35223951 PMCID: PMC8873936 DOI: 10.3389/fnut.2022.809058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Protein from plant sources is claimed alternatives to animal sources in the human diet. Suitable protein sources need high protein digestibility and amino acid bioavailability. In terms of protein functionality and food applications, they also need high-quality attributes, such as solubility, gelling, water- and oil-holding capacities, emulsifying, and foaming. Thermal processing can improve the nutritional quality of plants with some disadvantages, like reducing the assimilation of micronutrients (vitamins and minerals). Emerging technologies-such as ultrasound, high-pressure, ohmic heating, microwave, pulsed electric field, cold plasma, and enzymatic processes-can overcome those disadvantages. Recent studies demonstrate their enormous potential to improve protein techno-functional properties, protein quality, and decrease protein allergenicity. However, the literature lacks a broader evaluation, including protein digestibility, industrial-scale optimization, and exploring applications to these alternative protein sources.
Collapse
Affiliation(s)
- Amanda Gomes Almeida Sá
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - João Borges Laurindo
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | |
Collapse
|
23
|
Physicochemical and Functional Properties of 2S, 7S, and 11S Enriched Hemp Seed Protein Fractions. Molecules 2022; 27:molecules27031059. [PMID: 35164322 PMCID: PMC8840737 DOI: 10.3390/molecules27031059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
The hemp seed contains protein fractions that could serve as useful ingredients for food product development. However, utilization of hemp seed protein fractions in the food industry can only be successful if there is sufficient information on their levels and functional properties. Therefore, this work provides a comparative evaluation of the structural and functional properties of hemp seed protein isolate (HPI) and fractions that contain 2S, 7S, or 11S proteins. HPI and protein fractions were isolated at pH values of least solubility. Results showed that the dominant protein was 11S, with a yield of 72.70 ± 2.30%, while 7S and 2S had values of 1.29 ± 0.11% and 3.92 ± 0.15%, respectively. The 2S contained significantly (p < 0.05) higher contents of sulfhydryl groups at 3.69 µmol/g when compared to 7S (1.51 µmol/g), 11S (1.55 µmol/g), and HPI (1.97 µmol/g). The in vitro protein digestibility of the 2S (72.54 ± 0.52%) was significantly (p < 0.05) lower than those of the other isolated proteins. The intrinsic fluorescence showed that the 11S had a more rigid structure at pH 3.0, which was lost at higher pH values. We conclude that the 2S fraction has superior solubility, foaming capacity, and emulsifying activity when compared to the 7S, 11S, and HPI.
Collapse
|
24
|
Kumar M, Tomar M, Potkule J, Reetu, Punia S, Dhakane-Lad J, Singh S, Dhumal S, Chandra Pradhan P, Bhushan B, Anitha T, Alajil O, Alhariri A, Amarowicz R, Kennedy JF. Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.106986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Zhao Q, Xie T, Hong X, Zhou Y, Fan L, Liu Y, Li J. Modification of functional properties of perilla protein isolate by high-intensity ultrasonic treatment and the stability of o/w emulsion. Food Chem 2022; 368:130848. [PMID: 34479088 DOI: 10.1016/j.foodchem.2021.130848] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023]
Abstract
This study investigated the effects of ultrasonic treatment on the structural characteristics and functional properties of perilla protein isolate (PPI). Besides, the performance of the emulsions stabilized by ultrasonic-treated PPI was analyzed, aiming at exploring the potential mechanism of ultrasonic technology to improve emulsion stability. Results showed that ultrasonic treatment reduced the particle size, induced the exposure of hydrophobic groups and changes in the secondary structure and tertiary conformation of PPI. However, the molecular weight and the crystalline regions were remained unchanged. Apart from this, ultrasonic treatment improved the solubility, water/oil holding capacity, foaming and emulsifying capacity of PPI. Furthermore, the emulsions prepared by ultrasonic-treated PPI possessed the highest stability, which might be due to the smaller droplets size and reduced droplets attraction by higher proportion of interfacial adsorbed protein. This findings will provide a new insight into the application of ultrasonic to improve the stability of PPI-stabilized emulsions.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | - Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yulin Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
26
|
Ingrassia R, Torres P, Bojanich L, Ratti J, Baldor S, Ramunno C, Dotta G, Vidal Tesón A, Forastieri P, Soazo M, Spelzini D, Narambuena C, Boeris V. Concentration of proteins and fat from whey by coacervation: Evaluation of its incorporation in bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Romina Ingrassia
- Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario (UNR) Rosario Argentina
- CONICET Rosario Argentina
- Facultad de Ciencias Veterinarias UNR Casilda Argentina
| | - Paola Torres
- CONICET Rosario Argentina
- Facultad Regional San Rafael Universidad Tecnológica Nacional San Rafael Argentina
| | - Luciano Bojanich
- Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario (UNR) Rosario Argentina
| | - Jimena Ratti
- Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario (UNR) Rosario Argentina
| | - Sofía Baldor
- Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario (UNR) Rosario Argentina
- CONICET Rosario Argentina
- Facultad de Química e Ingeniería del Rosario Universidad Católica Argentina Rosario Argentina
| | - Carla Ramunno
- Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario (UNR) Rosario Argentina
| | - Gina Dotta
- Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario (UNR) Rosario Argentina
| | - Andrea Vidal Tesón
- Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario (UNR) Rosario Argentina
- Facultad de Química e Ingeniería del Rosario Universidad Católica Argentina Rosario Argentina
| | - Pamela Forastieri
- Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario (UNR) Rosario Argentina
- CONICET Rosario Argentina
- Facultad de Química e Ingeniería del Rosario Universidad Católica Argentina Rosario Argentina
| | - Marina Soazo
- Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario (UNR) Rosario Argentina
- CONICET Rosario Argentina
- IQUIR‐CONICET Rosario Argentina
| | - Darío Spelzini
- Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario (UNR) Rosario Argentina
- CONICET Rosario Argentina
- Facultad de Química e Ingeniería del Rosario Universidad Católica Argentina Rosario Argentina
| | - Claudio Narambuena
- CONICET Rosario Argentina
- Facultad Regional San Rafael Universidad Tecnológica Nacional San Rafael Argentina
- INFAP UNSL‐CONICET San Luis Argentina
| | - Valeria Boeris
- Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario (UNR) Rosario Argentina
- CONICET Rosario Argentina
- Facultad de Química e Ingeniería del Rosario Universidad Católica Argentina Rosario Argentina
| |
Collapse
|
27
|
|
28
|
Özdemir EE, Görgüç A, Gençdağ E, Yılmaz FM. Physicochemical, functional and emulsifying properties of plant protein powder from industrial sesame processing waste as affected by spray and freeze drying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Hossain KMZ, Deeming L, Edler KJ. Recent progress in Pickering emulsions stabilised by bioderived particles. RSC Adv 2021; 11:39027-39044. [PMID: 35492448 PMCID: PMC9044626 DOI: 10.1039/d1ra08086e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/25/2021] [Indexed: 01/06/2023] Open
Abstract
In recent years, the demand for non-surfactant based Pickering emulsions in many industrial applications has grown significantly because of the option to select biodegradable and sustainable materials with low toxicity as emulsion stabilisers. Usually, emulsions are a dispersion system, where synthetic surfactants or macromolecules stabilise two immiscible phases (typically water and oil phases) to prevent coalescence. However, synthetic surfactants are not always a suitable choice in some applications, especially in pharmaceuticals, food and cosmetics, due to toxicity and lack of compatibility and biodegradability. Therefore, this review reports recent literature (2018-2021) on the use of comparatively safer biodegradable polysaccharide particles, proteins, lipids and combinations of these species in various Pickering emulsion formulations. Also, an overview of the various tuneable factors associated with the functionalisation or surface modification of these solid particles, that govern the stability of the Pickering emulsions is provided.
Collapse
Affiliation(s)
- Kazi M Zakir Hossain
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| | - Laura Deeming
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| | - Karen J Edler
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
30
|
Drusch S, Klost M, Kieserling H. Current knowledge on the interfacial behaviour limits our understanding of plant protein functionality in emulsions. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Zuñiga-Martínez BS, Domínguez-Avila JA, Wall-Medrano A, Ayala-Zavala JF, Hernández-Paredes J, Salazar-López NJ, Villegas-Ochoa MA, González-Aguilar GA. Avocado paste from industrial byproducts as an unconventional source of bioactive compounds: characterization, in vitro digestion and in silico interactions of its main phenolics with cholesterol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01117-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Study on the physicochemical and emulsifying property of proteins extracted from Pleurotus tuoliensis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Giuggioli NR, Chiaberto G, da Silva TM. Quality Evaluation of the Ready-to-Eat Avocado cv. Hass. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:6621449. [PMID: 34580636 PMCID: PMC8464437 DOI: 10.1155/2021/6621449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/13/2021] [Accepted: 08/14/2021] [Indexed: 11/23/2022]
Abstract
Consumer interest in avocado fruit has increased in the last decade in Europe. Nutritional and quality attributes affect the choice of these fruits, whose characteristics must also be maintained in the postharvest period. The preference regarding the feasibility of eating ripe fruits can assure and improve the success of the emerging marketing of avocados. The exposure of fruits to exogenous ethylene (C2H4) treatment can accelerate the process of fruit ripening. The aim of this work was at improving the existing knowledge about the quality traits of avocado cv. Hass fruits at the ready-to-eat stage. The most important qualitative traits (weight loss, dry matter content, hardness pulp, and external and internal fruit colour) were evaluated up to 96 hours, maintaining the fruit at two different temperatures, T1 (+8°C) and T2 (+17°C). A trained sensory panel was conducted at 96 hours to confirm the quality of avocado cv. Hass ripened with exogenous C2H4.
Collapse
Affiliation(s)
| | - Gabriele Chiaberto
- DISAFA, Università Degli Studi di Torino, Largo Braccini 2, Grugliasco 10095, Italy
| | | |
Collapse
|
34
|
Effects of powder-added phase on emulsifying properties of avocado powder under acidified and salted conditions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Yu N, Jiang C, Ning F, Hu Z, Shao S, Zou X, Meng X, Xiong H. Protein isolate from Stauntonia brachyanthera seed: Chemical characterization, functional properties, and emulsifying performance after heat treatment. Food Chem 2021; 345:128542. [PMID: 33321349 DOI: 10.1016/j.foodchem.2020.128542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023]
Abstract
The seed of Stauntonia brachyanthera is usually regarded as waste after fructus processing. Here, the potential utilization value of the protein isolate (SSPI) from seeds was evaluated by investigating its physicochemical and functional properties. SSPI was a complex protein containing 7 distinct subunits that had high contents of most essential amino acids. The maximum foaming capacity of SSPI was 406.7 ± 41% at pH 9.0, and the water holding/oil adsorption capacities were 4.66 g/g and 9.06 g/g, respectively. SSPI aggregates with a particle size of 154.1 ± 5.2 nm was prepared after heat treatment, which was performed as a Pickering-like stabilizer for the structuring of water-in-oil-in-water emulsions. The outer droplet size of emulsions decreased as the aggregate concentration increased. Emulsion gels could be observed with the increasing aggregate concentration and oil fraction. Further study found that the stabilities of inner water-in-oil droplets and creaming were progressively increased by increasing the aggregate concentration during storage.
Collapse
Affiliation(s)
- Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China
| | - Chengjia Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China
| | - Fangjian Ning
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China; Human Aging Research Institute, School of Life Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Zhenying Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China; Human Aging Research Institute, School of Life Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Shengxin Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xianguo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
36
|
Development of an oil-in-water emulsion stabilized by a black bean protein-based nanocomplex for co-delivery of quercetin and perilla oil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Ge Z, Zhang Y, Jin X, Wang W, Wang X, Liu M, Zhang L, Zong W. Effects of dynamic high-pressure microfluidization on the physicochemical, structural and functional characteristics of Eucommia ulmoides Oliv. seed meal proteins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Comunian TA, Silva MP, Souza CJ. The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Zhao Y, Wen C, Feng Y, Zhang J, He Y, Duan Y, Zhang H, Ma H. Effects of ultrasound-assisted extraction on the structural, functional and antioxidant properties of Dolichos lablab L. Protein. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Juarez-Escobar J, Guerrero-Analco JA, Zamora-Briseño JA, Elizalde-Contreras JM, Bautista-Valle MV, Bojórquez-Velázquez E, Loyola-Vargas VM, Mata-Rosas M, Ruíz-May E. Tissue-specific proteome characterization of avocado seed during postharvest shelf life. J Proteomics 2021; 235:104112. [PMID: 33450407 DOI: 10.1016/j.jprot.2021.104112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Avocado is a nutritious and economically important fruit, generating significant income for exporter countries. Recently, by-products of this fruit such as seeds and peels, have raised interest in different industries. However, the biochemical features of the nutraceutical value of these tissues have not been analyzed using molecular approaches during the postharvest shelf life (PSL). We carried out comparative proteomics using tandem mass tagging (TMT) and synchronous-precursor selection (SPS)-MS3. We analyzed testa, cotyledon, and embryo axes from avocado seeds at detachment from the tree (unripe), and after five (breaker) and ten days (ripe) of PSL. We identified 1968 proteins, from which 933 were specific to the testa, 167 to the embryo axis, and 23 to the cotyledon. The testa had a more dynamic proteome than the other tissues, resembling similar stress responses to those observed in peel tissues, such as down-accumulation of translational machinery, cell wall catabolism and synthesis of secondary metabolites. In contrast, the up-accumulation of the biosynthesis of l-glutamine, L-isoleucine, and l-serine was observed in all tissues. Our study provides the basic biochemical and physiological features of avocado seed during PSL and demonstrates that avocado seed tissues could potentially be used as a costless source of high-value compounds. SIGNIFICANCE: Avocado seed as a fruit by-product is a source of different valuable molecules, including those with nutraceutical properties. During PSL, several biochemical and physiological modifications occur in this dispersal unit, which also includes the alteration of several key metabolites' content. However, the proteome profile associated with different metabolic pathways that regulate the inner content of seed metabolites has not been previously studied. Our tissue-specific proteomics TMT-SPS-MS3-based provides the first evidence of molecular and physiological changes in avocado tissues during PSL delivering fundamental knowledge of this organ. In this vein, the modulation of secondary metabolites, amino acid, and sugar metabolism of avocado tissues during PLS can encourage these by-products exploitation in multiple industries.
Collapse
Affiliation(s)
- Janet Juarez-Escobar
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - José M Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Mirna V Bautista-Valle
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Mérida, Yucatán, Mexico
| | - Martín Mata-Rosas
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C., Cluster BioMimic®, Carretera Antigua a Coatepec 351, Congregación el Haya, CP 91070 Xalapa, Veracruz, Mexico
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico.
| |
Collapse
|
41
|
Avocado-Derived Biomass as a Source of Bioenergy and Bioproducts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The avocado (Persea americana Mill.) is a tree native to Mexico and Guatemala. Avocado consumption, fresh or in the form of processed products, is growing everywhere and it has caused a large number of countries to invest heavily in avocado production. The industrialization of avocado gives as a result a huge amount of waste, not only the peel and stone but also that waste generated by the pruning practices and oil extraction. These biomasses could be converted into raw materials to obtain different types of co-products, but this implies changes in the use of these resources, the design of efficient production systems, and integration to take full advantage of them, e.g., by developing biorefinery models. Therefore, this review firstly gives a snapshot of those residues generated in the avocado industry and provides their chemical composition. Secondly, this review presents updated information about the valorization ways of avocado-derived biomass to obtain bioenergy, biofuels, and other marketable products (starch, protein, phenolic compounds, and biosorbents, among others) using a single process or integrated processes within a biorefinery context. Green technologies to obtain these products are also covered, e.g., based on the application of microwaves, ultrasound, supercritical fluids, etc. As a conclusion, there is a variety of ways to valorize avocado waste in single processes, but it would be promising to develop biorefinery schemes. This would enable the avocado sector to move towards the zero-waste principle.
Collapse
|
42
|
Salazar-López NJ, Domínguez-Avila JA, Yahia EM, Belmonte-Herrera BH, Wall-Medrano A, Montalvo-González E, González-Aguilar GA. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res Int 2020; 138:109774. [PMID: 33292952 DOI: 10.1016/j.foodres.2020.109774] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/22/2022]
Abstract
The increased demand for avocado, and therefore production and consumption, generate large quantities of by-products such as seeds, peel, and defatted pulp, which account for approximately 30% of fruit weight, and which are commonly discarded and wasted. The present review focuses on various compounds present in avocado fruit and its by-products, with particular interest to those that can be potentially used in different industrial forms, such as nutraceuticals, to add to or to formulate functional foods, among other uses. Main molecular families of bioactive compounds present in avocado include phenolic compounds (such as hydroxycinnamic acids, hydroxybenzoic acids, flavonoids and proanthocyanins), acetogenins, phytosterols, carotenoids and alkaloids. Types, contents, and possible functions of these bioactive compounds are described from a chemical, biological, and functional approach. The use of avocado and its by-products requires using processing methods that allow highest yield with the least amount of unusable residues, while also preserving the integrity of bioactive compounds of interest. Avocado cultivar, fruit development, ripening stage, and processing methods are some of the main factors that influence the type and amount of extractable molecules. The phytochemical diversity of avocado fruit and its by-products make them potential sources of nutraceutical compounds, from which functional foods can be obtained, as well as other applications in food, health, pigment, and material sectors, among others.
Collapse
Affiliation(s)
- Norma Julieta Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Elhadi M Yahia
- Laboratorio de Fitoquímicos y Nutrición, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias, Juriquilla, Querétaro, 76230 Qro., Mexico.
| | - Beatriz Haydee Belmonte-Herrera
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua 32310, Mexico.
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México-Instituto Tecnológico de Tepic, Av. Tecnológico 255 Fracc. Lagos del Country, Tepic, Nayarit 63175, Mexico.
| | - G A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
43
|
Görgüç A, Gençdağ E, Yılmaz FM. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments - A review. Food Res Int 2020; 136:109504. [PMID: 32846583 DOI: 10.1016/j.foodres.2020.109504] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022]
Abstract
Agro-industrial by-products containing considerable amounts of protein (10-50%) such as soybean meal, rice bran and coconut pulp are promising bioactive peptide sources with annual disposal rate of 800 million tons in the world. More recently, plant by-products rich in protein content have been studied under various prisms that include recovery techniques, peptide production methods, determination of technological benefits and functional properties, and their applications in foods. The researches in bioactive peptides provide evidence over the techno-functional properties and the health benefits are highly dependent upon their amino acid sequences, molecular weights, conformations and surface properties. Research findings compared bioactive properties of the obtained peptides with respect to their amino acid sequences and also reported that hydrophobic/hydrophilic properties have direct effect on both functional and health effects. In addition, the resultant properties of the peptides could be affected by the conducted extraction method (alkaline, enzymatic, ultrasound assisted, microwave assisted, etc.), extraction solvent, precipitation and purification techniques and even by the final drying process (spray, freeze, vacuum, etc.) which may alter molecular weights, conformations and surface properties. Latest studies have investigated solubility, emulsifying, foaming, water/oil holding capacity and surface properties and also antioxidant, antimicrobial, anticarcinogenic, hypocholesterolemic, antihypertensive, immunomodulatory and opioid activities of bioactive peptides obtained from plant by-products. Moreover, the application of the bioactive peptides into different food formulations has been a recent trend of functional food development. These bioactive peptides' bitter taste and toxicity are possible challenges in some cases that need to be resolved before their wider utilization.
Collapse
Affiliation(s)
- Ahmet Görgüç
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, 09010 Efeler, Aydın, Turkey
| | - Esra Gençdağ
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, 09010 Efeler, Aydın, Turkey
| | - Fatih Mehmet Yılmaz
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, 09010 Efeler, Aydın, Turkey.
| |
Collapse
|
44
|
Hadidi M, Ibarz A, Pouramin S. Optimization of extraction and deamidation of edible protein from evening primrose (Oenothera biennis L.) oil processing by-products and its effect on structural and techno-functional properties. Food Chem 2020; 334:127613. [PMID: 32711281 DOI: 10.1016/j.foodchem.2020.127613] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
Abstract
The optimization of ultrasound-assisted alkaline extraction and enzymatic deamidation by protein-glutaminase (PG) on evening primrose seed cake (EPSC) protein and its effect on structure (amino acid composition, secondary structure and electrophoresis pattern) and techno-functional properties (water-holding and oil-binding capacities, solubility, emulsifying and foaming properties) of EPSC protein were evaluated. The optimum conditions of the both processes were measured using response surface methodology (RSM). The maximum yield (26.4%) and protein content (86.1%) were reached at the optimized extraction conditions. Optimal conditions of PG deamidation based on reaching a high degree of deamidation (DD) with a simultaneously low degree of hydrolysis (DH). Under these conditions, DD and DH were 39.40 and 2.11%, respectively. Ultrasound-assisted alkaline extraction and enzymatic deamidation by PG have great potential to produce edible EPSC protein with modified techno-functional characteristics that can be used for several aims in the food and pharmaceutical applications.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Food Technology, University of Lleida, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Albert Ibarz
- Department of Food Technology, University of Lleida, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Shiva Pouramin
- Department of Food Science and Technology, Khazar University, Mazandaran, Iran
| |
Collapse
|
45
|
Villacís-Chiriboga J, Elst K, Van Camp J, Vera E, Ruales J. Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Compr Rev Food Sci Food Saf 2020; 19:405-447. [PMID: 33325169 DOI: 10.1111/1541-4337.12542] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
Tropical fruits represent one of the most important crops in the world. The continuously growing global market for the main tropical fruits is currently estimated at 84 million tons, of which approximately half is lost or wasted throughout the whole processing chain. Developing novel processes for the conversion of these byproducts into value-added products could provide a viable way to manage this waste problem, aiming at the same time to create a sustainable economic growth within a bio-economy perspective. Given the ever-increasing concern about sustainability, complete valorization through a bio-refinery approach, that is, zero waste concept, as well as the use of green techniques is therefore of utmost importance. This paper aims to report the status on the valorization of tropical fruit byproducts within a bio-refinery frame, via the application of traditional methodologies, and with specific attention to the extraction of phenolics and carotenoids as bioactive compounds. The different types of byproducts, and their content of bioactives is reviewed, with a special emphasis on the lesser-known tropical fruits. Moreover, the bioactivity of the different types of extracts and their possible application as a resource for different sectors (food, pharmaceutical, and environmental sciences) is discussed. Consequently, this review presents the concepts of tropical fruit biorefineries, and the potential applications of the isolated fractions.
Collapse
Affiliation(s)
- José Villacís-Chiriboga
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400, Mol, Belgium.,Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| | - Kathy Elst
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400, Mol, Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Edwin Vera
- Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| |
Collapse
|