1
|
Moreno-González R, Juan ME, Planas JM. Determination of pentacyclic triterpenes and polyphenols from table olives in colon and plasma and their chemopreventive effects on 1,2-dimethylhydrazine-induced preneoplastic lesions in rat colon. Food Funct 2025; 16:1588-1602. [PMID: 39918253 DOI: 10.1039/d4fo04313h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Table olives are a rich dietary source of pentacyclic triterpenes (PT) and polyphenols (P), many of which have demonstrated significant antiproliferative and proapoptotic activities. This study aimed to evaluate the effect of this food on the early stages of colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) at 20 mg kg-1. Male Sprague-Dawley rats were administered either water or a suspension of Arbequina table olives (OA; 3.85 g kg-1) by gavage at 10 mL kg-1 for 49 days. Each group was then divided into two subgroups that received subcutaneous injections of the carcinogen (DMH+/Olives- and DMH+/Olives+) or the solvent (DMH-/Olives- and DMH-/Olives+) on days 8, 15, and 22. Analysis by LC-MS of AO enabled us to calculate the administered doses of PT (12.38 mg kg-1) and P (4.02 g kg-1) as well as the colon content of these compounds. At the end of the intervention, we found 5.1% of PT and 0.2% of P of the administered dose in the colonic content of the DMH+/Olives+ group. The highest concentrations were for maslinic and oleanolic acids (321 ± 67 and 84.8 ± 14.3 nmol g-1, respectively) followed by hydroxytyrosol (3.31 ± 0.24 nmol g-1). The supplementation with AO reduced aberrant crypt foci by 54.1%, and mucin depleted foci by 35.7% compared to the control group. The daily consumption of table olives exerts chemopreventive activities by reducing preneoplastic intestinal lesions, which might be explained, at least in part, by the significant concentrations of PT and P remaining in the colon.
Collapse
Affiliation(s)
- Rocío Moreno-González
- Grup de Fisiologia i Nutrició Experimental (FINEX), Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - M Emília Juan
- Grup de Fisiologia i Nutrició Experimental (FINEX), Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - Joana M Planas
- Grup de Fisiologia i Nutrició Experimental (FINEX), Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| |
Collapse
|
2
|
Bermúdez-Oria A, Rubio-Senent F, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Antioxidant activity and inhibitory effects on angiotensin I-converting enzyme and α-glucosidase of trans-p-coumaroyl-secologanoside (comselogoside) and its inclusion complex with β-cyclodextrin. Bioaccessibility during simulated in vitro gastrointestinal digestion. Food Chem 2024; 460:140724. [PMID: 39121769 DOI: 10.1016/j.foodchem.2024.140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This study explored the impact of complexing comselogoside (COM) with β-cyclodextrin (β-CD) on antioxidant capacity and investigated its in vitro inhibitory effects against α-glucosidase and angiotensin I-converting enzyme (ACE). The COM: β-CD complex in three molar ratios (1:2, 1:1, and 2:1) showed significantly higher antioxidant activity compared to free COM, assessed by DPPH and ferric reducing power assays. COM exhibited weak to moderate α-glucosidase inhibition (IC50 1221 μM) and notable ACE inhibition (IC50 119.4 μM). Encapsulation improved ACE inhibition notably for the 1:2 and 2:1 M ratios. The cleavage of secoiridoid moiety of COM by β-glucosidase further enhanced ACE inhibition from IC50 of 63.91 to 41.75 μg/mL in the hydrolysed mixture. In vitro gastrointestinal digestion revealed 34-40% bioaccessibility of COM and its β-CD complex. This study demonstrates the potential of encapsulated COM as a functional food or supplement for preventing and treating diabetes, hypertension, and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Fátima Rubio-Senent
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
3
|
Elhrech H, Aguerd O, El Kourchi C, Gallo M, Naviglio D, Chamkhi I, Bouyahya A. Comprehensive Review of Olea europaea: A Holistic Exploration into Its Botanical Marvels, Phytochemical Riches, Therapeutic Potentials, and Safety Profile. Biomolecules 2024; 14:722. [PMID: 38927125 PMCID: PMC11201932 DOI: 10.3390/biom14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human health is now inextricably linked to lifestyle choices, which can either protect or predispose people to serious illnesses. The Mediterranean diet, characterized by the consumption of various medicinal plants and their byproducts, plays a significant role in protecting against ailments such as oxidative stress, cancer, and diabetes. To uncover the secrets of this natural treasure, this review seeks to consolidate diverse data concerning the pharmacology, toxicology, phytochemistry, and botany of Olea europaea L. (O. europaea). Its aim is to explore the potential therapeutic applications and propose avenues for future research. Through web literature searches (using Google Scholar, PubMed, Web of Science, and Scopus), all information currently available on O. europaea was acquired. Worldwide, ethnomedical usage of O. europaea has been reported, indicating its effectiveness in treating a range of illnesses. Phytochemical studies have identified a range of compounds, including flavanones, iridoids, secoiridoids, flavonoids, triterpenes, biophenols, benzoic acid derivatives, among others. These components exhibit diverse pharmacological activities both in vitro and in vivo, such as antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties. O. europaea serves as a valuable source of conventional medicine for treating various conditions. The findings from pharmacological and phytochemical investigations presented in this review enhance our understanding of its therapeutic potential and support its potential future use in modern medicine.
Collapse
Affiliation(s)
- Hamza Elhrech
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy;
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony, Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| |
Collapse
|
4
|
Bermúdez-Oria A, Castejón ML, Rubio-Senent F, Fernández-Prior Á, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Isolation and structural determination of cis- and trans-p-coumaroyl-secologanoside (comselogoside) from olive oil waste (alperujo). Photoisomerization with ultraviolet irradiation and antioxidant activities. Food Chem 2024; 432:137233. [PMID: 37651786 DOI: 10.1016/j.foodchem.2023.137233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
p-Coumaroyl-6́-secologanoside (comselogoside) is a secoiridoid identified in large amounts in olive fruits, although no studies in vitro or in vivo of comselogoside have been reported. This work focuses on the recovery and purification of this compound from olive mill waste (alperujo). The successive isolation on Amberlite XAD-16 and Sephadex LH-20 resins, allowed a comselogoside extract with 80-85% of purity. A photoisomerization of the vinyl-double bond in the p-coumaroyl moiety occurred when the extract was exposed to ultraviolet radiation and a mixture of the trans and cis-isomers was obtained. Both isomers were characterized using NMR, mass spectroscopy, and UV spectrometry. The J (coupling constant) of the protons on the C7 and C8 on the unsaturated chain were found to be the difference between cis (12.8 Hz) and trans- (15.9 Hz) comselogoside. Cis-isomer exhibited lower radical-scavenging activity than trans, although a synergistic effect occurred when the cis-isomer was supplement by the trans-isomer.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - María Luisa Castejón
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Fátima Rubio-Senent
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - África Fernández-Prior
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
5
|
Ali S, Ekbbal R, Salar S, Yasheshwar, Ali SA, Jaiswal AK, Singh M, Yadav DK, Kumar S, Gaurav. Quality Standards and Pharmacological Interventions of Natural Oils: Current Scenario and Future Perspectives. ACS OMEGA 2023; 8:39945-39963. [PMID: 37953833 PMCID: PMC10635672 DOI: 10.1021/acsomega.3c05241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Medicinal plants are rich sources of natural oils such as essential and fixed oils used traditionally for nutritive as well as medicinal purposes. Most of the traditional formulations or phytopharmaceutical formulations contain oil as the main ingredient due to their own therapeutic applications and thus mitigating several pathogeneses such as fungal/bacterial/viral infection, gout, psoriasis, analgesic, antioxidant, skin infection, etc. Due to the lack of quality standards and progressive adulteration in the natural oils, their therapeutic efficacy is continuously deteriorated. To develop quality standards and validate scientific aspects on essential oils, several chromatographic and spectroscopic techniques such as HPTLC, HPLC, NMR, LC-MS, and GC-MS have been termed as the choices of techniques for better exploration of metabolites, hence sustaining the authenticity of the essential oils. In this review, chemical profiling and quality control aspects of essential or fixed oils have been explored from previously reported literature in reputed journals. Methods of chemical profiling, possible identified metabolites in essential oils, and their therapeutic applications have been described. The outcome of the review reveals that GC-MS/MS, LC-MS/MS, and NMR-based chromatographic and spectroscopic techniques are the most liable, economic, precise, and accurate techniques for determining the spuriousness or adulteration of oils based on their qualitative and quantitative chemical profiling studies. This review occupies the extensive information about the quality standards of several oils obtained from natural sources for their regulatory aspects via providing the detailed methods used in chemoprofiling techniques. Hence, this review helps researchers in further therapeutic exploration as well as quality-based standardization for their regulatory purpose.
Collapse
Affiliation(s)
- Shadab Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Rustam Ekbbal
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Sapna Salar
- BBDIT
College of Pharmacy, Ghaziabad, Uttar Pradesh 201206, India
| | - Yasheshwar
- Department
of Botany, Acharya Narendra Dev College
(University of Delhi), Govindpuri,
Kalkaji, New Delhi 110019, India
| | - Sayad Ahad Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Aakash Kumar Jaiswal
- School
of Pharmaceutical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Mhaveer Singh
- Pharmacy
Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Dinesh Kumar Yadav
- Department
of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| | - Santosh Kumar
- Department
of Botany, Maharaja Bijli Paasi Government
Post Graduate College, Sector M, Ashiyana, Lucknow, Uttar Pradesh 226012, India
| | - Gaurav
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| |
Collapse
|
6
|
Dantas AM, Fernandes FG, Magnani M, da Silva Campelo Borges G. Gastrointestinal digestion assays for evaluating the bioaccessibility of phenolic compounds in fruits and their derivates: an overview. Food Res Int 2023; 170:112920. [PMID: 37316040 DOI: 10.1016/j.foodres.2023.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
Fruits and their derivatives are sources of phenolic compounds, which contribute to the maintenance of health benefits. In order to exert such properties, these compounds must be exposed to gastrointestinal conditions during digestion. In vitro methods of gastrointestinal digestion have been developed to simulate and evaluate the changes that compounds undergo after being exposed to various conditions. We present, in this review, the major in vitro methods for evaluating the effects of gastrointestinal digestion of phenolic compounds in fruits and their derivatives. We discuss the concept of bioaccessibility, bioactivity, and bioavailability, as well as the conceptual differences and calculations among studies. Finally, the main changes caused by in vitro gastrointestinal digestion in phenolic compounds are also discussed. The significant variation of parameters and concepts observed hinders a better evaluation of the real effects on the antioxidant activity of phenolic compounds, thus, the use of standardized methods in research would contribute for a better understanding of these changes.
Collapse
Affiliation(s)
- Aline Macedo Dantas
- Department of Food Technology, Federal University of Paraiba, João Pessoa, PB, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Graciele da Silva Campelo Borges
- Department of Food Technology, Federal University of Paraiba, João Pessoa, PB, Brazil; Center of Chemistry, Pharmaceutical and Foods Sciences, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Tang F, Cao Q, Wei B, Teng J, Huang L, Xia N. Screening strategy for predominant phenolic components of digestive enzyme inhibitors in passion fruit peel extracts on simulated gastrointestinal digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3871-3881. [PMID: 36317249 DOI: 10.1002/jsfa.12302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND The targeted biological activity of a natural product is often the result of the combined action of multiple functional components. Screening for predominant contributing components of targeting activity is crucial for quality evaluation. RESULTS Thirteen and nine phenolic compounds inhibiting α-glucosidase and α-amylase, respectively, were identified in the ethanol extracts of passion fruit peel through liquid chromatography-tandem mass spectrometry and multivariate analysis. Considering the different concentrations of components and their interactions, the role of the semi-inhibitory concentration (IC50 ) in the dose-effect relationship is limited. We proposed the active contribution rate (ACR), which is the ratio of a single component concentration to its IC50 in the whole, to assess the relative activity of each compound. Luteolin, quercetin, and vitexin exhibited a minimum IC50 . Before the simulation of gastrointestinal digestion, quercetin, salicylic acid, and luteolin were identified as the dominant contributors to α-glucosidase inhibition according to ACR, while salicylic acid, 2,3-dihydroxybenzoic acid, and quercetin were identified as dominant contributors to α-amylase inhibition. After simulated digestion, the contents of all polyphenolic compounds decreased by various degrees. Salicylic acid, gentisic acid, and vitexin became the dominant inhibitors of α-glucosidase based on ACR (cumulative 57.96%), while salicylic acid and 2,3-dihydroxybenzoic acid became the dominant inhibitors of α-amylase (cumulative 84.50%). CONCLUSION Therefore, the ACR evaluation strategy can provide a quantitative reference for screening the predominant contributor components of a specific activity in complex systems. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fuhao Tang
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Qiqi Cao
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Baoyao Wei
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jianwen Teng
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Li Huang
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ning Xia
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Saeed A, Yasmin A, Baig M, Khan K, Heyat MBB, Akhtar F, Batool Z, Kazmi A, Wahab A, Shahid M, Ahmed MA, Abbas S, Muaad AY, Shahzad A, Ahmad I. Isolation and Characterization of Lactobacillus crispatus, Lactococcus lactis, and Carnobacterium divergens as Potential Probiotic Bacteria from Fermented Black and Green Olives ( Olea europaea): An Exploratory Study. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8726320. [PMID: 37152587 PMCID: PMC10156456 DOI: 10.1155/2023/8726320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/02/2023] [Accepted: 02/16/2023] [Indexed: 05/09/2023]
Abstract
Background Table olives are becoming well recognized as a source of probiotic bacteria that might be used to create a health-promoting fermented food product by traditional procedures based on the activities of indigenous microbial consortia present in local environments. Methodology. In the present study, the characterization of probiotic bacteria isolated from mince, chunks, and brine of fermented green and black olives (Olea europaea) was done based on morphological, biochemical, and physiological characteristics. Results Bacterial isolates demonstrated excellent survival abilities at 25, 37, and 45°C and at a variable range of pH. However, the optimum temperature is 37 and the optimum pH is 7 for all three isolates. An antimicrobial susceptibility pattern was found among these isolates through the disc diffusion method. Most of the isolates were susceptible to streptomycin, imipenem, and chloramphenicol, whereas, amoxicillin showed resistance to these isolates, and variable results were recorded for the rest of the antibiotics tested. The growth of the isolates was optimum with the supplementation of 3% NaCl and 0.3% bile salt. The isolated bacteria were able to ferment skimmed milk into yogurt, hence making it capable of producing organic acid. Conclusion Isolates of Lactobacillus crispatus MB417, Lactococcus lactis MB418 from black olives, and Carnobacterium divergens MB421 from green olives were characterized as potential candidates for use as starter cultures to induce fermentation of other probiotic food products.
Collapse
Affiliation(s)
- Ayesha Saeed
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University Rawalpindi, Pakistan
| | - Azra Yasmin
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University Rawalpindi, Pakistan
| | - Mehreen Baig
- Surgical Unit II, Foundation University, Islamabad, Pakistan
| | - Khalid Khan
- Foot and Mouth Disease Vaccine Research Centre, Veterinary Research Institute (VRI), Peshawar, Pakistan
| | - Md Belal Bin Heyat
- IOT Research Centre, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Centre for VLSI and Embedded System Technologies, International Institute of Information Technology, Hyderabad, Telangana 500032, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Zahra Batool
- Institute of Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Abeer Kazmi
- Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (UCAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abdul Wahab
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Muhammad Shahid
- Brucellosis Section, Veterinary Research Institute (VRI), Peshawar, Pakistan
| | | | - Sidra Abbas
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University Rawalpindi, Pakistan
| | | | - Amir Shahzad
- Nishtar Medical University, Multan, Punjab, Pakistan
| | - Imtiaz Ahmad
- Medical Officer, Regional Health Centre (RHC), Qadirabad, Tehsil Kot Chutta, District Dera Ghazi Khan, Punjab, Pakistan
| |
Collapse
|
9
|
Difonzo G, Crescenzi MA, Piacente S, Altamura G, Caponio F, Montoro P. Metabolomics Approach to Characterize Green Olive Leaf Extracts Classified Based on Variety and Season. PLANTS (BASEL, SWITZERLAND) 2022; 11:3321. [PMID: 36501360 PMCID: PMC9735528 DOI: 10.3390/plants11233321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The huge interest in the health-related properties of plant polyphenols to be applied in food and health-related sectors has brought about the development of sensitive analytical methods for metabolomic characterization. Olive leaves constitute a valuable waste rich in polyphenols with functional properties. A (HR)LC-ESI-ORBITRAP-MS analysis with a multivariate statistical analysis approach using PCA and/or PLS-DA projection methods were applied to identify polyphenols in olive leaf extracts of five varieties from the Apulia region (Italy) in two different seasonal times. A total of 26 metabolites were identified, further finding that although metabolites are common among the different cultivars, they differ in the relative intensity of each peak and within each cultivar in the two seasonal periods taken into consideration. The results of the total phenol contents showed the highest content in November for Bambina and Cima di Mola varieties (1816 and 1788 mg/100 g, respectively), followed by Coratina, Leccino, and Cima di Melfi; a similar trend was found for the antioxidant activity and RapidOxy evaluations by reaching in Bambina values of 45 mmol TE/100 g and 85 min of induction time.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Maria Assunta Crescenzi
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
- PhD Program in Drug Discovery & Development, Pharmacy Department, University of the Study of Salerno, I-84135 Salerno, Italy
| | - Sonia Piacente
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
| | - Giuseppe Altamura
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, Locorotondo, I-70010 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Paola Montoro
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
| |
Collapse
|
10
|
Oxidative Stress and Antioxidants-A Critical Review on In Vitro Antioxidant Assays. Antioxidants (Basel) 2022; 11:antiox11122388. [PMID: 36552596 PMCID: PMC9774584 DOI: 10.3390/antiox11122388] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/05/2022] Open
Abstract
Antioxidants have been widely studied in the fields of biology, medicine, food, and nutrition sciences. There has been extensive work on developing assays for foods and biological systems. The scientific communities have well-accepted the effectiveness of endogenous antioxidants generated in the body. However, the health efficacy and the possible action of exogenous dietary antioxidants are still questionable. This may be attributed to several factors, including a lack of basic understanding of the interaction of exogenous antioxidants in the body, the lack of agreement of the different antioxidant assays, and the lack of specificity of the assays, which leads to an inability to relate specific dietary antioxidants to health outcomes. Hence, there is significant doubt regarding the relationship between dietary antioxidants to human health. In this review, we documented the variations in the current methodologies, their mechanisms, and the highly varying values for six common food substrates (fruits, vegetables, processed foods, grains, legumes, milk, and dairy-related products). Finally, we discuss the strengths and weaknesses of the antioxidant assays and examine the challenges in correlating the antioxidant activity of foods to human health.
Collapse
|
11
|
Oliveira M, Lima CS, Llorent-Martínez EJ, Hoste H, Custódio L. Impact of Seasonal and Organ-Related Fluctuations on the Anthelmintic Properties and Chemical Profile of Cladium mariscus (L.) Pohl Extracts. FRONTIERS IN PLANT SCIENCE 2022; 13:934644. [PMID: 35812938 PMCID: PMC9260656 DOI: 10.3389/fpls.2022.934644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The use of plants and their metabolites stands as a promising option to tackle parasitic infections by gastrointestinal nematodes (GIN) in integrated control strategies. Still, the influence of environmental and phenological factors, and their interactions, in the wild on the metabolomics and biological properties of target plant species, is often disregarded. In this work, we hypothesized that variations in the anthelmintic (AH) properties and chemical composition of extracts from the salt tolerant species Cladium mariscus L. Pohl (sawgrass) may be influenced by seasonal factors and organ-parts. To test this hypothesis, acetone/water extracts were prepared from dried biomass obtained from aerial organs collected from sawgrass in consecutive seasons and tested against Haemonchus contortus and Trichostrongylus colubriformis by the larval exsheathment inhibition assay (LEIA) and egg hatching inhibition assay (EHIA). To ascertain the role of plant organ, the activity of leaves and inflorescences extracts from summer samples was compared. The role of polyphenols in the anthelmintic activity depending on GINs and fluctuations across seasons and plant organs was assessed using polyvinylpolypyrrolidone (PVPP), coupled with an in-depth chemical profiling analysis using high-performance liquid chromatography completed with electrospray ionization mass spectrometric detection (HPLC-ESI-MSn). Main differences in anthelmintic activities were observed for summer and autumn samples, for both assays. Moreover, inflorescences' extracts were significantly more active than those from leaves against both parasite species on EHIA and against H. contortus on LEIA. Application of PVPP totally inhibit the AH effects based on EHIA and only partly for LEIA. Non-treated PVPP extracts were predominantly composed of flavan-3-ols, proanthocyanidins, luteolin and glycosylated flavonoids, while two flavonoid glycosides were quantified in all PVPP-treated samples. Thus, the activity of such compounds should be further explored, although some unknown metabolites remain to be identified. This study reinforces the hypothesis of the AH potential of sawgrass and of its polyphenolic metabolites uses as nutraceutical and/or phytotherapeutic drugs.
Collapse
Affiliation(s)
- Marta Oliveira
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Caroline Sprengel Lima
- Laboratory of Antibiotics and Chemotherapeutics, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), São Paulo State University, São José do Rio Preto, Brazil
| | - Eulogio J. Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Hervé Hoste
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Université de Toulouse, ENVT, Toulouse, France
| | - Luísa Custódio
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
12
|
Beteinakis S, Papachristodoulou A, Mikros E, Halabalaki M. From sample preparation to NMR-based metabolic profiling in food commodities: The case of table olives. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:83-93. [PMID: 34096121 DOI: 10.1002/pca.3070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Nuclear magnetic resonance (NMR)-based metabolic profiling has been widely used in food and plant sciences. Despite its simplicity and inherent reproducibility, the determination of the appropriate pre-processing procedures greatly affects the obtained metabolic profile. OBJECTIVES The current study represents a detailed guide of use for untargeted NMR-based metabolic profiling of table olives (Olea europaea L.). METHODS Greek Kalamon table olives from different geographical origins were selected as reference materials. Differently treated samples were extracted using different solvents and/or solvent systems. Chemical profiles were evaluated with high-performance thin layer chromatography (HPTLC). Different deuterated solvents and sample concentrations were evaluated for the recording of optimal quality spectra. RESULTS The methanol extract of freeze-dried table olives was found to contain the most representative secondary metabolites, in higher concentrations, as well. The optimal deuterated solvent for the NMR analysis was methanol-d4 , while final sample concentration should be within the range of 10 to 15 mg/mL. Multivariate data analysis was also used to estimate and confirm the variation and clustering caused by different characteristics of the samples. CONCLUSIONS Results of the present study make evident the necessity for thorough planning and method development prior to any extensive metabolomic study based on NMR spectroscopy. Pre-processing and sample preparation stages seemed to greatly affect the metabolic profile and spectral quality in the case of table olives, which by extrapolation could apply to other food commodities. Nevertheless, the nature of the samples must be fully described in general, in order to proceed to solid conclusions.
Collapse
Affiliation(s)
- Stavros Beteinakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Papachristodoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Reboredo-Rodríguez P, González-Barreiro C, Martínez-Carballo E, Cambeiro-Pérez N, Rial-Otero R, Figueiredo-González M, Cancho-Grande B. Applicability of an In-Vitro Digestion Model to Assess the Bioaccessibility of Phenolic Compounds from Olive-Related Products. Molecules 2021; 26:6667. [PMID: 34771074 PMCID: PMC8588322 DOI: 10.3390/molecules26216667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
The Mediterranean diet includes virgin olive oil (VOO) as the main fat and olives as snacks. In addition to providing nutritional and organoleptic properties, VOO and the fruits (olives) contain an extensive number of bioactive compounds, mainly phenolic compounds, which are considered to be powerful antioxidants. Furthermore, olive byproducts, such as olive leaves, olive pomace, and olive mill wastewater, considered also as rich sources of phenolic compounds, are now valorized due to being mainly applied in the pharmaceutical and nutraceutical industries. The digestive system must physically and chemically break down these ingested olive-related products to release their phenolic compounds, which will be further metabolized to be used by the human organism. The first purpose of this review is to provide an overview of the current status of in-vitro static digestion models for olive-related products. In this sense, the in-vitro gastrointestinal digestion methods are widely used with the following aims: (i) to study how phenolic compounds are released from their matrices and to identify structural changes of phenolic compounds after the digestion of olive fruits and oils and (ii) to support the functional value of olive leaves and byproducts generated in the olive industry by assessing their health properties before and after the gastrointestinal process. The second purpose of this review is to survey and discuss all the results available to date.
Collapse
Affiliation(s)
| | | | | | | | | | - María Figueiredo-González
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, 32004-Ourense, Spain; (P.R.-R.); (C.G.-B.); (E.M.-C.); (N.C.-P.); (R.R.-O.); (B.C.-G.)
| | | |
Collapse
|
14
|
Ntlhamu MI, Ndhlala AR, Masoko P. Exploring the anti-HIV-1 reverse transcriptase, anti-inflammatory, anti-cancer activities and cytotoxicity of two fermented commercial herbal concoctions sold in Limpopo Province of South Africa. BMC Complement Med Ther 2021; 21:151. [PMID: 34039320 PMCID: PMC8157459 DOI: 10.1186/s12906-021-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The use of herbal concoctions is very popular in South Africa, including Limpopo Province. The herbal concoctions are claimed to be capable of treating numerous illnesses such as ulcers, cancer, HIV/AIDS, diabetes, certain STDs, blood cleansing to mention but a few. The focus of this study was to evaluate the anti-HIV 1 reverse transcriptase, anti-inflammatory and anti-cancerous activities as well as cytotoxic effects of 2 fermented herbal concoctions used for the treatment of the related ailments in Limpopo province of South Africa. METHOD Two fermented herbal concoctions obtained from a herbalist in Polokwane were extracted with 80% acetone. The anti-HIV activity of the herbal concoctions was determined using the anti-HIV reverse transcriptase assay. The anti-cancer and cytotoxic effects of the herbal concoctions were evaluated using cancerous Human Colon (HT-29) cells and the normal human Hepatoma cells (C3A) respectively. RESULTS Notable anti-HIV reverse transcriptase activity was observed from the 80% acetone fraction of herbal concoction 1 (IC50 38.031 μg/mL) which exhibited better activity than the positive control Lamivudine (IC50 40.90 μg/mL). There was variation in the anti-inflammation activity as determined by the sPL2, 15-LOX and COX enzyme assays. The only concerning matter was the high COX-1 activity in some of the extracts, which is not desirable due to the mucosal protection action of COX-1 enzyme. The herbal concoctions did not exhibit cytotoxic effects on normal human cells, however, toxicity against cancerous cells was observed. CONCLUSION The herbal concoctions displayed some considerable pharmacological effects against various ailments as claimed by the herbalist. More work to ascertain the toxicity of both concoctions against cancerous cells need to be followed as this could lead to the discovery of anticancer drugs.
Collapse
Affiliation(s)
- Matimba I Ntlhamu
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga, Limpopo, 0727, South Africa
| | - Ashwell R Ndhlala
- Green Biotechnologies Research Centre of Excellence, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga, Limpopo, 0727, South Africa.
| | - Peter Masoko
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga, Limpopo, 0727, South Africa.
| |
Collapse
|
15
|
Fernández-Poyatos MDP, Llorent-Martínez EJ, Ruiz-Medina A. Effect of Ripening on the Phenolic Composition and Mineral Content of Three Varieties of Olive Fruits. Foods 2021; 10:foods10020380. [PMID: 33572465 PMCID: PMC7919262 DOI: 10.3390/foods10020380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 01/22/2023] Open
Abstract
The phenolic composition and mineral content of Cornezuelo, Cornicabra and Picual olive fruit varieties were investigated during olive ripening in two different harvesting seasons (2017/2018 and 2018/2019). Phytochemical profiles were evaluated by high-performance liquid chromatography (HPLC) with diode-array and mass spectrometry detection. Mineral contents were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Twenty-five compounds were characterized and the main ones quantified. These compounds corresponded mostly to secoiridoids, the main ones being oleuropein, oleoside/secologanoside, oleoside-11-methylester, and oleuropein and comselogoside isomers. Total phenolic contents reached the highest values between December and January, coinciding with the usual harvesting date. This trend was observed in both harvesting seasons, although higher phenolic contents were recorded in season 2018/2019. This was due to the different weather conditions, which caused a lower olive production in season 2017/2018. No clear tendency was observed between mineral content and harvest time in any of the studied seasons. The highest concentration of total phenolics was obtained in Cornezuelo variety (840 mg/100 g) in January 2019 (season 2018/2019). Picual and Cornicabra varieties reached concentrations of 670 mg/100 g and 530 mg/100 g, respectively, also in the last harvesting dates of season 2018/2019.
Collapse
|
16
|
Thangavel N, Al Bratty M, Al Hazmi HA, Najmi A, Ali Alaqi RO. Molecular Docking and Molecular Dynamics Aided Virtual Search of OliveNet™ Directory for Secoiridoids to Combat SARS-CoV-2 Infection and Associated Hyperinflammatory Responses. Front Mol Biosci 2021; 7:627767. [PMID: 33490110 PMCID: PMC7817976 DOI: 10.3389/fmolb.2020.627767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Molecular docking and molecular dynamics aided virtual search of OliveNet™ directory identified potential secoiridoids that combat SARS-CoV-2 entry, replication, and associated hyperinflammatory responses. OliveNet™ is an active directory of phytochemicals obtained from different parts of the olive tree, Olea europaea (Oleaceae). Olive oil, olive fruits containing phenolics, known for their health benefits, are indispensable in the Mediterranean and Arabian diets. Secoiridoids is the largest group of olive phenols and is exclusive to the olive fruits. Functional food like olive fruits could help prevent and alleviate viral disease at an affordable cost. A systematized virtual search of 932 conformers of 78 secoiridoids utilizing Autodock Vina, followed by precision docking using Idock and Smina indicated that Nüzhenide oleoside (NZO), Oleuropein dimer (OED), and Dihydro oleuropein (DHO) blocked the SARS-CoV-2 spike (S) protein-ACE-2 interface; Demethyloleuropein (DMO), Neo-nüzhenide (NNZ), and Nüzhenide (NZE) blocked the SARS-CoV-2 main protease (Mpro). Molecular dynamics (MD) simulation of the NZO-S-protein-ACE-2 complex by Desmond revealed stability during 50 ns. RMSD of the NZO-S-protein-ACE-2 complex converged at 2.1 Å after 20 ns. During MD, the interaction fractions confirmed multiple interactions of NZO with Lys417, a crucial residue for inhibition of S protein. MD of DMO-Mpro complex proved its stability as the RMSD converged at 1.6 Å. Analysis of interactions during MD confirmed the interaction of Cys145 of Mpro with DMO and, thus, its inhibition. The docking predicted IC50 of NZO and DMO was 11.58 and 6.44 μM, respectively. Molecular docking and dynamics of inhibition of the S protein and Mpro by NZO and DMO correlated well. Docking of the six-hit secoiridoids to IL1R, IL6R, and TNFR1, the receptors of inflammatory cytokines IL1β, IL6, and TNFα, revealed the anti-inflammatory potential except for DHO. Due to intricate structures, the secoiridoids violated Lipinski's rule of five. However, the drug scores of secoiridoids supported their use as drugs. The ADMET predictions implied that the secoiridoids are non-toxic and pose low oral absorption. Secoiridoids need further optimization and are a suitable lead for the discovery of anti-SARS-CoV-2 therapeutics. For the moment, olive secoiridoids presents an accessible mode of prevention and therapy of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Neelaveni Thangavel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | | | | | | |
Collapse
|
17
|
Pina LTS, Guimarães AG, Santos WBDR, Oliveira MA, Rabelo TK, Serafini MR. Monoterpenes as a perspective for the treatment of seizures: A Systematic Review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153422. [PMID: 33310306 DOI: 10.1016/j.phymed.2020.153422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epilepsy affects more than 65 million people worldwide. Treatment for epileptic seizures is ineffective and has many adverse effects. For this reason, the search for new therapeutic options capable of filling these limitations is necessary. HYPOTHESIS/PURPOSE In this sense, natural products, such as monoterpenes, have been indicated as a new option to control neurological disorders such as epilepsy. STUDY DESIGN Therefore, the objective of this study was to review the monoterpenes that have anticonvulsive activity in animal models. METHODS The searches were performed in the PubMed, Web of Science and Scopus databases in September, 2020 and compiled studies using monoterpenes as an alternative to seizure. Two independent reviewers performed the study selection, data extraction and methodological quality assessment using the Syrcle tool. RESULTS 51 articles that described the anticonvulsant activity of 35 monoterpenes were selected with action on the main pharmacological target, including GABAA receptors, glutamate, calcium channels, sodium and potassium. In addition, these compounds are capable of reducing neuronal inflammation and oxidative stress caused by seizure. CONCLUSION These compounds stand out as a promising alternative for acting through different pharmacological mechanisms, which may not only reduce seizure, but also promote neuroprotective effect by reducing toxicity in brain regions. However, further studies are needed to determine the mechanism of action and safety assessment of these compounds.
Collapse
Affiliation(s)
- Lícia T S Pina
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil.
| | - Adriana G Guimarães
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Wagner B da R Santos
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Thallita K Rabelo
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mairim R Serafini
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
18
|
Phytochemical profile and mineral content of Royal variety olive fruits. Influence of the ripening stage. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Song C, Jeong D, Hong YH, Li WY, Lee SW, Hossain MA, Taamalli A, Kim JH, Kim JH, Cho JY. Anti-Inflammatory and Photoaging-Protective Effects of Olea europaea through Inhibition of AP-1 and NF-
κ
B Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1895-1913. [PMID: 33308098 DOI: 10.1142/s0192415x20500950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Olea europaea is a beneficial edible plant with a number of biological activities like anti-inflammatory, anti-oxidant, antithrombic, antihyperglycemic, and anti-ischemic activities. The mechanisms behind the antiphotoaging and anti-inflammatory effects of Olea europaea are not fully understood. To investigate how an ethanol extract of Olea europaea (Oe-EE) exerts these effects, we explored its activities in human keratinocytes and dermal fibroblasts. We assessed the anti-oxidant effects of Oe-EE via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′ -azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays and measured the expression levels of matrix metalloproteinases (MMPs), cyclooxygenase-2, interleukin (IL)-6, tumor necrosis factor (TNF)-α , and moisturizing factors. Antiphotoaging and anti-inflammatory mechanisms of Oe-EE were explored by assessing signaling molecule activation via immunoblotting. Oe-EE treatment decreased the mRNA expression level of MMPs, cyclooxygenase-2, IL-6, and TNF-α and restored type I collagen, filaggrin, and sirtuin 1 expression in UVB-irradiated cells. Furthermore, Oe-EE inhibited the activities of several activator protein 1 regulatory enzymes, including extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), and inhibited nuclear factor (NF)-κ B pathway signaling proteins. Therefore, our results indicate that Oe-EE has photoaging-protective and anti-inflammatory effects.
Collapse
Affiliation(s)
- Chaoran Song
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Deok Jeong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wan Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Yunnan 650205, P. R. China
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141 Republic of Korea
| | - Mohammad Amjad Hossain
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Amani Taamalli
- Laboratory of Olive Biotechnology, Center of Biotechnology-Technopole of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
- Department of Chemistry, University of Hafr Al Batin, Hafr Al Batin 31991, Kingdom of Saudi Arabia
| | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong-Hoon Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141 Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
20
|
Ribeiro TB, Oliveira A, Campos D, Nunes J, Vicente AA, Pintado M. Simulated digestion of an olive pomace water-soluble ingredient: relationship between the bioaccessibility of compounds and their potential health benefits. Food Funct 2020; 11:2238-2254. [PMID: 32101211 DOI: 10.1039/c9fo03000j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olive pomace is a semisolid by-product with great potential as a source of bioactive compounds. Using its soluble fraction, a liquid-enriched powder (LOPP) was obtained, exhibiting a rich composition in sugars, polyphenols and minerals, with potential antioxidant, antihypertensive and antidiabetic health benefits. To validate the potential of LOPP as a functional ingredient the effect of the gastrointestinal tract on its bioactive composition and bioactivities was examined. Polyphenols and minerals were the most affected compounds; however, a significant bioaccessibility of potassium and hydroxytyrosol was verified (≥57%). As a consequence, the LOPP bioactivities were only moderately affected (losses around 50%). For example, 57.82 ± 1.27% of the recovered antioxidant activity by ORAC was serum-available. From an initial α-glucosidase inhibition activity of 87.11 ± 1.04%, at least 50% of the initial potential was retained (43.82 ± 1.14%). Regarding the initial ACE inhibitory activity (91.98 ± 3.24%), after gastrointestinal tract losses, significant antihypertensive activity was retained in the serum-available fraction (43.4 ± 3.65%). The colon-available fraction also exhibited an abundant composition in phenolics and minerals. LOPP showed to be a potential functional ingredient not only with potential benefits in preventing cardiovascular diseases but also in gut health.
Collapse
Affiliation(s)
- Tânia B Ribeiro
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal. and Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 2, Lagares, 3045-155 Oliveira do Hospital, Portugal
| | - Ana Oliveira
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Débora Campos
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - João Nunes
- Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 2, Lagares, 3045-155 Oliveira do Hospital, Portugal
| | - António A Vicente
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
21
|
Woldetsadik D, Llorent-Martínez EJ, Ortega-Barrales P, Haile A, Hailu H, Madani N, Warner NS, Fleming DEB. Contents of Metal(loid)s in a Traditional Ethiopian Flat Bread (Injera), Dietary Intake, and Health Risk Assessment in Addis Ababa, Ethiopia. Biol Trace Elem Res 2020; 198:732-743. [PMID: 32281073 DOI: 10.1007/s12011-020-02099-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 11/29/2022]
Abstract
The traditional Ethiopian flat bread, injera, is a regular component of daily diets in Ethiopia and Eritrea. This bread is also popular among urban refugees particularly Eritreans in Addis Ababa. The levels of metal(loid)s in 40 composite (120 sub-samples) injera samples, representing 4 types of market establishments in Addis Ababa, were determined using inductively coupled plasma-mass spectrometry (ICP-MS) and portable X-ray fluorescence (PXRF). For ICP-MS analysis, the accuracy of the method was evaluated by the analysis of a certified reference material and recovery experiments. It was found that the correlations between the mean levels of Al and Fe and between Al and Mn in injera were highly significant (p < 0.001). It was also found that 1.5 fresh injeras would cover 48-75% of recommended dietary allowance (RDA) for Mg, 17-21% of RDA for K, 19-23% of RDA for Ca, and 60-72% of RDA for P for an adult group aged between 19 and 50. Daily intakes of Al, Fe, and Mn were found to be above the provisional tolerable daily intake (PTDI)/maximum tolerable daily intake (MTDI) values. The mean target hazard quotient (THQ) values for Fe and Mn were greater than 1. The total THQ values varied from 6.52 to 8.53 among market establishments. Estimating carcinogenic risk due to exposure to As, Cr, and Pb indicated that perennial injera consumers might remain at cancer risk. This would further escalate if other staple food items and spices are considered. Hence, there is a need for home-based strategies to reduce extrinsic soil-Al-Fe-Mn in injera/tef batter.
Collapse
Affiliation(s)
- Desta Woldetsadik
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia.
| | - Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Pilar Ortega-Barrales
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Abinet Haile
- Department of Chemistry, Debre Berhan University, Debre Berhan, Ethiopia
| | - Hillette Hailu
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia
| | - Nelly Madani
- Physics Department, Mount Allison University, Sackville, New Brunswick, Canada
| | - Noah S Warner
- Physics Department, Mount Allison University, Sackville, New Brunswick, Canada
| | - David E B Fleming
- Physics Department, Mount Allison University, Sackville, New Brunswick, Canada
| |
Collapse
|
22
|
Wang ZX, Lin QQ, Tu ZC, Zhang L. The influence of in vitro gastrointestinal digestion on the Perilla frutescens leaf extract: Changes in the active compounds and bioactivities. J Food Biochem 2020; 44:e13530. [PMID: 33084119 DOI: 10.1111/jfbc.13530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
In this study, the influence of in vitro gastrointestinal digestion on the Perilla frutescens leaf extract (PFLE) were measured. Results revealed that total phenolic content (TPC) and total flavonoid content (TFC) were significantly decreased after simulated digestion (ca. 53% of phenolics and 40% of flavonoids). The IC50 value of DPPH· scavenging activity and ABTS+ scavenging ability increased by 23% and 56%, respectively, while ferric reducing antioxidant power reduced by 53%. For the inhibition ability on α-glucosidase, acetylcholinesterase, and MCF-7 cell proliferation, their IC50 values increased by 360%, 197%, and 25%, respectively. Three phenolic acids and one flavonoid in PFLE were quantified by high-performance liquid chromatography. Overall, although significant losses of the active components and biological activities occurred during in vitro gastrointestinal digestion, it still showed the potential as an oral agent for treatment and prevention of oxidative stress, cancer, diabetes, and Alzheimer's disease. PRACTICAL APPLICATIONS: As an important annual herbaceous plant with rich biochemical compounds and many biological functions, Perilla frutescens leave is widely used in the food and traditional Chinese medicine. However, the dynamic changes of its active compounds and activities during the digestion process are unclear. In this study, the digestion results in significant loss of the active ingredients and biological activities of P. frutescens leaf extract (PFLE), particularly in the gastric digestion. In addition, PFLE remains to show certain antioxidant activity, α-glucosidase inhibitory ability, acetylcholinesterase inhibitory ability, and MCF-7 cell proliferation inhibitory ability after digestion. Therefore, this research might facilitate further research and development of P. frutescens.
Collapse
Affiliation(s)
- Zhen-Xing Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.,College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Qing-Qing Lin
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Zong-Cai Tu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.,College of Life Sciences, Jiangxi Normal University, Nanchang, China.,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Lu Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China.,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
23
|
Ripening-related cell wall modifications in olive (Olea europaea L.) fruit: A survey of nine genotypes. Food Chem 2020; 338:127754. [PMID: 32829296 DOI: 10.1016/j.foodchem.2020.127754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 11/21/2022]
Abstract
The production of olive (Olea europaea L.) is very important economically in many areas of the world, and particularly in countries around the Mediterranean basin. Ripening-associated modifications in cell wall composition and structure of fruits play an important role in attributes like firmness or susceptibility to infestations, rots and mechanical damage, but limited information on these aspects is currently available for olive. In this work, cell wall metabolism was studied in fruits from nine olive cultivars ('Arbequina', 'Argudell', 'Empeltre', 'Farga', 'Manzanilla', 'Marfil', 'Morrut', 'Picual' and 'Sevillenca') picked at three maturity stages (green, turning and ripe). Yields of alcohol-insoluble residue (AIR) recovered from fruits, as well as calcium content in fruit pericarp, decreased along ripening. Cultivar-specific diversity was observed in time-course change patterns of enzyme activity, particularly for those acting on arabinosyl- and galactosyl-rich pectin side chains. Even so, fruit firmness levels were associated to higher pectin methylesterase (PME) activity and calcium contents. In turn, fruit firmness correlated inversely with ascorbate content and with α-l-arabinofuranosidase (AFase) and β-galactosidase (β-Gal) activities, resulting in preferential loss of neutral sugars from cell wall polymers.
Collapse
|
24
|
Fernández-Poyatos MDP, Zengin G, Salazar-Mendías C, Ruiz-Medina A, Sinan KI, Llorent-Martínez EJ. Study on Three Sarcocapnos Species as Potential Sources of Bioactive Compounds: Relation between Phenolic Content and Bioactivity by Multivariate Analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8885169. [PMID: 32733739 PMCID: PMC7369672 DOI: 10.1155/2020/8885169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
In this work, we report the phenolic composition and bioactivity of the aerial parts of three species of Sarcocapnos (S. enneaphylla, S. pulcherrima, and S. saetabensis) to study their potential as sources of bioactive compounds to revalorize them and contribute to the conservation of these plant species. Samples were collected in different locations in the province of Jaén (southeast of Spain), and qualitative and quantitative analyses of phenolic compounds were performed by high-performance liquid chromatography with diode array and mass spectrometry detection. S. enneaphylla presented the highest concentration of phenolic compounds (58 mg/g DE). The most abundant compound in S. enneaphylla and S. saetabensis was rutin (35 mg/g DE and 11.7 mg/g DE, respectively), whereas isorhamnetin-O-rutinoside was dominant in S. pulcherrima (11.5 mg/g DE). Several assays were performed to evaluate the potential bioactivity of the three species of Sarcocapnos. These assays included antioxidant and radical scavenging (ABTS and DPPH), reducing power (CUPRAC and FRAP), phosphomolybdenum and metal chelating, and enzyme inhibitory activity (acetylcholinesterase, amylase, butyrylcholinesterase, glucosidase, and tyrosinase). In general, all methanolic extracts presented the highest phenolic and flavonoid contents, as well as the highest radical scavenging, antioxidant, and enzyme inhibitory properties. This relationship between phenolics and bioactivity was confirmed by multivariate analysis.
Collapse
Affiliation(s)
- María del Pilar Fernández-Poyatos
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, Jaén E-23071, Spain
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Carlos Salazar-Mendías
- Department of Animal Biology Plant Biology and Ecology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, Jaén E-23071, Spain
| | - Antonio Ruiz-Medina
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, Jaén E-23071, Spain
| | | | - Eulogio J. Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, Jaén E-23071, Spain
| |
Collapse
|
25
|
Lv X, Meng G, Li W, Fan D, Wang X, Espinoza-Pinochet CA, Cespedes-Acuña CL. Sulforaphane and its antioxidative effects in broccoli seeds and sprouts of different cultivars. Food Chem 2020; 316:126216. [DOI: 10.1016/j.foodchem.2020.126216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
|
26
|
Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality. Foods 2020; 9:foods9040514. [PMID: 32325961 PMCID: PMC7231206 DOI: 10.3390/foods9040514] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022] Open
Abstract
Table olives are a pickled food product obtained by a partial/total debittering and subsequent fermentation of drupes. Their peculiar sensory properties have led to a their widespread use, especially in Europe, as an appetizer or an ingredient for culinary use. The most relevant literature of the last twenty years has been analyzed in this review with the aim of giving an up-to-date overview of the processing and storage effects on the nutritional and sensory properties of table olives. Analysis of the literature has revealed that the nutritional properties of table olives are mainly influenced by the processing method used, even if preharvest-factors such as irrigation and fruit ripening stage may have a certain weight. Data revealed that the nutritional value of table olives depends mostly on the balanced profile of polyunsaturated and monounsaturated fatty acids and the contents of health-promoting phenolic compounds, which are best retained in natural table olives. Studies on the use of low salt brines and of selected starter cultures have shown the possibility of producing table olives with an improved nutritional profile. Sensory characteristics are mostly process-dependent, and a relevant contribute is achieved by starters, not only for reducing the bitterness of fruits, but also for imparting new and typical taste to table olives. Findings reported in this review confirm, in conclusion, that table olives surely constitute an important food source for their balanced nutritional profile and unique sensory characteristics.
Collapse
|
27
|
Impact of Gastrointestinal In Vitro Digestion and Deficit Irrigation on Antioxidant Activity and Phenolic Content Bioaccessibility of “Manzanilla” Table Olives. J FOOD QUALITY 2020. [DOI: 10.1155/2020/6348194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This was the first study investigating the polyphenol content, antioxidant potential, and polyphenol bioaccessibility after in vitro digestion of table olives grown using regulated deficit irrigation (RDI) treatments to save irrigation water. Two experiments were carried out: (i) experiment A, where RDI was applied during the pit hardening stage and (ii) experiment B, where RDI was applied during the rehydration stage. Only slight differences among irrigation treatments were observed in two antioxidant assays (ABTS+• and DPPH•) and on TPC for the soluble fraction after in vitro digestion. An average of 1 g gallic acid equivalents kg−1 of table olives were found after digestion. Approximately, 12% of the polyphenols of table olives were bioaccessible for human absorption. Saving water techniques influence neither the final polyphenol content and antioxidant potential of table olives nor the bioaccessibility of polyphenols. The consumption of 40 g of table olives will provide 40 mg of bioaccessible polyphenols able to provide associated health benefits (∼7% of the daily polyphenols intake recommendation).
Collapse
|