1
|
Wawoczny A, Wilk J, Shyntum D, Shakibania S, Krukiewicz K, Gibas J, Machulik M, Płonka J, Bajkacz S, Dudek G, Gillner D. Valorization of waste tomato leaves with natural deep eutectic solvents. Food Chem 2025; 472:142884. [PMID: 39826513 DOI: 10.1016/j.foodchem.2025.142884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Waste produced during cultivation of edible plants can be a valuable source of bioactive molecules. Herein, we present the valorization of tomato leaves to obtain biologically active extracts. Deep eutectic solvents (DESs), composed of natural ingredients, were applied as extracting solvents. The extracts were rich in bioactive chemicals such as phenolics and flavonoids, with rutin as the main component (∼6 mg/g of biomass). The obtained extracts showed high antioxidative potential. Moreover, it was possible to recycle DES for subsequent extractions. Evaluation of the antimicrobial activity of the extracts against selected bacteria (Escherichia coli and Staphylococcus epidermidis) and yeast (Candida albicans) revealed that it showed strong antifungal activity, while the pure solvent did not exhibit such properties. The study revealed that by adhering to the principles of the circular economy and extracting waste tomato leaves using natural DESs, valuable antioxidants and antimicrobial agents can be obtained with high yields.
Collapse
Affiliation(s)
- Agata Wawoczny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland.
| | - Joanna Wilk
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland.
| | - Divine Shyntum
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Sara Shakibania
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland.
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Joanna Gibas
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland
| | - Marcin Machulik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland.
| | - Joanna Płonka
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland.
| | - Sylwia Bajkacz
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland.
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| |
Collapse
|
2
|
Soni N, Yadav M, M M, Sharma D, Paul D. Current developments and trends in hybrid extraction techniques for green analytical applications in natural products. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124543. [PMID: 40049075 DOI: 10.1016/j.jchromb.2025.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/07/2025]
Abstract
Natural product extraction has advanced significantly due to the growing need for environmentally friendly and sustainable analytical techniques. The medicinal benefits of natural products are gaining worldwide recognition. This shift emphasizes the need for sustainable extraction methods, as traditional organic solvents can negatively impact biodiversity. This review looks at new green extraction methods such as pressurized liquid extraction, ultrasound-assisted extraction, microwave-assisted extraction, and supercritical fluid extraction. The overview describes the main goals, workings, and extraction principles of these techniques, which are used to extract phytochemicals from various plant sources. Additionally covered is how green solvents, more especially bio-based and deep eutectic solvents, can enhance the sustainability of these techniques. This review examines the developments in synergistic extraction, emphasizing how these hybrid techniques can be used to isolate a variety of natural products, including polyphenols, alkaloids, essential oils, and more. It also emphasizes how crucial these techniques are to the development of high-performance, environmentally friendly analytical platforms for the use of natural products. The recent uses of these extraction techniques are covered in this review. Despite the positive results, standardization, selectivity, scalability, and economic viability issues must be recognized and addressed.
Collapse
Affiliation(s)
- Navratan Soni
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Mukul Yadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Malarvannan M
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Dhanashree Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054.
| |
Collapse
|
3
|
Khan J, Asaf S, Lubna, Abdelbacki AMM, Jan R, Kim KM. Green Extraction of Antioxidant-Rich Flavonoids from Fagonia cretica Using Deep Eutectic Solvents. Molecules 2025; 30:813. [PMID: 40005126 PMCID: PMC11858234 DOI: 10.3390/molecules30040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
This study optimized the extraction of flavonoids from Fagonia cretica using deep eutectic solvents (DESs), focusing on key factors such as the type of DES used, molar ratio, water content, solid/liquid ratio, extraction temperature, and time. Among six DESs tested, the betaine-acetic acid combination exhibited the highest extraction efficiency, attributed to its low viscosity (4.98 mPa·s). Optimal extraction conditions were determined to be a 1:4 molar ratio of betaine to acetic acid, a 25% water content, a solid/liquid ratio of 1:60 g/mL, an extraction temperature of 50 °C, and an extraction time of 30 min. Under these conditions, the flavonoid yield was maximized while preserving bioactivity. Antioxidant assays revealed that flavonoids extracted with DESs exhibited superior scavenging activity against DPPH and hydroxyl radical compared to ethanol-extracted flavonoids, highlighting DESs' potential to enhance antioxidant properties. The recyclability of DESs was demonstrated using ultracapacitor porous activated carbon, achieving an 89.78% recovery efficiency. The reused DES maintained a high flavonoid extraction yield, retaining 92% efficiency after six cycles, emphasizing its sustainability and cost-effectiveness. This study establishes DES-based extraction as an environmentally friendly and efficient approach for isolating flavonoids with strong antioxidant properties, offering significant advantages in green chemistry and bioactive compound recovery.
Collapse
Affiliation(s)
- Jafar Khan
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (L.)
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (L.)
| | - Ashraf M. M. Abdelbacki
- Deanship of Skills Development, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Szydłowska-Czerniak A, Moździerz A, Kowaluk A, Strzelec M, Topka P, Sawicki T, Tańska M. Optimization of Eco-Friendly Extraction of Bioactive Compounds from Mentha spicata L. Using Ultrasound-Assisted Extraction Combined with Choline Chloride-Based Deep Eutectic Solvents. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:31. [PMID: 39760954 DOI: 10.1007/s11130-024-01270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 01/07/2025]
Abstract
Three choline chloride (ChCl)-based deep eutectic solvents (DESs) as a new type of green solvents were used for the ultrasound-assisted extraction (UAE) of bioactive compounds from Mentha spicata L. DES containing ChCl and malonic acid (MalA) was selected as the most promising, providing a more effective extraction of antioxidants from spearmint. Response surface methodology (RSM) and a Box-Behnken design (BBD) with three variables, ChCl:MalA molar ratio, water content (WC) in DES, and extraction time (t), were implemented for optimizing the extraction conditions. The optimal conditions were calculated to maximize the antioxidant capacity (AC) determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and cupric reducing antioxidant capacity (CUPRAC) assays, total phenolic acids (TPAc), total flavonoid aglycones (TFAgly), and total flavonoid glycosides (TFGly). The phenolic profiles in the obtained extracts were analyzed using ultra-performance liquid chromatography (UPLC), revealing that rosmarinic acid, ellagic acid, rutin, kaempferol, and kaempferol-3-O-rutinoside were predominant in the DES extracts.
Collapse
Affiliation(s)
- Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, 87-100, Poland.
| | - Aleksandra Moździerz
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, 87-100, Poland
| | - Agnieszka Kowaluk
- Department of Physical and Environmental Chemistry, Laboratory of Electrochemical and Inorganic Analyzes, Central Office of Measures, Warszawa, 00-139, Poland
| | - Michał Strzelec
- Department of Physical and Environmental Chemistry, Laboratory of Electrochemical and Inorganic Analyzes, Central Office of Measures, Warszawa, 00-139, Poland
| | - Patrycja Topka
- Department of Food Plant Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-718, Poland
| | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-718, Poland
| | - Małgorzata Tańska
- Department of Food Plant Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-718, Poland.
| |
Collapse
|
5
|
Ge W, Xiao Z, Ding X, Bi W, Chen DDY. Deep eutectic system enhanced oat protein extraction. J Food Sci 2025; 90:e17645. [PMID: 39828420 DOI: 10.1111/1750-3841.17645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Oats are a rich source of plant-based proteins owing to their nutritional value, diverse functions, and high abundance. However, traditional methods for extracting oat proteins (OPs), such as alkali solution acid precipitation (ASAP), can cause environmental pollution and potentially protein denaturation. In this work, we studied the use of deep eutectic solvents (DESs) and deep eutectic system (DESys)-based methods for OP extraction. The DES are composed of ionic liquids (ILs) and choline chloride (ChCl) as hydrogen bond acceptors (HBAs), and polyols as hydrogen bond donors (HBDs) for OP extraction. By systematically investigating the extraction conditions, it was found that using ChCl as an HBA in the DESys-based method allowed for a significant increase in protein recovery yield compared to the ASAP and DES-based methods. Furthermore, the physicochemical properties of OPs extracted using the ASAP, DES, and DESys-based methods exhibited some differences, particularly in their molecular structure, amino acid composition, and thermal properties, suggesting that the properties of OP could be potentially adjusted by DESys- and DES-based methods. When considering both toxicity and protein recovery yield, the DESys-based extraction method using ChCl as the HBA is more suitable for OP extraction. This study demonstrated a green and efficient method for OP extraction that minimizes environmental impact, potentially bridging the gap between ILs and DES, and offering insights for designing new DES- or DESys-based extraction strategies for biological molecules.
Collapse
Affiliation(s)
- Wuxia Ge
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Zhixin Xiao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Xinru Ding
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Wentao Bi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Osamede Airouyuwa J, Khan H, Mostafa H, Mudgil P, Maqsood S. A comparative study on sequential green hybrid techniques (ultrasonication, microwave and high shear homogenization) for the extraction of date seed bioactive compounds and its application as an additive for shelf-life extension of Oreochromis niloticus. ULTRASONICS SONOCHEMISTRY 2024; 111:107094. [PMID: 39393281 PMCID: PMC11732759 DOI: 10.1016/j.ultsonch.2024.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
This study focuses on the extraction of bioactive compounds from date seeds using five polyol-based deep eutectic solvents (P-DESs) in combination with hybrid green extraction techniques, specifically microwave-assisted extraction (MAE), homogenization-assisted extraction (HAE), and ultrasound-assisted extraction (UAE). The optimization of these extraction techniques was achieved using P-DESs showing the highest efficiency for extracting date seed bioactive compounds using response surface methodology (RSM) and central composite design (CCD) approach. The optimized conditions from three green techniques were further applied in the form of hybrid green extraction techniques, involving six binary and three ternary methods, to assess the percentage increase in the extraction efficiency of date seed bioactive polyphenolics. Among the five P-DESs tested, choline chloride: ethylene glycol (ChCl:Eg) exhibited the highest extraction efficiency for recovering date seed phenolic compounds. Using ChCl:Eg as the P-DES, the highest extraction efficacy was found with MAE, followed by > HAE and > UAE. In addition, all hybrid extraction techniques showed higher extraction efficiencies than the single extraction methods. Notably, the binary hybrid techniques combining UAE and MAE (UMAE), HAE and MAE (HMAE) resulted in significantly higher recovery of bioactive compounds, with 52 % and 49 % increases in total phenolic content, respectively, compared to single extraction techniques. The lowest MIC and MBC of P-DES (ChCl:Eg) and date seed P-DES based extract recorded against all the tested bacterial strains was 40 % and 20 % respectively. Furthermore, the date seed extract from MAE was used to extend the shelf life of Oreochromis niloticus stored at 4 °C for 10 days. The results indicated that the date seed polyphenolic extract effectively inhibited microbial growth in Oreochromis niloticus during refrigerated storage, with the total bacterial count (TBC) of all the treated samples within the recommended acceptability limit of < 6 log CFU/g compared to the untreated samples, which showed a total bacterial count (TBC) > 6 log CFU/g. This study demonstrated that sequential hybrid techniques enhance and intensify the recovery of bioactive compounds more effectively than any single green technique.
Collapse
Affiliation(s)
- Jennifer Osamede Airouyuwa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, UAE
| | - Hina Khan
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, UAE
| | - Hussein Mostafa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, UAE; Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, UAE
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, UAE; National Water and Energy Center, United Arab Emirates University, Al-Ain 15551, UAE.
| |
Collapse
|
7
|
Jiang W, Liu K, Huan W, Wu X, Zhu M, Tao H, Song L, Gao F. Specific extraction of bioactive flavonoids from Torreya grandis pomace using magnetic nanoparticles modified with a ChCl/acetamide deep eutectic solvent. Lebensm Wiss Technol 2024; 211:116914. [DOI: 10.1016/j.lwt.2024.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
|
8
|
Velisdeh ZJ, Najafpour Darzi G, Poureini F, Mohammadi M, Sedighi A, Bappy MJP, Ebrahimifar M, Mills DK. Turning Waste into Wealth: Optimization of Microwave/Ultrasound-Assisted Extraction for Maximum Recovery of Quercetin and Total Flavonoids from Red Onion (Allium cepa L.) Skin Waste. APPLIED SCIENCES 2024; 14:9225. [DOI: 10.3390/app14209225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
This study optimized the extraction conditions to maximize the recovery yields of quercetin and total flavonoids from red onion skin waste using sequential microwave/ultrasound-assisted extraction. Five effective factors of quercetin extraction yield were investigated using response surface methodology. The method was successfully performed under optimal 60 s microwave irradiation conditions followed by 15 min sonication at 70 °C with 70% (v/v, water) ethanol with a solvent-to-solid ratio of 30 mL/g. The variance analysis of the model for both quercetin (Y1) and total flavonoid (Y2) recovery from DOS demonstrated that ultrasound temperature (X2) was the most highly significant and influential factor, with a p-value of <0.0001 for both responses. Additionally, three key interaction terms—X1X2, X2X4, and X2X5—were identified as highly significant, further underscoring the critical role of ultrasound temperature in optimizing the extraction process for both quercetin and total flavonoids. The maximum recovery yields of quercetin and total flavonoids from red onion skin were 10.32% and 12.52%, respectively. The predicted values for quercetin (10.05%) and total flavonoids (12.72%) were very close to the experimental results. The recovery yields obtained from different extraction methods under the identical experimental conditions mentioned earlier were ultrasound/microwave-assisted extraction (7.66% quercetin and 10.18% total flavonoids), ultrasound-assisted extraction (5.36% quercetin and 8.34% total flavonoids), and microwave-assisted extraction (5.03% quercetin and 7.91% total flavonoids). The ANOVA confirmed highly significant regression models (p-values < 0.0001), with an insignificant lack of fit (p = 0.0515 for quercetin, p = 0.1276 for total flavonoids), demonstrating the robustness and reliability of the optimization. This study provides valuable insights for improving the extraction of bioactive compounds, which is critical for developing effective cancer treatments and advancing medical research. Additionally, the model shows potential for scaling up food processing applications to recover valuable products from red onion skin waste.
Collapse
Affiliation(s)
- Zeinab Jabbari Velisdeh
- Biotechnology Research Laboratory, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol 47148-71167, Iran
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71272, USA
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol 47148-71167, Iran
| | - Fatemeh Poureini
- Biotechnology Research Laboratory, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol 47148-71167, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol 47148-71167, Iran
| | - Armin Sedighi
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
| | | | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza 14778-93855, Iran
| | - David K. Mills
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71272, USA
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
9
|
Heck KL, Si L, Jung DJ, Calderón AI. Application of eco-friendly natural deep eutectic solvents (NADES) in HPLC for separation of complex natural products: Current limitations and future directions. J Pharm Biomed Anal 2024; 244:116102. [PMID: 38547649 DOI: 10.1016/j.jpba.2024.116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/29/2024]
Abstract
Natural deep eutectic solvents (NADES) have been used in chromatography as extraction media and HPLC mobile phase additives, but only once have they been used as HPLC major mobile phase component. This review illustrates current knowledge and major limitations on use of NADES in HPLC mobile phase as well as to propose possible NADES may be ready for use as HPLC mobile phases and the detectors they can be used with. High viscosity is one of the major roadblocks encountered when using NADES as a mobile phase component in HPLC regardless of detectors employed. A comprehensive review of published literature was conducted to identify articles that focused on using NADES as extraction solvents for natural products, particularly polyphenols or reported NADES viscosities to establish a database of NADES which could be used as HPLC mobile phases under various conditions. Other identified challenges that limit NADES application in HPLC mobile phase include low volatility, NADES wavelength cutoff (UV and Fluorescent detectors) and impurities. Methods for overcoming these limitations are discussed so that NADES may be more integrated into HPLC systems in the future.
Collapse
Affiliation(s)
- Kabre Lynne Heck
- Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, United States
| | - Lin Si
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States
| | - Da Jin Jung
- Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, United States
| | - Angela Isabel Calderón
- Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
10
|
Aktaş H, Kurek MA. Deep eutectic solvents for the extraction of polyphenols from food plants. Food Chem 2024; 444:138629. [PMID: 38341914 DOI: 10.1016/j.foodchem.2024.138629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Deep Eutectic Solvents (DESs) offer a promising, sustainable alternative for extracting polyphenols from food plants, known for their health benefits. Traditional extraction methods are often costly and involve toxic solvents. This review discusses the basic concepts, preparation techniques, and factors influencing the effective and safe use of DESs in polyphenol extraction. DESs' adaptability allows integration with other green extraction technologies, such as microwave- and ultrasound-assisted extractions, enhancing their efficiency. This adaptability demonstrates the potential of DESs in the sustainable extraction of bioactive compounds. Current research indicates that DESs could play a significant role in the sustainable procurement of these compounds, marking an important advancement in food science research and development. The review underscores DESs as a realistic, eco-friendly alternative in the realm of natural extraction technologies, offering a significant contribution to sustainable practices in food science.
Collapse
Affiliation(s)
- Havva Aktaş
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| |
Collapse
|
11
|
Negi T, Kumar A, Sharma SK, Rawat N, Saini D, Sirohi R, Prakash O, Dubey A, Dutta A, Shahi NC. Deep eutectic solvents: Preparation, properties, and food applications. Heliyon 2024; 10:e28784. [PMID: 38617909 PMCID: PMC11015381 DOI: 10.1016/j.heliyon.2024.e28784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Deep Eutectic Solvents (DESs) emerge as innovative 21st-century solvents, supplanting traditional ones like ethanol and n-hexane. Renowned for their non-toxic, biodegradable, and water-miscible nature with reduced volatility, DESs are mostly synthesized through heating and stirring method. Physicochemical properties such as polarity, viscosity, density and surface tension of DESs influenced their application. This review paper gives the overview of application of eco-benign DESs in fruits, vegetables, cereals, pulses, spices, herbs, plantation crops, oil seed crops, medicinal and aromatic plants, seaweed, and milk for the extraction of bioactive compounds. Also, it gives insight of determination of pesticides, insecticides, hazardous and toxic compounds, removal of heavy metals, detection of illegal milk additive, purification of antibiotics and preparation of packaging film. Methodologies for separating bioactive compounds from DESs extracts are systematically examined. Further, safety regulations of DESs are briefly discussed and reviewed literature reveals prevalent utilization of DES-based bioactive compound rich extracts in cosmetics, indicating untapped potential of their application in the food industry.
Collapse
Affiliation(s)
- Taru Negi
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anil Kumar
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Satish Kumar Sharma
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Neha Rawat
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Deepa Saini
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Ranjna Sirohi
- Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
| | - Om Prakash
- Department of Chemistry, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Ashutosh Dubey
- Department of Biochemistry, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anuradha Dutta
- Department of Foods & Nutrition, College of Community Sciences, Pantnagar, 263145, Uttarakhand, India
| | - Navin Chand Shahi
- Department of Post-Harvest Process and Food Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, India
| |
Collapse
|
12
|
Yang Q, Guo Y, Zhu H, Jiang Y, Yang B. Bioactive compound composition and cellular antioxidant activity of fig (Ficus carica L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3275-3293. [PMID: 38115189 DOI: 10.1002/jsfa.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Fig (Ficus carica L.) fruit is consumed worldwide as a functional food. It contains phytochemicals that have been related to health benefits. However, the characteristic chemicals remain unclear. In this work, phytochemicals were prepared from figus by ultrasound-assisted extraction under optimized conditions. The chemical composition of fig fruit and leaves was characterized by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS One hundred and fifty-seven compounds were identified, including 58 flavonoids, 29 coumarins, 19 acids, 15 terpenoids, 11 alkaloids, and 25 other compounds. The mass spectrum (MS) fragmentation pathways of representative chemicals were elucidated. Flavonoid glycosides and prenylated flavonoids were mainly present in fig fruit, whereas coumarins were abundant in leaves. Both fig fruit and leaf extracts showed good cellular antioxidant activity. CONCLUSION The full phytochemical profile of fig was revealed by UPLC-MS/MS. Prenylated flavonoids and prenylated coumarins were the characteristic phytochemicals. These data provided useful information for the extensive utilization of fig fruit in functional food. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuxia Yang
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yushan Guo
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhu
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Jiang
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Yang
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Altıkardeş E, Güzel N. Impact of germination pre-treatments on buckwheat and Quinoa: Mitigation of anti-nutrient content and enhancement of antioxidant properties. Food Chem X 2024; 21:101182. [PMID: 38357368 PMCID: PMC10865234 DOI: 10.1016/j.fochx.2024.101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
This study evaluated the effects of pre-germination treatments on the nutritional and anti-nutritional values of buckwheat and quinoa during germination. Pre-germination method was effective on the chemical composition and phenolic profile of buckwheat and quinoa samples (p < 0.05). During the germination, color changes were notable, particularly in the alkali-treated samples. The decrease in tannin content reached the highest rate in germinated buckwheat (83 %) and quinoa (20 %) by alkali treatment. The highest antioxidant and total phenolic content were measured in germinated pseudocereals treated by ultrasound. However, the lowest phytic acid content was determined after germination in the quinoa sample treated by ultrasound. Rutin was the major flavonoid in buckwheat while quercetin, galangin, ellagic, syringic, and p-coumaric acids were only synthesized after 72 h of germination. Catechin and epicatechin were decreased only in the alkali-treated buckwheat sample. Controlled germination processes can enhance the antioxidant activity and development of functional foods from whole grains.
Collapse
Affiliation(s)
- Ebrar Altıkardeş
- Institute of Graduate Studies, Department of Food Engineering, Hitit University, Çorum, Turkey
| | - Nihal Güzel
- Department of Food Engineering, Hitit University, Çorum, Turkey
| |
Collapse
|
14
|
Park YJ, Kim SY, Song WJ. Inactivation of Salmonella Typhimurium and Listeria monocytogenes on buckwheat seeds through combination treatment with plasma, vacuum packaging, and hot water. J Appl Microbiol 2023; 134:lxad272. [PMID: 37974046 DOI: 10.1093/jambio/lxad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS The objectives of this study were to evaluate the effect of combination treatment with cold plasma (CP), vacuum packaging (VP), and hot water (HW) on the inactivation of foodborne pathogens on buckwheat seeds, and determined the germination rates of seeds and the quality of sprouts following combination treatment. METHODS AND RESULTS Buckwheat seeds inoculated with Salmonella Typhimurium and Listeria monocytogenes were treated with CP, HW, CP + HW, VP + HW, or CP + VP + HW. The germination rates of the HW-, CP + HW-, VP + HW-, and CP + VP + HW-treated seeds and the antioxidant activities and rutin contents of the CP + HW- and CP + VP + HW-treated sprouts were determined. HW, CP + HW, and CP + VP + HW were found to reduce the levels of the two pathogens to below the detection limit (1.0 log CFU g-1) at 70°C. However, HW and CP + HW significantly reduced the germination rate of buckwheat seeds. CP + VP + HW did not affect the germination rate of seeds nor the antioxidant activities and rutin content of buckwheat sprouts. CONCLUSIONS These results indicate that CP + VP + HW can be used as a novel control method to reduce foodborne pathogens in seeds without causing quality deterioration.
Collapse
Affiliation(s)
- Ye-Jin Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| | - Su-Yeon Kim
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| | - Won-Jae Song
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| |
Collapse
|
15
|
Kim HJ, Yoon KY. Optimization of ultrasound-assisted deep eutectic solvent extraction of bioactive compounds from pomegranate peel using response surface methodology. Food Sci Biotechnol 2023; 32:1851-1860. [PMID: 37781052 PMCID: PMC10541360 DOI: 10.1007/s10068-023-01298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
The efficient extraction of polyphenols from pomegranate peels using a deep eutectic solvent (DES) and ultrasound-assisted extraction (UAE) was investigated. A Box-Behnken design was used to investigate the effects of four independent variables (water content, liquid-to-solid ratio, ultrasonic power, and extraction time) on total polyphenol content (TPC), punicalagin content (PC), and ellagic acid content (EC). Optimized DES-based UAE conditions were as follows: TPC (water content, 29.30%; liquid-to-solid ratio, 53.50 mL/g; ultrasonic power, 238.20 W; extraction time, 29.50 min), PC (water content, 25.65%; liquid-to-solid ratio, 44.20 mL/g; ultrasonic power, 120 W; extraction time, 20 min), and EC (water content, 33.13%; liquid-to-solid ratio, 60 mL/g; ultrasonic power, 300 W; extraction time, 20 min). Under these optimal conditions, the experimental values for TPC, PC, and EC were 67.50 mg GAE/g, 130.65 mg/g, and 2.04 mg/g, respectively; these values were consistent with the predicted values.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, 38541 South Korea
| | - Kyung Young Yoon
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, 38541 South Korea
| |
Collapse
|
16
|
Zhang H, Li X, Kang M, Li Z, Wang X, Jing X, Han J. Sustainable ultrasound-assisted extraction of Polygonatum sibiricum saponins using ionic strength-responsive natural deep eutectic solvents. ULTRASONICS SONOCHEMISTRY 2023; 100:106640. [PMID: 37816271 PMCID: PMC10568126 DOI: 10.1016/j.ultsonch.2023.106640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
The sustainable extraction of saponins was investigated using natural deep eutectic solvents (NADESs) combined with ultrasound-assisted extraction. A novel NADES (butyric acid-urea) that was responsive to ionic strength was designed and used as the extractant. Ultrasound treatment and a catalyst ferric chloride with plant cell wall breaking function were applied to improve the extraction efficiency.Since the solubility of the NADES varied significantly with ionic strength, 95% of NADES was readily separated from the water phase after the addition of sodium chloride, while saponins remained in the water phase for easy collection. The reuse capacity of NADES, the eco-friendliness of the extraction method, and the antioxidant activity of the extract were further evaluated.NADES was continuously recovered and used to extract Polygonatum sibiricum powder: the yield of saponins did not decrease after five cycles of recovery and re-extraction. The penalty point on the "Eco-scale" suggested that the extraction method was "green" (i.e. eco-friendly).Compared with ethanol extracts, the NADES extracts showed a higher saponin concentration and antioxidant activity.The study can contribute to the sustainable and green extraction of hydrophilic active substances in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Hongli Zhang
- College of Science, China Agricultural University, Beijing 100193, China; College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xinpeng Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Miao Kang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhanrong Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Jiajun Han
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Siddiqui SA, Ali Redha A, Salauddin M, Harahap IA, Rupasinghe HPV. Factors Affecting the Extraction of (Poly)Phenols from Natural Resources Using Deep Eutectic Solvents Combined with Ultrasound-Assisted Extraction. Crit Rev Anal Chem 2023; 55:139-160. [PMID: 37850880 DOI: 10.1080/10408347.2023.2266846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Replacing conventional solvents with deep eutectic solvents (DES) has shown promising effects on the extraction yield of (poly)phenols. DES can be combined with ultrasound-assisted extraction (UAE) to further increase the extraction efficiency of (poly)phenols from natural resources compared to conventional methods. This review discusses the factors associated with DES (composition, solvent-to-sample ratio, extraction duration, and temperature) and UAE (ultrasound frequency, power, intensity, and duty cycle) methods that influence the extraction of (poly)phenols and informs future improvements required in the optimization of the extraction process. For the optimum (poly)phenol extraction from natural resources, the following parameters shall be considered: ultrasound frequency should be in the range of 20-50 kHz, ultrasound intensity in the range of 60-120 W/cm2, ultrasound duty cycle in the range of 40-80%, ultrasound duration for 10-30 minutes, and ultrasound temperature for 25-50 °C. Among the reported DES systems, choline chloride with glycerol or lactic acid, with a solvent-to-sample mass ratio of 10-30:1 shown to be effective. The solvent composition and solvent-to-sample mass ratio should be selected according to the target compound and the source material. However, the high viscosity of DES is among the major limitations. Optimizing these factors can help to increase the yield of extracted (poly)phenols and their applications.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Government Polytechnic, West Bengal State Council of Technical Education, Kolkata, India
| | - Iskandar Azmy Harahap
- Research Organization for Health, National Research and Innovation Agency, Jakarta, Indonesia
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
18
|
Wu DT, Deng W, Li J, Geng JL, Hu YC, Zou L, Liu Y, Liu HY, Gan RY. Ultrasound-Assisted Deep Eutectic Solvent Extraction of Phenolic Compounds from Thinned Young Kiwifruits and Their Beneficial Effects. Antioxidants (Basel) 2023; 12:1475. [PMID: 37508013 PMCID: PMC10376641 DOI: 10.3390/antiox12071475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Fruit thinning is a common practice employed to enhance the quality and yield of kiwifruits during the growing period, and about 30-50% of unripe kiwifruits will be thinned and discarded. In fact, these unripe kiwifruits are rich in nutrients and bioactive compounds. Nevertheless, the applications of thinned young kiwifruits and related bioactive compounds in the food and functional food industry are still limited. Therefore, to promote the potential applications of thinned young kiwifruits as value-added health products, the extraction, characterization, and evaluation of beneficial effects of phenolic compounds from thinned young fruits of red-fleshed Actinidia chinensis cv 'HY' were examined in the present study. A green and efficient ultrasound-assisted deep eutectic solvent extraction (UADE) method for extracting phenolic compounds from thinned young kiwifruits was established. A maximum yield (105.37 ± 1.2 mg GAE/g DW) of total phenolics extracted from thinned young kiwifruits by UADE was obtained, which was significantly higher than those of conventional organic solvent extraction (CSE, about 14.51 ± 0.26 mg GAE/g DW) and ultrasound-assisted ethanol extraction (UAEE, about 43.85 ± 1.17 mg GAE/g DW). In addition, 29 compounds, e.g., gallic acid, chlorogenic acid, neochlorogenic acid, catechin, epicatechin, procyanidin B1, procyanidin B2, quercetin-3-rhamnoside, and quercetin-3-O-glucoside, were identified in the kiwifruit extract by UPLC-MS/MS. Furthermore, the contents of major phenolic compounds in different kiwifruit extracts prepared by conventional organic solvent extraction (EE), ultrasound-assisted ethanol extraction (UEE), and ultrasound-assisted deep eutectic solvent extraction (UDE) were compared by HPLC analysis. Results revealed that the content of major phenolics in UDE (about 15.067 mg/g DW) was significantly higher than that in EE (about 2.218 mg/g DW) and UEE (about 6.122 mg/g DW), suggesting that the UADE method was more efficient for extracting polyphenolics from thinned young kiwifruits. In addition, compared with EE and UEE, UDE exhibited much higher antioxidant and anti-inflammatory effects as well as inhibitory effects against α-glucosidase and pancreatic lipase, which were closely associated with its higher content of phenolic compounds. Collectively, the findings suggest that the UADE method can be applied as an efficient technique for the preparation of bioactive polyphenolics from thinned young kiwifruits, and the thinned young fruits of red-fleshed A. chinensis cv 'HY' have good potential to be developed and utilized as functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wen Deng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Jin-Lei Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| |
Collapse
|
19
|
Wawoczny A, Gillner D. The Most Potent Natural Pharmaceuticals, Cosmetics, and Food Ingredients Isolated from Plants with Deep Eutectic Solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37433265 PMCID: PMC10375538 DOI: 10.1021/acs.jafc.3c01656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
There is growing interest in reducing the number of synthetic products or additives and replacing them with natural ones. The pharmaceutical, cosmetic, and food industries are especially focused on natural and bioactive chemicals isolated from plants or microorganisms. The main challenge here is to develop efficient and ecological methods for their isolation. According to the strategies and rules of sustainable development and green chemistry, green solvents and environmentally friendly technologies must be used. The application of deep eutectic solvents as efficient and biodegradable solvents seems to be a promising alternative to traditional methods. They are classified as being green and ecological but, most importantly, very efficient extraction media compared to organic solvents. The aim of this review is to present the recent findings on green extraction, as well as the biological activities and the possible applications of natural plant ingredients, namely, phenolics, flavonoids, terpenes, saponins, and some others. This paper thoroughly reviews modern, ecological, and efficient extraction methods with the use of deep eutectic solvents (DESs). The newest findings, as well as the factors influencing the efficiency of extraction, such as water content, and hydrogen bond donor and acceptor types, as well as the extraction systems, are also discussed. New solutions to the major problem of separating DESs from the extract and for solvent recycling are also presented.
Collapse
Affiliation(s)
- Agata Wawoczny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
20
|
Li F, Xiao L, Lin X, Dai J, Hou J, Wang L. Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction of Antioxidants from Kudingcha ( llex kudingcha C.J. Tseng): Process Optimization and Comparison with Other Methods. Foods 2023; 12:1872. [PMID: 37174410 PMCID: PMC10178550 DOI: 10.3390/foods12091872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Kudingcha (KDC) is an important tea substitute containing abundant antioxidants. Herein, a ultrasonic-assisted extraction (UAE) technique based on deep eutectic solvents (DESs) was applied to optimize the total phenolic/total flavonoid content (TPC/TFC) from the KDC extracts. Results indicated that DES composed of L-proline and glycerol (Pro-Gly) had excellent extraction performance for TPC, TFC, ABTS•+ and FRAP, which were significantly better than other solvents. Response surface methodology (RSM) was used to obtain optimal extraction parameters for simultaneously maximizing the TPC, TFC and antioxidant activity. Results revealed that water content in Pro-Gly, liquid to solid ratio (L/S), ultrasonic temperature and extraction time were the major influence factors of the TPC, TFC, ABTS•+ and FRAP of the KDC extracts. The optimal conditions included water content in Pro-Gly of 46.4%, L/S of 25:1 (mL/g), ultrasonic temperature of 55 °C and extraction time of 50 min. Meanwhile, HPLC-MS/MS was adopted to identify the KDC extracts, which revealed the presence of major phytochemicals, including 5-chlorogenic acid, 4,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, kaempferol 3-rutinoside, myricetin and isorhamnetin. Moreover, UAE-Pro-Gly achieved further higher individual phenolics contents, TPC, TFC, ABTS•+ and FRAP than other methods. In conclusion, UAE-Pro-Gly is a highly efficient method for extraction of phenolic antioxidants from KDC.
Collapse
Affiliation(s)
- Fangliang Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Leyan Xiao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| | - Jincheng Dai
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiale Hou
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
21
|
Evaluating the status quo of deep eutectic solvent in food chemistry. Potentials and limitations. Food Chem 2023; 406:135079. [PMID: 36463595 DOI: 10.1016/j.foodchem.2022.135079] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Conventional organic solvents (e.g., methanol, ethanol, ethyl acetate) are widely used for extraction, reaction, and separation of valuable compounds. Although these solvents are effective, they have disadvantages, including flammability, toxicity, and persistence in the environment. Deep eutectic solvents (DESs) are valued for their biodegradability/low impact on the environment, low cost, and ease of manufacture. The objective of this review was to provide an overview of applications of DES in food chemistry, specifically in regard of extraction of polyphenols (e.g., anthocyanin, rutin, kaempferol, quercetin, resveratrol), protein, carbohydrates (e.g., chitin, pectins), lipids and lipid-soluble compounds (e.g., free fatty acids, astaxanthin, β-carotene, terpenoids), biosensor development, and use in food safety (pyrethroids, Sudan I, bisphenol A, Pb2+, Cd2+, etc.) over the past five years. A comprehensive analysis and discussion of DES types, preparation, structures, and influencing factors is provided. Furthermore, the potential and disadvantages of using DESs to extract biomolecules were assessed. We concluded that DES is a viable alternative for extracting polyphenols, carbohydrates, and lipids as well as use in food safety monitoring and biosensor development. However, more work is needed to address shortcomings, and determine whether using compounds extracted with DES can be consumed safely.
Collapse
|
22
|
Bitwell C, Indra SS, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. SCIENTIFIC AFRICAN 2023; 19:e01585. [DOI: 10.1016/j.sciaf.2023.e01585] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
23
|
Wei P, Zhang Y, Wang YY, Dong JF, Liao BN, Su ZC, Li W, Xu JC, Lou WY, Su HH, Peng C. Efficient extraction, excellent activity, and microencapsulation of flavonoids from Moringa oleifera leaves extracted by deep eutectic solvent. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:1-15. [PMID: 36785542 PMCID: PMC9907881 DOI: 10.1007/s13399-023-03877-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
A deep eutectic solvent (choline chloride (ChCl)-urea) was chosen to extract flavonoids from Moringa oleifera leaves (FMOL), the condition of extraction was tailor-made, under the optimal extraction conditions (material-to-liquid ratio of 1:60 g/mL, extraction time of 80 min, extraction temperature of 80 °C), the highest extraction efficiency reached 63.2 ± 0.3 mg R/g DW, and nine flavonoids were identified. Then, the biological activities including antioxidant activities, antibacterial activities, and anti-tumor activities were systematically studied. FMOL was superior to positive drugs in terms of antioxidant activity. As to DPPH investigation, the IC50 of FMOL and Vc were 64.1 ± 0.7 and 176.1 ± 2.0 µg/mL; for the ABTS, the IC50 of FMOL and Vc were 9.5 ± 0.3 and 38.2 ± 1.2 µg/mL, the FRAP value of FMOL and Vc were 15.5 ± 0.6 and 10.2 ± 0.4 mg TE/g, and ORAC value of FMOL and Vc were 4687.2 ± 102.8 and 3881.6 ± 98.6 µmol TE/g. The bacteriostatic (MICs were ≤ 1.25 mg/mL) activities of FMOL were much better than propyl p-hydroxybenzoate. Meanwhile, FMOL had comparable inhibitory activity with genistein on tumor cells, IC50 was 307.8 µg/mL, and could effectively induce apoptosis in HCT116. Microcapsules were prepared with xylose-modified soybean protein isolate and gelatin as wall materials; after that, the intestinal release of modified FMOL microcapsules was 86 times of free FMOL. Therefore, this study confirmed that FMOL extracted with ChCl/urea has rich bioactive components, and microencapsulated FMOL has potential application in food industry. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13399-023-03877-8.
Collapse
Affiliation(s)
- Ping Wei
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Yue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Yao-Ying Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Jin-Feng Dong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Bi-Ni Liao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Zhi-Cheng Su
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Wu Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Ju-Cai Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 Guangdong China
| | - Hui-Hui Su
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Chao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| |
Collapse
|
24
|
Feng C, Guo H, Zhao X, Tang X, Xiong Y. Extraction, separation and kinetics of phenylethanosides from Plantago asiatica L. by an innovative extraction technology-deep eutectic solvent-based ultrasound-assisted extraction. Prep Biochem Biotechnol 2023; 53:978-987. [PMID: 36719813 DOI: 10.1080/10826068.2022.2163257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this paper, the total phenylethanosides (TPS) were extracted efficiently by an innovative extraction technology--deep eutectic solvent-based ultrasound-assisted extraction (DES-UAE) from Plantago asiatica L. Ten diverse types of DESs were synthesized as alternative extraction solutions. The extraction efficiency of DES-3 (constituted by choline chloride and lactic acid) was much higher than those of other DESs. On the basis of single factor tests and Box-Behnken design (BBD), the optimum processing parameters of DES-UAE as follow: DES-3 with molar ratio of 1:3, extraction temperature 51 °C, solid/liquid 22.5 mg/ml, water content 30%, ultrasonic power 65 W, extraction time 23 min. The extraction efficiency of TPS from Plantago asiatica L. was 8.395 mg/ml, which was more superior than those of organic solvents (water, methanol, 50% methanol, ethanol, 50% ethanol). The extraction kinetics experiment results showed that water content had a significant influence upon the extraction efficiency of TPS. At the same time, AB-8 macroporous resin column was used to efficiently isolate TPS from DES extraction with a recovery rate of 88.5%.
Collapse
Affiliation(s)
- Chuanhua Feng
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huiling Guo
- The Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Xiaojuan Zhao
- The First Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Xiaolin Tang
- Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Yaokun Xiong
- The Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Isabel Landim Neves M, Socas-Rodríguez B, Valdés A, Keven Silva E, Cifuentes A, Angela A. Meireles M, Ibáñez E. Synergic effect of natural deep eutectic solvent and high-intensity ultrasound on obtaining a ready-to-use genipin extract: Crosslinking and anti-neurodegenerative properties. Food Chem X 2022; 16:100489. [PMID: 36519089 PMCID: PMC9743151 DOI: 10.1016/j.fochx.2022.100489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
In this paper, genipin, an important natural crosslinker and anti-neurodegenerative compound, was extracted from unripe Genipa americana L., combining high-intensity ultrasound (HIUS) and natural deep eutectic solvents (NADESs). The extraction process conditions were evaluated step-by-step to reach the best genipin recovery. The obtained ready-to-use genipin-NADES extract was examined regarding its crosslinking properties and anti-neurodegenerative capacity. For the condictions tested, the highest genipin recovery was obtained using 40 % water and 60 % betaine:lactic acid NADES in molar ratio 1:3 (n/n) as the solvent, a solvent:feed ratio of 19 (w/w), and HIUS acoustic power of 14 ± 1 W. The HIUS-assisted extraction using NADES as solvent showed to be a promising and efficient green extraction technique to obtain genipin. The ready-to-use genipin-NADES extract presented crosslinking capacity and anticholinergic activity. These results indicate that genipin-NADES extract can be directly applied in hydrogels for drug delivery, films, tissue engineering, and others. Moreover, it can be used in food, supplements, and medicine to enhance their neuroprotective effect.
Collapse
Affiliation(s)
- Maria Isabel Landim Neves
- Foodomics Laboratory, Department of Bioactivity and Food Analysis, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas-SP, CEP 13083-862, Brazil
| | - Bárbara Socas-Rodríguez
- Foodomics Laboratory, Department of Bioactivity and Food Analysis, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Alberto Valdés
- Foodomics Laboratory, Department of Bioactivity and Food Analysis, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Eric Keven Silva
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas-SP, CEP 13083-862, Brazil
| | - Alejandro Cifuentes
- Foodomics Laboratory, Department of Bioactivity and Food Analysis, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Maria Angela A. Meireles
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas-SP, CEP 13083-862, Brazil
| | - Elena Ibáñez
- Foodomics Laboratory, Department of Bioactivity and Food Analysis, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
26
|
Osamede Airouyuwa J, Mostafa H, Riaz A, Maqsood S. Utilization of natural deep eutectic solvents and ultrasound-assisted extraction as green extraction technique for the recovery of bioactive compounds from date palm (Phoenix dactylifera L.) seeds: An investigation into optimization of process parameters. ULTRASONICS SONOCHEMISTRY 2022; 91:106233. [PMID: 36450171 PMCID: PMC9703823 DOI: 10.1016/j.ultsonch.2022.106233] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The green extraction of bioactive compounds from date seeds was investigated using seven natural deep eutectic solvents (NADES) coupled with ultrasound-assisted extraction (UAE). The seven NADESs mainly consisted of choline chloride as hydrogen bond acceptors (HBA) and four sugars, two organic acids, and one polyalcohol as hydrogen bond donors (HBD) were utilized in this study. When the extraction efficiency of the NADESs was compared to that of the conventional solvents, all the NADESs showed superior bioactive compounds recovery efficacy. The lactic acid-based NADES had the highest extraction efficiency and was further optimized using the response surface method and Box-Behnken design. A four-factors including extraction time (10, 20, and 30 min), ultrasound amplitude (70, 80, and 90 %), % NADES content (30 %, 50 %, and 70 %) and solid-to-solvent ratio (1:30, 1.5:30, and 2:30 g/ml) each at three levels (-1, 0 and 1) using Box-Behnken design was applied. The % NADES content and the solid-to-solvent ratio were the major factors influencing the extraction efficiency of the total phenolic content (TPC) and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. The optimum extraction conditions included an extraction time of 15 min, ultrasound amplitude of 90 %, % NADES content of 70 % and solid-to-liquid ratio of 1:30 g/ml. The experimental values for TPC and DPPH at optimum extraction conditions were 145.54 ± 1.54 (mg GAE/g powder) and 719.19 ± 2.09 (mmol TE/g powder), respectively. The major phenolic compounds observed in the date seeds extracted using ChCl-LA were 3,4-dihydroxybenzoic acid, catechin and caffeic acid. This study reveals that the extraction of date seeds with NADES in combination with UAE technique was able to recover significantly higher amounts of phenolic compounds which could find useful applications in the food, pharmaceutical, and cosmetics industries.
Collapse
Affiliation(s)
- Jennifer Osamede Airouyuwa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hussein Mostafa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Asad Riaz
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Water and Energy Center, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
27
|
Strategies for the recovery of bioactive molecules from deep eutectic solvents extracts. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Hashemi B, Shiri F, Švec F, Nováková L. Green solvents and approaches recently applied for extraction of natural bioactive compounds. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Zhang H, Zhao W, Bai T, Fu L, Chen Z, Jing X, Wang X. Sustainable extraction of polyphenols from millet using switchable deep eutectic solvents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Mushtaq M, Butt FW, Akram S, Ashraf R, Ahmed D. Deep Eutectic Liquids as Tailorable Extraction Solvents: A Review of Opportunities and Challenges. Crit Rev Anal Chem 2022; 54:1634-1660. [PMID: 36148704 DOI: 10.1080/10408347.2022.2125284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Deep Eutectic Liquids (DELs) fall among the rapidly evolving discoveries of the 21st century, and these liquids are considered as alternative solvents to toxic and volatile organic liquids. Nevertheless, the emerging trend regarding the use of DELs in every field of physical and biological sciences, a lot of ambiguities and misconceptions exist about their formation, mechanism, and efficiencies observed or projected. A review of available technical data makes it obvious that these liquids have the potential to revolutionize the underdeveloped areas of analytical chemistry particularly the extraction/enrichment of analytes. To ensure the green and sustainable use of DELs, the researchers need to have a thorough understanding of DELs, their classification, chemistry, the nature and strength of molecular entanglements, and their tailorable features. Many researchers have declared these liquids recyclable but more attentive trials are needed to develop an authentic and straightforward DELs recycling methodology. The present review covers sound background knowledge and expert opinions about the technical definition of DELs, their classification, formation, recyclability, and tailorable features for their application as extraction solvent/sorbent in analytical chemistry.
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Faizan Waseem Butt
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Sumia Akram
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Dildar Ahmed
- Department of Chemistry, Forman Christian College University Lahore, Lahore, Pakistan
| |
Collapse
|
31
|
Gharat NN, Rathod VK. Extraction of ferulic acid from rice bran using
NADES
‐ultrasound‐assisted extraction: Kinetics and optimization. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Neha N. Gharat
- Department of Chemical Engineering Institute of Chemical Technology Mumbai India
| | - Virendra K. Rathod
- Department of Chemical Engineering Institute of Chemical Technology Mumbai India
| |
Collapse
|
32
|
Wei R, Hu L, Wang L, Yan P, Lin T, Wang N, Sun H, Zheng B, Guo C. High-voltage pulse-assisted extraction of flavonoids from kapok using deep eutectic solvent aqueous solutions. RSC Adv 2022; 12:25025-25034. [PMID: 36199877 PMCID: PMC9437896 DOI: 10.1039/d2ra03969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, deep eutectic solvents coupled with a pulsed electric field (PEF-DES) were first applied to the extraction of traditional Chinese medicine plants. This study uses the PEF-DES extraction technique to extract TG-KF (Kapok flavonoid solution extracted with DES-TG). PEF-DES is a simple, effective and environmentally-friendly technology and can be used in industrial-scale production. For the optimal extraction conditions of TG-KF, DES-TG was used as a solvent, the DES-TG concentration was 50%, the solid-liquid ratio was 1 : 30, the electric field intensity was 0.55 kV cm-1, the number of pulses was 100, and the yield of flavonoids was 14.36 ± 0.35%. TG-KF has very good stability and there is no precipitation or discoloration within 6 months. The results of chicken embryo experiments and human patch tests show that 10% TG-KF aqueous solution has no irritation. DPPH experiments show that TG-KF has excellent efficacy as an antioxidant. Overall, TG-KF is expected to become a potential antioxidant raw material.
Collapse
Affiliation(s)
- Ruijing Wei
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
- School of Food Science and Engineering, South China University of Technology 381 Wushan Road Guangzhou 510640 Guangdong China
| | - Lu Hu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Lihua Wang
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Peng Yan
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Tao Lin
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Ning Wang
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Huaiqing Sun
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology 381 Wushan Road Guangzhou 510640 Guangdong China
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| |
Collapse
|
33
|
Sui M, Feng S, Liu G, Chen B, Li Z, Shao P. Deep eutectic solvent on extraction of flavonoid glycosides from Dendrobium officinale and rapid identification with UPLC-Triple-TOF/MS. Food Chem 2022; 401:134054. [DOI: 10.1016/j.foodchem.2022.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
|
34
|
Phenolic compounds in common buckwheat sprouts: composition, isolation, analysis and bioactivities. Food Sci Biotechnol 2022; 31:935-956. [PMID: 35873372 PMCID: PMC9300812 DOI: 10.1007/s10068-022-01056-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds in common buckwheat sprouts (CBSs) have gained research interest because of their multiple health benefits. Phenolic acids, flavanones, flavonols, flavan-3-ols, and anthocyanins are important bioactive components of CBS that exhibit biological activities, including anti-inflammatory, antioxidant, anti-proliferative, and immunomodulatory effects. The isolation and quantitative and qualitative analyses of these phenolic compounds require effective and appropriate extraction and analytical methods. The most recent analytical method developed for determining the phenolic profile is HPLC coupled with a UV-visible detector and/or MS. This review highlights the extraction, purification, analysis, and bioactive properties of phenolic compounds from CBS described in the literature.
Collapse
|
35
|
Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube. Food Chem X 2022; 14:100287. [PMID: 35313650 PMCID: PMC8933822 DOI: 10.1016/j.fochx.2022.100287] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Five methods of extracting flavonoids from jujube were compared in different aspects. The extraction methods can significantly influence the flavonoid compositions. DES-UAE method had outstanding ability to maintain the stability of flavonoids. DES-UAE is an efficient and green method for extracting flavonoids from jujube.
The present study investigated the effects of different extraction methods including water-water bath (W-WB), ethanol-water bath (E-WB), deep eutectic solvent (DES) combined with ultrasound-assisted extraction (DES-UAE), microwave-assisted extraction (DES-MAE), and enzyme-assisted extraction (DES-EAE) on flavonoids (total flavonoid content, flavonoid composition, and stability) in jujube. The highest total flavonoid content of 8.03 mg/g was obtained by the DES-MAE extraction. Fifteen types of flavonoids were identified from jujube. The amount of rutin produced by the E-WB and DES-UAE methods was 66.88 ± 1.58 μg/g and 45.23 ± 3.22 μg/g, respectively. The retention of flavonoids in DES-UAE extracts were 98.15 ± 0.51%, 64.25 ± 2.21% after 2 h of high temperature treatment at 90 °C and 21 days of dark storage, respectively. The flavonoids extracted by different methods were suitable for dark storage under different light contrasts, where the retention of flavonoids extracted by DES-UAE method was 86.44 ± 2.45%. In conclusion, DES-UAE would be an efficient method for flavonoid extraction from jujube.
Collapse
|
36
|
Optimization, identification and bioactivity of flavonoids extracted from Moringa oleifera leaves by deep eutectic solvent. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Deep eutectic solvents-based three-phase partitioning for tomato peroxidase purification: A promising method for substituting t-butanol. Food Chem 2022; 393:133379. [DOI: 10.1016/j.foodchem.2022.133379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022]
|
38
|
Tiago FJ, Paiva A, Matias AA, Duarte ARC. Extraction of Bioactive Compounds From Cannabis sativa L. Flowers and/or Leaves Using Deep Eutectic Solvents. Front Nutr 2022; 9:892314. [PMID: 35586733 PMCID: PMC9108863 DOI: 10.3389/fnut.2022.892314] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing demand for medical cannabis urges the development of new and effective methods for the extraction of phytocannabinoids. Deep eutectic solvents (DESs) are an alternative to the use of hazardous organic solvents typically used in the industry. In this study, hydrophilic and hydrophobic DESs were developed based on terpenes, sugars, and natural organic acids as green extraction media for the extraction of cannabis bioactive compounds. The factors influencing the extraction of bioactive components, such as the type of DESs and extraction time, were investigated. Initial screening in hemp showed that the DES composed of Men: Lau (a 2:1-M ratio) had a greater extraction efficiency of cannabidiol (CBD) and cannabidiolic acid (CBDA) (11.07 ± 0.37 mg/g) of all the tested DESs and higher than ethanol. Besides having a higher or equivalent extraction yield as the organic solvents tested, DESs showed to be more selective, extracting fewer impurities, such as chlorophyll and waxes. These results, coupled with the non-toxic, biodegradable, low-cost, and environmentally friendly characteristics of DESs, provide strong evidence that DESs represent a better alternative to organic solvents.
Collapse
Affiliation(s)
- Francisco J. Tiago
- LAQV/REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Monte de Caparica, Portugal
| | - Alexandre Paiva
- LAQV/REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Monte de Caparica, Portugal
- DES Solutio, Torres Vedras, Portugal
| | | | - Ana Rita C. Duarte
- LAQV/REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Monte de Caparica, Portugal
- DES Solutio, Torres Vedras, Portugal
- *Correspondence: Ana Rita C. Duarte,
| |
Collapse
|
39
|
Estivi L, Brandolini A, Condezo-Hoyos L, Hidalgo A. Impact of low-frequency ultrasound technology on physical, chemical and technological properties of cereals and pseudocereals. ULTRASONICS SONOCHEMISTRY 2022; 86:106044. [PMID: 35605345 PMCID: PMC9126843 DOI: 10.1016/j.ultsonch.2022.106044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/26/2022] [Accepted: 05/15/2022] [Indexed: 05/24/2023]
Abstract
Cereals (CE) and pseudocereals (PSCE) play a pivotal role in nourishing the human population. Low-frequency ultrasound (LFUS) modifies the structure of CE and PSCE macromolecules such as starch and proteins, often improving their technological, functional and bioactive properties. Hence, it is employed for enhancing the traditional processes utilized for the preparation of CE- and PSCE-based foods as well as for the upcycling of their by-products. We report recent advances in LFUS treatments for hydration, germination, extraction of bioactive compounds from by-products, and fortification of CEs and PSCE, including kinetic modelling and underlying action mechanisms. Meta-analyses of LFUS influence on compounds extraction and starch gelatinization are also presented. LFUS enhances hydration rate and time lag phase of CE and PSCE, essential for germination, extraction, fermentation and cooking. The germination is improved by increasing hydration, releasing promoters and eliminating inhibitors. Furthermore, LFUS boosts the extraction of phenolic compounds, polysaccharides and other food components; modifies starch structure, affecting pasting properties; causes partial denaturation of proteins, improving their interfacial properties and their peptides availability. Overall, LFUS has an outstanding potential to improve transformation processes and functionalities of CE and PSCE.
Collapse
Affiliation(s)
- Lorenzo Estivi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, Milan 20133, Italy
| | - Andrea Brandolini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Unità di Ricerca per la Zootecnia e l'Acquacoltura (CREA-ZA), via Piacenza 29, Lodi 26900, Italy.
| | - Luis Condezo-Hoyos
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru; Instituto de Investigación de Bioquímica y Biología Molecular, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, Milan 20133, Italy
| |
Collapse
|
40
|
Lu S, Zhang Z, Liang Y, Zhong Q, Li G, Hu Z. Iridoid Glycosides from Phlomis Medicinalis Diels: Optimized Extraction and Hemostasis Evaluation. Chem Biodivers 2022; 19:e202100936. [PMID: 35502889 DOI: 10.1002/cbdv.202100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
Phlomis medicinalis Diels, an important perennial herbal plant unique to the Qinghai-Tibet Plateau, is often used as Tibetan Materia Medicine Radix Phlomii for the treatment of cold, cough, and convergence trauma. In order to efficiently extract the iridoid glycosides from P. medicinalis, an ultrasound-assisted deep eutectic solvent extraction technique was employed. The main parameters influencing the extraction process were studied through single-factor tests and the extraction was optimized by using response surface methodology. The hemostasis activity of total iridoid glycosides (TIG) from P. medicinalis was evaluated in vitro and in mice. The optimization results revealed that the optimal process parameters were liquid-solid ratio 20 : 1, choline chloride-lactic acid concentration 79 %, and sonication time 34 min, under which a TIG extraction yield of 20.73 % was obtained. Meanwhile, high-performance liquid chromatography-photodiode array/mass spectrometry (HPLC-PDA/MS) was employed to characterize the optimized extract and indicated that TIG from P. medicinalis mainly consisted of sixteen reported iridoid glycosides with a total content of 91.22 %. The experimental results in vivo and in vitro indicated that TIG from P. medicinalis had strong hemostasis activities, which may be achieved by increasing the fibrinogen levels. Therefore, the ultrasound-assisted deep eutectic solvent extraction is an effective method to extract iridoid glycosides from P. medicinalis and they will be promising candidates to be developed for medical hemostasis agents.
Collapse
Affiliation(s)
- Sitong Lu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Zhaoyu Zhang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Youling Liang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Qingkun Zhong
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Guangfa Li
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Zhang Hu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| |
Collapse
|
41
|
Zhang H, Hao F, Yao Z, Zhu J, Jing X, Wang X. Efficient extraction of flavonoids from Polygonatum sibiricum using a deep eutectic solvent as a green extraction solvent. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
42
|
Moni Bottu H, Mero A, Husanu E, Tavernier S, Pomelli CS, Dewaele A, Bernaert N, Guazzelli L, Brennan L. The ability of deep eutectic solvent systems to extract bioactive compounds from apple pomace. Food Chem 2022; 386:132717. [PMID: 35344721 DOI: 10.1016/j.foodchem.2022.132717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
The objective of this study was to examine the bioactivity of extracts from apple pomace obtained by non-conventional green extraction methods (DES systems). Bioactivity was antioxidant capacity and ability to stimulate insulin secretion from pancreatic beta-cells. The antioxidant capacity of extracts was examined using the DPPH and the FRAP assay. Impact of the extracts on cell viability and insulin secretion were examined using the BRIN-BD11 cell line. ChCl:EG(1:4) extracts resulted in high antioxidant capacity in the DPPH assay (80.1% inhibition versus 11.3%). Extracts obtained from the classical systems demonstrated an ability to promote insulin secretion significantly higher than the positive control, p < 0.05. ChCl:EG(1:4) extracts stimulated insulin secretion to a lesser extent. Overall, the data provides evidence for the potential of DES systems to extract bioactive compounds from apple pomace that have relevance for metabolic health. Further optimisation of the extraction procedures should be tailored to the desired bioactive properties.
Collapse
Affiliation(s)
- Heleena Moni Bottu
- Institute of Food and Health, School of Agriculture and Food Science, Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Elena Husanu
- Department of Pharmacy, University of Pisa, Italy
| | | | | | | | - Nathalie Bernaert
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences Unit (T&V), Product Quality and Innovation (PI), Brusselsesteenweg 370, 9090 Melle, Belgium
| | | | - Lorraine Brennan
- Institute of Food and Health, School of Agriculture and Food Science, Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
43
|
Ling JKU, Hadinoto K. Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review. Int J Mol Sci 2022; 23:3381. [PMID: 35328803 PMCID: PMC8949459 DOI: 10.3390/ijms23063381] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Greater awareness of environmental sustainability has driven many industries to transition from using synthetic organic solvents to greener solvents in their manufacturing. Deep eutectic solvents (DESs) have emerged as a highly promising category of green solvents with well-demonstrated and wide-ranging applications, including their use as a solvent in extraction of small-molecule bioactive compounds for food and pharmaceutical applications. The use of DES as an extraction solvent of biological macromolecules, on the other hand, has not been as extensively studied. Thereby, the feasibility of employing DES for biomacromolecule extraction has not been well elucidated. To bridge this gap, this review provides an overview of DES with an emphasis on its unique physicochemical properties that make it an attractive green solvent (e.g., non-toxicity, biodegradability, ease of preparation, renewable, tailorable properties). Recent advances in DES extraction of three classes of biomacromolecules-i.e., proteins, carbohydrates, and lipids-were discussed and future research needs were identified. The importance of DES's properties-particularly its viscosity, polarity, molar ratio of DES components, and water addition-on the DES extraction's performance were discussed. Not unlike the findings from DES extraction of bioactive small molecules, DES extraction of biomacromolecules was concluded to be generally superior to extraction using synthetic organic solvents.
Collapse
Affiliation(s)
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore;
| |
Collapse
|
44
|
Zhen S, Chen S, Geng S, Zhang H, Chen Y, Liu B. Ultrasound-Assisted Natural Deep Eutectic Solvent Extraction and Bioactivities of Flavonoids in Ampelopsis grossedentata Leaves. Foods 2022; 11:foods11050668. [PMID: 35267301 PMCID: PMC8909306 DOI: 10.3390/foods11050668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
We performed ultrasound-assisted extraction coupled with natural deep eutectic solvents (NADES) to achieve the green and efficient preparation of flavonoid extract from Ampelopsis grossedentata leaves. We then evaluated its antioxidant and antiproliferative activities. A NADES consisting of choline chloride and glucose at a molar ratio of 4:1 with 20% water was determined to be the most suitable solvent. The optimal extraction conditions were: a liquid-to-solid ratio of 30 mL/g, an ultrasonication power of 490 W, and an ultrasonication time of 6.5 min. The actual flavonoid yield was 83.93%, which was close to the predicted yield. Further, 86.75% of the flavonoids were recovered by adding the same volume of phosphate buffer saline (100 mM, pH of 7.0) to the extract solution. Although the chemical antioxidant activities of the flavonoid extract were slightly inferior to those of dihydromyricetin, the flavonoid extract could still effectively inhibit the proliferation of human breast MDA-MB-231 cells by inducing cell apoptosis, retarding the cell cycle, changing the mitochondrial membrane potential and scavenging intracellular reactive oxygen species (ROS). The obtained results can provide a reference in the development of plant-derived functional foods.
Collapse
Affiliation(s)
- Shiyu Zhen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (S.C.); (S.G.); (H.Z.)
| | - Si Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (S.C.); (S.G.); (H.Z.)
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (S.C.); (S.G.); (H.Z.)
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (S.C.); (S.G.); (H.Z.)
| | - Yongsheng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Correspondence: (Y.C.); (B.L.)
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (S.C.); (S.G.); (H.Z.)
- Correspondence: (Y.C.); (B.L.)
| |
Collapse
|
45
|
A Green Method of Extracting and Recovering Flavonoids from Acanthopanax senticosus Using Deep Eutectic Solvents. Molecules 2022; 27:molecules27030923. [PMID: 35164188 PMCID: PMC8838195 DOI: 10.3390/molecules27030923] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, green extraction of bioactive compounds from herbal medicines has generated widespread interest. Deep eutectic solvents (DES) have widely replaced traditional organic solvents in the extraction process. In this study, the efficiencies of eight DESs in extracting flavonoids from Acanthopanax senticosus (AS) were compared. Response surface methodology (RSM) was employed to optimize the independent variable including ultrasonic power, water content, solid-liquid ratio, extraction temperature, and extraction time. DES composed of glycerol and levulinic acid (1:1) was chosen as the most suitable extraction medium. Optimal conditions were ultrasonic power of 500 W, water content of 28%, solid-liquid ratio of 1:18 g·mL−1, extraction temperature of 55 °C, and extraction time of 73 min. The extraction yield of total flavonoids reached 23.928 ± 0.071 mg·g−1, which was 40.7% higher compared with ultrasonic-assisted ethanol extraction. Macroporous resin (D-101, HPD-600, S-8 and AB-8) was used to recover flavonoids from extracts. The AB-8 resin showed higher adsorption/desorption performance, with a recovery rate of total flavonoids of up to 71.56 ± 0.256%. In addition, DES solvent could efficiently be reused twice. In summary, ultrasonic-assisted DES combined with the macroporous resin enrichment method is exceptionally effective in recovering flavonoids from AS, and provides a promising environmentally friendly and recyclable strategy for flavonoid extraction from natural plant sources.
Collapse
|
46
|
Zheng B, Yuan Y, Xiang J, Jin W, Johnson JB, Li Z, Wang C, Luo D. Green extraction of phenolic compounds from foxtail millet bran by ultrasonic-assisted deep eutectic solvent extraction: Optimization, comparison and bioactivities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Jovanović M, Mudrić J, Drinić Z, Matejić J, Kitić D, Bigović D, Šavikin K. Optimization of ultrasound-assisted extraction of bitter compounds and polyphenols from willow gentian underground parts. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Guo H, Feng C, Hu L, Zhao X, Tang X, Huang Y, Luo J, Xu M, Xie W. Exploration of a ternary deep eutectic solvent for the efficient extraction of plantamajoside, acteoside, quercetin and kaempferol from Plantago asiatica L. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:94-104. [PMID: 34137102 DOI: 10.1002/pca.3071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION In the present study, ternary deep eutectic solvent-based ultrasound-assisted extraction was developed for the efficient extraction of plantamajoside, acteoside, quercetin and kaempferol from Plantago asiatica L. METHODOLOGY Six kinds of choline chloride-based ternary deep eutectic solvents (TDESs) were prepared as potential extraction solutions. In order to obtain optimal extraction efficiency, a series of extraction conditions were investigated by single-factor test and orthogonal test. RESULTS The extraction efficiency of choline chloride/lactic acid/ethylene glycol (ChCl-LA-EG) was much higher than that of other TDESs. ChCl-LA-EG-11 synthesised with choline chloride, lactic acid and ethylene glycol (1:4:2) was considered to have a higher extraction efficiency. The optimal ultrasound-assisted extraction conditions were as follows: water content in ChCl-LA-EG-11, 50%; extraction temperature, 70°C; ratio of solid/liquid, 20 mg/mL; ultrasonic power, 60 W; extraction time, 35 min; pH of the solution, 8. Under the optimal extraction conditions, the extraction efficiencies of plantamajoside, acteoside, quercetin and kaempferol were 3.83 ± 0.41, 4.23 ± 0.45, 0.56 ± 0.15 and 0.19 ± 0.08 mg/g, respectively. The extraction efficiency of the total target components was 9.21 ± 0.63 mg/g, which was much higher than that of conventional solvents (water, methanol, ethanol, 50% methanol, 50% ethanol). The target components were isolated efficiently from the TDES solution by an AB-8 macroporous resin column with a recovery rate of 95.6%. CONCLUSION This study demonstrated that TDESs possessed excellent physical and chemical properties and had enormous potential for active component extraction of traditional Chinese medicinal materials.
Collapse
Affiliation(s)
- Huiling Guo
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, P.R. China
| | - Chuanhua Feng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, P.R. China
| | - Lvjiang Hu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, P.R. China
| | - Xiaojuan Zhao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, P.R. China
| | - Xiaolin Tang
- Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, 330002, P.R. China
| | - Yan Huang
- Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, 330002, P.R. China
| | - Jiangnan Luo
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, P.R. China
| | - Mengtian Xu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, P.R. China
| | - Wei Xie
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, P.R. China
| |
Collapse
|
49
|
Natural green deep eutectic solvents-based eco-friendly and efficient extraction of flavonoids from Selaginella moellendorffii: Process optimization, composition identification and biological activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Saini R, Kumar S, Sharma A, Kumar V, Sharma R, Janghu S, Suthar P. Deep eutectic solvents: The new generation sustainable and safe extraction systems for bioactive compounds in agri food sector: An update. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajni Saini
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Satish Kumar
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Ajay Sharma
- Department of Chemistry Career Point University Hamirpur India
| | - Vikas Kumar
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Rakesh Sharma
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Sandeep Janghu
- Department of Food Product Development Indian Institute of Food Processing Technology Thanjavur India
| | - Priyanka Suthar
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| |
Collapse
|