1
|
Dold CA, Sahin AW, Giblin L. Dairy Foods: A Matrix for Human Health and Precision Nutrition-Effect of processing infant milk formula on protein digestion and gut barrier health (in vitro and preclinical). J Dairy Sci 2025; 108:3088-3108. [PMID: 39694254 DOI: 10.3168/jds.2024-25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 12/20/2024]
Abstract
The infant gut is immature and permeable with high gastric pH, low protease activities, and underdeveloped intestinal architecture. Protein digestion in the upper gastrointestinal tract of infants is slow and incomplete. During manufacture, infant milk formula (IMF) is typically heat-treated so it is safe for human consumption. This heat treatment causes denaturation and aggregation of milk proteins, and formation of undesirable Maillard reaction products. The aim of this review is to critically summarize the in vitro and preclinical data available on the effect of IMF thermal processing on protein digestion and gut barrier physiology in the immature infant gut. Recent research efforts have focused on reducing thermal loads during IMF manufacturing by sourcing ingredients with low thermal loads, by reducing temperatures during IMF processing itself, and by seeking alternative processing technologies. This review also aims to evaluate whether these thermal reductions have a knock-on effect on protein digestion and gut barrier health in the infant. The ultimate aim is to create a safe next-generation IMF product that more closely mimics human breast milk in its protein digestion kinetics and its ability to promote gut barrier maturity in the infant.
Collapse
Affiliation(s)
- Cathal A Dold
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork T12 CY82, Ireland
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, Cork T12 CY82, Ireland
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| |
Collapse
|
2
|
Wijegunawardhana D, Wijesekara I, Liyanage R, Truong T, Silva M, Chandrapala J. The Impact of Varying Lactose-to-Maltodextrin Ratios on the Physicochemical and Structural Characteristics of Pasteurized and Concentrated Skim and Whole Milk-Tea Blends. Foods 2024; 13:3016. [PMID: 39335944 PMCID: PMC11431367 DOI: 10.3390/foods13183016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the impact of substituting lactose with maltodextrin in milk-tea formulations to enhance their physicochemical and structural properties. Various lactose-to-maltodextrin ratios (100:0, 90:10, 85:15, 80:20, 75:25) were evaluated in both post-pasteurized and concentrated skim milk-tea (SM-T) and whole milk-tea (WM-T) formulations. Concentration significantly improved the zeta potential, pH, and browning index in both SM-T and WM-T compared to pasteurization. L:M ratios of 90:10 and 75:25 in WM-T and 90:10 and 80:20 in SM-T showed higher phenolic preservation after concentration due to structural changes resulting from the addition of maltodextrin and water removal during prolonged heating. The preservation effect of phenolic components in both WM-T and SM-T is governed by many mechanisms including pH stabilization, zeta potential modulation, protein interactions, complex formation, and encapsulation effects. Therefore, optimizing milk-tea stability and phenolic preservation through L:M ratio adjustments provides a promising approach for enhancing milk-tea properties.
Collapse
Affiliation(s)
- Dilema Wijegunawardhana
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Rumesh Liyanage
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka
| | - Tuyen Truong
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
- School of Science, Engineering & Technology, RMIT University, Ho Chi Minh City 700000, Vietnam
| | - Mayumi Silva
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Jayani Chandrapala
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
3
|
Wijegunawardhana D, Wijesekara I, Liyanage R, Truong T, Silva M, Chandrapala J. Process-Induced Molecular-Level Protein-Carbohydrate-Polyphenol Interactions in Milk-Tea Blends: A Review. Foods 2024; 13:2489. [PMID: 39200417 PMCID: PMC11353574 DOI: 10.3390/foods13162489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The rapid increase in the production of powdered milk-tea blends is driven by a growing awareness of the presence of highly nutritious bioactive compounds and consumer demand for convenient beverages. However, the lack of literature on the impact of heat-induced component interactions during processing hinders the production of high-quality milk-tea powders. The production process of milk-tea powder blends includes the key steps of pasteurization, evaporation, and spray drying. Controlling heat-induced interactions, such as protein-protein, protein-carbohydrate, protein-polyphenol, carbohydrate-polyphenol, and carbohydrate-polyphenol, during pasteurization, concentration, and evaporation is essential for producing a high-quality milk-tea powder with favorable physical, structural, rheological, sensory, and nutritional qualities. Adjusting production parameters, such as the type and the composition of ingredients, processing methods, and processing conditions, is a great way to modify these interactions between components in the formulation, and thereby, provide improved properties and storage stability for the final product. Therefore, this review comprehensively discusses how molecular-level interactions among proteins, carbohydrates, and polyphenols are affected by various unit operations during the production of milk-tea powders.
Collapse
Affiliation(s)
- Dilema Wijegunawardhana
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka;
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka;
| | - Rumesh Liyanage
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka;
| | - Tuyen Truong
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
- School of Science, Engineering & Technology, RMIT University, Ho Chi Minh City 700000, Vietnam
| | - Mayumi Silva
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
| | - Jayani Chandrapala
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
| |
Collapse
|
4
|
Koroleva V, Lavlinskaya M, Holyavka M, Penkov N, Zuev Y, Artyukhov V. Thermal Inactivation, Denaturation and Aggregation Processes of Papain-Like Proteases. Chem Biodivers 2024; 21:e202401038. [PMID: 38849308 DOI: 10.1002/cbdv.202401038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
The investigation into the behavior of ficin, bromelain, papain under thermal conditions holds both theoretical and practical significance. The production processes of medicines and cosmetics often involve exposure to high temperatures, particularly during the final product sterilization phase. Hence, it's crucial to identify the "critical" temperatures for each component within the mixture for effective technological regulation. In light of this, the objective of this study was to examine the thermal inactivation, aggregation, and denaturation processes of three papain-like proteases: ficin, bromelain, papain. To achieve this goal, the following experiments were conducted: (1) determination of the quantity of inactivated proteases using enzyme kinetics with BAPNA as a substrate; (2) differential scanning calorimetry (DSC); (3) assessment of protein aggregation using dynamic light scattering (DLS) and spectrophotometric analysis at 280 nm. Our findings suggest that the inactivation of ficin and papain exhibits single decay step which characterized by a rapid decline, then preservation of the same residual activity by enzyme stabilization. Only bromelain shows two steps with different kinetics. The molecular sizes of the active and inactive forms are similar across ficin, bromelain, and papain. Furthermore, the denaturation of these forms occurs at approximately the same rate and is accompanied by protein aggregation.
Collapse
Affiliation(s)
- Victoria Koroleva
- Department of Biophysics and Biotechnology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia
- Department of Biology, Voronezh State Medical University named after N.N. Burdenko, Studencheskaya St. 10, Voronezh, Russia
| | - Maria Lavlinskaya
- Department of Biophysics and Biotechnology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia
| | - Marina Holyavka
- Department of Biophysics and Biotechnology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia
| | - Nikita Penkov
- Laboratories of methods of optical-spectral analysis, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Russia
| | - Yuriy Zuev
- Laboratory of Biophysical Chemistry of Nanosystems, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia, Lobachevskogo St. 2/31, Kazan, Russia
| | - Valeriy Artyukhov
- Department of Biophysics and Biotechnology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia
| |
Collapse
|
5
|
Chen Y, Rooney H, Dold C, Bavaro S, Tobin J, Callanan MJ, Brodkorb A, Lawlor PG, Giblin L. Membrane filtration processing of infant milk formula alters protein digestion in young pigs. Food Res Int 2023; 166:112577. [PMID: 36914340 DOI: 10.1016/j.foodres.2023.112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Reducing heat treatment (HT) during processing of infant milk formula (IMF) is desirable to produce a product that more closely resembles breast milk. By employing membrane filtration (MEM), we produced an IMF (60:40 whey to casein ratio) at pilot scale (250 kg). MEM-IMF had a significantly higher content of native whey (59.9 %) compared to HT-IMF (4.5 %) (p < 0.001). Pigs, at 28 days old, were blocked by sex, weight and litter origin and assigned to one of two treatments (n = 14/treatment): (1) starter diet containing 35 % of HT-IMF powder or (2) starter diet containing 35 % of MEM-IMF powder for 28 days. Body weight and feed intake were recorded weekly. Pigs at day 28 post weaning were sacrificed 180 min after their final feeding, for the collection of gastric, duodenal, jejunum and ileal contents (n = 10/treatment). MEM-IMF diet resulted in more water-soluble proteins and higher levels of protein hydrolysis in the digesta at various gut locations compared to HT-IMF (p < 0.05). In the jejunal digesta, a higher concentration of free amino acids were present post MEM-IMF consumption (247 ± 15 µmol g-1 of protein in digesta) compared to HT-IMF (205 ± 21 µmol g-1 of protein). Overall, average daily weight gain, average dairy feed intake and feed conversion efficiency were similar for pigs fed either MEM-IMF or HT-IMF diets, but differences and trends to difference of these indicators were determined in particular intervention periods. In conclusion, reducing heat treatment during processing of IMF influenced protein digestion and revealed minor effects on growth parameters providing in vivo evidence that babies who are fed with IMF processed by MEM are likely to have different protein digestion kinetics but minimal effect on overall growth trajectories as babies fed IMF processed by traditional thermal processing.
Collapse
Affiliation(s)
- Yihong Chen
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; Department of Biological Sciences, Munster Technological University, T12 P928 Co. Cork, Ireland
| | - Hazel Rooney
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Cathal Dold
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Simona Bavaro
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; ISPA-CNR, Institute of Sciences of Food Production of National Research Council of Italy, Via Amendola, 22/O, 70126 Bari, Italy
| | - John Tobin
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Michael J Callanan
- Department of Biological Sciences, Munster Technological University, T12 P928 Co. Cork, Ireland
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Peadar G Lawlor
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland.
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| |
Collapse
|
6
|
Begam N, Timmermann S, Ragulskaya A, Girelli A, Senft MD, Retzbach S, Anthuparambil ND, Akhundzadeh MS, Kowalski M, Reiser M, Westermeier F, Sprung M, Zhang F, Gutt C, Schreiber F. Effects of temperature and ionic strength on the microscopic structure and dynamics of egg white gels. J Chem Phys 2023; 158:074903. [PMID: 36813727 DOI: 10.1063/5.0130758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We investigate the thermal gelation of egg white proteins at different temperatures with varying salt concentrations using x-ray photon correlation spectroscopy in the geometry of ultra-small angle x-ray scattering. Temperature-dependent structural investigation suggests a faster network formation with increasing temperature, and the gel adopts a more compact network, which is inconsistent with the conventional understanding of thermal aggregation. The resulting gel network shows a fractal dimension δ, ranging from 1.5 to 2.2. The values of δ display a non-monotonic behavior with increasing amount of salt. The corresponding dynamics in the q range of 0.002-0.1 nm-1 is observable after major change of the gel structure. The extracted relaxation time exhibits a two-step power law growth in dynamics as a function of waiting time. In the first regime, the dynamics is associated with structural growth, whereas the second regime is associated with the aging of the gel, which is directly linked with its compactness, as quantified by the fractal dimension. The gel dynamics is characterized by a compressed exponential relaxation with a ballistic-type of motion. The addition of salt gradually makes the early stage dynamics faster. Both gelation kinetics and microscopic dynamics show that the activation energy barrier in the system systematically decreases with increasing salt concentration.
Collapse
Affiliation(s)
- Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | - Marvin Kowalski
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
de Souza AB, Xavier AAO, Stephani R, Tavares GM. Sedimentation in UHT high-protein dairy beverages: influence of sequential preheating coupled with homogenisation or supplementation with carbohydrates. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Halabi A, Croguennec T, Ménard O, Briard-Bion V, Jardin J, Le Gouar Y, Hennetier M, Bouhallab S, Dupont D, Deglaire A. Protein structure in model infant milk formulas impacts their kinetics of hydrolysis under in vitro dynamic digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Sergius-Ronot M, Pitino MA, Suwal S, Shama S, Unger S, O'Connor DL, Pouliot Y, Doyen A. Impact of holder, high temperature short time and high hydrostatic pressure pasteurization methods on protein structure and aggregation in a human milk protein concentrate. Food Chem 2022; 374:131808. [PMID: 35021581 DOI: 10.1016/j.foodchem.2021.131808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 11/04/2022]
Abstract
This work evaluated the impact of high temperature short time (HTST, 72 °C, 15 s), high hydrostatic pressure (HHP, 400-600 MPa at 5 and 10 min) and Holder pasteurization (HoP, 62.5 °C, 30 min) on protein profile and aggregation in a human milk protein concentrate (HMPC). The structural changes induced in milk proteins were investigated in HMPC as well as in sedimentable and non-sedimentable fractions recovered after ultracentrifugation. The results showed that heat treatments induced more protein denaturation and aggregation than did HHP treatments. Indeed, heat-induced protein aggregates observed in HMPC and the sedimentable fraction were mainly composed of lactoferrin and α-lactalbumin. More specifically, the concentration of lactoferrin in HMPC decreased by 86% after HTST and HoP whereas no effect was observed after HHP treatment. These results show the potential of HHP processing as a pasteurization method for HMPC since it minimizes the impact on protein structure, which generally correlates to protein quality and bioactivity.
Collapse
Affiliation(s)
- Mélanie Sergius-Ronot
- Departement of Food Science, Institute of Nutrition and Functional Foods (INAF) and Dairy Research Centre (STELA), Laval University, QC, Canada
| | - Michael A Pitino
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada
| | - Shyam Suwal
- Arla Foods Amba, Agro Food Park 19, Aarhus 8200, Denmark
| | - Sara Shama
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Department of Pediatrics, University of Toronto, Toronto, Canada; Department of Pediatrics, Mount Sinai Hospital, Toronto, Canada; Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada; Department of Pediatrics, Mount Sinai Hospital, Toronto, Canada; Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Canada
| | - Yves Pouliot
- Departement of Food Science, Institute of Nutrition and Functional Foods (INAF) and Dairy Research Centre (STELA), Laval University, QC, Canada
| | - Alain Doyen
- Departement of Food Science, Institute of Nutrition and Functional Foods (INAF) and Dairy Research Centre (STELA), Laval University, QC, Canada.
| |
Collapse
|
10
|
Alternatives to Cow’s Milk-Based Infant Formulas in the Prevention and Management of Cow’s Milk Allergy. Foods 2022; 11:foods11070926. [PMID: 35407012 PMCID: PMC8997926 DOI: 10.3390/foods11070926] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Cow’s milk-based infant formulas are the most common substitute to mother’s milk in infancy when breastfeeding is impossible or insufficient, as cow’s milk is a globally available source of mammalian proteins with high nutritional value. However, cow’s milk allergy (CMA) is the most prevalent type of food allergy among infants, affecting up to 3.8% of small children. Hypoallergenic infant formulas based on hydrolysed cow’s milk proteins are commercially available for the management of CMA. Yet, there is a growing demand for more options for infant feeding, both in general but especially for the prevention and management of CMA. Milk from other mammalian sources than the cow, such as goat, sheep, camel, donkey, and horse, has received some attention in the last decade due to the different protein composition profile and protein amino acid sequences, resulting in a potentially low cross-reactivity with cow’s milk proteins. Recently, proteins from plant sources, such as potato, lentil, chickpeas, quinoa, in addition to soy and rice, have gained increased interest due to their climate friendly and vegan status as well as potential lower allergenicity. In this review, we provide an overview of current and potential future infant formulas and their relevance in CMA prevention and management.
Collapse
|
11
|
Kinetics of heat-induced changes in dairy products: Developments in data analysis and modelling techniques. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
|
13
|
Lin Y, Ai Z, Liu Y, Tang J, Wang S, Gao Z. Dielectric loss mechanism of powdered infant formula milk. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Barone G, Yazdi SR, Lillevang SK, Ahrné L. Calcium: A comprehensive review on quantification, interaction with milk proteins and implications for processing of dairy products. Compr Rev Food Sci Food Saf 2021; 20:5616-5640. [PMID: 34622552 DOI: 10.1111/1541-4337.12844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
Calcium (Ca) is a key micronutrient of high relevance for human nutrition that also influences the texture and taste of dairy products and their processability. In bovine milk, Ca is presented in several speciation forms, such as complexed with other milk components or free as ionic calcium while being distributed between colloidal and serum phases of milk. Partitioning of Ca between these phases is highly dynamic and influenced by factors, such as temperature, ionic strength, pH, and milk composition. Processing steps used during the manufacture of dairy products, such as preconditioning, concentration, acidification, salting, cooling, and heating, all contribute to modify Ca speciation and partition, thereby influencing product functionality, product yield, and fouling of equipment. This review aims to provide a comprehensive understanding of the influence of Ca partition on dairy products properties to support the development of kinetics models to reduce product losses and develop added-value products with improved functionality. To achieve this objective, approaches to separate milk phases, analytical approaches to determine Ca partition and speciation, the role of Ca on protein-protein interactions, and their influence on processing of dairy products are discussed.
Collapse
Affiliation(s)
- Giovanni Barone
- Department of Food Science, Ingredients and Dairy Technology, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lilia Ahrné
- Department of Food Science, Ingredients and Dairy Technology, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
15
|
Li H, Zhao T, Li H, Yu J. Effect of Heat Treatment on the Property, Structure, and Aggregation of Skim Milk Proteins. Front Nutr 2021; 8:714869. [PMID: 34604276 PMCID: PMC8485980 DOI: 10.3389/fnut.2021.714869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
To study the mechanism of heat-induced protein aggregates, skim milk was heated at 55, 65, 75, 85, and 95°C for 30 s. Then, the sulfhydryl content, surface hydrophobicity, and secondary structure of heat-treated skim milk were studied. Treating skim milk at different temperatures induced a decrease in sulfhydryl content (75.9% at 95°C) and an increase in surface hydrophobicity (44% at 95°C) with a disrupted secondary structure containing random coil, β-sheet, and β-turn of skim milk proteins. The change in these properties facilitated aggregate formation through disulfide bonds and hydrophobicity interaction. Microstructural observation also showed a higher degree of aggregation when skim milk was heated at 85 and 95°C. The result of two-dimensional polyacrylamide gel electrophoresis demonstrated that the aggregates consisted of a high proportion of κ-casein, β-lactoglobulin, and other whey proteins.
Collapse
Affiliation(s)
- Hongbo Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tingting Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
16
|
|
17
|
|
18
|
Xing Q, Fu X, Liu Z, Cao Q, You C. Contents and evolution of potential furfural compounds in milk-based formula, ultra-high temperature milk and pasteurised yoghurt. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Khalesi M, FitzGerald RJ. Investigation of the flowability, thermal stability and emulsification properties of two milk protein concentrates having different levels of native whey proteins. Food Res Int 2021; 147:110576. [PMID: 34399548 DOI: 10.1016/j.foodres.2021.110576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Milk protein concentrate-85 (MPC85) is a dairy ingredient which has a diverse range of applications in food products. The technofunctional properties of two MPC85 samples having similar gross composition but different levels of native whey protein (WP), i.e., MPC85S1 and MPC85S2 with 16.6 and 6.0 g native WP/100 g protein, respectively, were compared. Rheometeric analysis showed that under an applied normal stress of 1.0-15.0 kPa, the compressibility, the air permeability and the cohesiveness of MPC85S2 was higher compared to MPC85S1. Differential scanning calorimetry showed that protein denaturation in MPC85S1 began at 63 °C while for MPC85S2 it began at 70 °C. The heat coagulation time (HCT at 140 °C) for 4.2% (w/v, on a protein basis) reconstituted MPC85S1 and MPC85S2 was 2.2 and 2.7 min, respectively. While a higher lightness for MPC85S1 was evidenced using colourimeter analysis, the colour stability on oven drying at 95 °C for MPC85S2 was higher than MPC85S1. The emulsion produced with MPC85S1 flocculated after 1 d and phase separation occurred after 14 d. In the case of MPC85S2, flocculation began after 4 d while phase separation was observed at 33 d. The viscosity of MPC85S2 (4.2% (w/v) protein) was higher than MPC85S1. This study showed differences between the flowability, viscosity, colour properties, thermal stability (in powder and in reconstituted format), emulsification and buffering capacity for MPC samples having two different levels of WP denaturation. The results demonstrated that the MPCs studied having two different levels of WP denaturation could be targeted for different functional applications. The minimal/maximum level of denaturation required to induce technofunctional property differences requires further study.
Collapse
|
20
|
Understanding the effects of carboxymethyl cellulose on the bioactivity of lysozyme at different mass ratios and thermal treatments. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Yang W, Qu X, Deng C, Dai L, Zhou H, Xu G, Li B, Yulia N, Liu C. Heat sensitive protein-heat stable protein interaction: Synergistic enhancement in the thermal co-aggregation and gelation of lactoferrin and α-lactalbumin. Food Res Int 2021; 142:110179. [DOI: 10.1016/j.foodres.2021.110179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 11/15/2022]
|
22
|
Yu X, Leconte N, Méjean S, Garric G, Even S, Henry G, Tessier FJ, Howsam M, Croguennec T, Gésan-Guiziou G, Dupont D, Jeantet R, Deglaire A. Semi-industrial production of a minimally processed infant formula powder using membrane filtration. J Dairy Sci 2021; 104:5265-5278. [PMID: 33685709 DOI: 10.3168/jds.2020-19529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/08/2021] [Indexed: 01/07/2023]
Abstract
Infant formula (IF) is submitted to several heat treatments during production, which can lead to denaturation or aggregation of proteins and promote Maillard reaction. The objective of this study was to investigate innovative minimal processing routes for the production of first-age IF powder, thus ensuring microbial safety with minimal level of protein denaturation. Three nutritionally complete IF powders were produced at a semi-industrial scale based on ingredients obtained by fresh bovine milk microfiltration (0.8 and 0.1-µm pore size membranes). Low-temperature vacuum evaporation (50°C) and spray-drying (inlet and outlet temperatures of 160 and 70°C, respectively) were conducted to produce the T- formula with no additional heat treatment. The T+ formula was produced with a moderate heat treatment (75°C for 2 min) applied before spray-drying, whereas the T+++ formula received successive heat treatments (72°C for 30 s on the milk; 90°C for 2-3 s before evaporation; 85°C for 2 min before spray-drying), thus mimicking commercial powdered IF. Protein denaturation and Maillard reaction products were followed throughout the production steps and the physicochemical properties of the powders were characterized. The 3 IF powders presented satisfactory physical properties in terms of aw, free fat content, glass transition temperature, and solubility index, as well as satisfactory bacteriological quality with a total flora <103 cfu/g and an absence of pathogens when a high level of bacteriological quality of the ingredients was ensured. Protein denaturation occurred mostly during the heat treatments of T+ and T+++ and was limited during the spray-drying process. The IF powder produced without heat treatment (T-) presented a protein denaturation extent (6 ± 4%) significantly lower than that in T+++ (58 ± 0%), but not significantly different from that in T+ (10 ± 4%). Although T- tended to contain less Maillard reaction products than T+ and T+++, the Maillard reaction products did not significantly discriminate the infant formulas in the frame of this work. The present study demonstrated the feasibility of producing at a semi-industrial scale an infant formula being bacteriologically safe and containing a high content of native proteins. Application of a moderate heat treatment before spray-drying could further guarantee the microbiological quality of the IF powders while maintaining a low protein denaturation extent. This study opens up new avenues for the production of minimally processed IF powders.
Collapse
Affiliation(s)
- X Yu
- STLO, INRAE, Institut Agro, 35042, Rennes, France
| | - N Leconte
- STLO, INRAE, Institut Agro, 35042, Rennes, France
| | - S Méjean
- STLO, INRAE, Institut Agro, 35042, Rennes, France
| | - G Garric
- STLO, INRAE, Institut Agro, 35042, Rennes, France
| | - S Even
- STLO, INRAE, Institut Agro, 35042, Rennes, France
| | - G Henry
- STLO, INRAE, Institut Agro, 35042, Rennes, France
| | - F J Tessier
- University of Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000 Lille, France
| | - M Howsam
- University of Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000 Lille, France
| | - T Croguennec
- STLO, INRAE, Institut Agro, 35042, Rennes, France
| | | | - D Dupont
- STLO, INRAE, Institut Agro, 35042, Rennes, France
| | - R Jeantet
- STLO, INRAE, Institut Agro, 35042, Rennes, France
| | - A Deglaire
- STLO, INRAE, Institut Agro, 35042, Rennes, France.
| |
Collapse
|
23
|
Begam N, Ragulskaya A, Girelli A, Rahmann H, Chandran S, Westermeier F, Reiser M, Sprung M, Zhang F, Gutt C, Schreiber F. Kinetics of Network Formation and Heterogeneous Dynamics of an Egg White Gel Revealed by Coherent X-Ray Scattering. PHYSICAL REVIEW LETTERS 2021; 126:098001. [PMID: 33750145 DOI: 10.1103/physrevlett.126.098001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The kinetics of heat-induced gelation and the microscopic dynamics of a hen egg white gel are probed using x-ray photon correlation spectroscopy along with ultrasmall-angle x-ray scattering. The kinetics of structural growth reveals a reaction-limited aggregation process with a gel fractal dimension of ≈2 and an average network mesh size of ca. 400 nm. The dynamics probed at these length scales reveals an exponential growth of the characteristic relaxation times followed by an intriguing steady state in combination with a compressed exponential correlation function and a temporal heterogeneity. The degree of heterogeneity increases with decreasing length scale. We discuss our results in the broader context of experiments and models describing attractive colloidal gels.
Collapse
Affiliation(s)
- Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Hendrik Rahmann
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Sivasurender Chandran
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mario Reiser
- Department Physik, Universität Siegen, 57072 Siegen, Germany
- European X-ray Free-Electron Laser GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Leite B, Croguennec T, Halabi A, Costa Junior EFD. Comparing different methods for estimating kinetic parameters of whey protein heat-induced denaturation in infant milk formulas. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Lund P, Nielsen SB, Nielsen CF, Ray CA, Lund MN. Impact of UHT treatment and storage on liquid infant formula: Complex structural changes uncovered by centrifugal field-flow fractionation with multi-angle light scattering. Food Chem 2021; 348:129145. [PMID: 33524693 DOI: 10.1016/j.foodchem.2021.129145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/20/2020] [Accepted: 01/17/2021] [Indexed: 01/27/2023]
Abstract
Protein modifications in liquid infant formula (IF) have been widely studied, but distinguishing between heat- and storage-induced structural changes remains challenging. A generic liquid IF was subjected to direct or indirect UHT treatment and stored at 40 °C up to 180 days. Colour and pH were monitored and structural changes were characterised by dynamic light scattering, SDS-PAGE and centrifugal field-flow fractionation (FFF) coupled with multi-angle light scattering (MALS) and UV detectors to evaluate whether heat-induced differences would level out during storage. Both direct- and indirect UHT treatment led to structural changes, where the higher heat load of the indirect UHT treatment caused more pronounced changes. Indications were that storage-induced changes in pH, browning and non-reducible cross-links were not dependent on UHT treatment. However, FFF-MALS-UV analysis allowed characterisation of complex aggregates, where structural changes continued to be most pronounced in indirect UHT treated samples, and different storage-induced aggregation behaviour was observed.
Collapse
Affiliation(s)
- Pernille Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Søren Bang Nielsen
- Arla Foods Ingredients Group P/S - Discover R&D, Department of Technology and Functionality, Sønderupvej 26, 6920 Videbæk, Denmark
| | - Christian Fiil Nielsen
- Arla Foods Ingredients Group P/S - Milk Powder Innovation, Sønderhøj 10, 8260 Viby J, Denmark
| | - Colin A Ray
- Arla Foods Ingredients Group P/S - Discover R&D, Department of Technology and Functionality, Sønderupvej 26, 6920 Videbæk, Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
26
|
Xing Q, Ma Y, Fu X, Cao Q, Zhang Y, You C. Effects of heat treatment, homogenization pressure, and overprocessing on the content of furfural compounds in liquid milk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5276-5282. [PMID: 32530047 DOI: 10.1002/jsfa.10578] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/17/2020] [Accepted: 06/02/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Sterilization of milk is aimed at killing the microorganisms present. There are three main sterilization methods commonly used in milk processing: high temperature and short time (HTST) pasteurization, ultrahigh pasteurization (UP), and ultrahigh temperature (UHT) sterilization. The Maillard reaction is of special interest in studying the effect of heat treatment on milk quality. Furfural compounds are one of the typical intermediates of the Maillard reaction, which have safety risks related to mutagenic and genotoxic effects. The furfural compounds content is directly related to the heat treatment intensity. RESULTS The furfural compounds content was measured using high-performance liquid chromatography with ultraviolet detection in 12 min. Then, 13 levels of heat treatment intensity (combinations of temperature and time) and three levels of homogenization pressure were selected to study the change of the furfural compounds content after different processing technologies in a pilot plant. The results show a higher temperature treatment can stimulate more Maillard reaction intermediates, such as hydroxymethylfurfural and furfural. A temperature regression evaluation model and content prediction models of hydroxymethylfurfural and furfural were developed to quantify the relationship between the furfural content and heat treatment with the data from the pilot plant. CONCLUSION Based on the temperature evaluation model, the heating temperature of three milk products was evaluated. The homogenization pressures had little effect on the furfural content in liquid milk. The emergence of the furyl methyl ketone and methylfurfural can be detected after overprocessing of the liquid milk. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianqian Xing
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Postdoctoral Workstation of Bright Dairy - Shanghai Jiao Tong University, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Yanran Ma
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Fu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Postdoctoral Workstation of Bright Dairy - Shanghai Jiao Tong University, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Qing Cao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Postdoctoral Workstation of Bright Dairy - Shanghai Jiao Tong University, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Postdoctoral Workstation of Bright Dairy - Shanghai Jiao Tong University, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
27
|
Halabi A, Deglaire A, Hennetier M, Violleau F, Burel A, Bouhallab S, Dupont D, Croguennec T. Structural characterization of heat-induced protein aggregates in model infant milk formulas. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Xiong L, Boeren S, Vervoort J, Hettinga K. Effect of milk serum proteins on aggregation, bacteriostatic activity and digestion of lactoferrin after heat treatment. Food Chem 2020; 337:127973. [PMID: 32927224 DOI: 10.1016/j.foodchem.2020.127973] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
To establish the effect of the presence of milk serum proteins on heat-induced changes to lactoferrin, lactoferrin alone, and lactoferrin mixed with either milk serum or β-lactoglobulin was heated at 65 °C, 70 °C and 75 °C for 30 min. After heating, the effect of milk serum proteins on aggregation of lactoferrin was characterized, after which the effect of such aggregation on digestion and bacteriostatic capacity of lactoferrin were determined. The presence of milk serum proteins accelerated the aggregation of lactoferrin during heating through thiol/disulphide interchange. Lactoferrin also formed disulphide-linked aggregates when it was heated with β-lactoglobulin. Protein aggregates formed at 75 °C were much more resistant to infant digestion, causing decreased peptide release from lactoferrin. Heating lactoferrin and milk serum proteins together accelerated the loss of bacteriostatic activity upon heating. In conclusion, heat-induced aggregation of lactoferrin with milk serum proteins affected both its digestion and its bacteriostatic activity.
Collapse
Affiliation(s)
- Ling Xiong
- Dairy Science and Technology, Food Quality and Design, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University and Research, P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
29
|
Zamora R, Hidalgo FJ. Formation of heterocyclic aromatic amines with the structure of aminoimidazoazarenes in food products. Food Chem 2019; 313:126128. [PMID: 31951882 DOI: 10.1016/j.foodchem.2019.126128] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
Abstract
Thermal food processing has many beneficial consequences, although it also produces some unintentional undesired effects, such as the formation of potentially mutagenic and carcinogenic substances. Among them, the formation of heterocyclic aromatic amines (HAAs) has been related to the declared carcinogenicity of processed meats. In spite of this importance, HAA formation pathways remain mostly unknown, which avoids the design of targeted procedures to inhibit HAA appearance. The objective of this review is to collect information recently appeared that allow advancing in the understanding of how these compounds are produced. Particularly, the possibility that aminoimidazoazarenes are produced similarly to PhIP is discussed, including their formation by cyclizations and oligomerizations of aldehydes and creatinine under usual cooking conditions. Present data suggest that HAA formation might be related to the pool of carbonyl compounds existing in foods, the food carbonylome, which can be controlled by carbonyl-trapping agents, such as amine and phenolic compounds.
Collapse
Affiliation(s)
- Rosario Zamora
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013 Seville, Spain
| | - Francisco J Hidalgo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013 Seville, Spain.
| |
Collapse
|