1
|
Duan C, Qin M, Liu L, Sun Y, Cai L, Ma L, Li X, Ma F, Li D. An exploration of the interaction, structural characterization and anti-oxidative properties of proanthocyanidin and beta-lactoglobulin complex. Food Res Int 2025; 202:115760. [PMID: 39967074 DOI: 10.1016/j.foodres.2025.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
Proanthocyanidin (PC) is with antioxidant, anticancer and neuroprotective effects. Cow's milk beta-lactoglobulin (β-Lg) is reported with higher immunoregulatory activity but lower antioxidative function. In this study, a β-Lg-PC complex was prepared, and the interaction and structural characterization of β-Lg-PC complex were investigated by fluorescence spectral analysis, infrared spectroscopy and molecular docking, etc. PC quenched the intrinsic fluorescence and changed the conformation of β-Lg. The optimal ratio of β-Lg and PC (10:3, w/w) was determined by measuring the particle size and ζ potential. Molecular docking results implied that the covalent binding among complex was mainly concentrated on the binding of PC to amino acid residue ILE 71. Moreover, the antioxidant effects and mechanism of β-Lg-PC complex were explored using LPS-induced oxidative stress model of RAW264.7 cells. The results showed that β-Lg-PC could alleviate oxidative stress by slowing down the LPS-induced decline in SOD enzyme activity, increase in ROS level, loss of mitochondrial membrane potential and increase in apoptosis in RAW264.7 cells.
Collapse
Affiliation(s)
- Cuicui Duan
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Mengchun Qin
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Lifan Liu
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Yixue Sun
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Lin Cai
- College of Food and Biology, Changchun Polytechnic, 3278 Weixing Road, Changchun 130033, Jilin Province, People's Republic of China
| | - Lin Ma
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Xiaolei Li
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Fumin Ma
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Dan Li
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China.
| |
Collapse
|
2
|
Li W, Wang L, Qian Y, Wang M, Li F, Zeng M. True-solution-scale utilization of natural chlorophyll a in aqueous media through cooperative aggregation with phycocyanin. Food Chem 2024; 460:140678. [PMID: 39098190 DOI: 10.1016/j.foodchem.2024.140678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
The challenge of applying chlorophyll(Chl) in aqueous media has been a significant obstacle to the diversified development of Chl a-related industries. This study presents the first report on the true-solution-scale utilization of Chl in aqueous media through the construction of chlorophyll a-phycocyanin (Chls-PC) composite nanoparticles. This study determined the optimal conditions for Chls-PC preparation: a composite ratio of 1:25, a solvent ratio of 1:4, and a stirring time of 1 h. Fluorescence spectroscopy, transmission electron microscope, and confocal microscopy confirmed Chl a and PC aggregation. Surface hydrophobicity and contact angle measurements showed that Chls-PC water solubility was similar to PC and much higher than Chl. Infrared spectroscopy, quantum chemical calculations, X-ray photoelectron spectroscopy, and molecular dynamics simulations elucidated the water solubilization mechanism of Chls-PC both experimentally and theoretically. This research provides theoretical guidance for the development and production of water-based products using Chl as a raw material.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Lijuan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Yuemiao Qian
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Mengwei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China
| | - Fangwei Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China.
| | - Mingyong Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China.
| |
Collapse
|
3
|
Han Z, Cheng K, Pan Y, Chen F, Shao JH, Liu S, Sun Q, Wei S, Ji H. Influence of beeswax-based fish oil oleogels on the mechanism of water and oil retention in Pacific white shrimp (Litopenaeus vannamei) meat emulsion gels: Filling, emulsification and phase transition. Food Chem 2024; 458:140188. [PMID: 38964098 DOI: 10.1016/j.foodchem.2024.140188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Oleogels have been used in the gelled surimi products to replace animal fats due to its structure characteristics. The effect of structure characteristics in fish oil oleogels on the mechanism of oil/water retention was investigated in meat emulsions. Beeswax assembly improved the oil and water retention. The unsaturation degree of fatty acids lowered the mobility of bound water, immobilized water as well as bound fat in the fish oil oleogel, but enhanced the mobility of free water and protons of unsaturated fatty acids. Beeswax addition and oil phase characteristics could enhance β-sheets, disulfide bonds and hydrophobic force to improve the viscoelasticity, gel strength and oil/water retention. Beeswax assembly facilitated the tight micro-sol network and filling effect, and high unsaturation degree promoted the emulsification effect, thus reducing phase transition temperature and juice loss. The study could lay the foundation for development of gelled shrimp meat products with EPA and DHA.
Collapse
Affiliation(s)
- Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Kaixing Cheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Fei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| |
Collapse
|
4
|
Yan G, Li Y, Wang S, Li Y, Zhang L, Yan J, Sun Y. Oil-water interfacial behaviour of different caseins and stability of emulsions: Effect of micelle content and caseins concentrations. Food Chem X 2024; 23:101784. [PMID: 39286043 PMCID: PMC11403417 DOI: 10.1016/j.fochx.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
This study aimed to investigate the interfacial behaviour of caseins in different micelle content and its effect on the stability of emulsions, including micellar casein concentrate (MCN), calcium caseinate (CaC) and sodium caseinate (NaC). Results revealed that at high protein concentrations (0.5 %-2.5 %), MCN, CaC and NaC exhibited similar interfacial behaviour as well as unfolding rate constants (k 1 ) of 3.11-3.41 × 10-4 (s-1), 2.96-3.35 × 10-4 (s-1) and 2.75-3.27 × 10-4 (s-1), respectively. The interfacial layer formed was dominated by non-micelles, and microscopic images revealed the thickness of the interfacial layer to be 10-20 nm. By contrast, at low concentrations, the differences in the slope of E-π curves and k 1 indicated that the micelle content of casein affects protein interfacial behaviour and properties and that micellar casein is involved in the formation of the interfacial layer. The formation of large numbers of droplets during emulsion preparation results in a similar low concentration environment. Cryo-TEM showed adsorption of micellar casein in all three casein-stabilised emulsions, and the amount of adsorption was proportional to the micelle content. NaC has faster adsorption and rearrangement rates due to fewer micelles and more non-micelles, so that NaC forms smaller droplets and more stable emulsions than those formed by MCN and CaC within the range of 0.5 % to 2.0 %.
Collapse
Affiliation(s)
- Guosen Yan
- Beijing Engineering and Technology Research Centre of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Shiran Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Li
- Beijing Engineering and Technology Research Centre of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liebing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jianguo Yan
- Ningxia Saishang Dairy Industry, Yinchuan 750000, China
| | - Yanfang Sun
- Ningxia Saishang Dairy Industry, Yinchuan 750000, China
| |
Collapse
|
5
|
Lilly K, Wang M, Orr AA, Bondos SE, Phillips TD, Tamamis P. β-Lactoglobulin Enhances Clay and Activated Carbon Binding and Protection Properties for Cadmium and Lead. Ind Eng Chem Res 2024; 63:16124-16140. [PMID: 39319074 PMCID: PMC11417999 DOI: 10.1021/acs.iecr.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
The removal of heavy metals from wastewater remains a challenge due to the limitations of current remediation methods. This study aims to develop multicomponent composites as inexpensive and environmentally friendly sorbents with enhanced capture of cadmium (Cd) and lead (Pb). The composites are based on calcium montmorillonite (CM) and activated carbon (AC) because of their proven effectiveness as sorbents for diverse toxins in environmental settings. In this study, we used a combination of computational and experimental methods to delineate that β-lactoglobulin enhances CM and AC binding and protection properties for Cd and Pb. Modeling and molecular dynamics simulations investigated the formation of material systems formed by CM and AC in complex with β-lactoglobulin and predicted their capacity to bind heavy metal ions at neutral pH conditions. Our simulations suggest that the enhanced binding properties of the material systems are attributed to the presence of several binding pockets formed by β-lactoglobulin for the two heavy metal ions. At neutral pH conditions, divalent Cd and Pb shared comparable binding propensities in all material systems, with the former being consistently higher than the latter. To validate the interactions depicted in simulations, two ecotoxicological models (L. minor and H. vulgaris) were exposed to Cd, Pb, and a mixture of the two. The inclusion of CM-lactoglobulin (β-lactoglobulin amended CM) and AC-lactoglobulin (β-lactoglobulin amended AC) at 0.05-0.2% efficiently and dose-dependently reduced the severe toxicity of metals and increased the growth parameters. This high efficacy of protection shown in the ecotoxicological models may result from the numerous possible interaction pockets of the β-lactoglobulin-amended materials depicted in simulations. The ecotoxicological models support the agreement with computations. This study serves as a proof of concept on how computations in tandem with experiments can be used in the design of multicomponent clay- and carbon-based sorbent amended systems with augmented functionalities for particular toxins.
Collapse
Affiliation(s)
- Kendall Lilly
- Department
of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Meichen Wang
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Faculty of Toxicology, College of Veterinary Medicine and Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Environmental Health Sciences, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Asuka A. Orr
- Artie
McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Sarah E. Bondos
- Department
of Medical Physiology Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843, United States
| | - Timothy D. Phillips
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Faculty of Toxicology, College of Veterinary Medicine and Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Phanourios Tamamis
- Department
of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Artie
McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Shah MAR, Zhang Y, Cui Y, Hu X, Zhu F, Kumar S, Li G, Kubar AA, Mehmood S, Huo S. Ultrasonic-assisted green extraction and incorporation of Spirulina platensis bioactive components into turmeric essential oil-in-water nanoemulsion for enhanced antioxidant and antimicrobial activities. Food Chem 2024; 452:139561. [PMID: 38728897 DOI: 10.1016/j.foodchem.2024.139561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/30/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
The utilization of essential oils as natural antioxidants and preservatives is limited by high volatility, poor water solubility, and long-term instability. To address this, a novel ultrasonic-assisted method was used to prepare and stabilize a nanoemulsion of turmeric essential oil-in-water, incorporating bioactive components extracted from Spirulina platensis. Ultrasonic treatment enhanced the extraction efficacy and nanoemulsion stability. Algal biomass subjected to ultrasonic treatment (30 min at 80% amplitude) yielded a dry extract of 73.66 ± 3.05%, with the highest protein, phenolic, phycocyanin, and allophycocyanin content, as well as maximum emulsifying activity. The resulting nanoemulsion (5% oil, 0.3% extract, 10 min ultrasonic treatment) showed reduced particle size (173.31 ± 2.24 nm), zeta potential (-36.33 ± 1.10 mV), low polydispersity index, and enhanced antioxidant and antibacterial properties. Rheology analysis indicated shear-thinning behavior, while microscopy and spectroscopy confirmed structural changes induced by ultrasonic treatment and extract concentration. This initiative developed a novel ultrasonic-assisted algal-based nanoemulsion with antioxidant and antibacterial properties.
Collapse
Affiliation(s)
| | - Yajie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Santosh Kumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gang Li
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China.
| | - Ameer Ali Kubar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shahid Mehmood
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Heiden-Hecht T, Wu B, Schwärzer K, Förster S, Kohlbrecher J, Holderer O, Frielinghaus H. New insights into protein stabilized emulsions captured via neutron and X-ray scattering: An approach with β-lactoglobulin at triacylglyceride-oil/water interfaces. J Colloid Interface Sci 2024; 655:319-326. [PMID: 37948805 DOI: 10.1016/j.jcis.2023.10.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
HYPOTHESIS To analyze protein stabilized emulsions, SAXS and SANS are emerging techniques capturing oil droplet radius, interfacial coverage and structure. Protein shape, thus protein structure change during interfacial adsorption with partial protein unfolding is detected via SAXS analysis at and below the monolayer concentration for proteins, known as critical interfacial concentration (CIC). SANS determines the same phenomena below and above the CIC, via contrast variation and coarse-grained modelling. EXPERIMENTS β-lactoglobulin concentration dependent SAXS experiments were performed focusing on molecular length scales to characterize protein shape in water, and interfacial structure in emulsions. Complementary SANS experiments with contrast variation via deuterated triacylglyceride-oil provided insight into oil droplet radius, interfacial coverage and structure via data analysis with scattering models and low-resolution shape reconstruction with the DENFERT model. FINDINGS SAXS and SANS experiments allowed to determine the interfacial structure below and above the CIC, as well as oil droplet radius and interfacial coverage. These findings were identified via Q-4 Porod scattering at low-Q, protein scattering at high Q, and a Q-2 scattering of the interface. Since SANS with accurate contrast variation highlights the interface in comparison to other techniques like FTIR, the presented results show a high impact to understand interfaces in emulsions.
Collapse
Affiliation(s)
- Theresia Heiden-Hecht
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany.
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Kuno Schwärzer
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany; Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | - Olaf Holderer
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| |
Collapse
|
8
|
Giefer P, Bäther S, Kaufmes N, Kieserling H, Heyse A, Wagemans W, Barthel L, Meyer V, Schneck E, Fritsching U, Wagemans AM. Characterization of β-lactoglobulin adsorption on silica membrane pore surfaces and its impact on membrane emulsification processes. J Colloid Interface Sci 2023; 652:1074-1084. [PMID: 37647716 DOI: 10.1016/j.jcis.2023.08.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Protein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of β-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the β-lactoglobulin adsorption and its effect on the premix membrane emulsification of β-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed β-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of β-lactoglobulin) and the treatment of the silica surface (hydrophilization). The β-lactoglobulin adsorption is driven by attractive electrostatic interactions between positively charged amino acid residues, i.e., lysin and negatively charged silanol groups, and is stabilized by hydrophobic interactions. The strong negative charges of the treated silica surfaces result in a high apparent layer thickness of β-lactoglobulin. Although the conformation of the adsorbed β-lactoglobulin layer varies with membrane treatment and the solvent properties, the β-lactoglobulin adsorption offsets the effect of hydrophilization of the membrane so that the surface energies after β-lactoglobulin adsorption are comparable. The resulting droplet size distribution of oil-in-water emulsions produced by premix membrane emulsification are similar for treated and untreated silica surfaces.
Collapse
Affiliation(s)
- Patrick Giefer
- Leibniz Institute for Materials Engineering-IWT, Badgasteiner Straße 3, 28359 Bremen, Germany; University of Bremen, Particles and Process Engineering, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Sabrina Bäther
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Biosciences, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nadine Kaufmes
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Biosciences, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Helena Kieserling
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Biosciences, Straße des 17. Juni 135, 10623 Berlin, Germany; Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Anja Heyse
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Barthel
- Technische Universität Berlin, Institute of Biotechnology, Department of Applied and Molecular Microbiology, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Vera Meyer
- Technische Universität Berlin, Institute of Biotechnology, Department of Applied and Molecular Microbiology, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Emanuel Schneck
- Technical University of Darmstadt, Department of Physics, 64277 Darmstadt, Germany
| | - Udo Fritsching
- Leibniz Institute for Materials Engineering-IWT, Badgasteiner Straße 3, 28359 Bremen, Germany; University of Bremen, Particles and Process Engineering, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Anja Maria Wagemans
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Biosciences, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
9
|
Yu H, Qin L, Zhou J. Effect of Oil Polarity on the Protein Adsorption at Oil-Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10701-10710. [PMID: 37470337 DOI: 10.1021/acs.langmuir.3c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Protein adsorption at oil-water interfaces has received much attention in applications of food emulsion and biocatalysis. The protein activity is influenced by the protein orientation and conformation. The oil polarity is expected to influence the orientation and conformation of adsorbed proteins by modulating intermolecular interactions. Hence, it is possible to tune the protein emulsion stability and activity by varying the oil polarity. Martini v3.0-based coarse-grained molecular dynamics (CGMD) simulations were employed to investigate the effect of oil polarity on the orientation and conformation of hydrophobin (HFBI) and Candida antarctica lipase B (CALB) adsorbed at triolein-water, hexadecane-water, and octanol-water interfaces for the first time. The protein adsorption orientation was predicted through the hydrophobic dipole, indicating that protein adsorption exists in preferred orientations at hydrophobic oil interfaces. The conformation of the adsorbed HFBI is well conserved, whereas relatively larger conformational changes occur during the CALB adsorption as the oil hydrophobicity increases. Comparisons on the adsorption interaction energy of proteins with oils confirm the relationship between the oil polarity and the interaction strength of proteins with oils. In addition, CGMD simulations allow longer time scale simulations of the behaviors of protein adsorption at oil-water interfaces.
Collapse
Affiliation(s)
- Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lanlan Qin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
10
|
Han Z, Liu S, Cao J, Yue X, Shao JH. A review of oil and water retention in emulsified meat products: The mechanisms of gelation and emulsification, the application of multi-layer hydrogels. Crit Rev Food Sci Nutr 2023; 64:8308-8324. [PMID: 37039082 DOI: 10.1080/10408398.2023.2199069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Emulsified meat products are key deep-processing products due to unique flavor and high nutritional value. Myosin dissolves, and protein aggregation and heat-induced gelation occur after myosin unfolds and hydrophobic groups are exposed. Myosin could form interfacial protein membranes and wrap fat globules. Emulsified fat globules may be filled in heat-induced gel networks. Therefore, this review intends to discuss the influences of heat-induced gelation and interfacial adsorption behavior on oil and water retention. Firstly, the mechanism of heat-induced gelation was clarified from the perspective of protein conformation and micro-structure. Secondly, the mechanism of emulsification stability and its factors affecting interfacial adsorption were demonstrated as well as limitations and challenges. Finally, the structure characteristics and application of multi-layer hydrogels in the gelation and emulsification were clarified. It could conclude that the characteristic morphology, spatial conformation and structure adjustment affected heat-induced gelation and interfacial adsorption behavior. Spatial conformation and microstructure were adjusted to improve the oil and water retention by pH, ionic strength, amino acid, oil phase characteristic and protein interaction. Multi-layer hydrogels facilitated oil and water retention. The comprehensive review of gelation and emulsification mechanisms could promote the development of meat products and improvement of meat processing technology.
Collapse
Affiliation(s)
- Zongyuan Han
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jinxuan Cao
- College of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
11
|
Cai Z, Wei Y, Shi A, Zhong J, Rao P, Wang Q, Zhang H. Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Adv Colloid Interface Sci 2023; 313:102863. [PMID: 36868168 DOI: 10.1016/j.cis.2023.102863] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Emulsions are thermodynamically unstable systems that tend to separate into two immiscible phases over time. The interfacial layer formed by the emulsifiers adsorbed at the oil-water interface plays an important role in the emulsion stability. The interfacial layer properties of emulsion droplets have been considered the cutting-in points that influence emulsion stability, a traditional motif of physical chemistry and colloid chemistry of particular significance in relation to the food science and technology sector. Although many attempts have shown that high interfacial viscoelasticity may contribute to long-term emulsion stability, a universal relationship for all cases between the interfacial layer features at the microscopic scale and the bulk physical stability of the emulsion at the macroscopic scale remains to be established. Not only that, but integrating the cognition from different scales of emulsions and establishing a unified single model to fill the gap in awareness between scales also remain challenging. In this review, we present a comprehensive overview of recent progress in the general science of emulsion stability with a peculiar focus on interfacial layer characteristics in relation to the formation and stabilization of food emulsions, where the natural origin and edible safety of emulsifiers and stabilizers are highly requested. This review begins with a general overview of the construction and destruction of interfacial layers in emulsions to highlight the most important physicochemical characteristics of interfacial layers (formation kinetics, surface load, interactions among adsorbed emulsifiers, thickness and structure, and shear and dilatational rheology), and their roles in controlling emulsion stability. Subsequently, the structural effects of a series of typically dietary emulsifiers (small-molecule surfactants,proteins, polysaccharides, protein-polysaccharide complexes, and particles) on oil-water interfaces in food emulsions are emphasized. Finally, the main protocols developed for modifying the structural characteristics of adsorbed emulsifiers at multiple scales and improving the stability of emulsions are highlighted. Overall, this paper aims to comprehensively study the literature findings in the past decade and find out the commonality of multi-scale structures of emulsifiers, so as to deeply understand the common characteristics and emulsification stability behaviour of adsorption emulsifiers with different interfacial layer structures. It is difficult to say that there has been significant progress in the underlying principles and technologies in the general science of emulsion stability over the last decade or two. However, the correlation between interfacial layer properties and physical stability of food emulsions promotes revealing the role of interfacial rheological properties in emulsion stability, providing guidance on controlling the bulk properties by tuning the interfacial layer functionality.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China..
| |
Collapse
|
12
|
Guo J, Gu X, Du L, Meng Z. Spirulina platensis protein nanoparticle-based bigels: Dual stabilization, phase inversion, and 3D printing. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Li S, Fan L, Li S, Sun X, Di Q, Zhang H, Li B, Liu X. Validation of Layer-By-Layer Coating as a Procedure to Enhance Lactobacillus plantarum Survival during In Vitro Digestion, Storage, and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1701-1712. [PMID: 36622380 DOI: 10.1021/acs.jafc.2c07139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Probiotics are sensitive to phenolic antibacterial components and the extremely acidic environment of blueberry juices. Layer-by-layer (LbL) coating using whey protein isolate fibrils (WPIFs) and sodium alginate (ALG), carboxymethyl cellulose (CMC), or xanthan gum (XG) was developed to improve the survival rate of Lactobacillus plantarum 90 (LP90) in simulated digestion, storage, and fermented blueberry juices. The LbL-coated LP90 remained at 6.65 log CFU/mL after 48 h of fermentation. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) indicated that dense and rough wall networks were formed on the surface of LP90, maintaining the integrity of LP90 cells after the coating. Stability evaluation showed that the LbL-coated LP90 had a much higher survival rate in the processes of simulated gastrointestinal digestion and storage. The formation mechanism of the LbL coating process was further explored, which indicated that electrostatic interactions and hydrogen bonding were involved. The LbL coating approach has great potential to protect and deliver probiotics in food systems.
Collapse
Affiliation(s)
- Siyuan Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Linlin Fan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Shuangjian Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Xiaochen Sun
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Qingru Di
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Hui Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Xiaoli Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| |
Collapse
|
14
|
Zhang M, Fan L, Liu Y, Huang S, Li J. Effects of proteins on emulsion stability: The role of proteins at the oil-water interface. Food Chem 2022; 397:133726. [PMID: 35908463 DOI: 10.1016/j.foodchem.2022.133726] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
To obtain a stable protein-added emulsion system, researchers have focused on the design of the oil-water interface. This review discussed the updated details of protein adsorption behavior at the oil-water interface. We evaluated methods of monitoring interfacial proteins as well as their strengths and limitations. Based on the effects of structure on protein adsorption, we summarized the contribution of pre-changing methods to adsorption. In addition, the interaction of proteins and other surface-active molecules at the interface had been emphasized. Results showed that protein adsorption is affected by conformation, oil polarity and aqueous environments. The monitoring of interfacial proteins through spectroscopic properties in actual emulsion systems is an emerging trend. Pre-changing could improve the protein adsorption and the purpose of pre-changing of proteins is similar. In the interaction with other surface-active molecules, co-adsorption is desirable. By co-adsorption, the respective advantages can be exploited to obtain a more stable emulsion system.
Collapse
Affiliation(s)
- Mi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengquan Huang
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou 510931, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Daniloski D, McCarthy NA, Auldist MJ, Vasiljevic T. Properties of sodium caseinate as affected by the β-casein phenotypes. J Colloid Interface Sci 2022; 626:939-950. [PMID: 35835044 DOI: 10.1016/j.jcis.2022.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
The aim of the study was to investigate the properties of sodium caseinate dispersions and oil-in-water emulsions obtained from cows' milk of either A1/A1, A1/A2, or A2/A2 β-casein phenotype. Protein structural characterisation was examined using Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopies, with physicochemical and interfacial properties assessed by analysing adsorbed protein content, hydrophobicity, solubility, and emulsion stability of the samples. Results showed variations in the secondary structure of all samples dependent of the presence of A1 or A2 β-caseins. The main differences included greater amounts of α-helix and β-sheet in A1/A1 and A1/A2 sodium caseinate dispersions that influenced their lower solubility, while random coils/polyproline II helixes were found only in A2/A2 sodium caseinate dispersion. In contrast, upon adsorption on the interface of A2/A2 sodium caseinate emulsion, the protein adopted ordered conformational motifs. This conformational shift supposedly arose from structural differences between the two β-casein proteoforms, which most likely enhanced the emulsion properties of A2/A2 sodium caseinate compared to either A1/A1 or A1/A2 sodium caseinates. The A2 β-casein in both, A1/A2 and A2/A2 sodium caseinates, appears to be able to more rapidly reach the oil droplet surface and was more efficient as emulsifying agent. The current results demonstrated that the conformational rearrangement of proteins upon adsorption to emulsion interfaces was dependent not only on hydrophobicity and on solubility, but also on the conformational flexibility of A1/A1, A1/A2, and A2/A2 β-casein phenotypes. These findings can assist in predicting the behaviour of sodium caseinates during relevant industrial processing.
Collapse
Affiliation(s)
- Davor Daniloski
- Victoria University, Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Melbourne, Victoria 8001, Australia; Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, P61 C996, Cork, Ireland
| | - Noel A McCarthy
- Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, P61 C996, Cork, Ireland
| | - Martin J Auldist
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Ellinbank, Victoria 3821, Australia; University of Melbourne, Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne, Victoria 3010, Australia
| | - Todor Vasiljevic
- Victoria University, Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
16
|
Nussbaum N, Bergfreund J, Vialetto J, Isa L, Fischer P. Microgels as globular protein model systems. Colloids Surf B Biointerfaces 2022; 217:112595. [PMID: 35665640 DOI: 10.1016/j.colsurfb.2022.112595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/06/2022] [Accepted: 05/22/2022] [Indexed: 11/30/2022]
Abstract
Understanding globular protein adsorption to fluid interfaces, their interfacial assembly, and structural reorganization is not only important in the food industry, but also in medicine and biology. However, due to their intrinsic structural complexity, a unifying description of these phenomena remains elusive. Herein, we propose N-isopropylacrylamide microgels as a promising model system to isolate different aspects of adsorption, dilatational rheology, and interfacial structure at fluid interfaces with a wide range of interfacial tensions, and compare the results with the ones of globular proteins. In particular, the steady-state spontaneously-adsorbed interfacial pressure of microgels correlates closely to that of globular proteins, following the same power-law behavior as a function of the initial surface tension. However, the dilatational rheology of spontaneously-adsorbed microgel layers is dominated by the presence of a loosely packed polymer corona spread at the interface, and it thus exhibits a similar mechanical response as flexible, unstructured proteins, which are significantly weaker than globular ones. Finally, structurally, microgels reveal a similar spreading and flattening upon adsorption as globular proteins do. In conclusion, microgels offer interesting opportunities to act as powerful model systems to unravel the complex behavior of proteins at fluid interfaces.
Collapse
Affiliation(s)
- Natalie Nussbaum
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich 8092, Switzerland
| | - Jotam Bergfreund
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich 8092, Switzerland
| | - Jacopo Vialetto
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Peter Fischer
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich 8092, Switzerland.
| |
Collapse
|
17
|
Proposed Methods for Testing and Comparing the Emulsifying Properties of Proteins from Animal, Plant, and Alternative Sources. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The food industry is trying to reformulate many of its products to replace functional ingredients that are chemically synthesized or isolated from animal sources (such as meat, fish, eggs, or milk) with ingredients derived from plant or microbial sources. This effort is largely a result of the demand for foods that are better for the environment, human health, and animal welfare. Many new kinds of plant- or microbial-derived proteins are being isolated for potential utilization as functional ingredients by the food industry. A major challenge in this area is the lack of standardized methods to measure and compare the functional performance of proteins under conditions they might be used in food applications. This information is required to select the most appropriate protein for each application. In this article, we discuss the physicochemical principles of emulsifier functionality and then present a series of analytical tests that can be used to quantify the ability of proteins to form and stabilize emulsions. These tests include methods for characterizing the effectiveness of the proteins to promote the formation and stability of the small droplets generated during homogenization, as well as their ability to stabilize the droplets against aggregation under different conditions (e.g., pH, ionic composition, temperature, and shearing). This information should be useful to the food industry when it is trying to identify alternative proteins to replace existing emulsifiers in specific food applications.
Collapse
|
18
|
Impact of Saturation of Fatty Acids of Phosphatidylcholine and Oil Phase on Properties of β-Lactoglobulin at the Oil/Water Interface. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractOil in water emulsions are commonly stabilized by emulsifying constituents like proteins and/or low molecular weight emulsifiers. The emulsifying constituents can compete or coexist at the interface. Interfacial properties thus depend on molecular structure of the emulsifying constituents and the oil phase and the resulting molecular interactions. The present study systematically analyzed the impact of fatty acid saturation of triacylglycerides and phosphatidylcholine on the interfacial properties of a β-lactoglobulin-stabilized interface. The long-term adsorption behaviour and the viscoelasticity of β-lactoglobulin-films were analyzed with or without addition of phosphatidylcholine via drop tensiometry and dilatational rheology. Results from the present study showed that increasing similarity in fatty acid saturation and thus interaction of phosphatidylcholine and oil phase increased the interfacial tension for the phosphatidylcholine alone or in combination with β-lactoglobulin. The characteristics and stability of interfacial films with β-lactoglobulin-phosphatidylcholine are further affected by interfacial adsorption during changes in interfacial area and crystallization events of low molecular weight emulsifiers. This knowledge gives guidance for improving physical stability of protein-based emulsions in foods and related areas.
Graphic abstract
Collapse
|
19
|
Bergfreund J, Bertsch P, Fischer P. Effect of the hydrophobic phase on interfacial phenomena of surfactants, proteins, and particles at fluid interfaces. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Ramamirtham S, Whitby CP, Zare D, Weeks M, Williams MA. The rheological properties of bovine β-Lactoglobulin stabilized oil/water interfaces depend on the protein's quaternary structure. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Interfacial film formation and film stability of high hydrostatic pressure-treated β-lactoglobulin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Heiden-Hecht T, Taboada ML, Brückner-Gühmann M, Karbstein HP, Gaukel V, Drusch S. Towards an improved understanding of spray-dried emulsions: Impact of the emulsifying constituent combination on characteristics and storage stability. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Lin L, Xiong YL. Competitive adsorption and dilatational rheology of pork myofibrillar and sarcoplasmic proteins at the O/W emulsion interface. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Dynamic adsorption and interfacial rheology of whey protein isolate at oil-water interfaces: Effects of protein concentration, pH and heat treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Kieserling H, Pankow A, Keppler JK, Wagemans AM, Drusch S. Conformational state and charge determine the interfacial film formation and film stability of β-lactoglobulin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Chen Y, Yi X, Pan MH, Chiou YS, Li Z, Wei S, Yin X, Ding B. The interaction mechanism between liposome and whey protein: Effect of liposomal vesicles concentration. J Food Sci 2021; 86:2491-2498. [PMID: 33929043 DOI: 10.1111/1750-3841.15708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022]
Abstract
The interaction mechanism between liposomes (Lips) and whey protein isolates (WPI) with different mass ratios was explored in this paper. After binding with different concentration of Lips, the changes in hydrophilic and hydrophobic regions of WPI were investigated with fluorescein isothiocyanate (FITC) and pyrene fluorescence probes. The spatial structure changes of WPI were further characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, and circular dichroism. The results indicated that the structure of WPI was changed due to binding with Lips in hydrophilic and hydrophobic groups. The binding process might result in the migration, recombination, and alignment of WPI and Lip groups. Moreover, the oil-water interfacial tension with WPI decreased from 9.20 mN/m to 3.29 mN/m upon increasing the Lip-to-WPI ratio. This work suggests that the physiochemical properties of Lip-WPI complexes could be manipulated by adjusting the Lip-to-WPI ratio. This study shed some light on the mechanism explanation of the WPI structural changes due to the interaction with Lips during food processing.
Collapse
Affiliation(s)
- Yang Chen
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Xiangzhou Yi
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China.,College of Food Science and Technology, Hainan University, Haikou, Hainan, 570228, P.R. China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan, 10617, Republic of China
| | - Yi-Shiou Chiou
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen, P.R. China
| | - Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Xiaoli Yin
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China.,Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan, 10617, Republic of China
| |
Collapse
|
27
|
Bergfreund J, Diener M, Geue T, Nussbaum N, Kummer N, Bertsch P, Nyström G, Fischer P. Globular protein assembly and network formation at fluid interfaces: effect of oil. SOFT MATTER 2021; 17:1692-1700. [PMID: 33393584 DOI: 10.1039/d0sm01870h] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The formation of viscoelastic networks at fluid interfaces by globular proteins is essential in many industries, scientific disciplines, and biological processes. However, the effect of the oil phase on the structural transitions of proteins, network formation, and layer strength at fluid interfaces has received little attention. Herein, we present a comprehensive study on the effect of oil polarity on globular protein networks. The formation dynamics and mechanical properties of the interfacial networks of three different globular proteins (lysozyme, β-lactoglobulin, and bovine serum albumin) were studied with interfacial shear and dilatational rheometry. Furthermore, the degree of protein unfolding at the interfaces was evaluated by subsequent injection of disulfide bonds reducing dithiothreitol. Finally, we measured the interfacial layer thickness and protein immersion into the oil phase with neutron reflectometry. We found that oil polarity significantly affects the network formation, the degree of interfacial protein unfolding, interfacial protein location, and the resulting network strength. These results allow predicting emulsion stabilization of proteins, tailoring interfacial layers with desired mechanical properties, and retaining the protein structure and functionality upon adsorption.
Collapse
Affiliation(s)
- Jotam Bergfreund
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland.
| | - Michael Diener
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland.
| | - Thomas Geue
- Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Natalie Nussbaum
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland.
| | - Nico Kummer
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland. and Laboratory for Cellulose & Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, 8600, Switzerland
| | - Pascal Bertsch
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland.
| | - Gustav Nyström
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland. and Laboratory for Cellulose & Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, 8600, Switzerland
| | - Peter Fischer
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
28
|
Heiden-Hecht T, Ulbrich M, Drusch S, Brückner-Gühmann M. Interfacial Properties of β-Lactoglobulin at the Oil/Water Interface: Influence of Starch Conversion Products with Varying Dextrose Equivalents. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09658-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractIn spray dried emulsions, frequently milk proteins are used as interfacial active components and starch conversion products are added as matrix material at high concentrations. To characterize interfacial properties at the oil/water interface by commonly applied methods, low protein, and carbohydrate concentrations from 1 to 2% are usually analyzed. The impact of a higher concentration of starch conversion products was not investigated so far. Therefore, the formation and rheological properties of β-lactoglobulin (β-LG) stabilized films at the oil/water interface were investigated via short and long-time adsorption behavior using pendant drop tensiometry as well as dilatational and interfacial shear rheology. Suitability of the applied methods to the chosen samples with higher concentrations >1–2% was verified by calculation of selected key numbers like capillary number and by detailed reviewing of the results which is summarized further on as key indicators. It is hypothesized, that the increase in concentration via presence of starch conversion products will delay interfacial stabilization as a result of increased bulk viscosity with decreasing degree of degradation (dextrose equivalent) of the starch. Furthermore, this increase in concentration leads to more stable interfacial films due to thermodynamic incompatibility effects between protein and starch conversion products which results in increases of local protein concentration. Key indicators proved a general suitability of applied methods for the evaluation of the investigated samples. Moreover, results showed an increase in interfacial film stability and elastic properties alongside a decreased interfacial tension if starch conversion products were present in a high concentration.
Collapse
|
29
|
Xu L, Jiao F, Jia W, Pan Z, Hu C, Qin W. Selective flotation separation of spodumene from feldspar using mixed anionic/nonionic collector. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|