1
|
Hernández-Bautista M, Gutiérrez TJ, Tovar J, Bello-Pérez LA. Effect of starch structuring and processing on the bioaccessibility of polyphenols in starchy foodstuffs: A review. Food Res Int 2025; 208:116199. [PMID: 40263792 DOI: 10.1016/j.foodres.2025.116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Starch is the main polysaccharide in the human diet and is the major calory supplier. The digestibility of starch can be controlled by processing conditions, which produce the rearrangement of the polymer's multi-scale structure and interactions with other components in the food matrix. The interest in consuming functional foods with polyphenols is linked to the pursuit of overall well-being. Still, the bioaccessibility of the polyphenols can be limited by their interactions with starch, features that also affect the digestibility of the polysaccharide. The starch-polyphenol interactions produce different VI-type, VIIa-type, and VIIb-type complexes, which are generated depending on the polyphenol type (structure) and the processing for developing a food matrix. The complex formation between linear glucan chains and polyphenols produces crystalline and lamellar structures that modulate the starch digestion rate. The interactions with starch modulate the bioaccessibility of the polyphenols, and the starch-polyphenols complexes are not substrates for the digestive enzymes, leading to a reduction in intestinal glucose release and absorption. The release of polyphenols produces inhibition of the α-amylase, a phenomenon that may further decrease starch digestion. The type of processing and polyphenols present are crucial factors in determining the nature of the starch-polyphenol complex that will be formed. To prepare this review, The database from Scopus was used using the keywords Starch and Polyphenols. Articles from high-impact factor journals in the study area were selected (e.g. Food Hydrocolloids, Food Chemistry, Food Research International, Functional Foods, etc.).
Collapse
Affiliation(s)
- Monserrat Hernández-Bautista
- Instituto Politécnico Nacional (IPN), Centro de Desarrollo de Productos Bióticos (CEPROBI), Yautepec, Morelos 62731, Mexico
| | - Tomy J Gutiérrez
- Grupo de Nanotecnología de Alimentos y Agro-alimentos (NanoÅ(2)), Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Villanueva, 1324, C1426BMJ, Capital Autónoma de Buenos Aires (CABA), Argentina
| | - Juscelino Tovar
- Division of Food and Pharma, Department of Process and Life Science Engineering. Lund University, P.O. Box 124, SE-221 00, Lund. Sweden
| | - Luis Arturo Bello-Pérez
- Instituto Politécnico Nacional (IPN), Centro de Desarrollo de Productos Bióticos (CEPROBI), Yautepec, Morelos 62731, Mexico.
| |
Collapse
|
2
|
Kraithong S, Liu Y, Suwanangul S, Sangsawad P, Theppawong A, Bunyameen N. A comprehensive review of the impact of anthocyanins from purple/black Rice on starch and protein digestibility, gut microbiota modulation, and their applications in food products. Food Chem 2025; 473:143007. [PMID: 39874887 DOI: 10.1016/j.foodchem.2025.143007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
This review explores the impact of anthocyanins derived from purple and black rice on starch and protein digestibility, gut microbiota modulation, and their applications in food production. Anthocyanins are shown to reduce starch digestibility by forming complexes with starch, thereby inhibiting key digestive enzymes. Additionally, they can influence protein digestion by inducing structural changes that enhance resistance to digestive processes. Evidence suggests that black rice anthocyanins positively modulate gut microbiota composition, potentially improving overall gut health. The incorporation of anthocyanin-rich extracts into various food products, such as bread and beverages, underscores their potential as functional ingredients. This review provides valuable insights into the health benefits associated with rice anthocyanins and identifies areas for future research to optimize their application in functional foods aimed at managing metabolic health.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Saranya Suwanangul
- Program in Food Science and Technology, Faculty of Engineering and Agro-industry, Maejo University, Chiang Mai 50290, Thailand
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Atiruj Theppawong
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B, 9000, Ghent, Belgium
| | - Nasuha Bunyameen
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan; Department of Research and Development of Halal Products, Faculty of Science and Technology, Fatoni University, Pattani 94160, Thailand.
| |
Collapse
|
3
|
Wang R, Liu C, Zhang K, Sun R, Liu S, Chang X, Zhang J. Effect of high hydrostatic pressure on physicochemical and digestive properties of catechin-chestnut starch complexes. Food Chem 2025; 485:144501. [PMID: 40306055 DOI: 10.1016/j.foodchem.2025.144501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Chinese chestnuts are high in starch, and becomes rapidly digestible after cooking, which increases the risk of blood glucose level disorders. In this study, a catechin-chestnut starch complex (CC-CS) was prepared using high hydrostatic pressure (HHP). The findings revealed that the complexation rate of complex prepared using HHP was 68.83 %. Compared with that of chestnut starch (CS), the solubility and swelling power of 600 MPa-6 % complex increased by 18.13 % and 4.14 %, respectively. Conversely, the freeze-thaw stability showed a decline of 16.48 %, whereas the resistant starch exhibited an increase of 39.93 %; consequently, HHP treatment reduced the digestibility of complex. The long-range ordered structure was disrupted, and the relative crystallinity diminished. The enthalpy change (ΔH) decreased, and complex showed typical weak gel behavior. In conclusion, HHP facilitates the formation of complex and enhances the physicochemical properties and anti-digestibility of chestnut products, thus aiding in the development of high-quality, low-digestibility starch-based foods.
Collapse
Affiliation(s)
- Runzheng Wang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Chang Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Ruonan Sun
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China.
| | - Xuedong Chang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
4
|
Yue Q, Peng Y, Li Z, Deng Y, Yi J, Zhou L. High pressure processing of glutinous rice starch complexed with Buddleja officinalis Maxim. Extract: Structural stability and digestibility improvements. Int J Biol Macromol 2025; 311:143454. [PMID: 40280515 DOI: 10.1016/j.ijbiomac.2025.143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
This study investigated the impact of high pressure processing (HPP) on yellow glutinous rice starch (Y-GRS) formed by glutinous rice starch (GRS) complexed with Buddleja officinalis Maxim. extract (BOME). Y-GRS at 500 MPa achieved the highest complex index (0.506), indicating stronger starch-BOME interactions. Particle size analysis revealed that Y-GRS exhibited superior resistance to swelling, with D[4,3] increasing by 18.97 μm for Y-GRS and 31.64 μm for GRS as the pressure increased from 400 to 600 MPa. Y-GRS retained higher thermal stability, with an enthalpy change of 1.55 J/g at 500 MPa, compared with 0.83 J/g for GRS. The relative crystallinity of Y-GRS was 8.81 % higher than that of GRS. Structural analyses confirmed BOME mitigated higher pressure-induced damage to starch granule, preserving double helix and crystal structure. Rheologically, Y-GRS exhibited stable peak viscosity, weaker shear thinning behavior, and greater resistance to deformation than GRS. Following HPP, Y-GRS contained lower levels of rapidly digestible starch (RDS) and higher levels of resistant starch (RS) than GRS. In conclusion, these findings highlight HPP as a promising strategy for enhancing the functional properties of Y-GRS, offering improved stability and digestibility for starch-based food applications.
Collapse
Affiliation(s)
- Qisheng Yue
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Yijin Peng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Zi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Yishu Deng
- College of Architecture and Engineering, Yunnan Agricultural University, Kunming, Yunnan Province 650201, China.
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
5
|
Liu L, Jia R, Chen W, Chen W, Wang X, Guo Z. The lotus seed starch-EGCG complex modulates obesity in C57BL/6J mice through the regulation of the gut microbiota. Int J Biol Macromol 2025; 310:143256. [PMID: 40250649 DOI: 10.1016/j.ijbiomac.2025.143256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/23/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The starch-polyphenol complex, identified as RS5-resistant starch, has been shown to regulate the gut environment and inhibit metabolic diseases, including obesity. In a study with C57BL/6 obese mice fed LSE, potential anti-obesity effects were demonstrated through physiological and biochemical assessments, gut microbiota analysis, and mechanistic insights. The study showed that LSE reduced mice body weight, serum total cholesterol, and triglycerides (P < 0.05). Serum inflammatory markers (TNF-α, IL-6, IL-1β) and LPS levels were significantly decreased, while glucose tolerance (AUC reduced by 29.29 %) and insulin sensitivity (AUC reduced by 31.79 %) were improved. Histological analysis indicated reduction in adipocyte size and attenuation of hepatic steatosis. Gut microbiota profiling demonstrated LSE increased beneficial bacteria genera Faecalibacterium, Bifidobacterium, and Akkermansia. This correlated with enhanced SCFA production (acetate 41.53 %, propionate 45.52 %, butyrate 57.49 % increase). These findings demonstrate that LSE exerts anti-obesity effects through modulation of the gut microbiota-SCFA-metabolic axis, supporting starch-polyphenol complexes as functional food candidates.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ru Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenyu Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoying Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Asiamah E, Nemţanu MR, Braşoveanu M, Geng DH, Wang Y, Wang K, Cheng Y. Unveiling the suitability of C-starch as functional food: A pairwise interaction of lipids and polyphenol components (LIPOP). Carbohydr Polym 2025; 353:123279. [PMID: 39914984 DOI: 10.1016/j.carbpol.2025.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 05/07/2025]
Abstract
C-starch is distinguished by its unique crystalline structure, combining A-type and B-type polymorphs, primarily into CA and CB configurations. This hybrid structure imparts C-starch with intermediate physicochemical and functional properties, bridging the characteristics of purely A-type and B-type starches. These properties depend on the arrangement of these polymorphs within the granule, often outperforming them in certain applications. The high resistant starch content of C-starch contributes to its low digestibility, making it a promising candidate for functional food applications. C-starch can interact with non-starch components, such as lipids and polyphenols, forming both inclusions via the hydrophobic cavity of amylose helix and non-inclusion complexes through the surface of C-starch. These interactions enhance V-crystal formation, stabilize resistant starch, and produce short-chain fatty acids (SCFAs) by gut microflora. Polyphenols exhibit a more pronounced influence than lipids, facilitating the transformation of C-type crystals into V-type crystals, while lipids predominantly contribute to structural stability through hydrophobic interactions. This study highlights the complex relationship between lipids and polyphenols (LIPOP) in modulating C-starch properties. The insights also provide critical guidance for using C-starch in developing innovative functional foods with tailored nutritional and functional benefits. Future research should explore the dynamic interactions within LIPOP systems to optimize the nutritional and functional properties of C-starch in food applications.
Collapse
Affiliation(s)
- Ebenezer Asiamah
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Council for Scientific and Industrial Research- Food Research Institute, P.O. Box M20, Accra, Ghana
| | - Monica R Nemţanu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor St., PO Box MG-36, 077125, Măgurele, Romania
| | - Mirela Braşoveanu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor St., PO Box MG-36, 077125, Măgurele, Romania
| | - Dong-Hui Geng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiming Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kuaitian Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Wang Y, Chao C, Zhang M, Wang C, Zhu H, Yu J, Copeland L, Wang S. Strategy for Making Starch-Polyphenol Complexes with Multifunctional Properties. Biomacromolecules 2025; 26:1826-1837. [PMID: 39961793 DOI: 10.1021/acs.biomac.4c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Starch-phenol complexes are of interest due to their potential for health-related functional properties in addition to resistance to enzymic digestion. However, the preparation of such complexes remains a challenge due to the structural features and low solubility of the phenols. The present study sets out a novel protocol to prepare amylose (AM)-polyphenol complexes by forming an AM-lipid complex that incorporates the polyphenol. Three polyphenols (resveratrol, curcumin, and quercetin), which by themselves do not form complexes with AM, were successfully encapsulated by AM through the addition of lauric acid (LA) to form AM-LA-polyphenol complexes. These ternary complexes had a more ordered structure and better functional properties, including antioxidant activity, slower enzymatic digestion, and controlled release of polyphenols, compared with the polyphenols alone or the AM-LA complex. Of the three polyphenols, more curcumin and quercetin were captured through interhelical rather than intrahelical associations. Our study opens up a new way to prepare starch-polyphenol complexes using polyphenols that do not form complexes with AM alone, which will be of great significance for creating novel resistant starches with desirable functionalities.
Collapse
Affiliation(s)
- Yujue Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingyan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cuiping Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huilan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Rivero-Ramos P, Railton J, Rodrigo D, Benlloch-Tinoco M. High hydrostatic pressure modulates the digestive properties of rice starch-gallic acid composites by boosting non-inclusion complexation. Int J Biol Macromol 2025; 293:139257. [PMID: 39743103 DOI: 10.1016/j.ijbiomac.2024.139257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
Influencing the starch postprandial glycemia via interventions that are sourced from natural plant materials has gained attention recently. Amylose present in starch is reported to form complexes with small ligands such as gallic acid (GA) through a conformational change that are digested slowly and contribute to the formation of resistant starch. In this study, the molecular interactions, multi-scale structure and in vitro digestion properties of normal neat rice starch and rice starch-GA composites (2, 5 % w/v) obtained either by high hydrostatic pressure (HHP) or thermal (T) treatment were compared. The multi-scale structure changes experienced by the rice starch gels (neat and composite) during simulated oro-gastrointestinal (OGIT) digestion were also characterised. Overall, formation of the V7 type inclusion complex was demonstrated in the composite gels processed by HHP and T, although the main molecular interactions found in the composites were non-inclusion complexes. Sample A-GA-5-HHP formed gels with a unique microstructure, whilst also displaying a significant increase of the resistant starch fraction (∼13 %) and a large decrease of the rapidly digestible starch fraction than A-GA-5-T (p < 0.05). The lower digestibility in A-GA-5-HHP was attributed to increased molecular interactions between amylose and GA, as suggested by the greater intensity peak at 3520 cm-1 in the FTIR, and the downfield chemical shifts (0.12 ppm) in the 13C NMR spectra. Our findings indicate that HHP gelatinisation of starch-GA composites represents a promising approach for the design of novel starch-based systems with distinct microstructure and digestion characteristics.
Collapse
Affiliation(s)
- Pedro Rivero-Ramos
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - James Railton
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Dolores Rodrigo
- Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avd./Agustín Escardino, n°7, 46980 Paterna, Valencia, Spain.
| | - María Benlloch-Tinoco
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| |
Collapse
|
9
|
Carvalho HJM, Pereira DTV, Barcia MT, Schmiele M. Current advances in the interaction mechanisms, nutritional role and functional properties of phenolic compound-starch complexes. Food Res Int 2025; 202:115744. [PMID: 39967187 DOI: 10.1016/j.foodres.2025.115744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
This review explores starch-phenolic compound complexes' formation mechanisms, structural characteristics, and functional roles. These complexes alter starch properties, enhance its resistance to digestion, and modulate enzyme activity, with significant implications for glycemic control. A critical discussion of preparation methods and characterization techniques is presented, emphasizing their application in functional food design and health-oriented products. The review highlights the potential of these complexes to address metabolic disorders, offering valuable insights for advancing food science and nutrition.
Collapse
Affiliation(s)
- Hugo José Martins Carvalho
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Campus JK, MGT-357 Highway, 5000 km 580, Diamantina, Minas Gerais 39100-000, Brazil.
| | - Débora Tamires Vitor Pereira
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Campus JK, MGT-357 Highway, 5000 km 580, Diamantina, Minas Gerais 39100-000, Brazil
| | - Milene Teixeira Barcia
- Department of Food Technology and Science, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Campus JK, MGT-357 Highway, 5000 km 580, Diamantina, Minas Gerais 39100-000, Brazil.
| |
Collapse
|
10
|
Jiang X, Li L, Wang C, Wang J, Lu X, Zheng B. Dynamic/static pressure-induced copolymerization and property changes of lotus seed starch with chlorogenic acid. Food Chem 2025; 464:141723. [PMID: 39476577 DOI: 10.1016/j.foodchem.2024.141723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 10/03/2024] [Indexed: 11/28/2024]
Abstract
Pressure promotes the formation of starch-polyphenol complexes, but their classification and properties are still unclear. This study aimed to elucidate the effects of dynamic high-pressure homogenization (10-50 MPa) and static hydrostatic pressure (100-500 MPa) on the copolymerization behavior and properties of lotus seed starch (LS)-endogenous polyphenol chlorogenic acid (CA) complexes. The results showed that both pressures induced LS-CA to form stable inclusion-type complexes and easily destructible noninclusion-type complexes. Increased pressure promoted the formation of inclusion-type complexes, with dynamic pressure having a particularly strong effect. However, noninclusion-type complexes began breaking down at 20 MPa under dynamic pressure and 300 MPa under static pressure. Inclusion-type complexes primarily improve starch ordering, and noninclusion-type complexes enhance water holding capacity, but excessive proportions of either type affect pasting performance. These findings offer insights into transforming specific starch structures through small molecular components and provide a theoretical basis for controlling functional starch product processing.
Collapse
Affiliation(s)
- Xiangfu Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenxin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianyi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Tan S, Chen H, Huang Y, Liu S, Zheng Z, Guo Z, Xie S. Chinese yam (Dioscorea opposita Thunb.) starch-ferulic acid complexes: Preparation, characterization, and physicochemical properties. J Food Sci 2025; 90:e17666. [PMID: 39832231 DOI: 10.1111/1750-3841.17666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Polyphenols are known to interact with starch to form the V-type inclusion complex or the noninclusive complex. It is hypothesized that the addition of polyphenols could improve the properties of Chinese yam (Dioscorea opposita Thunb.) starch, and the properties of the complexes could be regulated by controlling the additive amount of polyphenols. To test this hypothesis, the effect of varying ferulic acid (FA) concentrations (3%, 9%, and 15%) on the structural characterization and physicochemical properties of Chinese yam starch (CYS) was investigated. X-ray diffraction analysis showed that CYS complexes with FA generated characteristic peaks comparable to those of native CYS, but FA caused the crystal morphology of CYS to change from a B-type to V-type. During the gelatinization process, FA increased the solubility, water-holding capacity, and hardness of CYS complexes, which was possibly attributed to the CYS molecules reaggregating and the formation of ordered crystals. The transmittance of CYS complexes decreased from 12.21% to 7.46% when the FA concentration increased from 3% to 15%. In addition, FA increased the viscosity and elasticity of the CYS system but decreased retrogradation. Thus, FA improved the structure and properties of CYS complexes, which can provide new directions and ideas for the development of CYS-based food. PRACTICAL APPLICATION: This study showed that adding FA can affect the characterization and physicochemical properties of CYS. We expect that CYS-FA complexes can be used for health and medicine products thanks to unique nutritional values.
Collapse
Affiliation(s)
- Shuqiong Tan
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou, Fujian, China
| | - Huiqing Chen
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou, Fujian, China
| | - Yating Huang
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou, Fujian, China
| | - Suqi Liu
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou, Fujian, China
| | - Ziyan Zheng
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou, Fujian, China
| | - Zebin Guo
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sandu Xie
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Dai Y, Wei J, Feng W, Huang Y, Li H, Ma L, Chen X. Fabrication and characterization of tea seed starch-tea polyphenol complexes. Carbohydr Polym 2024; 346:122615. [PMID: 39245495 DOI: 10.1016/j.carbpol.2024.122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
This study investigates the complexation between tea seed starch (TSS) and tea polyphenols (TPs) at varying concentrations (2.5, 5.0, 7.5, and 10.0 %). The objectives can expand the knowledge of TSS, which is a novel starch, and to examine how TPs influence the structure and physicochemical properties of the complexes. Results indicate that TPs interact with TSS through hydrogen bonding, altering granule morphology and disrupting ordered structure of starch. Depending on the concentration, TPs induce either V-type or non-V-type crystal structures within TSS, which had bearing on iodine binding capacity, swelling, pasting, gelatinization, retrogradation, rheology, and gel structure. In vitro digestibility analysis reveals that TSS-TPs complexes tend to reduce readily digestible starch while increasing resistant starch fractions with higher TP concentrations. Thus, TSS-TPs complexes physicochemical and digestibility properties can be modulated, providing a wide range of potential applications in the food industry.
Collapse
Affiliation(s)
- Yihui Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jiaru Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; State key laboratory of biocatalysis and enzyme engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Feng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Yang Huang
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Hao Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Lixin Ma
- State key laboratory of biocatalysis and enzyme engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
13
|
Liu Y, Wang Y, Sheng Z, Du Q, Zhang H. New insights into EGCG retards the digestion of wheat starch by α-amylase in ternary system: Comparison with binary systems. Int J Biol Macromol 2024; 283:137639. [PMID: 39547637 DOI: 10.1016/j.ijbiomac.2024.137639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
This study was to investigate the mechanism of the action of epigallocatechin gallate (EGCG) on α-amylase in the ternary simulated system and explore the changes in enzyme structure during the digestion process. Enzymatic kinetics, fluorescence spectroscopy, surface hydrophobicity, fluorescence microscopy, and molecular docking were used to compare (in the presence and absence of EGCG) the structural changes of α-amylase and α-amylase-starch complex, as well as the binding characteristics among EGCG and the α-amylase and starch. The results showed that EGCG had a significant inhibitory effect on α-amylase, and it exhibited a coexistence of competitive and anti-competition inhibition type, and predominantly competitive inhibition. In the ternary and binary systems, the inhibitory mechanisms of EGCG on α-amylase were distinct. In the ternary system, EGCG preferably bound to α-amylase to form α-amylase-EGCG binary complexes rather than α-amylase-starch-EGCG ternary complexes, and altered the structure of α-amylase, leading to unfolding of the enzyme's secondary structure and exposing more non-catalytic site aromatic amino acids.
Collapse
Affiliation(s)
- Yi Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China.
| | - Yiru Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China
| | - Zheng Sheng
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China
| | - Qizhen Du
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China
| | - Haihua Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
Wu Y, Liu Y, Jia Y, Feng CH, Ren F, Liu H. Research progress on the regulation of starch-polyphenol interactions in food processing. Int J Biol Macromol 2024; 279:135257. [PMID: 39233167 DOI: 10.1016/j.ijbiomac.2024.135257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Starch is a fundamental material in the food industry. However, the inherent structural constraints of starch impose limitations on its physicochemical properties, including thermal instability, viscosity, and retrogradation. To address these obstacles, polyphenols are extensively employed for starch modification owing to their distinctive structural characteristics and potent antioxidant capabilities. Interaction between the hydroxyl groups of polyphenols and starch results in the formation of inclusion or non-inclusion complexes, thereby inducing alterations in the multiscale structure of starch. These modifications lead to changes in the physicochemical properties of starch, while simultaneously enhancing its nutritional value. Recent studies have demonstrated that both thermal and non-thermal processing exert a significant influence on the formation of starch-polyphenol complexes. This review meticulously analyzes the techniques facilitating complex formation, elucidating the critical factors that dictate this process. Of noteworthy importance is the observation that thermal processing significantly boosts these interactions, whereas non-thermal processing enables more precise modifications. Thus, a profound comprehension and precise regulation of the production of starch-polyphenol complexes are imperative for optimizing their application in various starch-based food products. This in-depth study is dedicated to providing a valuable pathway for enhancing the quality of starchy foods through the strategic integration of suitable processing technologies.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chao-Hui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
15
|
Song B, Zheng Q, Xing J, Miao Z, Zheng M, Zhao C, Wu Y, Xu X, Liu J. Understanding the multiscale structure and in vitro digestibility changes of corn starch-ferulic acid complexes induced by high hydrostatic pressure. Int J Biol Macromol 2024; 279:135215. [PMID: 39216577 DOI: 10.1016/j.ijbiomac.2024.135215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
High hydrostatic pressure (HHP) was used to synthesize corn starch (CS) and ferulic acid (FA) complex (CS-FA). Its effects on the structure of the complex at multiple scales and its digestibility were examined. The results demonstrated that HHP significantly influenced the digestibility of the CS-FA complex, decreasing the content of rapidly digestible starch (RDS) while increasing slowly digestible starch (SDS) and resistant starch (RS). Notably, the combined SDS and RS content in the HHP-treated CS-FA complex with 2.0 % FA addition (38.13 %) was significantly higher (p < 0.05) than those in the CS-FA complex without HHP treatment (29.21 %) and pure CS (21.72 %). The results indicated that HHP treatment reduced the enthalpy change (ΔH), number of short-range order structures, and relative crystallinity (RC) while increasing the average particle size of these CS-FA complexes. This treatment also increased the proportion of amorphous starch regions and the degree of agglomeration between the starch and FA. HHP treatment-induced CS-FA complexes exhibited a denser fractal structure and higher short-range order, affecting the interaction sites between the starch and digestive enzymes. These findings suggest the potential application of HHP treatment and FA in modulating the postprandial glycemic response to starchy food.
Collapse
Affiliation(s)
- Bin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Qihang Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jiayue Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Zhengchi Miao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xiuying Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
16
|
Chen W, Jia R, Liu L, Lin W, Guo Z. Comparative study on dynamic in vitro digestion characteristics of lotus seed starch-EGCG complex prepared by different processing methods. Food Chem 2024; 455:139849. [PMID: 38823120 DOI: 10.1016/j.foodchem.2024.139849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
To study the effect of starch-polyphenol interaction induced by different processing methods on digestion characteristics, a dynamic in vitro human gastrointestinal system was employed to investigate the digestive characteristics of lotus seed starch-epigallocatechin gallate (EGCG) complex (LS-EGCG) prepared by different processing methods. Digestion altered crystal structure, particle size, morphology, pH, starch hydrolysis, and EGCG content. Processing broke physical barriers, reducing particle size by enzyme erosion. Enzymatic hydrolysis gradually exposed EGCG, indicated by green fluorescence. Heat and high pressure treatments enhanced starch dissolution, increasing sugar accumulation and hydrolysis. However, ultrasonic-microwave and high pressure microfluidization treatments formed dense structures, decreasing hydrolysis rates. Overall, the complex formed by high pressure microfluidization showed better enzyme resistance. The results provide a scientific basis for the development of food with quality and functional properties.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Ru Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Wanyi Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China.
| |
Collapse
|
17
|
Cetin‐Babaoglu H, Aydın H, Kumas R, Arslan‐Tontul S. Enhancing nutritional and functional properties of rice starch by modification with Matcha extract. Food Sci Nutr 2024; 12:4284-4291. [PMID: 38873475 PMCID: PMC11167186 DOI: 10.1002/fsn3.4087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 06/15/2024] Open
Abstract
The aim of this study is to increase the functionality of rice starch by modifying matcha tea extract and to determine the effect on some physicochemical properties and starch digestibility. According to the data analyzed, treatment with matcha extract was effective in increasing the nutritional value of native rice starch. At the highest level of extract addition, total phenolic and flavonoid content reached 129.54 mg/100 g and 40.16 mg/100 g, respectively, as no phenolic or flavonoid content was detected in control. In addition, the highest DPPH and FRAP values were determined to be 296.62 μmol TE/100 g and 814.89 mg/100 g, respectively, at the highest extract addition level. Treatment with matcha extract significantly reduced the eGI of native rice starch from to 94.61 to 64.63, while resistant starch was increased from 0.90 to 33.43%. According to the physiochemical analysis, there was a positive correlation between the extract ratio and the water-holding capacity of rice starch due to the high hydrophilic capacity of the phenolic compounds. In addition, the solubility and swelling power of starch were increased by treatment with matcha extract, but high temperatures had a negative effect on these physicochemical properties.
Collapse
Affiliation(s)
| | - Hümeyra Aydın
- Food Engineering Department, Agricultural FacultySelçuk UniversityKonyaTurkey
| | - Rumeysa Kumas
- Food Engineering Department, Agricultural FacultySelçuk UniversityKonyaTurkey
| | | |
Collapse
|
18
|
Wu Y, Liu Y, Jia Y, Zhang H, Ren F. Formation and Application of Starch-Polyphenol Complexes: Influencing Factors and Rapid Screening Based on Chemometrics. Foods 2024; 13:1557. [PMID: 38790857 PMCID: PMC11121577 DOI: 10.3390/foods13101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the nuanced interplay between plant polyphenols and starch could have significant implications. For example, it could lead to the development of tailor-made starches for specific applications, from bakinag and brewing to pharmaceuticals and bioplastics. In addition, this knowledge could contribute to the formulation of functional foods with lower glycemic indexes or improved nutrient delivery. Variations in the complexes can be attributed to differences in molecular weight, structure, and even the content of the polyphenols. In addition, the unique structural characteristics of starches, such as amylose/amylopectin ratio and crystalline density, also contribute to the observed effects. Processing conditions and methods will always alter the formation of complexes. As the type of starch/polyphenol can have a significant impact on the formation of the complex, the selection of suitable botanical sources of starch/polyphenols has become a focus. Spectroscopy coupled with chemometrics is a convenient and accurate method for rapidly identifying starches/polyphenols and screening for the desired botanical source. Understanding these relationships is crucial for optimizing starch-based systems in various applications, from food technology to pharmaceutical formulations.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
19
|
Wang Y, Han S, Hao Z, Gu Z, Li C, Wu Z, Zhao Z, Xiao Y, Liu Y, Liu K, Zheng M, Du Y, Zhou Y, Yu Z. Preparation of the black rice starch-gallic acid complexes by ultrasound treatment: Physicochemical properties, multiscale structure, and in vitro digestibility. Int J Biol Macromol 2024; 263:130331. [PMID: 38403209 DOI: 10.1016/j.ijbiomac.2024.130331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
This study aimed to investigate the multiscale structure, physicochemical properties, and in vitro digestibility of black rice starch (BRS) and gallic acid (GA) complexes prepared using varying ultrasound powers. The findings revealed that ultrasonic treatment disrupted BRS granules while enhancing the composite degree with GA. The starch granules enlarged and aggregated into complexes with uneven surfaces. Moreover, the crystallinity of the BRS-GA complexes increased to 22.73 % and formed V6-I-type complexes through non-covalent bonds. The increased short-range ordering of the complexes and nuclear magnetic resonance hydrogen (1H NMR) further indicated that the BRS and GA molecules interacted mainly through non-covalent bonds such as hydrogen bonds. Additionally, ultrasound reduced the viscoelasticity of the complexes while minimizing the mass loss of the complexes at the same temperature. In vitro digestion results demonstrated an increase in resistant starch content up to 37.60 % for the BRS-GA complexes. Therefore, ultrasound contributes to the formation of V-typed complexes of BRS and GA, which proves the feasibility of using ultrasound alone for the preparation of starch and polyphenol complexes while providing a basis for the multiscale structure and digestibility of polyphenol and starch complexes.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shengjun Han
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongyan Gu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chao Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhongyun Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiqun Du
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Zhenyu Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Joint Research Center for Food Nutrition and Health of IHM, School of Tea & Food Science And Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
20
|
Li Q, Guo A, Rao L, Zhao L, Wang Y, Liao X. Tunable interactions in starch-anthocyanin complexes switched by high hydrostatic pressure. Food Chem 2024; 436:137677. [PMID: 37839121 DOI: 10.1016/j.foodchem.2023.137677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Native starches usually have poor polyphenol-binding efficiency despite remarkable architectural structures. In this study, the interaction between cyandin-3-O-glucose (C3G) and three starches under high hydrostatic pressure was investigated. Pressure (200-550 MPa) was found to promote the binding rate of potato starch from 31.6% to 47.0% but reduced that of corn and pea starch to below 10% at 550 MPa. Microscopy results showed that pressurized corn and pea starch-C3G complexes partially or completely lost spatial structures, whereas potato starch-C3G complexes retained structural integrity. The former had decreased zeta potentials and increased particle sizes at 550 MPa, suggesting surface charges and specific surface area losses caused poor binding. Potato starch-C3G complexes, however, exhibited unchanged zeta potential and particle size but the strongest fluorescence at 200 MPa, indicating a positive binding shift from surface to interior. Overall, high hydrostatic pressure can regulate the interactions of native starches with anthocyanins via spatial structural changes.
Collapse
Affiliation(s)
- Qin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Aixin Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| |
Collapse
|
21
|
Gao Q, Zheng J, Van der Meeren P, Zhang B, Fu X, Huang Q. Stabilization and release of thymol in pre-formed V-type starch: A comparative study with traditional method. Carbohydr Polym 2024; 328:121712. [PMID: 38220323 DOI: 10.1016/j.carbpol.2023.121712] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
Recently, pre-formed V-type starch has become popular as a versatile carrier in encapsulation systems of containing starch-guest inclusion complexes (ICs). However, the differences in stabilizing and dissociating guests between ICs prepared by either the traditional method or the pre-formed "empty" helix method have not yet been elucidated. Here, starch-thymol ICs were prepared using the traditional high temperature-water method and the pre-formed method, covering different complexation temperatures and solvents, to compare the loading capacity, crystalline structure, thermal stability, and release properties. The highest content of thymol in ICs prepared by the pre-formed and the traditional method was 74.2 and 65.3 mg/g, respectively. Different from ICs prepared by the traditional method (V7-type crystal), ICs prepared by the pre-formed method mostly exhibited a V6a structure with larger crystallinities and a better short-range ordered structure. ICs prepared at 90 °C were type II complexes and efficiently protected thymol from rapid heat loss. A slow release was observed in both cases: about 45 % and 75 % of thymol were released from ICs prepared by the pre-formed and traditional methods, respectively, after two weeks of storage at 25 °C.
Collapse
Affiliation(s)
- Qing Gao
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiabao Zheng
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Paul Van der Meeren
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
22
|
Yang D, Guo Q, Li R, Chen L, Zheng B. Amylose content controls the V-type structural formation and in vitro digestibility of maize starch-resveratrol complexes and their effect on human gut microbiota. Carbohydr Polym 2024; 327:121702. [PMID: 38171666 DOI: 10.1016/j.carbpol.2023.121702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
The chain structure of starch affects its interaction with polyphenol molecules which in turn determines the nutritional function of starch. In this study, starch with different amylose content including waxy maize starch (WMS), normal maize starch (NMS) and G50 high-amylose maize starch (G50) were selected to complex with resveratrol (RA) in high-pressure homogenization (HPH) environment, and structural changes of the complexes, together with their effects on in vitro digestibility and gut microbiota were discussed. The results showed that with increasing amylose content, RA could form more inclusion complex with starch through non-covalent bonds accompanied by the increased single helix structure, V-type crystalline structure, compact nano-aggregates and total ordered structure content, which thus endowed the complex lower digestibility and intestinal probiotic function. Notably, when RA addition reached 3 %, the resistant starch (RS) content of HP-G50-3 % rose to 29.2 %, correspondingly increased the relative abundance of beneficial gut microbiota such as Megamonas and Bifidobacterium, as well as the total short-chain fatty acids (SCFAs) content. Correlation analysis showed that V-type crystalline structure positively correlated with the growth of Pediococcu and Blautia (p < 0.05) for producing SCFAs. These findings provided feasible ideas for the development of personalized nutritional starch-based foods.
Collapse
Affiliation(s)
- Deyi Yang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiyong Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Rui Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Bo Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
23
|
Hao Z, Hu A, Cheng J, Ma Z, Li Z, Lv J, Xu H, Ge H, Wang H, Yu Z, Xie Z, Du Y. Mechanism of interaction between L-theanine and maize starch in ultrasonic field based on DFT calculations: Rheological properties, multi-scale structure and in vitro digestibility. Int J Biol Macromol 2024; 261:129869. [PMID: 38302031 DOI: 10.1016/j.ijbiomac.2024.129869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The digestibility of starch-based foods is receiving increased attention. To date, the full understanding of how including L-theanine (THE) can modify the structural and digestive properties of starch has not been fully achieved. Here, we investigated the multi-scale structure and digestibility of maize starch (MS) regulated by THE in ultrasound field and the molecular interactions. Ultrasound disrupted the structure of starch granules and opened the molecular chains of starch, promoting increased THE binding and producing more low-order or disordered crystal structures. In this case, the aggregation of starch molecules, especially amylose, was reduced, leading to increased mobility of the systems. As a result, the apparent viscosity, G', and G" were significantly decreased, which retarded the starch regeneration. Density functional theory calculations indicated that there were mainly non-covalent interactions between THE and MS, such as hydrogen bonding and van der Waals forces. These interactions were the main factors contributing to the decrease in the short-range ordering, the helical structure, and the enthalpy change (ΔH) of MS. Interestingly, the rapidly digestible starch (RDS) content of THE modified MS (MS-THE-30) decreased by 17.89 %, while the resistant starch increased to 26.65 %. These results provide new strategies for the safe production of resistant starch.
Collapse
Affiliation(s)
- Zongwei Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Ailong Hu
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Juntao Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenni Ma
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Zhaofeng Li
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Jiali Lv
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huajian Xu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Zhenyu Yu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yiqun Du
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China; Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518035, China.
| |
Collapse
|
24
|
Liu S, Meng F, Guo S, Yuan M, Wang H, Chang X. Inhibition of α-amylase digestion by a Lonicera caerulea berry polyphenol starch complex revealed via multi-spectroscopic and molecular dynamics analyses. Int J Biol Macromol 2024; 260:129573. [PMID: 38266829 DOI: 10.1016/j.ijbiomac.2024.129573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Polyphenol-starch complexes exhibit synergistic and beneficial effects on both polyphenols and resistant starches. This study evaluates the inhibitory effects and mechanisms of α-amylase on a Lonicera caerulea berry polyphenol-wheat starch (LPWS) complex following high hydrostatic pressure treatments of 400 MPa for 30 min and 600 MPa for 30 min. The IC50 values for α-amylase inhibition by the complex were 3.61 ± 0.10 mg/mL and 3.42 ± 0.08 mg/mL at a 10 % (w/w) polyphenol content. This interaction was further supported by Fourier-transform infrared spectroscopy and circular dichroism, which confirmed that the alpha helix component of the secondary structure of α-amylase was reduced due to the complex. Multifluorescence spectroscopy revealed that the complex induces changes in the microenvironment of fluorophores surrounding the α-amylase active site. Molecular dynamics simulations and molecular docking revealed that the active site of amylose within the complex becomes enveloped in polyphenol clusters. This wrapping effect reduced the hydrogen bonds between amylose and α-amylase, decreasing from 16 groups to just one group. In summary, the LPWS complex represents a low-digestible carbohydrate food source, thus laying the groundwork for the research and development of functional foods aimed at postprandial hypoglycemic effects.
Collapse
Affiliation(s)
- Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao 066004, China.
| | - Fanna Meng
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Shuo Guo
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Meng Yuan
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xuedong Chang
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao 066004, China
| |
Collapse
|
25
|
Li Q, Liu Y, Li Y, Rao L, Zhao L, Wang Y, Liao X. Unravelling the anthocyanin-binding capacity of native starches from different botanical origins. Food Chem 2024; 434:137390. [PMID: 37716141 DOI: 10.1016/j.foodchem.2023.137390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
In this study, the cyanidin-3-O-glucoside (C3G)-binding capacities of three native starches were investigated. While potato starch had the largest binding capacity of 0.34 mg/100 mg, corn and pea starch had binding capacities of 0.17 and 0.06 mg/100 mg. Confocal microscopy confirmed the binding results and revealed close associations between the surface properties and binding capacities. These findings were further substantiated with wettability and gelatinization results. The morphological observations showed that corn starch had advantageous particle sizes and more surface gullies, providing more opportunities to bind C3G. The zeta potential results, however, indicated that potato starch had the highest negative surface charges (-24 mV). These favorable electronic characteristics were believed to be responsible for the strongest electrostatic interactions. Hydrogen bonds, however, had a negligible effect on the formation of complexes. Overall, the negative surface charges and specific surface areas of the native starches were the most important factors determining C3G-binding capacities.
Collapse
Affiliation(s)
- Qin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yuwan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| |
Collapse
|
26
|
Yao S, Zhu Q, Xianyu Y, Liu D, Xu E. Polymorphic nanostarch-mediated assembly of bioactives. Carbohydr Polym 2024; 324:121474. [PMID: 37985040 DOI: 10.1016/j.carbpol.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Starch as an edible, biosafe, and functional biopolymer, has been tailored at nanoscale to deliver bioactive guests. Nanostarches fabricated in various morphologies including nanosphere, nanorod, nanoworm, nanovesicle, nanopolyhedron, nanoflake, nanonetwork etc., enable them to assemble different kinds of bioactives due to structural particularity and green modification. Previous studies have reviewed nanostarch for its preparation and application in food, however, no such work has been done for the potential of delivery system via polymorphic nanostarches. In this review, we focus on the merits of nanostarch empowered by multi-morphology for delivery system, and also conclude the assembly strategies and corresponding properties of nanostarch-based carrier. Additionally, the advantages, limitations, and future perspectives of polymorphic nanostarch are summarized to better understand the micro/nanostarch architectures and their regulation for the compatibility of bioactive molecules. According to the morphology of carrier, nanostarch effectively captures bioactives on the surface and/or inside core to form tight complexes, which maintains their stability in the human microenvironment. It improves the bioavailability of bioactive guests by different assembly approaches of carrier/guest surface combination, guest@carrier embedment, and nanostarch-mediated encapsulation. Targeted release of delivery systems is stimulated by the microenvironment conditions based on the complex structure of nanostarch loaded with bioactives.
Collapse
Affiliation(s)
- Siyu Yao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
27
|
Li Y, Niu L, Wu L, Li D, Sun C, Xiao J. Polyphenol-fortified extruded sweet potato starch vermicelli: Slow-releasing polyphenols is the main factor that reduces the starch digestibility. Int J Biol Macromol 2023; 253:127584. [PMID: 37866571 DOI: 10.1016/j.ijbiomac.2023.127584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
To investigate the digestive behavior of extruded starch-polyphenols system, extruded sweet potato starch vermicelli (ESPSV) was used as a model. The multi-scale structure, starch digestibility, polyphenol release, digestive enzyme activity during digestion and their correlation of ESPSV supplemented with matcha (MT), green tea extract (GTE), tea polyphenols (TP) and epigallocatechin gallate (EGCG) (at 1% polyphenol level) were discussed. Results showed that tea products in whatever form could retard starch digestion, with EGCG working best. The predicted glycemic index (pGI) of ESPSV was decreased from 82.50 to 65.46 after adding EGCG. Starch formed larger molecular aggregates with tea products under extrusion, showing a "B + V" type pattern. The order of V-type crystals content was EGCG + ESPSV (1.41) > TP + ESPSV (1.50) > GTE + ESPSV (1.88) > MT + ESPSV (2.62) > ESPSV (3.20). Under external pressure, EGCG, as tea monomer, was more likely to enter the spiral cavity of amylose and form V-type inclusion complex. Notably, polyphenols released during digestion could still reduce digestive enzyme activity, with a 15.53% decrease in EGCG + ESPSV compared to ESPSV. This was verified by correlation analysis, where RDS content (0.961, p < 0.01) and pGI (0.966, p < 0.01) were highly significantly correlated with the enzyme activity. Furthermore, tea products did not break or even enhance the quality of ESPSV as the final product.
Collapse
Affiliation(s)
- Yun Li
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Leiyan Wu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Dongming Li
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Chao Sun
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
28
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
29
|
Liu W, McClements DJ, Peng X, Jin Z, Chen L. Recent progress in regulating starch digestibility using natural additives and sustainable processing operations. Crit Rev Food Sci Nutr 2023; 65:612-626. [PMID: 37933826 DOI: 10.1080/10408398.2023.2278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The development of a healthier and more sustainable food supply is a main concern of consumers, industry, governments, and international institutions. Foods containing high levels of rapidly digestible starches have been linked to a rise in the number of people suffering from diet-related chronic diseases. Consequently, there is interest in reducing the digestibility of starch to improve their healthiness. The ability of natural additives including proteins, dietary fibers, and polyphenols, and sustainable processing technologies such as high-intensity ultrasonic, pulsed electric field, non-thermal plasma, γ-ray irradiation that regulate reduce starch digestibility in foods are reviewed. The potential mechanisms of action, advantages, and disadvantages of each approach at inhibiting starch digestibility is highlighted. The potential for commercializing these technologies is discussed, and areas where further research are required are emphasized. Natural additives and sustainable processing operations can effectively reduce the digestibility of starch and inhibit postprandial sugar "spikes" in the bloodstream by adjusting the structural changes, which can be used to create healthier and more sustainable foods and have broad application prospects.
Collapse
Affiliation(s)
- Wenmeng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
30
|
Xie S, Chen H, Jiang X, Zhou B, Guo Z, Zeng H, Zhang Y. Structural and Physicochemical Properties of a Chinese Yam Starch-Tea Polyphenol Complex Prepared Using Autoclave-Assisted Pullulanase Treatment. Foods 2023; 12:3763. [PMID: 37893656 PMCID: PMC10606916 DOI: 10.3390/foods12203763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Interactions between food components have a positive impact in the field of food science. In this study, the effects of tea polyphenol on the structural and physicochemical properties of Chinese yam starch using autoclave-assisted pullulanase treatment were investigated. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, rapid visco analysis, differential scanning calorimetry, and the 3,5-dinitrosalicylic acid method were applied in this study. The results showed that the Chinese yam starch-tea polyphenol complex formed a structural domain with higher thermal stability along with lower pasting viscosities than native starch. The in vitro digestibility of Chinese yam starch decreased with the addition of the tea polyphenol, and the amount of resistant starch content in the complex was 56.25 ± 1.37%, significantly higher than that of native starch (p < 0.05). In addition, the complex showed a B+V-type crystalline structure, which confirmed that the interaction modes between the starch and tea polyphenol include hydrogen bonding and hydrophobic interactions. Moreover, the appearance of an irregular sponge network structure of the complex further supported the interactions between the starch and tea polyphenol. This study provides a theoretical basis for the development of functional foods using Chinese yam starch.
Collapse
Affiliation(s)
- Sandu Xie
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou 362332, China; (S.X.)
| | - Huiqing Chen
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou 362332, China; (S.X.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyan Jiang
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou 362332, China; (S.X.)
| | - Bifang Zhou
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou 362332, China; (S.X.)
| | - Zebin Guo
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou 362332, China; (S.X.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
31
|
Raza H, Xu H, Zhou Q, He J, Zhu B, Li S, Wang M. A review of green methods used in starch-polyphenol interactions: physicochemical and digestion aspects. Food Funct 2023; 14:8071-8100. [PMID: 37647014 DOI: 10.1039/d3fo01729j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The interactions of starch with lipids, proteins, and other major food components during food processing are inevitable. These interactions could result in the formation of V-type or non-V-type complexes of starch. The starch-lipid complexes have been intensively studied for over five decades, however, the complexes of starch and polyphenols are relatively less studied and are the subject of recent interest. The interactions of starch with polyphenols can affect the physicochemical properties and its digestibility. The literature has highlighted several green methods such as ultrasound, microwave, high pressure, extrusion, ball-milling, cold plasma etc., to assist interactions of starch with polyphenols. However, comprehensive information on green methods to induce starch-polyphenol interactions is still scarce. Therefore, in light of the importance and potential of starch-polyphenol complexes in developing functional foods with low digestion, this review has summarized the novel green methods employed in interactions of starch with flavonoids, phenolic acids and tannins. It has been speculated that flavonoids, phenolic acids, and tannins, among other types of polyphenols, may have anti-digestive activities and are also revealed for their interaction with starch to form either an inclusion or non-inclusion complex. Further information on the effects of these interactions on physicochemical parameters to understand the chemistry and structure of the complexes is also provided.
Collapse
Affiliation(s)
- Husnain Raza
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, DK, 1958, Denmark
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Siqian Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
32
|
Rostamabadi H, Bajer D, Demirkesen I, Kumar Y, Su C, Wang Y, Nowacka M, Singha P, Falsafi SR. Starch modification through its combination with other molecules: Gums, mucilages, polyphenols and salts. Carbohydr Polym 2023; 314:120905. [PMID: 37173042 DOI: 10.1016/j.carbpol.2023.120905] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
Apart from its non-toxicity, biocompatibility and biodegradability, starch has demonstrated eminent functional characteristics, e.g., forming well-defined gels/films, stabilizing emulsions/foams, and thickening/texturizing foods, which make it a promising hydrocolloid for various food purposes. Nonetheless, because of the ever-increasing range of its applications, modification of starch via chemical and physical methods for expanding its capabilities is unavoidable. The probable detrimental impacts of chemical modification on human health have encouraged scientists to develop potent physical approaches for starch modification. In this category, in recent years, starch combination with other molecules (i.e., gums, mucilages, salts, polyphenols) has been an interesting platform for developing modified starches with unique attributes where the characteristics of the fabricated starch could be finely tuned via adjusting the reaction parameters, type of molecules reacting with starch and the concentration of the reactants. The modification of starch characteristics upon its complexation with gums, mucilages, salts, and polyphenols as common ingredients in food formulations is comprehensively overviewed in this study. Besides their potent impact on physicochemical, and techno-functional attributes, starch modification via complexation could also remarkably customize the digestibility of starch and provide new products with less digestibility.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Chunyan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
33
|
Xu B, Zhang C, Liu Z, Xu H, Wei B, Wang B, Sun Q, Zhou C, Ma H. Starches modification with rose polyphenols under multi-frequency power ultrasonic fields: Effect on physicochemical properties and digestion behavior. ULTRASONICS SONOCHEMISTRY 2023; 98:106515. [PMID: 37442054 PMCID: PMC10422105 DOI: 10.1016/j.ultsonch.2023.106515] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
As the main source of energy for human beings, starch is widely present in people's daily diet. However, due to its high content of rapidly digestive starch, it can cause a rapid increase in blood glucose after consumption, which is harmful to the human body. In the current study, the complexes made from edible rose polyphenols (ERPs) and three starches (corn, potato and pea) with different typical crystalline were prepared separately by multi-frequency power ultrasound (MFPU). The MFPU includes single-frequency modes of 40, 60 kHz and dual-frequency of 40 and 60 kHz in sequential and simultaneous mode. The results of the amount of complexes showed that ultrasound could promote the formation of polyphenol-starch complexes for all the three starches and the amount of ERPs in complexes depended on the ultrasonic parameters including treatment power, time and frequency. Infrared spectroscopy and X-ray diffraction indicated that ERPs with or without ultrasound could interact with the three starches through non-covalent bonds to form non-V-type complexes. Scanning electron microscopy showed that the shape of starches changed obviously from round/oval to angular and the surface of the starches were no longer smooth and appeared obvious pits, indicating that the ultrasonic field destroyed the structure of starches. In addition, compared to the control group, the in vitro digestibility study with 40/60 kHz sonication revealed that ultrasonic treatment greatly improved the digestive properties of the polyphenol-starch complexes by significantly increasing the content of resistant starch (20.31%, 17.27% and 14.98%) in the three starches. Furthermore, the viscosity properties of the three starches were all decreased after ERPs addition and the effect was enhanced by ultrasound both for single- and dual-frequency. In conclusion, ultrasound can be used as an effective method for preparing ERPs-starch complexes to develop high value-added products and low glycemic index (GI) foods.
Collapse
Affiliation(s)
- Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 212013 Zhenjiang, Jiangsu, China.
| | - Chao Zhang
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, 710021 Xi'an, China
| | - Hanshan Xu
- Hangzhou of Supervising Testing Center for Quality and Meterology, 311199 Hangzhou, Zhejiang, China
| | - Benxi Wei
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Qin Sun
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| |
Collapse
|
34
|
Ma Y, Chen Z, Chen R, Wang Z, Zhang S, Chen J. Probing molecular interactions of amylose-morin complex and their effect on antioxidant capacity by 2D solid-state NMR spectroscopy. Food Chem 2023; 415:135693. [PMID: 36857873 DOI: 10.1016/j.foodchem.2023.135693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Interaction of polyphenols and starch significantly governed the further applications on polyphenol-starchy foods. Elucidation of inter-molecular interaction is, however, a challenge because conventional characterizations could not detect the change of micro-environment caused by weak interactions. Herein, a facile strategy for molecular detection of amylose-polyphenol interactions was reported using two-dimensional solid-state NMR spectroscopy. Amylose-morin complex was prepared and characterized using 1H NMR, FT-IR, DSC, XRD and SEM. Significantly, variation of chemical shifts, splitted peaks and peak width, monitored by 13C CP/MAS and 1H NMR spectra, identified the strong inter-molecular interaction and binding sites. Furthermore, correlated signals from 1H-13C HETCOR confirmed the binding sites of interactions. These findings confirmed the interaction was inter-molecular hydrogen bonds, which generated between hydroxy-3,5,7 of morin and hydroxy groups of amylose. Besides, DPPH radical scavenging and reducing power assay indicated inter-molecular hydrogen bonds are not strong enough to interfere antioxidant capacity of morin.
Collapse
Affiliation(s)
- Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Zidi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Ruixi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| |
Collapse
|
35
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
36
|
Zhang W, Zhu H, Rong L, Chen Y, Yu Q, Shen M, Xie J. Purple red rice bran anthocyanins reduce the digestibility of rice starch by forming V-type inclusion complexes. Food Res Int 2023; 166:112578. [PMID: 36914341 DOI: 10.1016/j.foodres.2023.112578] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Purple red rice bran, a by-product of the rice polishing process, contained abundant anthocyanins. However, most of them were discarded resulting in a waste of resources. This study investigated the effects of purple red rice bran anthocyanin extracts (PRRBAE) on the physicochemical properties and digestive properties of rice starch and its mechanism of action. Infrared spectroscopy and X-ray diffraction indicated that PRRBAE could interact with rice starch through non-covalent bonds to form intrahelical V-type complexes. The DPPH and ABTS+ assays showed that PRRBAE could confer better antioxidant activity on rice starch. In addition, the PRRBAE could increase the resistant starch content and decrease the enzyme activities by changing the tertiary and secondary structure of starch-digesting enzymes. Further, molecular docking suggested that aromatic amino acids play a key role in the interaction of starch-digesting enzymes with PRRBAE. These findings will contribute to a better understanding of the mechanism of PRRBAE reducing starch digestibility, and to the development of high value-added products and low glycemic index (GI) foods.
Collapse
Affiliation(s)
- Weidong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Haibin Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
37
|
Wang N, Dong Y, Dai Y, Zhang H, Hou H, Wang W, Ding X, Zhang H, Li C. Influences of high hydrostatic pressure on structures and properties of mung bean starch and quality of cationic starch. Food Res Int 2023; 165:112532. [PMID: 36869532 DOI: 10.1016/j.foodres.2023.112532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
It is difficult to improve the quality of chemical-modified starch by traditional technology. Hence, in this study, mung bean starch with poor chemical activity was used as raw material, the native starch was treated and the cationic starch was prepared under high hydrostatic pressure (HHP) at 500 MPa and 40 °C. By studying the changes in the structure and properties of native starch after HHP treatment, the influence mechanism of HHP on improving the quality of cationic starch was analyzed. Results showed high pressure could make water and etherifying agent enter the starch granules through pores, and HHP made the structure of starch undergone three stages similar to mechanochemical effect. After HHP treated for 5 and 20 min, the degree of substitution, reaction efficiency and other qualities of cationic starch increased remarkably. Hence, proper HHP treatment could help to improve the chemical activity of starch and quality of cationic starch.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Ying Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Hong Zhang
- College of Life Science, Dezhou University, Dezhou, Shandong 253023, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Xiuzhen Ding
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Hui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
38
|
Electron beam irradiation pretreatment enhances the formation of granular starch-phenolics complexes. Food Res Int 2023; 163:112288. [PMID: 36596194 DOI: 10.1016/j.foodres.2022.112288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Starch-phenolics complex generated by the interaction between starch and phenolic acids had improved characteristics than the native starch, but the efficient preparation of such complex is still challenging. In this study, we proposed a new method for the preparation of starch-phenolics complexes under the pretreatment of electron beam irradiation (EBI). Four structurally similar monomeric phenolic acids including gallic acid (GA), 3,4-Dihydroxy-5-methoxybenzoic acid (3MGA), syringic acid (SA) and vanillic acid (VA), which naturally existed in Tartary buckwheat (TB) seeds, were complexed with native and EBI-pretreated TB starch. The results showed that the complexation between starch and 3MGA was the strongest, more than 30 mg of 3MGA was complexed with 1 g of starch. The complexation did not affect the particle morphology and A-type structure of starch, but changed the crystal structure order and promoted the strength of hydrogen bond, which may lead to the formation of granular complex. EBI pretreatment can significantly promote the complexation by enhancing hydrogen bonds as indicated by a broader band at 3500 ∼ 3100 cm-1 in the FT-IR spectra. In addition, EBI pretreatment helped to build a tighter bond and higher crystallinity, increase the particle size and iodine binding capacity, and decrease turbidity to inhibit retrogradation of starch. The 1H NMR of complexes indicated that EBI pretreatment could provide more accessibility for starch to interact with phenolics by creating a spacious microenvironment for 1H (α1 → 4). Above all, EBI pretreatment enhanced the formations of starch-phenolics complexes.
Collapse
|
39
|
Evaluation of the technological properties of rice starch modified by high hydrostatic pressure (HHP). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Comparative Evaluation of Hydrothermally Produced Rice Starch-Phenolic Complexes: Contributions of Phenolic Type, Plasma-Activated Water, and Ultrasonication. Foods 2022; 11:foods11233826. [PMID: 36496635 PMCID: PMC9736625 DOI: 10.3390/foods11233826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
A thorough investigation of the viability of rice starch conjugation with three different phenolic compounds-gallic acid, sinapic acid, and crude Mon-pu (Glochidion wallichianum Muell Arg) (MP) extract-was conducted using a variety of developed methods which modified the techno-functionality and digestibility of the end product. With and without the aid of ultrasonication (US), phenolic compounds were complexed with hydrothermally pre-gelatinized rice starch prepared using distilled water or plasma-activated water (PAW). The in vitro digestibility, structural features, rheological and thermal properties, and in vitro antioxidant activity of starch-phenolic complexes were evaluated. The US-assisted starch-MP complex in water had the highest complexing index (CI) value (77.11%) and resistant starch (RS) content (88.35%), resulting in a more compact and stable ordered structure. In all complexes, XRD revealed a new minor crystalline region of V-type, which was stabilized by hydrogen bonding as defined by FTIR and H1-NMR. Polyphenols caused a looser gel structure of starch, as imaged by a scanning electron microscope (SEM). Starch-phenolic complexes outperformed other complexes in terms of in vitro antioxidant activity. Gallic acid addition to starch molecules boosted DPPH scavenging activity, notably when synthesized in PAW regardless of US assistance, although having lower CI and RS values than the MP complex. Therefore, this research lays the groundwork for the efficient production of functional food ingredients based on rice starch and polyphenols.
Collapse
|
41
|
Sun Y, Yang Y, Zheng L, Zheng X, Xiao D, Wang S, Zhang Z, Ai B, Sheng Z. Physicochemical, Structural, and Digestive Properties of Banana Starch Modified by Ultrasound and Resveratrol Treatments. Foods 2022; 11:foods11223741. [PMID: 36429331 PMCID: PMC9689167 DOI: 10.3390/foods11223741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Ultrasonic treatment combined with resveratrol modification was used to improve banana starch's solubility, thermal stability, and digestion resistance. The solubility and freeze-thaw stability of the modified starch complex significantly increased. The oil-absorption capacity increased by 20.52%, and the gelatinization temperatures increased from 64.10-73.92 °C to 70.77-75.83 °C. The storage modulus (G') and loss modulus (G″) increased after ultrasound and resveratrol treatment, and the proportion of viscosity was increased after composition with resveratrol. Additionally, the in vitro digestibility decreased from 44.12% to 40.25%. The modified complexes had release-control ability for resveratrol. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy demonstrated that complex structures became more compact and organized, whereas crystalline patterns were unchanged. Scanning electron microscopy (SEM) showed that the resveratrol modification caused physical change on the granular surface by creating pores and fissures. The findings can help develop antioxidant functional foods using banana starch.
Collapse
Affiliation(s)
- Ying Sun
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yang Yang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Lili Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Xiaoyan Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Dao Xiao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Shenwan Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Binling Ai
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
- Correspondence:
| |
Collapse
|
42
|
Dual complexation using heat moisture treatment and pre-gelatinization to enhance Starch–Phenolic complex and control digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Guo T, Zheng B, He H, Chen L. Effects of non-covalent binding of lignans with rice starch driven by high-pressure homogenization on the starch structure and in vitro nutritional characteristics. Food Funct 2022; 13:9243-9253. [PMID: 36000543 DOI: 10.1039/d2fo00798c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a type of phytoestrogen, lignans have attracted attention in recent years for their nutritional functions. To investigate the effects of lignans on the structural and nutritional functions of starch, honokiol (HK) and arctiin (AC) were complexed with rice starch respectively under high-pressure homogenization (UHPH) (UHPHRS/HK and UHPHRS/AC). The results showed that both HK and AC could form inclusive complexes with rice starch via non-covalent bonding (hydrophobic interaction and hydrogen bonds), and these complexes could further form V-type crystals and aggregates, which reduced the starch digestibility as well as endowing them with the ability to retard glucose release and bind sodium cholate. Interestingly, due to its smaller molecular size, HK could induce starch to form a more compact structure than AC, leading to better nutritional functions. When the addition of HK/AC reached 8%, the resistant starch content could reach 26% and 19.8%, respectively. Meanwhile, the glucose dialysis retardation index could increase to 17.2% and 14.8%, respectively, and the sodium cholate-binding capacity could increase to 33.1 mg g-1 and 21.8 mg g-1, respectively. These results demonstrated that UHPH with lignans' molecular interaction could be beneficial for controlling the nutritional functions of starch products with the desired digestibility.
Collapse
Affiliation(s)
- Tianli Guo
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Bo Zheng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hai He
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
44
|
Zhang H, He F, Wang T, Chen G. Insights into the interaction of CaCl 2 and potato starch: Rheological, structural and gel properties. Int J Biol Macromol 2022; 220:934-941. [PMID: 36007697 DOI: 10.1016/j.ijbiomac.2022.08.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/26/2022] [Accepted: 08/20/2022] [Indexed: 11/05/2022]
Abstract
High viscosity of starch greatly limit its application in some specific foods, in this work, a novel low-viscosity potato starch (PS) was developed via crosslinking between PS (3 %, w/v) and Ca2+ to investigate the effect of CaCl2 concentration (0.1-5 % CaCl2, w/v) on the rheological behaviors, structural and gel properties of PS. The results showed that peak viscosity (PV), trough viscosity (TV), final viscosity (FV), and breakdown viscosity (BD) of pasting curves of CaCl2-treated PS were significantly reduced compared with the native PS. The CaCl2 treatment also decreased the firmness of the PS gel and increased its pasting temperature (PT) and gelatinization enthalpy (∆H). Moreover, The CaCl2 treatment also led to more organized crystallites in the PS granules as affected by the slight increase in the ratio of 1044/1015 cm-1 in the FT-IR analysis, reduced the homogeneity of ordered structures inside granules as indicated by the increase in conclusion temperature (Tc)-onset temperature (To) in DSC analysis, and decreased relatively crystallinity revealed by XRD analysis. The findings of this study indicated CaCl2-treated PS could serve as food ingredients with reduced paste viscosity and regulated paste stability under shear during heating.
Collapse
Affiliation(s)
- Hongcai Zhang
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory of Aquatic Products Quality & Safety Risk Assessment (Shanghai) at China Ministry of Agriculture, Shanghai Ocean University, No 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Fuli He
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA
| | - Tao Wang
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA
| | - Guibing Chen
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA.
| |
Collapse
|
45
|
Dhull SB, Chandak A, Collins MN, Bangar SP, Chawla P, Singh A. Lotus Seed Starch: A Novel Functional Ingredient with Promising Properties and Applications in Food—A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Ankita Chandak
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Maurice N. Collins
- Bernal Institute School of Engineering University of Limerick Limerick V94 T9PX Ireland
- Health Research Institute University of Limerick Limerick V94 T9PX Ireland
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson SC 29631 USA
| | - Prince Chawla
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab 144411 India
| | - Ajay Singh
- Department of Food Technology Mata Gujri College Fatehgarh Sahib Punjab 140406 India
| |
Collapse
|
46
|
Phenolics from sea buckthorn (Hippophae rhamnoides L.) modulate starch digestibility through physicochemical modifications brought about by starch – Phenolic molecular interactions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Insights into pH-modulated interactions between native potato starch and cyanidin-3-O-glucoside: Electrostatic interaction-dependent binding. Food Res Int 2022; 156:111129. [DOI: 10.1016/j.foodres.2022.111129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022]
|
48
|
How to synchronously slow down starch digestion and retrogradation: A structural analysis study. Int J Biol Macromol 2022; 212:43-53. [PMID: 35597377 DOI: 10.1016/j.ijbiomac.2022.05.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 12/29/2022]
Abstract
Digestibility and retrogradation properties of starch are important for the nutrition and quality of starch-based foods. In this study, a new idea on the synchronous delay the starch digestion and retrogradation was proposed, and the regulation mechanism was explored from perspectives of structural evolution using 13C NMR, XRD and SAXS techniques as well as the molecular dynamics simulations. Results showed that the chestnut starch treated with hot extrusion and 8% catechins (HE-8% CA)## could reach highest anti-retrogradation rate (AR 76.63%) and lowest rapidly digestible starch content (RDS 64.55%) at day 24. The starch digestion was slowed down by increasing single/double helix, V-type crystallinity and compactness of aggregates, while retrogradation process was suppressed by inhibiting the packing of short-range ordered structure into long-range ordered structure. The hydrogen bonding and van der Waals forces were the main driving force for the interactions between flavonoid polyphenols and starch molecules. Overall, this study is instructive for further investigations on the synchronous modulation of functional properties of starch.
Collapse
|
49
|
Kan L, Capuano E, Oliviero T, Renzetti S. Wheat starch-tannic acid complexes modulate physicochemical and rheological properties of wheat starch and its digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
50
|
Tomar M, Bhardwaj R, Verma R, Singh SP, Dahuja A, Krishnan V, Kansal R, Yadav VK, Praveen S, Sachdev A. Interactome of millet-based food matrices: A review. Food Chem 2022; 385:132636. [PMID: 35339804 DOI: 10.1016/j.foodchem.2022.132636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/28/2022]
Abstract
Millets are recently being recognized as emerging food ingredients with multifaceted applications. Whole grain flours made from millets, exhibit diverse chemical compositions, starch digestibility and physicochemical properties. A food matrix can be viewed as a section of food microstructure, commonly coinciding with a physical spatial domain that interacts or imparts specific functionalities to a particular food constituent. The complex millet-based food matrices can help individuals to attain nutritional benefits due to the intricate and unique digestive properties of these foods. This review helps to fundamentally understand the binary and ternary interactions of millet-based foods. Nutritional bioavailability and bioaccessibility are also discussed based on additive, synergistic, masking, the antagonistic or neutralizing effect of different food matrix components on each other and the surrounding medium. The molecular basis of these interactions and their effect on important functional attributes like starch retrogradation, gelling, pasting, water, and oil holding capacity is also discussed.
Collapse
Affiliation(s)
- Maharishi Tomar
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 284003, India; Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh Bhardwaj
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi 110012, India.
| | - Reetu Verma
- Division of Crop Improvement, ICAR -Indian Grassland and Fodder Research Institute, Jhansi 284003, India
| | - Sumer Pal Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 284003, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Veda Krishnan
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi 110012, India
| | - Vijay Kumar Yadav
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 284003, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Archana Sachdev
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|