1
|
Mengist MF, Abid MA, Grace MH, Seth R, Bassil N, Kay CD, Dare AP, Chagné D, Espley RV, Neilson A, Lila MA, Ferruzzi M, Iorizzo M. Identification and functional characterization of BAHD acyltransferases associated with anthocyanin acylation in blueberry. HORTICULTURE RESEARCH 2025; 12:uhaf041. [PMID: 40236732 PMCID: PMC11997424 DOI: 10.1093/hr/uhaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/03/2025] [Indexed: 04/17/2025]
Abstract
Blueberry is promoted as a super food with several health properties derived from chlorogenic acid and anthocyanin. Previous studies indicated that anthocyanin acylation and the content of chlorogenic acid could affect their level of absorption and biological activity. In this study, a genome-wide association study was performed to identify loci associated with anthocyanin and chlorogenic acid and characterize the candidate genes controlling anthocyanin acylation. Two stable loci controlling anthocyanin acylation and glucose specific glycosylation were confirmed on chromosomes 2 and 4, respectively, while no stable loci associated with chlorogenic acid were identified. Two acyl-CoA acyltransferases named VcBAHD-AT1 and VcBAHD-AT4 were identified as best candidate genes controlling anthocyanin acylation. Interestingly, the two genes clustered in acyl-CoA acyltransferases clade III, a clade that is not commonly associated with anthocyanin acylation. A virus-induced gene silencing approach optimized for silencing VcBAHD-AT1 and VcBAHD-AT4 in the whole blueberry fruits, confirmed the role of these two genes in anthocyanin acylation. Overall, this study establishes the foundation to develop a molecular marker to select for higher acylated anthocyanin and delivered a method for rapid functional characterization of genes associated with other fruit related traits in blueberry. Also, the study adds evidence that during the evolution of acyl-CoA acyltransferases multiple routes led to the emergence and/or fixation of the anthocyanin acyltransferase activity. These outcomes advance knowledge about the genes controlling anthocyanin acylation in blueberries and that extend to other plants. Selecting new blueberry cultivars with higher acylated anthocyanin levels could potentially increase absorption of this health-related bioactive.
Collapse
Affiliation(s)
- Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Agricultural Research Station, Virginia State University, Petersburg, VA 23806, USA
| | - Muhammad Ali Abid
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| | - Mary H Grace
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| | - Romit Seth
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| | - Nahla Bassil
- National Clonal Germplasm Repository, USDA-ARS, Corvallis, OR 97333, USA
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Arkansas Children’s Nutrition Center (ACNC), University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Andrew P Dare
- The New Zealand Institute for Plant and Food Research Limited, Auckland 92169, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland 92169, New Zealand
| | - Andrew Neilson
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Mario Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Arkansas Children’s Nutrition Center (ACNC), University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
2
|
Cortés-Avendaño P, Macavilca EA, Ponce-Rosas FC, Murillo-Baca SM, Quispe-Neyra J, Alvarado-Zambrano F, Condezo-Hoyos L. Microfluidic paper-based analytical device for measurement of pH using as sensor red cabbage anthocyanins and gum arabic. Food Chem 2025; 462:140964. [PMID: 39213972 DOI: 10.1016/j.foodchem.2024.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The objective of this study was to develop and validate a novel microfluidic paper-based analytical device (μPADpH) for determining the pH levels in foods. Anthocyanins from red cabbage aqueous extract (RCAE) were used as its analytical sensor. Whatman No. 1 filter paper was the most suitable for the device due to its porosity and fiber organization, which allows for maximum color intensity and minimal color heterogeneity of the RCAE in the detection zone of the μPADpH. To ensure the color stability of the RCAE for commercial use of the μPADpH, gum arabic was added. The geometric design of the μPADpH, including the channel length and separation zone diameter, was systematically optimized using colored food. The validation showed that the μPADpH did not differ from the pH meter when analyzing natural foods. However, certain additives in processed foods were found to increase the pH values.
Collapse
Affiliation(s)
- Paola Cortés-Avendaño
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru; Universidad Nacional Agraria La Molina, Instituto de Investigación de Bioquímica y Biología Molecular, Lima, Peru
| | - Edwin A Macavilca
- Universidad Nacional Jose Faustino Sanchez Carrion, Departamento de Ingenieria en Industrias Alimentarias, Functional Food Research Laboratory, Huacho, Peru
| | - Fortunato C Ponce-Rosas
- Universidad Nacional Daniel Alcides Carrión, Facultad de Ciencias Agropecuarias. Escuela de Formación Profesional de Industrias Alimentarias, La Merced, Chanchamayo, Peru
| | - Silvia M Murillo-Baca
- Universidad Nacional Daniel Alcides Carrión, Facultad de Ciencias Agropecuarias. Escuela de Formación Profesional de Industrias Alimentarias, La Merced, Chanchamayo, Peru
| | - Juan Quispe-Neyra
- Universidad Nacional de Piura, Escuela Profesional de Ingeniería Agroindustrial e Industrias Alimentarias, Piura, Peru
| | - Fredy Alvarado-Zambrano
- Universidad Nacional Santiago Antúnez de Mayolo, Facultad de Ingenieria de Industrias Alimentarias, Huaraz, Peru
| | - Luis Condezo-Hoyos
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru; Universidad Nacional Agraria La Molina, Instituto de Investigación de Bioquímica y Biología Molecular, Lima, Peru.
| |
Collapse
|
3
|
Arafa AA, Hakeim OA, Nada AA, Zahran MK, Shaffie NM, Ibrahim AY. Evaluation of smart bi-functional dressing based on polysaccharide hydrogels and Brassica oleracea extract for wound healing and continuous monitoring. Int J Biol Macromol 2025; 286:138339. [PMID: 39638175 DOI: 10.1016/j.ijbiomac.2024.138339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Skin wounds can drive global impacts, socially and economically, in parallel with their elevated incidence rate. Therefore, utilizing the dual-activity of Brassica Oleracea (Red Cabbage) extract, of being pH-sensitive and biologically active in designing novel, therapeutic, and pH-sensitive wound dressings with an easily stripped-off feature, is critical. Wound dressings were designed using two separate hydrogels based on chitosan (CS) and hydroxyethylcellulose (HEC), each loaded with RCE. The pH sensitivity of prepared bandages exhibited a noticeable visual change in color during wound treatment. Wound closure has reached 99.69 % for CS/RCE dressings. Results showed that RCE had raised the hydroxyproline and collagen content in the healed skin. Histopathological investigation proves that skin returned to its regular thickness within 10 days of treatment. RCE showed marked improvement in the healing quality by acting as an antioxidant, anti-inflammatory, and antimicrobial agent. Therefore, dual-function dressings are potential candidates to sense and cure skin wounds.
Collapse
Affiliation(s)
- Asmaa Ahmed Arafa
- Department of Dyeing, Printing, and Auxiliaries, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Osama A Hakeim
- Department of Dyeing, Printing, and Auxiliaries, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed Ali Nada
- Pre-treatment and Finishing of Cellulosic Textiles Dept., Textile Research Division, National Research Centre (Scopus Affiliation ID 60014618), Dokki, Giza 12622, Egypt
| | - Magdy Kandil Zahran
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| | - Nermeen M Shaffie
- Pathology Department, Medical Rresearches Institute, National Research Centre, 12622, Egypt
| | - Abeer Yousry Ibrahim
- Pharmaceutical and drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Zhai X, Xue Y, Song W, Sun Y, Shen T, Zhang X, Li Y, Zhang D, Zhou C, Zhang J, Arslan M, Tahir HE, Li Z, Shi J, Huang X, Zou X, Holmes M, Povey MJ. Rapid and Facile Synthesis of Homoporous Colorimetric Films Using Leaf Vein-Mediated Emulsion Evaporation Method for Visual Monitoring of Food Freshness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21854-21868. [PMID: 39308150 DOI: 10.1021/acs.jafc.4c06547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
A new method for rapid and facile fabrication of homoporous films with high volatile amine sensitivity was developed. First, red cabbage anthocyanin was encapsulated in ethyl cellulose to form water-in-organic (W/O) emulsion. Afterward, the W/O emulsion was rapidly dried using the supporting matrix Magnolia Grandiflora Linn leaf vein at 60% relative humidity and 50 °C to form a colorimetric film with regular hexagonal pores with an average side length of about 23 μm. The films exhibited good sensitivity to ammonia (NH3), dimethylamine, and trimethylamine, with limit of detection of 0.26, 0.24, and 0.38 μM, respectively, and high stability when stored in high humid environments. An obvious color change of the films from pink to green was clearly observed during the freshness monitoring of pork, chicken, salmon, and shrimp. Thus, this work offered a novel and reliable method for the development of porous films for food freshness monitoring.
Collapse
Affiliation(s)
- Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Yuhong Xue
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Wenjun Song
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Yue Sun
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Di Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chenguang Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Muhammad Arslan
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haroon Elrasheid Tahir
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, U.K
| | - Megan James Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, U.K
| |
Collapse
|
5
|
Mahović Poljaček S, Tomašegović T, Strižić Jakovljević M, Jamnicki Hanzer S, Murković Steinberg I, Žuvić I, Leskovac M, Lavrič G, Kavčič U, Karlovits I. Starch-Based Functional Films Enhanced with Bacterial Nanocellulose for Smart Packaging: Physicochemical Properties, pH Sensitivity and Colorimetric Response. Polymers (Basel) 2024; 16:2259. [PMID: 39204480 PMCID: PMC11358998 DOI: 10.3390/polym16162259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Starch-based pH-sensing films with bacterial nanocellulose (BNC) and red cabbage anthocyanins (RCA) as active components were investigated in this research. Their structural, physical, surface and colorimetric properties were analyzed, mainly as a function of BNC concentration. The aim of the research was to relate the changes in the intermolecular interactions between the components of the films (starch, anthocyanins and BNC) to the physical, surface and colorimetric properties that are important for the primary intended application of the produced films as pH indicators in smart packaging. The results showed that maize starch (MS) was more suitable as a matrix for the stabilization of anthocyanins compared to potato starch (PS). PS-based films showed a lower value of water contact angle than MS-based films, indicating stronger hydrophilicity. The swelling behavior results indicate that the concentrations of BNC in MS-based films (cca 10%) and the concentration of about 50% BNC in PS-based films are required if satisfactory properties of the indicator in terms of stability in a wet environment are to be achieved. The surface free energy results of PS-based films with BNC were between 62 and 68 mJ/m2 and with BNC and RCA between 64 and 68 mJ/m2; for MS-based films, the value was about 65 mJ/m2 for all samples with BNC and about 68 mJ/m2 for all samples with BNC and RCA. The visual color changes after immersion in different buffer solutions (pH 2.0-10.5) showed a gradual transition from red/pink to purple, blue and green for the observed samples. Films immersed in different buffers showed lower values of 2 to 10 lightness points (CIE L*) for PS-based films and 10 to 30 lightness points for MS-based films after the addition of BNC. The results of this research can make an important contribution to defining the influence of intermolecular interactions and structural changes on the physical, surface and colorimetric properties of bio-based pH indicators used in smart packaging applications.
Collapse
Affiliation(s)
- Sanja Mahović Poljaček
- Faculty of Graphic Arts, University of Zagreb, Getaldićeva 2, 10000 Zagreb, Croatia; (M.S.J.); (S.J.H.)
| | - Tamara Tomašegović
- Faculty of Graphic Arts, University of Zagreb, Getaldićeva 2, 10000 Zagreb, Croatia; (M.S.J.); (S.J.H.)
| | - Maja Strižić Jakovljević
- Faculty of Graphic Arts, University of Zagreb, Getaldićeva 2, 10000 Zagreb, Croatia; (M.S.J.); (S.J.H.)
| | - Sonja Jamnicki Hanzer
- Faculty of Graphic Arts, University of Zagreb, Getaldićeva 2, 10000 Zagreb, Croatia; (M.S.J.); (S.J.H.)
| | - Ivana Murković Steinberg
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (I.M.S.); (I.Ž.); (M.L.)
| | - Iva Žuvić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (I.M.S.); (I.Ž.); (M.L.)
| | - Mirela Leskovac
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (I.M.S.); (I.Ž.); (M.L.)
| | - Gregor Lavrič
- Pulp and Paper Institute, Bogišićeva ulica 8, 1000 Ljubljana, Slovenia; (G.L.); (U.K.)
| | - Urška Kavčič
- Pulp and Paper Institute, Bogišićeva ulica 8, 1000 Ljubljana, Slovenia; (G.L.); (U.K.)
| | - Igor Karlovits
- Danfoss Trata d.o.o., Jožeta Jame 16, 1210 Šentvid, Slovenia;
| |
Collapse
|
6
|
Fierri I, De Marchi L, Chignola R, Rossin G, Bellumori M, Perbellini A, Mancini I, Romeo A, Ischia G, Saorin A, Mainente F, Zoccatelli G. Nanoencapsulation of Anthocyanins from Red Cabbage ( Brassica oleracea L. var. Capitata f. rubra) through Coacervation of Whey Protein Isolate and Apple High Methoxyl Pectin. Antioxidants (Basel) 2023; 12:1757. [PMID: 37760059 PMCID: PMC10525587 DOI: 10.3390/antiox12091757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Encapsulation is a valuable strategy to protect and deliver anthocyanins (ACNs), phenolic compounds with outstanding antioxidant capacity but limited stability. In this study, coacervation was used to encapsulate an ACN-rich red cabbage extract (RCE). Two agri-food by-product polymers, whey protein isolate (WPI) and apple high-methoxyl pectin (HMP), were blended at pH 4.0 in a specific ratio to induce the formation of nanoparticles (NPs). The process optimisation yielded a monodispersed population (PDI < 0.200) of negatively charged (-17 mV) NPs with an average diameter of 380 nm. RCE concentration influenced size, charge, and antioxidant capacity in a dose-dependent manner. NPs were also sensitive to pH increases from 4 to 7, showing a progressive breakdown. The encapsulation efficiency was 30%, with the retention of ACNs within the polymeric matrix being influenced by their chemical structure: diacylated and/or C3-triglucoside forms were more efficiently encapsulated than monoacylated C3-diglucosides. In conclusion, we report a promising, simple, and sustainable method to produce monodispersed NPs for ACN encapsulation and delivery. Evidence of differential binding of ACNs to NPs, dependent on specific acylation/glycosylation patterns, indicates that care must be taken in the choice of the appropriate NP formulation for the encapsulation of phenolic compounds.
Collapse
Affiliation(s)
- Ilaria Fierri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Laura De Marchi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Giacomo Rossin
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Maria Bellumori
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, Sesto F.no, 50019 Florence, Italy;
| | - Anna Perbellini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Ines Mancini
- Department of Physics, University of Trento, Via Sommarive 14, Povo, 38123 Trento, Italy;
| | - Alessandro Romeo
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Gloria Ischia
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy;
| | - Asia Saorin
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Federica Mainente
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| | - Gianni Zoccatelli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.F.); (L.D.M.); (R.C.); (G.R.); (A.P.); (A.S.); (F.M.)
| |
Collapse
|
7
|
Al-Shammari AMA, Hamdi GJ. Genotype and foliar fertilization affect growth, production and accumulation of anthocyanin in red Cabbage. INTERNATIONAL JOURNAL OF VEGETABLE SCIENCE 2023; 29:337-347. [DOI: 10.1080/19315260.2023.2219672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Aziz Mahdi Abd Al-Shammari
- Department of Horticulture and Landscape Gardening, College of Agriculture, University of Diyala, Baqubah, Iraq
| | - Ghassan Jaafar Hamdi
- Department of Horticulture and Landscape Gardening, College of Agriculture, University of Diyala, Baqubah, Iraq
| |
Collapse
|
8
|
Tan S, Lan X, Chen S, Zhong X, Li W. Physical character, total polyphenols, anthocyanin profile and antioxidant activity of red cabbage as affected by five processing methods. Food Res Int 2023; 169:112929. [PMID: 37254355 DOI: 10.1016/j.foodres.2023.112929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023]
Abstract
Understanding the influence of processing methods on the phytochemicals of fruits and vegetables is of importance in retaining the health-benefiting properties of those products. The aim of this study was to investigate the effects of five processing methods including freeze drying (FD), hot air drying (HD), water boiling (WB), steaming (ST), and pickling (PI) on the physical character, total polyphenols, anthocyanin profile and antioxidant activity of red cabbage. Different color and texture were observed after different processing methods. Total anthocyanin content was reduced by 73%, 72%, 41%, 16%, and 30% in FD, HD, WB, ST and PI processed red cabbage, respectively. PI samples showed the highest values of total polyphenols and DPPH scavenge activity among all the processed red cabbage. Both FD and HD samples had relatively low values of total polyphenols and DPPH scavenge activity. However, FD sample had the highest FRAP values. UPLC-QqQ-MS/MS analysis showed that fresh red cabbage contained 22 anthocyanins among which cyanidin-3-diglucoside-5-glucoside was the prominent. Compared with drying process, WB, ST and PI decreased the loss of most of the anthocyanin component in red cabbage. Correlation analysis indicated that antioxidant capacity as determined by DPPH of red cabbage was positively and significantly correlated with the total anthocyanins. This study suggested that drying induced significant loss of phytochemicals in red cabbage, and WB, ST, as well as PI were advisable ways for daily consumption of red cabbage considering the bioactive components. Especially, ST was the best way to retain anthocyanins in red cabbage.
Collapse
Affiliation(s)
- Si Tan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, PR China.
| | - Xin Lan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, PR China
| | - Shan Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, PR China
| | - Xin Zhong
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, PR China
| | - Wenfeng Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, PR China
| |
Collapse
|
9
|
Mengist MF, Grace MH, Mackey T, Munoz B, Pucker B, Bassil N, Luby C, Ferruzzi M, Lila MA, Iorizzo M. Dissecting the genetic basis of bioactive metabolites and fruit quality traits in blueberries ( Vaccinium corymbosum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:964656. [PMID: 36119607 PMCID: PMC9478557 DOI: 10.3389/fpls.2022.964656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/26/2022] [Indexed: 06/01/2023]
Abstract
Blueberry is well-recognized as a healthy fruit with functionality derived largely from anthocyanin and chlorogenic acid. Despite their importance, no study to date has evaluated the genetic basis of these bioactives in blueberries and their relationship with fruit quality traits. Hence, to fill this gap, a mapping population including 196 F1 individuals was phenotyped for anthocyanin and chlorogenic acid concentration and fruit quality traits (titratable acidity, pH, and total soluble solids) over 3 years and data were used for QTL mapping and correlation analysis. Total soluble solids and chlorogenic acid were positively correlated with glycosylated anthocyanin and total anthocyanin, respectively, indicating that parallel selection for these traits is possible. Across all the traits, a total of 188 QTLs were identified on chromosomes 1, 2, 4, 8, 9, 11 and 12. Notably, four major regions with overlapping major-effect QTLs were identified on chromosomes 1, 2, 4 and 8, and were responsible for acylation and glycosylation of anthocyanins in a substrate and sugar donor specific manner. Through comparative transcriptome analysis, multiple candidate genes were identified for these QTLs, including glucosyltransferases and acyltransferases. Overall, the study provides the first insights into the genetic basis controlling anthocyanins accumulation and composition, chlorogenic acid and fruit quality traits, and establishes a framework to advance genetic studies and molecular breeding for anthocyanins in blueberry.
Collapse
Affiliation(s)
- Molla Fentie Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary H. Grace
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Ted Mackey
- Horticultural Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Corvallis, OR, United States
| | - Bryan Munoz
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Boas Pucker
- Institute of Plant Biology, TU Braunschweig, Braunschweig, Germany
- BRICS, TU Braunschweig, Braunschweig, Germany
| | - Nahla Bassil
- National Clonal Germplasm Repository, USDA-ARS, Corvallis, OR, United States
| | - Claire Luby
- Horticultural Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Corvallis, OR, United States
| | - Mario Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
10
|
Fang S, Guan Z, Su C, Zhang W, Zhu J, Zheng Y, Li H, Zhao P, Liu X. Accurate fish-freshness prediction label based on red cabbage anthocyanins. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Intelligent pH-Sensitive Indicator Based on Chitosan@PVP Containing Extracted Anthocyanin and Reinforced with Sulfur Nanoparticles: Structure, Characteristic and Application in Food Packaging. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Vidana Gamage GC, Lim YY, Choo WS. Sources and relative stabilities of acylated and nonacylated anthocyanins in beverage systems. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:831-845. [PMID: 35185195 PMCID: PMC8814286 DOI: 10.1007/s13197-021-05054-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Anthocyanins are considered as the largest group of water-soluble pigments found in the vacuole of plant cells, displaying range of colors from pink, orange, red, purple and blue. They belong to flavonoids, a polyphenolic subgroup. Application of anthocyanins in food systems as natural food colourants is limited due to the lack of stability under different environmental conditions such as light, pH, heat etc. Anthocyanins esterified with one or more acid groups are referred as acylated anthocyanins. Based on the presence or absence of acyl group, anthocyanins are categorized as acylated and nonacylated anthocyanins. Acylated anthocyanins are further classified as mono, di, tri, tetra acylated anthocyanins according to the number of acyl groups present in the anthocyanin. This review classifies common anthocyanin sources into non-acylated, mono-, di-, tri- and tetra-acylated anthocyanins based on the major anthocyanins present in these sources. The relative stabilities of these anthocyanins with respect to thermal, pH and photo stress in beverage systems are specifically discussed. Common anthocyanin sources such as elderberry, blackberry, and blackcurrant mainly contain nonacylated anthocyanins. Red radish, purple corn, black carrot also mainly contain mono acylated anthocyanins. Red cabbage and purple sweet potato have both mono and diacylated anthocyanins. Poly acylated anthocyanins show relatively higher stability compared with nonacylated and monoacylated anthocyanins. Several techniques such as addition of sweeteners, co-pigmentation and acylation techniques could enhance the stability of nonacylated anthocyanins. Flowers are main sources of polyacylated anthocyanins having higher stability, yet they have not been commercially exploited for their anthocyanins.
Collapse
Affiliation(s)
| | - Yau Yan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
13
|
High-Resolution UPLC-MS Profiling of Anthocyanins and Flavonols of Red Cabbage ( Brassica oleracea L. var. capitata f. rubra DC.) Cultivated in Egypt and Evaluation of Their Biological Activity. Molecules 2021; 26:molecules26247567. [PMID: 34946649 PMCID: PMC8708035 DOI: 10.3390/molecules26247567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
In this paper, biological investigations and a high-resolution UPLC-PDA-ESI-qTOF-HRMS technique were employed for Brassica oleracea L. var. capitata f. rubra DC. (red cabbage) of the family Brassicaceae (Cruciferae), cultivated in Egypt, for the first time. The positive ionization mode is usually performed to identify anthocyanins. However, this technique cannot differentiate between anthocyanins and corresponding non-anthocyanin polyphenols. Thus, the negative ionization mode was also used, as it provided a series of characteristic ions for the MS analysis of anthocyanins. This helped in identifying five kaempferol derivatives for the first time in red cabbage, as well as nine—previously reported—anthocyanins. For the biological investigations, the acidified methanolic extract of fresh leaves and the methanolic extract of air-dried powdered leaves were examined for their antioxidant, antimicrobial, and anticancer activities. The freshly prepared phenolic extract was proven to be more biologically potent. Statistical significance was determined for its anticancer activity in comparison with standard doxorubicin.
Collapse
|
14
|
An Insight into Anti-Inflammatory Activities and Inflammation Related Diseases of Anthocyanins: A Review of Both In Vivo and In Vitro Investigations. Int J Mol Sci 2021; 22:ijms222011076. [PMID: 34681733 PMCID: PMC8540239 DOI: 10.3390/ijms222011076] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Anthocyanin is a type of flavonoid pigment widely present in fruits and vegetables. It can not only be used as natural pigment, but also has a variety of health functions, for instance, anti-oxidant, anti-inflammatory, anti-tumor, and neuroprotective activities. Persistent proinflammatory status is a major factor in the development, progression, and complications of chronic diseases. Not surprisingly, there are thus many food ingredients that can potentially affect inflammation related diseases and many studies have shown that anthocyanins play an important role in inflammatory pathways. In this paper, the inflammation related diseases (such as, obesity, diabetes, cardiovascular disease, and cancer) of anthocyanins are introduced, and the anti-inflammatory effect of anthocyanins is emphatically introduced. Moreover, the anti-inflammatory mechanism of anthocyanins is elaborated from the aspects of NF-κB, toll like receptor, MAPKs, NO, and ROS and the main efficacy of anthocyanins in inflammation and related diseases is determined. In conclusion, this review aims to get a clear insight into the role of anthocyanins in inflammation related diseases.
Collapse
|
15
|
Ghareaghajlou N, Hallaj-Nezhadi S, Ghasempour Z. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chem 2021; 365:130482. [PMID: 34243124 DOI: 10.1016/j.foodchem.2021.130482] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
Red cabbage anthocyanins are of great interest as natural food colorants in the food industry; as they represent the color over a broad range of pH-values compared to anthocyanins from other natural sources. It is important to select an appropriate technique with high recovery of anthocyanins from red cabbage, among which extraction with organic solvents is the most applied extraction method. Currently, novel extraction techniques are employed as an alternative to the solvent extraction method, providing advantages such as higher anthocyanin recovery in a shorter time, lower solvent utilization, and minimum quality degradation. However, the incorporation of extracted anthocyanins into foodstuffs and pharmacological products is limited due to their low bioavailability and relative instability toward environmental adverse conditions, such as pH, temperature, enzymes, light, oxygen and ascorbic acid. In addition to increased structural stability of anthocyanins through glycosylation and acylation, their stability could be improved by copigmentation and encapsulation.
Collapse
Affiliation(s)
- Nazila Ghareaghajlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Hallaj-Nezhadi
- Drug Applied Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Preparation and characterization of smart therapeutic pH-sensitive wound dressing from red cabbage extract and chitosan hydrogel. Int J Biol Macromol 2021; 182:1820-1831. [PMID: 34052272 DOI: 10.1016/j.ijbiomac.2021.05.167] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Developing a multifunctional wound dressing that protects, cures and indicates the healing progress, is a new approach of investigation. Red cabbage extract (RCE), consisting of bioactive compounds that have antioxidant, anti-inflammatory, anti-carcinogenic, bactericidal, antifungal, and antiviral activities, was utilized as a natural pH-sensitive indicator. Chitosan-based hydrogel, encapsulating RCE, was developed to obtain a smart therapeutic pH-sensitive wound dressing as antimicrobial bio-matrix provides a comfortable cushion for wound bed and indicates its status. Methacrylated-chitosan was crosslinked by different concentrations of methylenebisacrylamide (MBAA) by which hydrogel mechanical and morphological properties were tuned. The proposed mechanism for hydrogel formation was confirmed by FT-IR. The coloristic properties of the RCE and the changes in color intensity as a function of pH were confirmed by UV-Vis spectroscopy. The effect of MBAA on the mechanical, swelling, release and morphological properties of hydrogel were investigated. MBAA (2.5% wt/v) in 2% wt/v chitosan showed preferable mechanical (20 KPa), swelling (1294% at pH 8 ± 0.2), and release (prolonged up to 5 days) properties. Hydrogel matrices, loaded on cotton gauze submerged in different pH buffer solutions, showed explicit color changes from green to red as pH changed from 9 to 4.
Collapse
|
17
|
Becerril R, Nerín C, Silva F. Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Snyder LD, Gómez MI, Mudrak EL, Power AG. Landscape-dependent effects of varietal mixtures on insect pest control and implications for farmer profits. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02246. [PMID: 33124091 PMCID: PMC7988554 DOI: 10.1002/eap.2246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Intraspecific plant diversity can significantly impact insect herbivore populations in natural systems. Yet, its role as an insect pest control strategy in agriculture has received less attention, and little is known about which crop traits are important to herbivores in different landscape contexts. Moreover, empirical economic analyses on the cost-effectiveness of varietal mixtures are lacking. We used varietal mixtures of Brassica oleracea crops on working farms to examine how two metrics of intraspecific crop diversity, varietal richness and number of plant colors (color richness), affect crop damage and the incidence and abundance of two insect pest species: Pieris rapae and Phyllotreta spp. We evaluated the context-dependency of varietal mixtures by sampling early- and late-season plantings of B. oleracea crops in farms across a gradient of landscape composition. We developed crop budgets and used a net present value analysis to assess the impact of varietal mixtures on input and labor costs, crop revenues, and profit. We found context-dependent effects of varietal mixtures on both pests. In early-season plantings, color richness did not affect Phyllotreta spp. populations. However, increasing varietal richness reduced Phyllotreta spp. incidence in simple landscapes dominated by cropland, but this trend was reversed in complex landscapes dominated by natural habitats. In late-season plantings, color richness reduced the incidence and abundance of P. rapae larvae, but only in complex landscapes where their populations were highest. Varietal richness had the same effect on P. rapae larvae as color richness. Unexpectedly, we consistently found lower pest pressure and reduced crop damage in simple landscapes. Although varietal mixtures did not affect crop damage, increasing color richness corresponded with increased profits, due to increased revenue and a marginal reduction in labor and input costs. We demonstrate varietal mixtures can significantly impact pest populations, and this effect can be mediated by intraspecific variation in crop color. However, the strength and direction of these effects vary by season, landscape composition, and pest species. The association between varietal color richness and profitability indicates farmers could design mixtures to enhance economic returns. We recommend additional research on the benefits of intraspecific trait variation for farmers.
Collapse
Affiliation(s)
- Lauren D. Snyder
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York14853USA
| | - Miguel I. Gómez
- Charles H. Dyson School of Applied Economics and ManagementCornell UniversityIthacaNew York14853USA
| | - Erika L. Mudrak
- Cornell Statistical Consulting UnitCornell UniversityIthacaNew York14853USA
| | - Alison G. Power
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York14853USA
| |
Collapse
|
19
|
Chen M, Yan T, Huang J, Zhou Y, Hu Y. Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. Int J Biol Macromol 2021; 179:90-100. [PMID: 33636274 DOI: 10.1016/j.ijbiomac.2021.02.170] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
In this study, halochromic smart films were produced, characterized, and applied to monitor the freshness of hairtail and shrimp in real-time. Red cabbage anthocyanins (RCAs) solution illustrated significant color variations (red-pink-blue-green) in different pH environments. RCAs were successfully immobilized into chitosan (CS)/oxidized-chitin nanocrystals (OCN) composites through hydrogen bonding, and cohesive film structures were formed. When the proper concentration of RCAs was incorporated into the composites, improved water vapor permeability (WVP), oxygen permeability (OP), mechanical, UV-blocking, and antioxidant properties were observed. Moreover, the smart films exhibited distinguishable changes of color to ammonia vapor and acidic/alkaline environment within short time intervals, which were easy to discern by naked eyes. Finally, the smart films were applied to monitor the freshness of hairtail (Trichiurus lepturus) and shrimp (Penaeus vannamei). The film color changed significantly during storage time, and three stages of product freshness (fresh, medium fresh, and spoiled) were successfully differentiated. Strong correlations among three freshness indicators and two colorimetric parameters were also identified and analyzed. Overall, the smart system assembled from non-toxic and biodegradable components could contribute to monitoring the freshness of seafood, like hairtail and shrimp, in real-time.
Collapse
Affiliation(s)
- Meiyu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jiayin Huang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqi Zhou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
20
|
TMT-based quantitative proteomic analysis of hepatic tissue reveals the effects of dietary cyanidin-3-diglucoside-5-glucoside-rich extract on alleviating D-galactose-induced aging in mice. J Proteomics 2020; 232:104042. [PMID: 33161165 DOI: 10.1016/j.jprot.2020.104042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Cyanidin-3-diglucoside-5-glucoside (CY3D5G) derivatives as major pigments in red cabbage exhibit in vitro antioxidant effects. This study evaluated the effects of CY3D5G-rich extract on oxidative stress in D-galactose-induced accelerated aging. Thirty male C57BL/6 J mice were divided into three groups: a normal control group and two D-galactose-injected groups orally administered with or without CY3D5G-rich extract (700 μmol/kg body weight). Dietary supplementation of CY3D5G-rich extract for 6 weeks increased superoxide dismutase activity, glutathione peroxidase activity, and total antioxidant capacity while suppressed malondialdehyde content in serum (p < 0.05) and tissues. Hepatic proteome analysis revealed that 243 proteins were significantly modulated by experimental treatment (p < 0.05). CY3D5G-rich extract treatment suppressed proteins involved in electron transport chain and up-regulated proteins that play important roles in glycolysis, tricarboxylic acid cycle, and actin cytoskeleton. These changes in above metabolic pathways may contribute to reducing the production and release of ROS and attenuating oxidative damage in aged mice. SIGNIFICANCE: Anthocyanins are the most abundant dietary flavonoids with potential health benefits. The proteomic analysis of mice liver in this study revealed the effect of cyanidin-3-diglucoside-5-glucoside (CY3D5G) consumption in D-galactose-induced accelerated aging. In total, 2054 protein groups were quantified in all samples without any missing value, and 243 protein groups were identified with statistical significance (p < 0.05). Bioinformatics analysis suggested that electron transport chain, glycolysis, tricarboxylic acid cycle, and actin cytoskeleton were closely correlated with CY3D5G treatment. These findings provide useful information to understand the anti-aging effect of anthocyanin, and the results of which could promote the use of anthocyanins in food and pharmaceutical industries.
Collapse
|
21
|
Hu X, Liu J, Li W, Wen T, Li T, Guo XB, Liu RH. Anthocyanin accumulation, biosynthesis and antioxidant capacity of black sweet corn (Zea mays L.) during kernel development over two growing seasons. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Tecucianu AC, Drăghici O, Oancea S. AN ENZYME-ENHANCED EXTRACTION OF ANTHOCYANINS FROM RED CABBAGE AND THEIR THERMAL DEGRADATION KINETICS. ACTA ALIMENTARIA 2020. [DOI: 10.1556/066.2020.49.2.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a great demand for developing efficient anthocyanins extraction related to each plant material. Conventional methods have been replaced by novel techniques, but they might remain attractive when combined with the latter. Anthocyanins extraction from fresh and dried red cabbage was investigated by maceration, ultrasonication, and with enzymes. Pre-treatments through drying determined an improved extraction with respect to fresh samples, freeze-drying emerging as the best method. Combined enzyme-assisted extraction with maceration resulted in higher yield by conducting several extractions (1078.8±12.5 mg/100 g DW). The kinetic studies revealed good stability of anthocyanins at 50 °C, while constant degradation at 80 °C. The rate constant k at 80 °C and pH 3.5 was 1.7 10–3 min–1 and the half-life time t1/2 was 6.7 h. Thermal analysis evidenced heat-induced changes in particular for extracts undergoing pre-heating. These results are valuable for optimal processing conditions of anthocyanins-containing products.
Collapse
Affiliation(s)
- A-C. Tecucianu
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, I Ratiu str. 7-9, 550012 Sibiu. Romania
| | - O. Drăghici
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, I Ratiu str. 7-9, 550012 Sibiu. Romania
| | - S. Oancea
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, I Ratiu str. 7-9, 550012 Sibiu. Romania
| |
Collapse
|
23
|
Mengist MF, Grace MH, Xiong J, Kay CD, Bassil N, Hummer K, Ferruzzi MG, Lila MA, Iorizzo M. Diversity in Metabolites and Fruit Quality Traits in Blueberry Enables Ploidy and Species Differentiation and Establishes a Strategy for Future Genetic Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:370. [PMID: 32318085 PMCID: PMC7147330 DOI: 10.3389/fpls.2020.00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/16/2020] [Indexed: 05/30/2023]
Abstract
Blueberry is well recognized as a rich source of health promoting phytochemicals such as flavonoids and phenolic acids. Multiple studies in blueberry and other crops indicated that flavonoids and phenolic acids function as bioactive compounds in the human body promoting multiple health effects. Despite their importance, information is limited about the levels of variation in bioactive compounds within and between ploidy level and species, and their association with fruit quality traits. Such information is crucial to define a strategy to study the genetic mechanisms controlling these traits and to select for these traits in blueberry breeding programs. Here we evaluated 33 health related phytochemicals belonging to four major groups of flavonoids and phenolic acids across 128 blueberry accessions over two years together with fruit quality traits, including fruit weight, titratable acidity, total soluble acids and pH. Highly significant variation between accessions, years, and accession by year interaction were identified for most of the traits. Cluster analysis grouped phytochemicals by their functional structure (e.g., anthocyanins, flavanols, flavonols, and phenolic acids). Multivariate analysis of the traits resulted in separation of diploid, tetraploid and hexaploid accessions. Broad sense heritability of the traits estimated in 100 tetraploid accessions, ranged from 20 to 90%, with most traits revealing moderate to high broad sense heritability (H2 > 40%), suggesting that strong genetic factors control these traits. Fruit size can be estimated as a proxy of fruit weight or volume and vice versa, and it was negatively correlated with content of most of phytochemicals evaluated here. However, size-independent variation for anthocyanin content and profile (e.g., acylated vs. non-acylated anthocyanin) exists in the tetraploid accessions and can be explored to identify other factors such as genes related to the biosynthetic pathway that control this trait. This result also suggests that metabolite concentrations and fruit size, to a certain degree can be improved simultaneously in breeding programs. Overall, the results of this study provide a framework to uncover the genetic basis of bioactive compounds and fruit quality traits and will be useful to advance blueberry-breeding programs focusing on integrating these traits.
Collapse
Affiliation(s)
- Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Mary H Grace
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Jia Xiong
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Nahla Bassil
- USDA-ARS-National Clonal Germplasm Repository, Corvallis, OR, United States
| | - Kim Hummer
- USDA-ARS-National Clonal Germplasm Repository, Corvallis, OR, United States
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
24
|
Natural Dyes from Mortiño (Vaccinium floribundum) as Sensitizers in Solar Cells. ENERGIES 2020. [DOI: 10.3390/en13040785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photovoltaic energy presents environmental advantages; however, these advantages are limited by the cost of manufacturing solar cells and in many cases, scarce or dangerous materials are incorporated. Therefore, the use of natural dyes from mortiño (Vaccinium floribundum) as sensitizers in solar cells is proposed. The dyes were extracted by maceration in acidified methanol (HCl, citric acid and trifluoroacetic acid TFA) and were characterized by High-Performance Liquid Chromatography (HPLC), Thin-Layer Chromatography (TLC) and spectrometric methods (UV-Vis, IR and MS-MALDI). The construction and characterization of cells were in standard conditions. The study confirms that pigments in mortiño are flavonoids of the anthocyanidin group as: cyanidin-3-galactoside, and cyanidin-3-arabinoside. The efficiency of solar cells was between 0.18–0.26%; the extraction with TFA in methanol leads to the best performance. Although they have low power conversion efficiency, mortiño dyes could be an alternative to artificial sensitizers for solar cell technologies because they are harmless and abundant substances.
Collapse
|