1
|
Boger V, Pirkwieser P, Orth N, Koehler M, Somoza V. AFM-optimized single-cell level LA-ICP-MS imaging for quantitative mapping of intracellular zinc concentration in immobilized human parietal cells using gelatin droplet-based calibration. Anal Chim Acta 2025; 1355:343999. [PMID: 40274329 DOI: 10.1016/j.aca.2025.343999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/04/2025] [Accepted: 03/30/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Quantitative bioimaging of trace elements at the single-cell level is crucial for understanding cellular processes, including metal uptake and distribution. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has emerged as a gold standard for elemental bioimaging due to its high sensitivity and spatial resolution. However, calibration remains challenging due to the lack of homogeneous biological standards. This study addresses these challenges by introducing a gelatin-based calibration strategy optimized for Zn mapping in human parietal cells. By minimizing heterogeneity in gelatin standards and optimizing laser ablation conditions, the approach ensures accurate and reproducible results for cellular bioimaging. RESULTS A gelatin-based calibration strategy for LA-ICP-MS was developed to quantify intracellular Zn at a single-cell level in human parietal cells. Preparation conditions for gelatin standards were optimized to minimize heterogeneity, eliminating the need for entire droplet ablation and significantly reducing analysis time. Atomic force microscopy (AFM) was employed to optimize laser ablation conditions and determine ablated volumes, ensuring quantitative Zn detection. The method demonstrated high linearity (R2 > 0.99) and reproducibility. Application of the calibration strategy to ZnCl2-treated parietal cells revealed Zn distribution at a cellular level, visualized using a 5 μm laser beam. Integration with bright field imaging enabled the exclusion of apoptotic cells and debris, ensuring robust analysis. Validation with bulk ICP-MS showed excellent agreement, confirming the method's reliability and potential for high-resolution bioimaging. SIGNIFICANCE This work introduces a robust and reproducible calibration strategy for quantitative elemental bioimaging using LA-ICP-MS. It details the preparation of a gelatin matrix with a homogeneous element distribution, serving as an alternative to using biological material and significantly reducing analysis time. Laser ablation parameters were optimized using AFM to ensure quantitative ablation, which is necessary for calibration through LA-ICP-MS imaging. This approach provides a powerful tool for studying trace element dynamics in single cells and holds potential for diverse biological and biomedical applications.
Collapse
Affiliation(s)
- Valerie Boger
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany
| | - Philip Pirkwieser
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany
| | - Noreen Orth
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany; Technical University of Munich, Graduate School of Life Sciences, Freising, Germany
| | - Melanie Koehler
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany; TUM Junior Fellow at the Chair of Nutritional Systems Biology at the Technical University of Munich, Freising, 85354, Germany
| | - Veronika Somoza
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany; Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, 85354, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Wien, 1090, Austria.
| |
Collapse
|
2
|
She Y, Gao X, Lu WC, Yang Z, Niu B, Zhou Y, Huang XY, Chen C. Ionomic and metabolomic analyses reveal association between nutritional value and aleurone layer thickness in rice. Food Chem 2025; 471:142829. [PMID: 39799679 DOI: 10.1016/j.foodchem.2025.142829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The fortification of aleurone cells represents a promising avenue for enhancing the nutritional quality of cereal. This study investigated dorsal aleurone thickness (DAT) in a rice diversity panel comprising 180 varieties, revealing that DAT of the Geng subspecies is typically greater than that of the Xian subspecies. The minerals and primary metabolites accumulated in the brown grains of ten rice varieties exhibiting distinct DAT were subjected to analysis using spectrometry-based technologies. A positive correlation was identified between essential mineral zinc and DAT, whereas toxic mineral cadmium exhibited a negative correlation. Moreover, our findings revealed that the Xian varieties with high DAT exhibited greater lipid accumulation in the brown seeds than those with thin DAT, while the Geng varieties with high DAT predominantly influenced amino acid accumulation. The findings suggest that the natural variations in aleurone thickness may be exploited for the development of rice varieties that are enriched in nutrients.
Collapse
Affiliation(s)
- Yuting She
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xiaofei Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China
| | - Wan-Chun Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Liang H, Zhou J, Chen C. The aleurone layer of cereal grains: Development, genetic regulation, and breeding applications. PLANT COMMUNICATIONS 2025; 6:101283. [PMID: 39949062 PMCID: PMC12010395 DOI: 10.1016/j.xplc.2025.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
Cereal aleurone cells are differentiated from triploid endosperm cells and exhibit distinct cytological, physiological, and biochemical characteristics that distinguish them from the starchy endosperm cells of cereals. Aleurone cells maintain viability throughout seed development, whereas starchy endosperm cells undergo programmed cell death during maturation. Despite variations in aleurone-related traits among cereal species, the aleurone layer plays a crucial role in regulating many aspects of seed development, including the accumulation of storage reserves, the acquisition of dormancy, and germination. Given that many nutrients-such as lipids, dietary fibers, vitamins, and minerals like iron and zinc-are predominantly accumulated in the aleurone cells of cereal grains, this layer has attracted considerable attention aimed at improving the nutritional value of cereals. This review provides a comprehensive overview of the developmental, genetic, and molecular basis of aleurone cell differentiation and proliferation. It focuses on the improvement of aleurone-related traits informed by knowledge of the molecular networks governing aleurone development and presents a detailed discussion on the challenges and potential solutions associated with cereal improvement through the manipulation of aleurone-related traits.
Collapse
Affiliation(s)
- Huawei Liang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jian Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; Yangzhou Modern Seed Innovation Institute, Gaoyou 225600, China.
| |
Collapse
|
4
|
Chen Y, Zhu Z, Ji J, Ge Y, Zhong S, Nie C, Lu S. Chlorate in foodstuffs from south China and its implication for human exposure. Food Chem Toxicol 2025; 195:115120. [PMID: 39566571 DOI: 10.1016/j.fct.2024.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Chlorate, mainly used in the production of fireworks, herbicides and other products, is an inorganic pollutant, which easily dissolves in water and is difficult to degrade. Chlorate has a potential toxic risk to the thyroid function, kidneys, and blood system, which could pose a potential threat to human health. However, studies focusing on human exposure to chlorate are scarce, especially via food consumption. This study aimed to investigate the concentrations of chlorate in six types of foods (n = 531) from south China, and evaluate potential exposure risks for local residents. The detection rates of chlorate in all six types of foods were greater than 50 %, indicating the ubiquitous occurrence of chlorate in foods. Among the six types of foods, vegetables exhibited the highest concentrations of chlorate (p < 0.05), mainly attributed to the direct exposure to the environment compared with other foods. The hazard quotient (HQ) values by using EFSA reference dose (RfD) of chlorate via foods and water consumption existed greater than 1 in different age groups, indicating a potential health risks to human in south China.
Collapse
Affiliation(s)
- Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shihua Zhong
- Shenzhen Inspection and Testing Center of Agricultural Product Quality and Safety, Shenzhen, 518055, China
| | - Chan Nie
- Shenzhen Inspection and Testing Center of Agricultural Product Quality and Safety, Shenzhen, 518055, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Pohl P, Greda K, Welna M, Jamroz P, Dzimitrowicz A, Szymczycha-Madeja A. The development and validation of a new method for the fast determination of Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn in rice by inductively coupled plasma optical emission spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4187-4197. [PMID: 38881497 DOI: 10.1039/d4ay00890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
An alternative method of rice sample preparation for measuring the total content of selected elements, i.e., Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn, by ICP OES was developed. The proposed approach is based on the ultrasound-assisted extraction (USAE) of rice samples in the presence of a small amount of concentrated HNO3. The optimal operating parameters were found using the design of experiments (DOE) approach, and the studied experimental factors were the temperature of the ultrasonic bath (A), the sonication time (B), and the volume of concentrated HNO3 added per 0.5 g of a rice sample (C). Under the optimal conditions of the USAE procedure, i.e., A = 60 °C, B = 16 min and C = 4.0 mL, the rice samples were readily solubilized, and the obtained sample solutions could be analyzed by ICP OES with the simple standard solution calibration (without matrix matching). The analysis of the certified reference material (rice flour, NIST SRM 1568b) confirmed the satisfactory trueness of the USAE-ICP OES method. Additionally, no statistically significant differences between the results obtained for the samples prepared by USAE and open-vessel wet digestion (WD, the reference method) were found. In comparison to the routinely used microwave-assisted digestion and open-vessel digestion, the USAE approach offers lower acid consumption, lower detection limits (LODs) of elements, ranging from 4.0 ng g-1 for Mn to 2.7 µg g-1 for K, and a much shorter time of sample preparation.
Collapse
Affiliation(s)
- Pawel Pohl
- Division of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspiansgiego 27, 50370, Wroclaw, Poland.
| | - Krzysztof Greda
- Division of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspiansgiego 27, 50370, Wroclaw, Poland.
| | - Maja Welna
- Division of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspiansgiego 27, 50370, Wroclaw, Poland.
| | - Piotr Jamroz
- Division of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspiansgiego 27, 50370, Wroclaw, Poland.
| | - Anna Dzimitrowicz
- Division of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspiansgiego 27, 50370, Wroclaw, Poland.
| | - Anna Szymczycha-Madeja
- Division of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspiansgiego 27, 50370, Wroclaw, Poland.
| |
Collapse
|
6
|
Liu X, Li Q, Yin B, Yan H, Wang Y. Assessment of macro, trace and toxic element intake from rice: differences between cultivars, pigmented and non-pigmented rice. Sci Rep 2024; 14:10398. [PMID: 38710769 DOI: 10.1038/s41598-024-58411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Pigmented and non-pigmented rice varieties (grown in different areas) were collected in China, Yunnan, to investigate the content of macro-, trace elements and potentially toxic elements (PTEs), and to assess the health risk associated with dietary intake. The order of elemental concentrations in rice was Mn > Zn > Fe > Cu > Se for trace elements, P > K > Mg > Ca > Na for macro elements, and Cr > As > Cd for PTEs. Rice with a high concentration of essential elements also associated with a high content of PTEs. In addition, higher content of Cr, Mn and Na were found in pigmented rice. The health risk assessment showed that the daily intake of all elements was below the tolerable limit (UL). Moreover the intake of Fe, Zn and Se was far from sufficient for the nutrient requirement. The PTEs in rice dominated the health risk. Of concern is that this rice consumption is likely to contribute to carcinogenic risks in the long term and that adults are at higher health risk from pigmented rice compared to non-pigmented rice. This study confirms that the lack of essential micronutrients in rice and the health risk associated with rice diets should remain a concern.
Collapse
Affiliation(s)
- Xingyong Liu
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
| | - Qian Li
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
| | - Benlin Yin
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
| | - Hongmei Yan
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China.
| | - Yunmei Wang
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China.
| |
Collapse
|
7
|
Zhang Y, Xu Y, Ma Y, Luo H, Hou J, Hou C, Huo D. Ultra-sensitive electrochemical sensors through self-assembled MOF composites for the simultaneous detection of multiple heavy metal ions in food samples. Anal Chim Acta 2024; 1289:342155. [PMID: 38245196 DOI: 10.1016/j.aca.2023.342155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024]
Abstract
Using an assemble-able MOF material, we successfully constructed an ultra-sensitive electrochemical sensor based on Bi2CuO4@Al-MOF@UiO-67 nanocomposite material, in order to investigate the adsorption properties of the Bi2CuO4@Al-MOF@UiO-67 functional material on the heavy metal ion. The Cd2+, Cu2+, Pb2+ and Hg2+ can be detected at the same time. Selective recognition and enrichment of various metal ions on different substrates can be achieved through the assembly of a large number of Al-MOF and UiO-67-MOF nanomaterial composites with small particle sizes on the Bi2CuO4 surface. Based on this, a new type of sensor is researched and prepared, which has been shown to have good stability and reproducibility. Due to its unique assembly structure, large active surface area, excellent adsorption capacity, and high electrical conductivity, Bi2CuO4@Al-MOF@UiO-67 presents outstanding performance. In addition, the sensor also exhibits excellent electrocatalytic redox capacity and high selectivity. The adsorption capacity of Cd2+, Cu2+, Pb2+ and Hg2+ is also significantly improved under the action of the sensor electrode, however, this is not the case. The limits of detection for Cd2+, Cu2+, Pb2+ and Hg2+ were found to be 0.02 pM, 0.032 pM, 0.018 pM and 0.041 pM, respectively. In order to investigate the detection mechanism of Cd2+, Cu2+, Pb2+ and Hg2+ was adsorption properties as well as electrochemical accumulation of Bi2CuO4@Al-MOF@UiO-67 on the metal atoms were investigated. This method has been successfully applied to samples of rice, sorghum, maize, milk, honey, and tea, and has enabled the simultaneous detection of Cd2+, Cu2+, Pb2+ and Hg2+, which is of significant practical value.
Collapse
Affiliation(s)
- Ya Zhang
- Key Laboratory of Biorheology Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Ying Xu
- Key Laboratory of Biorheology Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, 644000, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, 644000, PR China
| | - Jingzhou Hou
- Key Laboratory of Biorheology Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, 644000, PR China.
| | - Danqun Huo
- Key Laboratory of Biorheology Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
8
|
Kulhánek M, Asrade DA, Suran P, Sedlář O, Černý J, Balík J. Plant Nutrition-New Methods Based on the Lessons of History: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:4150. [PMID: 38140480 PMCID: PMC10747035 DOI: 10.3390/plants12244150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
As with new technologies, plant nutrition has taken a big step forward in the last two decades. The main objective of this review is to briefly summarise the main pathways in modern plant nutrition and attract potential researchers and publishers to this area. First, this review highlights the importance of long-term field experiments, which provide us with valuable information about the effects of different applied strategies. The second part is dedicated to the new analytical technologies (tomography, spectrometry, and chromatography), intensively studied environments (rhizosphere, soil microbial communities, and enzymatic activity), nutrient relationship indexes, and the general importance of proper data evaluation. The third section is dedicated to the strategies of plant nutrition, i.e., (i) plant breeding, (ii) precision farming, (iii) fertiliser placement, (iv) biostimulants, (v) waste materials as a source of nutrients, and (vi) nanotechnologies. Finally, the increasing environmental risks related to plant nutrition, including biotic and abiotic stress, mainly the threat of soil salinity, are mentioned. In the 21st century, fertiliser application trends should be shifted to local application, precise farming, and nanotechnology; amended with ecofriendly organic fertilisers to ensure sustainable agricultural practices; and supported by new, highly effective crop varieties. To optimise agriculture, only the combination of the mentioned modern strategies supported by a proper analysis based on long-term observations seems to be a suitable pathway.
Collapse
Affiliation(s)
- Martin Kulhánek
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic; (D.A.A.); (P.S.); (O.S.); (J.Č.); (J.B.)
| | | | | | | | | | | |
Collapse
|
9
|
Tan X, Zhang Y, Ren M, Qie H, Liu M, Cui J, Liu D, Jiao C, Lin A. Effects of soil amendments on Cd and As mobility in the soil-rice system and their distribution in the grain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166608. [PMID: 37640070 DOI: 10.1016/j.scitotenv.2023.166608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The accumulation, mobilization, and distribution of toxic metal(loid)s in rice are key factors that affect food security and determine bio-utilization patterns. In this study, five soil amendments with different components were used in paddy fields to study the key factors: organic amendments: (1) polyaspartic acid (OA1) and (2) organic fertilizer (OA2); inorganic amendments: (3) kaolinite (IA1) and (4) magnesium slag (IA2); and organic-inorganic composite amendments: (5) modified biochar/quicklime (OIA). Although the Cd and As exhibited opposite chemical dissolution behaviors, IA1/OIA, can simultaneously reduce their accumulation and transfer coefficients in rice tissues, while other amendments only work for one of them. The in situ distribution in grains showed that IA1/OIA changed the original Cd distribution in the lemma and palea, whereas all amendments reduced Cd accumulation in the germ. In contrast, OA1/IA2 amendments led to more As accumulation in the rice husks and bran than in the endosperm center, and the germ had higher As signals. Because of their similar transport pathways and interactions, the concentrations of Cd and As in the grains were correlated with a variety of mineral elements (Fe, Mo, Zn, etc.). Changes in the Cd/As concentration and distribution in rice were achieved through the improvement of soil properties and plant growth behavior through amendments. The application of OIA resulted in the highest immobilization indices, at 82.17 % and 35.34 % for Cd and As, respectively. The Cd/As concentrations in the rice grains were highly positively correlated with extractable-Cd/As in the soil (Cd: R2 = 0.95, As: R2 = 0.93). These findings reveal the migration and distribution mechanisms of Cd and As in the soil-rice system, and thus provide fundamental information for minimizing food safety risk.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Dongpo Liu
- College of Ecological Environment, Institute of Disaster Prevention, 065201, Hebei, China
| | - Chunlei Jiao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for Bio Medical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
10
|
Li A, Zhang J, Wang X, Wang R, Zhang Y, Wang R, Zhu J, Xiong Q. Differences in the metabolites of brown and milled rice grains of semiwaxy and conventional japonica varieties. J Food Sci 2023; 88:5309-5323. [PMID: 37960988 DOI: 10.1111/1750-3841.16828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
In this study, we analyzed the differences in metabolites between semiwaxy japonica rice (Yangnongxiang 28 [YNX28]) and conventional japonica rice (Hongyang 5 [HY5]) before and after brown rice milling. The metabolites of brown and milled rice grains from the two rice varieties were analyzed by LC-MS-based nontargeted metabolomics. A total of 266 differentially abundant metabolites (DMs) were tentatively identified in brown rice grains of YNX28 (YNX28B) compared with milled rice grains of YNX28 (YNX28H), and these included 248 upregulated and 12 downregulated DMs. A total of 273 (234 upregulated and 39 downregulated) DMs were tentatively identified in brown rice grains of HY5 (HY5B) compared with milled rice grains of this variety (HY5H). Kyoto Encyclopedia of Genes and Genomes pathway involved and enrichment analyses revealed that 53 and 7 metabolite pathways were enriched and significantly enriched (p < 0.05), respectively, in the DMs identified in YNX28B compared with YNX28H, and the main enriched pathways were related to starch and sucrose metabolism, glycerol phospholipid metabolism, arginine and proline metabolism, and glycine, serine and threonine metabolism. Forty-six metabolite pathways were enriched in DMs identified in HY5B compared with HY5H, and these included 16 pathways that were significantly enriched (p < 0.05); in addition, the main enriched pathways were related to starch and sucrose metabolism, glycerol phospholipid metabolism, arginine and proline metabolism, and glycine, serine and threonine metabolism. This study provides a theoretical reference for further on the changes in metabolites during rice processing and provides a basis for improving the nutritional quality in rice. PRACTICAL APPLICATION: Original data were obtained regarding the changes of different metabolites in semiwaxy japonica rice and conventional japonica rice before and after processing. The purpose of this study was to investigate the difference of metabolite loss in two rice varieties before and after processing. This paper reports on the differences of metabolites between the two types of japonica rice before and after processing, as well as the changes of key metabolites before and after processing, it also provides important theoretical basis for developing new rice varieties with good nutritional quality.
Collapse
Affiliation(s)
- Ao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Jiao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xiaoyu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Ruizhi Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Runnan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Zhou F, Liu Y, Xie W, Huang J, Liu F, Kong W, Zhao Z, Peng J. Recent advances and applications of laser-based imaging techniques in food crops and products: a critical review. Crit Rev Food Sci Nutr 2023; 65:896-912. [PMID: 37983168 DOI: 10.1080/10408398.2023.2283579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
To meet the growing demand for food quality and safety, there is a pressing need for fast and visible techniques to monitor the food crop and product production processing, and to understand the chemical changes that occur during these processes. Herein, the fundamental principles, instruments, and characteristics of three major laser-based imaging techniques (LBITs), namely, laser-induced breakdown spectroscopy, Raman spectroscopy, and laser ablation-inductively coupled plasma-mass spectrometry, are introduced. Additionally, the advances, challenges, and prospects for the application of LBITs in food crops and products are discussed. In recent years, LBITs have played a crucial role in mapping primary metabolites, secondary metabolites, nanoparticles, toxic metals, and mineral elements in food crops, as well as visualizing food adulteration, composition changes, pesticide residue, microbial contamination, and elements in food products. However, LBITs are still facing challenges in achieving accurate and sensitive quantification of compositions due to the complex sample matrix and minimal laser sampling quantity. Thus, further research is required to develop comprehensive data processing strategies and signal enhancement methods. With the continued development of imaging methods and equipment, LBITs have the potential to further explore chemical distribution mechanisms and ensure the safety and quality of food crops and products.
Collapse
Affiliation(s)
- Fei Zhou
- College of Standardization, China Jiliang University, Hangzhou, China
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yifan Liu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Weiyue Xie
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wenwen Kong
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou, China
| | - Zhangfeng Zhao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jiyu Peng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
12
|
Darwish IA, Wang Z, Darling RJ. Development and Comparative Evaluation of Two Highly Sensitive Immunosensor Platforms for Trace Determination of Copper Ions in Drinking Water Using a Monoclonal Antibody Specific to Copper-EDTA Complex. Molecules 2023; 28:7017. [PMID: 37894495 PMCID: PMC10609129 DOI: 10.3390/molecules28207017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This study describes the development of two highly sensitive immunosensor platforms for the trace determination of copper ions, Cu(II), in drinking water. These platforms were a microwell-based enzyme-linked immunosorbent assay (ELISA) and a kinetic exclusion assay (KinExA) with a KinExATM 3200 immunosensor. Both ELISA and KinExA were developed utilizing the same antibody and coating reagent. The antibody was a mouse monoclonal antibody, designated as 8D66, that specifically recognized Cu(II)-ethylenediamine tetraacetic acid complex (Cu(II)-EDTA) but did not recognize Cu(II)-free EDTA. The 8D66 monoclonal antibody was generated by the fusion of spleen cells of an immunized BALB/c mouse with SP2/0-Ag14 myeloma cells. The immunogen was a protein conjugate of Cu(II)-EDTA with keyhole limpet hemocyanin protein. The coating reagent was Cu(II)-EDTA covalently linked to bovine serum albumin protein (Cu(II)-EDTA-BSA). Both assays involved the competitive binding reaction between Cu(II)-EDTA complexes, formed in the sample solution, and Cu(II)-EDTA-BSA conjugate which has been immobilized onto ELISA plates (in ELISA) or polymethylmethacrylate beads (in KinExA) for a limited quantity of binding sites of the 8D66 antibody. In ELISA, color signals were generated by a peroxidase-labeled secondary antibody and 3,3',5,5'-tetramethylbenzidine substrate. In KinExA, a fluorescein isothiocyanate-labeled secondary antibody was used to generate KinExAgram (trend-line fluorescence responses vs. time). The conditions of both ELISA and KinExA were investigated, and the optimum procedures were established. Both ELISA and KinExA were validated, and all validation parameters were acceptable. Many different metal ions that are commonly encountered in drinking water did not interfere with the Cu(II) analysis by both ELISA and KinExA. Both assays were applied to the determination of Cu(II) in drinking water with satisfactory accuracy and precision. Both assays were compared favorably with inductively coupled plasma atomic emission spectroscopy in terms of their abilities to accurately and precisely determine Cu(II) in drinking water samples. A comparative evaluation of ELISA and KinExA revealed that KinExA had a higher sensitivity and better precision than ELISA, whereas both assays had comparable accuracy. Both ELISA and KinExA were superior to the existing atomic spectrometric methods for Cu(II) in terms of sensitivity, convenience, and analysis throughputs. The proposed ELISA and KinExA are anticipated to effectively contribute to assessing Cu(II) concentrations and control the exposure of humans to its potential toxicities.
Collapse
Affiliation(s)
- Ibrahim A. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh P.O. Box 2457 11451, Saudi Arabia
| | - Zongzhi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ryhan J. Darling
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
13
|
Darwish IA, Wang Z, Darling RJ, Alzoman NZ. Development of two highly sensitive and selective sensor-assisted fluorescence immunoassays for trace determination of copper residues in food samples. RSC Adv 2023; 13:29195-29205. [PMID: 37818275 PMCID: PMC10561670 DOI: 10.1039/d3ra04415g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
This study describes the development of two highly sensitive and selective sensor-assisted fluorescence immunoassays for the trace determination of copper ions, Cu(ii) residues, in food samples. These assays were the microwell-based fluoroimmuoassay (FIA) and the kinetic exclusion assay (KinExA). FIA and KinExA were assisted by a microplate reader and a KinExA™ 3200 immunosensor, respectively. Both FIA and KinExA were developed utilizing the same antibody, capturing reagent, and fluorescence signal-generating reagent. The antibody was a mouse monoclonal antibody, designated as 8D66, that specifically recognized the Cu(ii)-ethylenediaminetetraacetic acid complex (Cu(ii)-EDTA) but did not recognize Cu(ii)-free EDTA. The capturing reagent was Cu(ii)-EDTA covalently linked to bovine serum albumin protein (Cu(ii)-EDTA-BSA). The fluorescence-generating reagent was an anti-mouse IgG conjugated with fluorescein isothiocyanate (IgG-FITC). Both FIA and KinExA involved competitive binding reactions between Cu(ii)-EDTA complexes, formed in the sample solution, and Cu(ii)-EDTA-BSA conjugate which has been immobilized onto microwell fluorescence assay plates (in FIA) or polymethylmethacrylate beads (in KinExA) for a limited quantity of binding sites of 8D66 antibody. The conditions of both FIA and KinExA were investigated, and the optimum procedures were established. Both FIA and KinExA were validated, and all validation parameters were acceptable. Many different metal ions that are commonly encountered in food samples did not interfere with Cu(ii) analysis by both FIA and KinExA. Both assays were applied to the determination of Cu(ii) in food samples with satisfactory accuracy and precision. Both assays were compared favorably with inductively coupled plasma atomic emission spectroscopy. Comparative evaluation of FIA and KinExA revealed that KinExA had higher sensitivity and better precision than FIA, whereas, both assays had comparable accuracy. Both FIA and KinExA were superior to the existing atomic spectrometric methods for Cu(ii). The proposed FIA and KinExA are anticipated to effectively contribute to assessing Cu(ii) concentrations and controlling the exposure of humans to its potential toxicities.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia +966-114676220 +966-114677348
| | - Zongzhi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan China
| | - Ryhan J Darling
- Department of Biochemistry, Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Nourah Z Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia +966-114676220 +966-114677348
| |
Collapse
|
14
|
Pehlivan N, Gedik K, Wang JJ. Tea-based biochar-mediated changes in cation diffusion homeostasis in rice grown in heavy metal (loid) contaminated mining soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107889. [PMID: 37453142 DOI: 10.1016/j.plaphy.2023.107889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Foreseeable future scenarios highlight the urgency of applying eco-safe avoidance methods or tolerance to heavy metal(loid) (HM) stress in agricultural production areas of contamination. The analyses show that the Ni, Mn, As, and Cr concentrations detected in the soils of the paddy fields in the Black Sea region vary between 123.60 and 263.30; 687-1271; 8.90-14.50; 162.00-340.00 mg kg-1 proving high accumulation of Ni, Mn, As, Cr in rice. Overconsumption of rice farmed extensively on these soils might also lead to human HM-related health problems. Therefore, in the current study, the approach of using tea-based biochar (BC) proven to have one of the most significant potentials as a soil amendment to reduce HM transmission to in-vitro-grown rice plants was investigated in the soil medium naturally contaminated with HMs. The tea-BC was produced from readily available local black tea waste of a conventional fermentation process and applied in the in-vitro experiments. Among the tested doses examined, 1% tea-BC showed a more positive effect on rice plant growth and development characterized by a better relative growth rate (59.7 and 84 mg g-1 d-1 for root and shoot tissues), photosynthetic pigment intactness (62.48 μg mL-1), cellular membrane integrity (93%), and relative water (96%) than the other rates (0% BC, 3%BC, 5%BC). The mRNA expression data highlights the probability of a cation diffusion facilitator (CDF) (OsMTP11) in concert with catalase isozyme (CATa) and dehydration-responsive element binding protein (DREB1a) linking the HM detoxification, oxidative defense, and dehydration pathways with the help of tea-BC. At the optimum concentration (1%BC), this approach might reduce HM accumulation levels of crops planted in HM-contaminated farmlands.
Collapse
Affiliation(s)
- Necla Pehlivan
- Department of Biology, Recep Tayyip Erdogan University, 53100, Türkiye.
| | - Kenan Gedik
- The Vocational School of Technical Sciences, Recep Tayyip Erdogan University, 53100, Türkiye
| | - Jim J Wang
- School of Plant, Environment and Soil Sciences, Louisiana State University AgCenter, LA, 70803, USA
| |
Collapse
|
15
|
Navaretnam R, Hassan HN, Isa NM, Aris AZ, Looi LJ. Metal(loid) Analysis of Commercial Rice from Malaysia using ICP-MS: Potential Health Risk Evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87695-87720. [PMID: 37423935 DOI: 10.1007/s11356-023-28459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Rice is a predominant staple food in many countries. It is a great source of energy but can also accumulate toxic and trace metal(loid)s from the environment and pose serious health hazards to consumers if overdosed. This study aims to determine the concentration of toxic metal(loid)s [arsenic (As), cadmium (Cd), nickel (Ni)] and essential metal(loid)s [iron (Fe), selenium (Se), copper (Cu), chromium (Cr), cobalt (Co)] in various types of commercially available rice (basmati, glutinous, brown, local whites, and fragrant rice) in Malaysia, and to assess the potential human health risk. Rice samples were digested following the USEPA 3050B acid digestion method and the concentrations of metal(loid)s were analyzed using an inductively coupled plasma mass spectrometry (ICP-MS). Mean concentrations (mg/kg as dry weight) of metal(loid)s (n=45) across all rice types were found in the order of Fe (41.37)>Cu (6.51)>Cr (1.91)>Ni (0.38)>As (0.35)>Se (0.07)>Cd (0.03)>Co (0.02). Thirty-three percent and none of the rice samples surpassed, respectively, the FAO/WHO recommended limits of As and Cd. This study revealed that rice could be a primary exposure pathway to toxic metal(loid)s, leading to either noncarcinogenic or carcinogenic health problems. The non-carcinogenic health risk was mainly associated with As which contributed 63% to the hazard index followed by Cr (34%), Cd (2%), and Ni (1%). The carcinogenic risk to adults was high (>10-4) for As, Cr, Cd, and Ni. The cancer risk (CR) for each element was 5 to 8 times higher than the upper limit of cancer risk for an environmental carcinogen (<10-4). The findings from this study could provide the metal(loid)s pollution status of various types of rice which are beneficial to relevant authorities in addressing food safety and security-related issues.
Collapse
Affiliation(s)
- Raneesha Navaretnam
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hadirah Nasuha Hassan
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorain Mohd Isa
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Ley Juen Looi
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
16
|
Liu Q, Lu W, Bai C, Xu C, Ye M, Zhu Y, Yao L. Cadmium, arsenic, and mineral nutrients in rice and potential risks for human health in South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27857-7. [PMID: 37246182 DOI: 10.1007/s11356-023-27857-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important staple food crops worldwide. For people fed on rice, toxic elements cadmium (Cd) and arsenic (As) and mineral nutrients in rice are pivotal to evaluate potential risks of harmful element intake and malnutrition. We collected rice samples of 208 cultivars (83 inbred and 125 hybrid) from fields in South China and determined Cd, As, As species, and mineral elements in brown rice. Chemical analysis shows that the average content of Cd and As in brown rice were 0.26 ± 0.32 and 0.21 ± 0.08 mg·kg-1, respectively. Inorganic As (iAs) was the dominative As species in rice. Rice Cd and iAs in 35.1% and 52.4% of the 208 cultivars exceeded rice Cd and iAs limits, respectively. Significant variations of rice subspecies and regions were found for Cd, As, and mineral nutrients in rice (P < 0.05). Inbred rice had lower As uptake and more balanced mineral nutrition than hybrid species. Significant correlation was observed between Cd, As versus mineral elements like Ca, Zn, B, and Mo (P < 0.05). Health risk assessment indicates that high risks of non-carcinogenic and carcinogenic of Cd and iAs, and malnutrition, in particular Ca, protein and Fe deficiencies, might be caused by rice consumption in South China.
Collapse
Affiliation(s)
- Qinghui Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Weisheng Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Congzhuo Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Maozhi Ye
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yongcong Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
17
|
Toledo MC, Lee JS, Batista BL, Olympio KPK, Nardocci AC. Exposure to Inorganic Arsenic in Rice in Brazil: A Human Health Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16460. [PMID: 36554339 PMCID: PMC9778750 DOI: 10.3390/ijerph192416460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In certain populations, rice is the main source of exposure to inorganic arsenic (iAs), which is associated with cancer and non-cancer effects. Although rice is a staple food in Brazil, there have been few studies about the health risks for the Brazilian population. The objective of this study was to assess the risks of exposure to iAs from white rice and brown rice in Brazil, in terms of the carcinogenic and non-carcinogenic effects, and to propose measures to mitigate those risks. The incremental lifetime cancer risk (ILCR) and hazard quotient (HQ) were calculated in a probabilistic framework. The mean ILCR was 1.5 × 10-4 for white rice and 6.0 × 10-6 for brown rice. The HQ for white and brown rice was under 1. The ILCR for white and brown rice was high, even though the iAs concentration in rice is below the maximum contaminant level. The risk for brown rice consumption was lower, which was not expected. Various mitigation measures discussed in this report are estimated to reduce the risk from rice consumption by 5-67%. With the support of public policies, measures to reduce these risks for the Brazilian population would have a positive impact on public health.
Collapse
Affiliation(s)
- Michele C. Toledo
- School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Janice S. Lee
- United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Bruno L. Batista
- Center for Natural and Human Sciences, Federal University of the ABC, Santo André 09210-580, Brazil
| | - Kelly P. K. Olympio
- School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | | |
Collapse
|
18
|
Lee J, Park YS, Lee DY. Fast and green microwave-assisted digestion with diluted nitric acid and hydrogen peroxide and subsequent determination of elemental composition in brown and white rice by ICP-MS and ICP-OES. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Punshon T, Jackson BP, Donohue A, Hong C, Rothenberg SE. Distribution and accumulation of mercury in pot-grown African rice cultivars (Oryza glaberrima Steud. and Oryza sativa L.) determined via LA-ICP-MS. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4077-4089. [PMID: 34981270 PMCID: PMC9376884 DOI: 10.1007/s10653-021-01169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
There is limited information concerning the distribution of mercury in rice, particularly in African rice. The objective was to compare the distribution of total mercury (THg) and methylmercury (MeHg) in African rice (Oryza glaberrima Steud.) and Asian rice (O. sativa L.). It is hypothesized that increased mineral accumulation and greater stress tolerance in O. glaberrima will affect the uptake and distribution of THg and MeHg, compared to O. sativa. Rice varieties from the Republic of Mali, including O. glaberrima (n =1) and O. sativa (n = 2), were cultivated in a greenhouse, in mercury-spiked soil (50 mg/kg) (n =3 replicates/variety). THg and MeHg concentrations were analyzed in the grain (brown rice), and the THg distribution was analyzed using laser ablation inductively coupled-plasma mass spectrometry (LA-ICP-MS). THg and MeHg concentrations did not differ between O. glaberrima and O. sativa grain. However, in both O. sativa varieties, THg was highly concentrated in the scutellum, which surrounds the embryo and is removed during polishing. Conversely, in O. glaberrima grain, THg was widely distributed throughout the endosperm, the edible portion of the grain. Differences in the THg distribution in O. glaberrima grain, compared to O. sativa, may elevate the risk of mercury exposure through ingestion of polished rice. The novelty of this study includes the investigation of a less-studied rice species (O. glaberrima), the use of a highly sensitive elemental imaging technique (LA-ICP-MS), and its finding of a different grain THg distribution in O. glaberrima than has been observed in O. sativa.
Collapse
Affiliation(s)
- Tracy Punshon
- Dartmouth College, Hanover, New Hampshire, 03755, USA
| | | | - Alexis Donohue
- University of South Carolina, Arnold School of Public Health, Columbia, South Carolina, 29208, USA
| | - Chuan Hong
- University of South Carolina, Arnold School of Public Health, Columbia, South Carolina, 29208, USA
| | - Sarah E Rothenberg
- University of South Carolina, Arnold School of Public Health, Columbia, South Carolina, 29208, USA.
- College of Public Health and Human Sciences, Oregon State University, 103 Milam Hall, Corvallis, Oregon, 97331, USA.
| |
Collapse
|
20
|
Effect of Polishing on Lead and Cadmium Bioavailability in Rice and Its Health Implications. Foods 2022; 11:foods11172718. [PMID: 36076903 PMCID: PMC9455439 DOI: 10.3390/foods11172718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Rice polishing is an important approach to reducing the concentrations of heavy metals in rice, but knowledge of its effect on the Pb and Cd bioavailability in produced rice and the related health risk remains limited. In this study, the effects of rice polishing on the bioaccessibility (BAC) and bioavailability (RBA) of Pb and Cd in rice are assessed using an in vitro method and an in vivo mouse bioassay. The Pb removal rate in brown rice (40%), lightly processed brown rice (62%), germinated rice (74%), and polished rice (79%) gradually enhanced with an increase in the polishing degree, while Cd was difficult to remove by polishing. The Pb and Cd BAC in germinated rice was the highest, while that in brown rice was the lowest. The polished rice Pb and Cd RBA in the liver and kidneys were significantly higher than those in the brown rice group. The Pb RBA in the livers and kidneys in the polished rice group was 26.6% ± 1.68% and 65.3% ± 0.83%, respectively, which was 1.6- and 2.6-times higher than that in the brown rice group, respectively. The Cd RBA values in both the livers and kidneys of the polished rice group were 1.3-times higher than those in the brown rice group. Although polishing reduced the total Pb in the polished rice, it was not enough to offset the increase in bioavailability, and its consumption risk was not weakened. This study highlighted the value of the oral-bioavailability-corrected health risk assessment for assessing the influence of rice polishing on Pb and Cd exposure via rice consumption.
Collapse
|
21
|
TatahMentan M, Nyachoti S, Okwori F, Godebo TR. Elemental composition of Rice and Lentils from various countries: A Probabilistic Risk Assessment of Multiple Life Stages. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
22
|
Bielecka J, Markiewicz-Żukowska R, Puścion-Jakubik A, Grabia M, Nowakowski P, Soroczyńska J, Socha K. Gluten-Free Cereals and Pseudocereals as a Potential Source of Exposure to Toxic Elements among Polish Residents. Nutrients 2022; 14:2342. [PMID: 35684142 PMCID: PMC9182656 DOI: 10.3390/nu14112342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Nutritional food quality plays a crucial role in maintaining human health. However, food and drinking water, along with occupational exposure, are the main routes of exposure to toxic elements for humans. The main aim of this study was to determine the content of As, Cd, Pb and Hg in naturally gluten-free grains and products made from buckwheat, millet, maize, quinoa and oat. The safety of consumption of the products tested was also assessed. METHODS The contents of As, Cd and Pb were determined using inductively coupled plasma mass spectrometry (ICP-MS). To measure Hg, an atomic absorption spectrometry method (AAS) with the amalgamation technique was applied. To assess the level of consumption of the tested products, an online survey was conducted. To estimate health risk, three indicators were used: the target hazard quotient (THQ), cancer risk (CR) and hazard index (HI). The research material obtained 242 different samples without replications. RESULTS The highest average content of As, Cd, Pb and Hg were observed for the following groups of products: oat (10.19 µg/kg), buckwheat (48.35 µg/kg), millet (74.52 µg/kg) and buckwheat (1.37 µg/kg), respectively. For six samples, exceedance of established limits was found-three in the case of Cd and three of Pb. Due to the lack of established limits, As and Hg content of the tested products was not compared. Generally, no increased health risks were identified. CONCLUSIONS Based on the obtained results, the consumption of gluten-free cereals and pseudocereals available on the Polish market seems to be safe. However, there is a great need to establish maximum levels of the toxic elements, especially As and Hg in cereal products in European legislation.
Collapse
Affiliation(s)
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (J.B.); (A.P.-J.); (M.G.); (P.N.); (J.S.); (K.S.)
| | | | | | | | | | | |
Collapse
|
23
|
Shraim AM, Ahmad MI, Rahman MSF, Ng JC. Concentrations of essential and toxic elements and health risk assessment in brown rice from Qatari market. Food Chem 2022; 376:131938. [PMID: 34992047 DOI: 10.1016/j.foodchem.2021.131938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023]
Abstract
Twenty-two brown rice varieties available in the Qatari market were analyzed for essential and toxic elements by ICP-MS. Found concentrations (µg/kg) were: As: 171 ± 78 (62-343), Cd: 42 ± 60 (4-253), Cr: 515 ± 69 (401-639), Pb: 6 ± 7 (<MDL-26), and U: 0.1 ± 0.5 (<MDL-2). One third of the samples contained high levels of arsenic. Significant differences (p < 0.008) in concentrations were observed for many elements based on both the grains' country of origin and size. Calculated carcinogenic risk according to published speciation data of inorganic arsenic and chromium(VI) available in the literature for rice is > 1 in million, may possibly be > 1 in 10,000 based on conservatively high brown rice consumption rates of 200 g/d or 400 g/d in Qatar. These elevated risks may be applicable to specific population subgroups with diabetic conditions who consume only brown rice. Non-cancer risks are mainly derived from Mn, V, Se, and Cd with a hazard index > 1 from some brown rice samples.
Collapse
Affiliation(s)
- Amjad M Shraim
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar.
| | | | | | - Jack C Ng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, QLD 4102, Australia.
| |
Collapse
|
24
|
An HS-GC-IMS analysis of volatile flavor compounds in brown rice flour and brown rice noodles produced using different methods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Mridha D, Gorain PC, Joardar M, Das A, Majumder S, De A, Chowdhury NR, Lama U, Pal R, Roychowdhury T. Rice grain arsenic and nutritional content during post harvesting to cooking: A review on arsenic bioavailability and bioaccessibility in humans. Food Res Int 2022; 154:111042. [DOI: 10.1016/j.foodres.2022.111042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 12/28/2022]
|
26
|
Limmer MA, Seyfferth AL. Altering the localization and toxicity of arsenic in rice grain. Sci Rep 2022; 12:5210. [PMID: 35338249 PMCID: PMC8956569 DOI: 10.1038/s41598-022-09236-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
Previous work has shown that inorganic As localizes in rice bran whereas DMA localizes in the endosperm, but less is known about co-localization of As and S species and how they are affected by growing conditions. We used high-resolution synchrotron X-ray fluorescence imaging to image As and S species in rice grain from plants grown to maturity in soil (field and pot) and hydroponically (DMA or arsenite dosed) at field-relevant As concentrations. In hydroponics, arsenite was localized in the ovular vascular trace (OVT) and the bran while DMA permeated the endosperm and was absent from the OVT in all grains analyzed, and As species had no affect on S species. In pot studies, soil amended with Si-rich rice husk with higher DMA shifted grain As into the endosperm for both japonica and indica ecotypes. In field-grown rice from low-As soil, As localized in the OVT as arsenite glutathione, arsenite, and DMA. Results support a circumferential model of grain filling for arsenite and DMA and show Si-rich soil amendments alter grain As localization, potentially lessening risk to rice consumers.
Collapse
Affiliation(s)
- Matt A Limmer
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Angelia L Seyfferth
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
27
|
Seaweed Fertilizer Prepared by EM-Fermentation Increases Abundance of Beneficial Soil Microbiome in Paddy (Oryza sativa L.) during Vegetative Stage. FERMENTATION 2022. [DOI: 10.3390/fermentation8020046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Excessive use of chemical fertilizer could potentially decrease soil productivity by decreasing soil microbiome diversity. In this study, we evaluated the effects of fermented seaweed fertilizer in the soil microbial community of paddy plants (Oryza sativa L.). The paddy seedlings were divided into five groups, control (C0), chemical fertilizer (CF), seaweed fertilizer (SF), chemical and seaweed fertilizer combination 50:50 (CFSF1), and chemical and fertilizer combination 75:25 (CFSF2). The CFSF1 combination showed to be the most effective in inducing plant height (83.99 ± 3.70 cm) and number of tillers (24.20 ± 4.08). After 8 weeks after transplantation, the isolated DNA from each soil treatment were subjected to 16S rRNA (v3–v4 region) next-generation sequencing. The beneficial Acidobacteriota was most abundant in CFSF1. At genus level, the nitrifying bacteria MND1 was seen to be abundant in CFSF1 and also present in other SF treatments. The genus Chujaibacter is highly abundant in CF, which potentially plays a role in denitrification resulting in soil degradation. In addition, the CFSF1-treated soils show significantly higher diversity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). The current results could potentially contribute to the utilization of SF as a bioremediator and promoting green agriculture practice by reducing the amount of CF usage.
Collapse
|
28
|
Liu Y, Liu Y, Zhang J, Hou H. Effects of degree of milling on phenolics and antioxidant activity of cooked rice during in vitro digestion. Cereal Chem 2021. [DOI: 10.1002/cche.10501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanxiaoxue Liu
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Yuqian Liu
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Jinli Zhang
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Hanxue Hou
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| |
Collapse
|
29
|
Development of an Immunoassay for the Detection of Copper Residues in Pork Tissues. BIOSENSORS-BASEL 2021; 11:bios11070235. [PMID: 34356706 PMCID: PMC8301988 DOI: 10.3390/bios11070235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/01/2022]
Abstract
The presence of high concentrations of copper (Cu) residues in pork is highly concerning and therefore, this study was designed to develop a high-throughput immunoassay for the detection of such residues in edible pork tissues. The Cu content in the pork samples after digestion with HNO3 and H2O2 was measured using a monoclonal antibody (mAb) against a Cu (II)–ethylenediaminetetraacetic acid (EDTA) complex. The resulting solution was neutralized using NaOH at pH 7 and the free metal ions in the solution were chelated with EDTA for the immunoassay detection. An indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) method was developed for Cu ion analysis. The half maximal inhibitory concentration of the mAb against Cu (II)–EDTA was 5.36 ng/mL, the linear detection range varied between 1.30 and 27.0 ng/mL, the limit of detection (LOD) was 0.43 μg/kg, and the limit of quantification (LOQ) was 1.42 μg/kg. The performances of the immunoassay were evaluated using fortified pig serum, liver, and pork samples and had a recovery rate of 94.53–102.24%. Importantly, the proposed immunoassay was compared with inductively coupled plasma mass spectroscopy (ICP-MS) to measure its performance. The detection correlation coefficients of the three types of samples (serum, pork, and liver) were 0.967, 0.976, and 0.983, respectively. Thirty pork samples and six pig liver samples were collected from local markets and Cu was detected with the proposed ic-ELISA. The Cu content was found to be 37.31~85.36 μg/kg in pork samples and 1.04–1.9 mg/kg in liver samples. Furthermore, we detected the Cu content in pigs with feed supplemented with tribasic copper chloride (TBCC) and copper sulfate (CS) (60, 110, and 210 mg/kg in feed). There was no significant difference in Cu accumulation in pork tissues between the TBCC and CS groups, while a remarkable Cu accumulation was found for the CS group in liver at 210 mg/kg, representing more than a two-fold higher level than seen in the TBCC group. Therefore, the proposed immunoassay was found to be robust and sensitive for the detection of Cu, providing a cost effective and practical tool for its detection in food and other complicated samples.
Collapse
|
30
|
Bielecka J, Markiewicz-Żukowska R, Nowakowski P, Puścion-Jakubik A, Grabia M, Mielech A, Soroczyńska J, Socha K. Identifying the Food Sources of Selected Minerals for the Adult European Population among Rice and Rice Products. Foods 2021; 10:1251. [PMID: 34072881 PMCID: PMC8226702 DOI: 10.3390/foods10061251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
The problem of dietary deficiency of several essential elements among different stages of life is still observed. The consumption of whole grains (among others unprocessed rice) is recommended as a part of a healthy diet. This research aimed to determine the content of selected macro- and microelements in rice and rice products to verify whether the tested products could be regarded as a source of selected minerals in the diet of the adult European population. METHODS A total of 99 samples from 12 groups of rice products (basmati, black, brown, parboiled, red, wild, white rice and expanded rice, rice flakes, flour, pasta, and waffles) were obtained. The atomic absorption spectrometry method (AAS) was used to determine the content of Ca, Cu, Fe, Mg, Mn, Se and Zn in the study material. RESULTS The average measured contents of Ca, Cu, Fe, Mg, Mn, Se and Zn were as follows: 226.3 ± 160.6 mg/kg, 3.6 ± 2.8 mg/kg, 9.4 ± 7.0 mg/kg, 618.0 ± 498.4 mg/kg, 16.7 ± 10.0 mg/kg, 242.9 ± 140.4 µg/kg and 19.5 ± 15.0 mg/kg, respectively. Statistical analyses confirmed the differences in the levels of the studied elements between the subgroups of processed and unprocessed products. Considering the tolerable upper intake level of studied elements, the tested products could be regarded as safe to consume. CONCLUSION All tested products can be recommended as a source of Cu, Mn, and Se, while a majority of studied products can be considered a source of Mg and Zn in the diet of the adult European population.
Collapse
Affiliation(s)
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (J.B.); (P.N.); (A.P.-J.); (M.G.); (A.M.); (J.S.); (K.S.)
| | | | | | | | | | | | | |
Collapse
|
31
|
Che J, Yamaji N, Ma JF. Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. THE NEW PHYTOLOGIST 2021; 230:1049-1062. [PMID: 33474769 DOI: 10.1111/nph.17219] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Iron (Fe) from rice grains is an important source of dietary intake; however, the molecular mechanisms responsible for loading of Fe to the grains are poorly understood. We functionally characterized a vacuolar iron transporter gene, OsVIT2 in terms of expression pattern, cellular localization, and mutant phenotypes. OsVIT2 was expressed in the parenchyma cell bridges of nodes, in the mestome sheath of leaf sheath and aleurone of the caryopsis. Mutation of OsVIT2 resulted in decreased Fe distribution to the leaf sheath, nodes, and aleurone, but increased Fe to the leaf blade and grains. Furthermore, Fe was heavily deposited in the parenchyma cell bridges, mestome sheath and aleurone in the wild-type rice, but this accumulation was decreased in the knockout lines. Conversely, heavier deposition of Fe was observed in the embryo and endosperm of the grains of knockout lines compared with the wild-type rice, resulting in increased Fe accumulation in the polished rice without yield penalty. These results indicate that OsVIT2 is involved in the distribution of Fe to the grains through sequestering Fe into vacuoles in mestome sheath, nodes, and aleurone layer and that knockout of this gene provides a potential way for Fe biofortification without yield penalty.
Collapse
Affiliation(s)
- Jing Che
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
32
|
Content of Toxic Elements in 12 Groups of Rice Products Available on Polish Market: Human Health Risk Assessment. Foods 2020; 9:foods9121906. [PMID: 33419259 PMCID: PMC7766770 DOI: 10.3390/foods9121906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/16/2023] Open
Abstract
Background: Rice is one of the most commonly consumed grains. It could be a good source of nutrients in a diet, but its consumption could also contribute to exposure to toxic elements. All rice products available on the Polish market are imported, which may pose a particular concern as to the safety of their consumption. The aim of our study was to estimate the content of As, Cd, Pb, and Hg in rice products and to assess the health risk indicators related to exposure to toxic elements consumed with rice products among the adult population in Poland. Methods: A total of 99 samples from 12 groups of rice products (basmati, black, brown, parboiled, red, wild, white rice and expanded rice, rice flakes, flour, pasta, and waffles) available in the Polish market were obtained. The content of Hg was determined using the atomic absorption spectrometry method (AAS). To measure As, Cd, and Pb, inductively coupled plasma-mass spectrometry (ICP-MS) was used. The health risk was assessed by calculating several indicators. Results: The average As, Cd, Pb, and Hg contents in all studied products were 123.5 ± 77.1 μg/kg, 25.7 ± 26.5 μg/kg, 37.5 ± 29.3 μg/kg, and 2.8 ± 2.6 μg/kg, respectively. Exceedance of the limit established by the Polish National Food Safety Standard was observed in one sample as regards the As content and exceedance of the European Commission standard in two samples for Hg. The samples of foods imported from European markets (n = 27) had statistically higher As content (p < 0.05) than those imported from Asian countries (n = 53). The values of health risk indicators did not show an increased risk for the Polish adult population. However, the daily intake of 55 g of rice corresponds to the benchmark dose lower confidence limit (BMDL) for Pb. Conclusion: The studied rice products could be regarded as safe for consumption by the Polish population as far as the content of As, Cd, Pb, and Hg is concerned.
Collapse
|
33
|
Spanu A, Valente M, Langasco I, Leardi R, Orlandoni AM, Ciulu M, Deroma MA, Spano N, Barracu F, Pilo MI, Sanna G. Effect of the irrigation method and genotype on the bioaccumulation of toxic and trace elements in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142484. [PMID: 33113683 DOI: 10.1016/j.scitotenv.2020.142484] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The total concentration of three toxic elements (As, Cd and Pb) and five oligoelements (Cu, Mn, Mo, Ni and Se) has been determined using an original and completely validated ICP-MS method. This was applied to rice grains from 26 different genotypes cultivated in the same soil and irrigated with the same water in three different ways: by the traditional continuous flooding (CF) and by two intermittent methods, the sprinkler irrigation (SP) and the periodical saturation of the soil (SA). The adoption of SP hugely minimizes the average amounts of almost all elements in kernels (-98% for As, -90% for Se and Mn, -60% for Mo, -50% for Cd and Pb), with the only exception of Ni, whose concentration increases the average amount found in the CF rice by 7.5 times. Also SA irrigation is able to reduce the amounts of As, Mo and Pb in kernels but it significantly increases the amounts of Mn, Ni and - mainly - Cd. Also the nature of the genotype determined a wide variability of data within each irrigation method. Genotypes belonging to Indica subspecies are the best bioaccumulators of elements in both CF and SP methods and, never, the worst bioaccumulators for any element/irrigation method combination. In the principal component analysis, PC1 can differentiate samples irrigated by SP by those irrigated by CF and SA, whereas PC2 provides differentiation of CF samples by SA samples. When looking at the loading plot Ni is negatively correlated to the majority of the other elements, except Cu and Cd having negative loadings on PC2. These results allow to envisage that a proper combination of the irrigation method and the nature of rice genotype might be a very valuable tool in order to successfully achieve specific objectives of food safety or the attainment of functional properties.
Collapse
Affiliation(s)
- Antonino Spanu
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 1, 07100 Sassari, Italy
| | - Massimiliano Valente
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Ilaria Langasco
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna, 2, 07100 Sassari, Italy.
| | - Riccardo Leardi
- Dipartimento di Farmacia, Università di Genova, Viale Cembrano 4, Genova 16148, Italy.
| | | | - Marco Ciulu
- Department für Nutztierwissenschaften, Georg-August Universität, Albrecht-Thaer-Weg 3, Göttingen 37075, Germany.
| | - Mario Antonello Deroma
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 1, 07100 Sassari, Italy.
| | - Nadia Spano
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna, 2, 07100 Sassari, Italy.
| | - Francesco Barracu
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 1, 07100 Sassari, Italy.
| | - Maria I Pilo
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna, 2, 07100 Sassari, Italy.
| | - Gavino Sanna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna, 2, 07100 Sassari, Italy.
| |
Collapse
|
34
|
Arsenic speciation and elemental composition of rice samples from the Slovenian market. Food Chem 2020; 342:128348. [PMID: 33077276 DOI: 10.1016/j.foodchem.2020.128348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/18/2023]
Abstract
A survey of highly toxic arsenic compounds, together with some other elements was carried out on 40 polished rice samples (white, basmati and parboiled) and 10 brown rice samples from the Slovenian market. The average total As concentration was 157 ± 60 μg kg-1; highest levels were found in parboiled and brown rice and lowest in basmati. The average inorganic As concentration was 90 ± 35 μg kg-1. Dimethylarsinic acid and monomethylarsonic acid, which also exhibit high toxicity levels in some cases constitute >50% of total arsenic and might deserve more attention. Contrary to other foods, the total arsenic concentration in rice may even be a better health hazard indicator than the inorganic arsenic concentration. Elemental analysis of rice revealed large differences between polished and brown rice, especially for Mg, Mn, P, Fe and K, which were 2-4 times higher in brown rice than in polished rice.
Collapse
|
35
|
Taleon V, Gallego S, Orozco JC, Grenier C. Retention of Zn, Fe and phytic acid in parboiled biofortified and non-biofortified rice. FOOD CHEMISTRY-X 2020; 8:100105. [PMID: 33073230 PMCID: PMC7548297 DOI: 10.1016/j.fochx.2020.100105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/28/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023]
Abstract
Biofortified rice with high Zn concentration could reduce Zn deficiency in South Asia. This population frequently parboils rice. True retention (TR) of Zn, Fe and phytic acid after parboiling and milling was evaluated in biofortified and non-biofortified rice. TR in milled non-parboiled rice was 63.8-89.6% for Zn, 21.1-44.5% for Fe and 16.4-40.3% for phytic acid, whereas in milled parboiled rice TR was 49.8-72.2% for Zn, 23.4-36.7% for Fe and 22.0-33.3% for phytic acid. Milled parboiled rice resulted in lower Zn TR compared to milled non-parboiled. These results suggest that Zn moves from the inner endosperm towards the outer layers during parboiling, regardless of initial Zn concentration, consequently, once milled, the potential impact of Zn intake on Zn deficiency from parboiled rice is less than non-parboiled rice. Despite Zn losses during processing, biofortified rice could provide over 50% of the Zn EAR for children.
Collapse
Affiliation(s)
- Víctor Taleon
- HarvestPlus, c/o International Food Policy Research Institute (IFPRI), 1201 Eye Street, NW, Washington, DC 20005, USA
| | - Sonia Gallego
- HarvestPlus, The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Juan Camilo Orozco
- HarvestPlus, The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Cecile Grenier
- CIRAD, UMR AGAP, F-34398 Montpellier, France SupAgro, Montpellier, France.,AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
36
|
Hensawang S, Lee BT, Kim KW, Chanpiwat P. Probabilistic assessment of the daily intake of microelements and toxic elements via the consumption of rice with different degrees of polishing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4029-4039. [PMID: 32338369 DOI: 10.1002/jsfa.10448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/14/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The polishing process plays a key role in determining the beneficial quality of rice. However, the effects of polishing on human exposure to essential and toxic elements are not well reported. This study evaluated the effects of polishing on the levels of essential and toxic elements in rice grains and evaluated the status of their daily intake using probabilistic assessment. RESULTS The levels of essential elements decreased as the degree of polishing increased. The highest reduction percentages of essential elements [24% of copper (Cu), 26% of nickel (Ni), and 52% of manganese (Mn)] were found after the first polishing step. The highest zinc (Zn) reduction (15%) was found after the fourth polishing step. For toxic elements, polishing significantly reduced the arsenic (As) concentration (15-31%) from that of the whole grains, of which 26% was removed after the first step. CONCLUSION Polishing removed both essential and toxic elements from rice grains. The highest losses of Cu, Mn, Ni, and As were found after the first polishing step since these elements generally localize in the aleurone layers of rice grains. The last polishing step caused a significant Zn reduction from the grain. Polishing had no significant effect on the cadmium (Cd) concentration in grains. The consumption of all types of rice could not supply sufficient amounts of all microelements except Mn to maintain optimum health. Both As and Cd intake levels were lower than the benchmarks of toxic health effects. Thus, the potential health impacts of both of these elements in rice can be neglected. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Supanad Hensawang
- Hazardous Substance and Environmental Management (Interdisciplinary Program), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Byung-Tae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Kyoung-Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Penradee Chanpiwat
- Environmental Research Institute, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| |
Collapse
|
37
|
Wang L, Zhao S, Kong J, Li N, Qiao D, Zhang B, Xu Y, Jia C. Changing cooking mode can slow the starch digestion of colored brown rice: A view of starch structural changes during cooking. Int J Biol Macromol 2020; 155:226-232. [DOI: 10.1016/j.ijbiomac.2020.03.203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023]
|
38
|
Tuning of the Amount of Se in Rice ( Oryza sativa) Grain by Varying the Nature of the Irrigation Method: Development of an ICP-MS Analytical Protocol, Validation and Application to 26 Different Rice Genotypes. Molecules 2020; 25:molecules25081861. [PMID: 32316646 PMCID: PMC7221937 DOI: 10.3390/molecules25081861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/29/2022] Open
Abstract
The amount of specific trace elements like selenium (Se) may be of health concern for humans if contained in too high (or low) quantities in staple foods like rice. Among the attempts aimed to optimize the Se concentration in rice, only few studies have been focused on the use of irrigation methods other than continuous flooding. Since intermittent irriguous methods, like sprinkler and saturation, have found to be effective in modifying the bioaccumulation of arsenic and cadmium in rice kernels, the main goal of this study is to measure the amount of the total Se contained in grains of 26 rice genotypes cultivated for two consecutive agrarian vintages in the same open field and with the same water, but differently irrigated with continuous flooding, sprinkler or saturation. To do this, an original and validated ICP-MS method has been developed. The validation parameters accounted for a high sensitivity and accuracy. Sprinkler irrigation is able to reduce in the average of 90% the amount of total Se in kernels in comparison to values measured in rice irrigated with continuous flooding. In conclusion, different irrigation techniques and rice genotypes seem to be valuable tools in order to allow in the future the customized modulation of the Se concentration in rice grain according to the needs of the various populations.
Collapse
|
39
|
Yao B, Chen P, Sun G. Distribution of elements and their correlation in bran, polished rice, and whole grain. Food Sci Nutr 2020; 8:982-992. [PMID: 32185023 PMCID: PMC7075078 DOI: 10.1002/fsn3.1379] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 11/12/2022] Open
Abstract
The relationship of toxic elements (As, Cd, Cr) and trace elements (Cu, Se, Ni, Zn, Mn) in rice bran and corresponding polished rice is not well known. A total of 446 rice grains were collected from paddy fields distributed across China, and the concentrations of 8 elements in rice bran and their corresponding polished rice were measured. The levels of As, Cd, Cr, and Se have a good linear relationship between rice bran and polished rice (R 2: .79, .97, .82, .99, respectively; all p < .001). Polishing rice could effectively remove the average contents of 44.4% As, 19.8% Cd, and 15.4% Cr in the whole grain, but caused the substantial losses of more than half of Mn and Ni (57.7% and 56.9%), and nearly one-third (30.9%, 31.5%, and 29.1%) of Cu, Se, and Zn in brown rice although only about 10% of rice bran was milled. The "L" type correlation exists not only between As and Cd, but also between the nutrients Se, Mn, Ni, and the toxic elements As, Cd. These results indicated that As accumulation in rice could reduce the levels of essential mineral nutrients Mn, Ni, and Se. On the contrary, improving nutrient elements by fertilization could decrease the accumulation of some toxic elements. This provides a practical new idea for the prevention and control of rice As or Cd, and concomitantly improves the deficiency of nutrient elements in rice.
Collapse
Affiliation(s)
- Bao‐Min Yao
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesThe Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Peng Chen
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesThe Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guo‐Xin Sun
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesThe Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|