1
|
Chen Q, Wang Y, Wu X, Jiang Z, Zhang B, Kaya MGA, Goh KL, Tang K. A novel strategy for using ficin enzyme from fig leaves to extract collagen from tannery-trimming wastes. Int J Biol Macromol 2025; 305:141183. [PMID: 39971038 DOI: 10.1016/j.ijbiomac.2025.141183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
There is a growing interest in the utilization of animal by-products and wastes. Plant-derived enzymes could play a vital role in collagen extraction from tannery-trimming wastes. Here, the ficin enzyme from fig leaves was used for collagen extraction and compared with conventional acetic acid and pepsin extraction methods, aiming to assess the efficiency and purity of collagen extracted using this plant-based enzyme approach relative to the organic solvents and animal-derived enzymes. The extracted collagen was identified as type I collagen. Response surface methodology analysis revealed that the ficin enzyme-soluble collagen yielded 15.28 % at a hydrolysis time of 39.27 h, a ficin enzyme dose of 5.54 %, and a mixing ratio of 15.87, higher than the acetic acid-soluble collagen yield of 9.52 % and pepsin enzyme-soluble collagen yield of 14.56 %. Ficin enzyme-soluble collagen exhibited better integrity of the triple helical structure with fewer proteinaceous impurities, though it showed poorer thermal stability. Ultrasound treatment at 800 W for 30 min did not significantly disrupt the triple helical structure of collagen. The work aims to develop a green and sustainable method for extracting collagen from tannery-trimming wastes, offering a novel approach for the high-value conversion of animal by-products and agro-residues wastes.
Collapse
Affiliation(s)
- Qijue Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yumeng Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xiangning Wu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Zhuoer Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Boxian Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Mǎdǎlina Georgiana Albu Kaya
- Collagen Department, INCDTP-Leather and Footwear Research Institute, 93 Ion Minulescu, Bucharest 031215, Romania
| | - Kheng Lim Goh
- Newcastle University in Singapore, 172A Ang Mo Kio Avenue 8, #05-01, 567739, Singapore; Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
2
|
Nilsuwan K, Thongnoi S, Prodpran T, Benjakul S. Properties and Characteristics of Film from Salmon Skin Acid-Soluble Collagen Solution as Influenced by Ultrasonication Process. Foods 2025; 14:1088. [PMID: 40238195 PMCID: PMC11988735 DOI: 10.3390/foods14071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Salmon skin is a byproduct from the fish processing industry that can be used as a potential source of collagen. Due to the presence of other constituents, pretreatment of the skin is required prior to the preparation of the acid-soluble collagen (ASC) solution and film. This study aimed to investigate the effects of ultrasonication amplitudes (50% and 70%) and times (5, 10, and 15 min) on the properties and characteristics of ASC solutions and films. The ASC solutions had higher elastic behavior when ultrasonication at a lower amplitude and a shorter time was used. Films from solutions ultrasonicated at 50% amplitude had a higher thickness, tensile strength, elongation at break, and water vapor barrier property than films from solutions ultrasonicated at 70% amplitude, regardless of the ultrasonication time used. A longer ultrasonication time decreased the L* value but increased the transparency value. The FTIR spectra indicated that structural modifications were affected by the ultrasonication conditions used. The SEM images showed a continuous surface for all the films. Higher amplitudes and longer times reduced the thermal stability and crystallinity, respectively, as determined by differential scanning calorimetry and thermogravimetric analysis as well as X-ray diffraction. Therefore, ultrasonication at 50% amplitude for 10 min was suitable for producing films with satisfactory mechanical and water vapor barrier properties.
Collapse
Affiliation(s)
- Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (T.P.); (S.B.)
- Program of Food Science and Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | - Sujinun Thongnoi
- Program of Food Science and Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (T.P.); (S.B.)
- Center of Excellence in Bio-Based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (T.P.); (S.B.)
- Program of Food Science and Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| |
Collapse
|
3
|
Luo Y, Zhang L, Xie J, Chen J. Structural, physicochemical, and digestive properties of sea buckthorn seeds protein obtained from ultrasound-assisted extraction. J Food Sci 2025; 90:e70137. [PMID: 40111089 DOI: 10.1111/1750-3841.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
This study investigated the effects of ultrasound-assisted treatment with alkaline protease on the structural, physicochemical, and digestive properties of sea buckthorn seed protein (SBSP). Different ultrasound powers (250, 350, 450, 550, 650 W) and times (20, 25, 30, 35, 40 min) were applied to assess these effects. Among these treatments, the ultrasonic treatment of 350 W for 30 min led to an increase in surface hydrophobicity, a significant reduction in average particle size, and enhanced the solubility, emulsifying capacity, and foaming properties of SBSP. Furthermore, the secondary and tertiary structures of SBSP underwent changes during the ultrasound treatment, with a decrease in α-helix content and a 17.5% increase in β-sheet content. X-ray diffraction analysis revealed a reduction in SBSP crystallinity. The in vitro digestibility of the protein was also improved, while the content of undesirable volatile flavor compounds was reduced during extraction. Thus, ultrasound-assisted pretreatment proves to be an effective method for extracting SBSP, improving its functional properties, and providing important implications for the application of SBSP in food products.
Collapse
Affiliation(s)
- Yuhuan Luo
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Liyixia Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Jingjing Xie
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Jingjing Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| |
Collapse
|
4
|
Ata O, Bozdogan N, Mataraci CE, Kumcuoglu S, Kaya Bayram S, Tavman S. Extraction and characterization of valuable compounds from chicken sternal cartilage: Type II collagen and chondroitin sulfate. Food Chem 2025; 462:141023. [PMID: 39217742 DOI: 10.1016/j.foodchem.2024.141023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Type II collagen (Col II) and chondroitin sulfate (CS) are the main macromolecules in the extracellular matrix. This study investigated the characteristics of Col II and CS obtained from chicken sternal cartilage (CSC) via enzymatic hydrolysis for various treatment times. For Col II and CS, the highest efficiency of enzymatic hydrolysis was achieved after 24 and 6 h of treatment, respectively. The average molecular weights were α1 chain-130 kDa, β chain-270 kDa for Col II, and 80.27 kDa for CS. Fourier transform infrared spectroscopy revealed that the Col II samples maintained their triple-helical structure and that the predominant type of CS was chondroitin-4-sulfate. Scanning electron microscopy revealed that the Col II and CS samples possessed fibrillar and clustered structures, respectively. This study suggests that collagen and CS obtained from CSC can be used as promising molecules for application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ozge Ata
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Neslihan Bozdogan
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Ceren Evrim Mataraci
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Seher Kumcuoglu
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | | | - Sebnem Tavman
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye.
| |
Collapse
|
5
|
Shaik MI, Rahman SHA, Yusri AS, Ismail-Fitry MR, Kumar NSS, Sarbon NM. A review on the processing technique, physicochemical, and bioactive properties of marine collagen. J Food Sci 2024; 89:5205-5229. [PMID: 39126690 DOI: 10.1111/1750-3841.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Collagens are conventionally derived from bovine and porcine sources. However, these sources were commonly associated with infectious diseases such as bovine spongiform encephalopathy, foot and mouth disease, autoimmune and allergic reactions, and religious constraints. The significant amount of collagen available in marine species, especially fish skins, scales, fins, and bones, shows that marine species can be a potential alternative source to mammalian collagen. Therefore, this review aims to give a clearer outlook on the processing techniques of marine collagen and its physicochemical and bioactive properties as a potential alternative to mammalian collagen. The two most suitable extraction methods for marine collagen are pepsin-soluble extraction and ultrasound-assisted extraction. Additionally, marine collagen's physicochemical and bioactive properties, such as antioxidants, wound healing, tissue engineering, and cosmetic biomaterial have been thoroughly discussed in this review. PRACTICAL APPLICATION: Collagen extracted from marine sources showed its potential in physicochemical and bioactive properties, including antioxidants and wound-healing capabilities, as an alternative to mammalian collagen. The significant amount of collagen found in marine species, particularly in fish skins, scales, bones, and sea cucumbers, suggests that marine sources could be a viable alternative to land mammal collagen due to their abundance and accessibility. The ultrasound-assisted extraction technique has improved the extracted marine collagen's physicochemical and bioactivity properties and quality properties.
Collapse
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Siti Hajar Abdul Rahman
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Anis Syafiqah Yusri
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nune Satya Sampath Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
6
|
Jayaprakash S, Mohamad Abdul Razeen Z, Naveen Kumar R, He J, Milky MG, Renuka R, Sanskrithi MV. Enriched characteristics of poultry collagen over other sources of collagen and its extraction methods: A review. Int J Biol Macromol 2024; 273:133004. [PMID: 38851608 DOI: 10.1016/j.ijbiomac.2024.133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Collagen is the most abundant protein in animals and is extensively studied for its structural and thermal stability, biocompatibility, and healing properties which enables them to be widely applied in various fields. Collagen extracted from poultry sources have shown improved structural stability and reduced risk of triggering allergic responses and transmitting animal diseases onto humans. Furthermore, poultry collagen is widely accepted by consumers of diverse beliefs in comparison to collagen extracted from bovine and porcine sources. The review aims to compare different sources of collagen, focusing on the various beneficial characteristics of poultry collagen over the other sources. Moreover, the review explains various pre-treatment and extraction methods of poultry collagen and its versatile applications in different industrial sectors.
Collapse
Affiliation(s)
- Sakthidasan Jayaprakash
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India.
| | - Z Mohamad Abdul Razeen
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - R Naveen Kumar
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - Jin He
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mariamawit Girma Milky
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - R Renuka
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - M V Sanskrithi
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| |
Collapse
|
7
|
Li Y, Ma Z, Yan Q, Cao D, Yuan R, Wang J, Lu S. Effect of low-frequency ultrasound-assisted acid extraction on gel properties and structural characterization of sheep's hoof gelatin. Int J Biol Macromol 2024; 271:132701. [PMID: 38810856 DOI: 10.1016/j.ijbiomac.2024.132701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/14/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
In this study, we investigated the effects of various low-frequency ultrasound-assisted extraction processes, including ultrasound-assisted acid-soaked water bath extraction (UAW), ultrasound-assisted water bath extraction after acid soaking (AUW), acid-soaked water bath extraction followed by ultrasonics (AWU), and acid-soaked water bath extraction without ultrasound (CON), on the structural properties, thermal stability, gel properties, and microstructure of sheep's hoof gelatin. The results revealed that the primary components of sheep's hoof gelatin consisted of α1-chain, α2-chain (100-135 kDa), and β-chain. In addition, it was observed that among the three sonication groups, sheep's hoof gelatin extracted in the AUW group exhibited the highest yield (27.16 ± 0.41 %), the best gel strength (378.55 ± 7.34 g), and higher viscosity at the same shear rate. The gelling temperature (25.38 ± 0.45 °C) and melting temperature (32.28 ± 0.52 °C) of sheep's hoof gelatin in the AUW group were significantly higher than those in the other groups (p > 0.05). Moreover, our experiments revealed that the sequence of low-frequency ultrasonic pretreatment processes was a crucial factor influencing the gel properties and structural characteristics of sheep's hoof gelatin. Specifically, the acid treatment followed by the ultrasound-assisted approach in the AUW group yielded high-quality and high-yield sheep's hoof gelatin.
Collapse
Affiliation(s)
- Yuhan Li
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Zehao Ma
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Qi Yan
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Doudou Cao
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Ruyan Yuan
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Jingyun Wang
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China; Xinjiang Sailimu Modern Agriculture Co, Shuanghe, Xinjiang Autonomus Region, China.
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| |
Collapse
|
8
|
Ahmad MI, Li Y, Pan J, Liu F, Dai H, Fu Y, Huang T, Farooq S, Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int J Biol Macromol 2024; 254:128037. [PMID: 37963506 DOI: 10.1016/j.ijbiomac.2023.128037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Food-producing animals have the highest concentration of collagen in their extracellular matrix. Collagen and gelatin are widely used in food industry due to their specific structural, physicochemical, and biochemical properties, which enable them to improve health and nutritional value as well as to increase the stability, consistency, and elasticity of food products. This paper reviews the structural and functional properties including inherent self-assembly, gel forming, water-retaining, emulsifying, foaming, and thickening properties of collagen and gelatin. Then the colloid structures formed by collagen such as emulsions, films or coatings, and fibers are summarized. Finally, the potential applications of collagen and gelatin in muscle foods, dairy products, confectionary and dessert, and beverage products are also reviewed. The objective of this review is to provide the current market value, progress as well as applications of collagen and its derivatives in food industry.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jinfeng Pan
- National Engineering Research Centre for Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Centre for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, Jiangnan University, School of Food Science and Technology, International Joint Laboratory on Food Safety, Wuxi 214122, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
10
|
He L, Cao Y, Wang X, Wang Y, Han L, Yu Q, Zhang L. Synergistic modification of collagen structure using ionic liquid and ultrasound to promote the production of DPP-IV inhibitory peptides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4603-4613. [PMID: 36860123 DOI: 10.1002/jsfa.12536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Dual modification of collagen was performed using ionic liquid (IL) and ultrasound (US) to modulate the activity of collagen hydrolyzed peptides and reveal the production mechanism of cowhide-derived dipeptidyl peptidase (DPP-IV) inhibitory peptides. RESULTS The results revealed that dual modification (IL + US) significantly improved the hydrolytic degree of collagen (P < 0.05). Meanwhile, IL and US tended to promote the break of hydrogen bonds, but inhibit the crosslinking between collagens. The double modification reduced the thermal stability and accelerated the exposure of tyrosine and phenylalanine of collagen, and improved the proportion of small molecular (< 1 kDa) peptides in collagen hydrolysates. Interestingly, the hydrophobic amino acid residues and DPP-IV inhibitory activity of collagen peptides with small molecular weight (< 1 kDa) was increased further under the combination of IL and US. CONCLUSION Enhanced hypoglycemic activity of collagen peptides can be attained through the dual modification of IL and US. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yingying Cao
- College of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xinyue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yanru Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Hu G, Li X, Su R, Corazzin M, Liu X, Dou L, Sun L, Zhao L, Su L, Tian J, Jin Y. Effects of ultrasound on the structural and functional properties of sheep bone collagen. ULTRASONICS SONOCHEMISTRY 2023; 95:106366. [PMID: 36965310 PMCID: PMC10074209 DOI: 10.1016/j.ultsonch.2023.106366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 06/01/2023]
Abstract
The study evaluated the effect of an ultrasound-assisted treatment on the structural and functional properties of sheep bone collagen (SBC). The type and distribution of SBC were analyzed by proteome (shotgun) technology combined with liquid chromatography-tandem mass spectrometry. Compared with pepsin extraction, the ultrasound-assisted treatment significantly increased the collagen extraction rate by 17.4 pp (P < 0.05). The characteristic functional groups and structural integrity of collagen extracted by both methods were determined via Fourier transform infrared spectroscopy, ultraviolet absorption spectroscopy, and fluorescence spectroscopy. Circular dichroism spectra revealed that the ultrasound-assisted pretreatment reduced α-helix content by 1.6 pp, β-sheet content by 21.9 pp, and random coils content by 28.4 pp, whereas it increased β-turn content by 51.9 pp (P < 0.05), compared with pepsin extraction. Moreover, ultrasound-assisted treatment collagen had superior functional properties (e.g., solubility, water absorption, and oil absorption capacity) and foaming and emulsion properties, compared with pepsin extraction. Furthermore, the relative content of type I collagen in ultrasound-assisted extracted SBC was highest at 79.66%; only small proportions of type II, VI, X, and XI collagen were present. Peptide activity analysis showed that SBC had potential antioxidant activity, dipeptidyl peptidase 4 inhibitory activity, and angiotensin-converting enzyme inhibitory activity; it also had anticancer, antihypertensive, anti-inflammatory, and immunomodulatory effects.
Collapse
Affiliation(s)
- Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaotong Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010010, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy
| | - Xuemin Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
12
|
Kaewbangkerd K, Hamzeh A, Yongsawatdigul J. Ultrasound-assisted extraction of collagen from broiler chicken trachea and its biochemical characterization. ULTRASONICS SONOCHEMISTRY 2023; 95:106372. [PMID: 36944278 PMCID: PMC10036945 DOI: 10.1016/j.ultsonch.2023.106372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Broiler chicken tracheas are a co-product from chicken slaughterhouses which are normally turned into low value animal feed despite their high levels of collagen. Typical collagen extraction by acid and/or pepsin usually results in relatively low yield. Ultrasound-assisted extraction (UAE) could be a means to improve collagen yield. The objectives of this study were to investigate the effects of ultrasonic parameters on the yield and biochemical properties of trachea collagen (TC). Conventional extraction using acetic acid and pepsin for 48 h resulted in acid-soluble (AS) and pepsin-soluble (PS) collagen with a yield of 0.65% and 3.10%, respectively. When an ultrasound with an intensity of 17.46 W·cm-2 was applied for 20 min, followed by acid extraction for 42 h (U-AS), the collagen yield increased to 1.58%. A yield of 6.28% was obtained when the ultrasound treatment was followed by pepsin for 36 h (U-PS). PS and U-PS contained collagen of 82.84% and 85.70%, respectively. Scanning electron microscopy images revealed that the ultrasound did not affect the collagen microstructure. All collagen samples showed an obvious triple helix structure as measured by circular dichroism spectroscopy. Fourier transform infrared spectroscopy indicated that the ultrasound did not disturb the secondary structure of the protein in which approximately 30% of the α-helix content was a major structure for all collagen samples. Micro-differential scanning calorimetry demonstrated that the denaturation temperature of collagen in the presence of deionized water was higher than collagen solubilized in 0.5 M acetic acid, regardless of the extraction method. All collagen comprised of α1 and α2-units with molecular weights of approximately 135 and 116 kDa, respectively, corresponding to the type I characteristic. PS and U-PS collagen possessed higher imino acids than their AS and U-AS counterparts. Based on LC-MS/MS peptide mapping, PS and U-PS collagen showed a high similarity to type I collagen. These results suggest that chicken tracheas are an alternative source of type I collagen. UAE is a promising technique that could increase collagen yield without damaging its structure.
Collapse
Affiliation(s)
- Kitsanapong Kaewbangkerd
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
13
|
Zhang M, Gao T, Han Y, Xue D, Jiang S, Li Q, Li C. Improvement of Structural, Rheological, and physicochemical properties of type I collagen by calcium lactate combined with ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 95:106373. [PMID: 36933502 PMCID: PMC10031159 DOI: 10.1016/j.ultsonch.2023.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Type I collagen has a relatively stable quality while quite resistant to digestion because of the complex triple helix structure. This study was conducted to explore the acoustic conditions of ultrasound (UD)-assisted calcium lactate processing of collagen and control the processing process through its sono-physico-chemical effects. The findings demonstrated that UD might lower the average particle size of collagen and increase its zeta potential. In contrast, the rise in calcium lactate concentration could dramatically limit the impact of UD processing. This may be because of its low acoustic cavitation effect, as demonstrated by the phthalic acid method (the fluorescence value decreased from 81245.67 to 18243.67). Poor changes in tertiary and secondary structures confirmed the detrimental effect of calcium lactate concentration on UD-assisted processing. Although UD-assisted calcium lactate processing can significantly alter the structure of collagen, the integrity of the collagen is basically preserved. Furthermore, the addition of UD and a trace amount of calcium lactate (0.1%) increased the roughness of the fiber structure. At this relatively low calcium lactate concentration, ultrasound improved the gastric digestibility of collagen by nearly 20%.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; International Joint Collaborative Research Laboratory for Animal Health and Food Safety, MOE, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingxuan Gao
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Han
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejiang Xue
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Liu H, Zhang H, Wang K, Qi L, Guo Y, Zhang C, Xu Y. Impact of Ultrasonication on the Self-Assembly Behavior and Gel Properties of Bovine Bone Collagen I. Molecules 2023; 28:molecules28073096. [PMID: 37049859 PMCID: PMC10095610 DOI: 10.3390/molecules28073096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
This study deliberated the effect of ultrasonic treatment on collagen self-assembly behavior and collagen fibril gel properties. Bovine bone collagen I which had undergone ultrasonic treatment with different power (0–400 W) and duration (0–60 min) was analyzed. SDS-PAGE and spectroscopic analysis revealed that ultrasonic treatment decreased collagen molecular order degree and the number of hydrogen bonds, stretching collagen telopeptide regions while maintaining the integrity of the collagen triple-helical structure. Ultrasonic treatment (p ≤ 200 W, t ≤ 15 min) dispersed the collagen aggregates more evenly, and accelerated collagen self-assembly rate with a decreased but more homogeneous fibril diameter (82.78 ± 16.47–115.52 ± 19.51 nm) and D-periodicity lengths (62.1 ± 2.9–66.5 ± 1.8 nm) than that of the untreated collagen (119.15 ± 27.89 nm; 66.5 ± 1.8 nm). Meanwhile, ultrasonic treatment (p ≤ 200 W, t ≤ 15 min) decreased the viscoelasticity index and gel strength, enhancing thermal stability and promoting specific surface area and porosity of collagen fibril gels than that of the untreated collagen fibril gel. These results testified that collagen self-assembly behavior and collagen fibril gel properties can be regulated by ultrasonic treatment through multi-hierarchical structural alteration. This study provided a new approach for controlling in vitro collagen fibrillogenesis process so as to manufacture novel desirable collagen-based biomaterials with propitious performances for further valorization.
Collapse
|
15
|
Nong LM, Jiang YQ, Zhou SY, Gao GM, Ma Y, Jiang XJ, Han L. Removal of collagen three-dimensional scaffold bubbles utilizing a vacuum suction technique. Cell Tissue Bank 2023; 24:181-190. [PMID: 35794499 DOI: 10.1007/s10561-022-10020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
The process of generating type I/II collagen scaffolds is fraught with bubble formation, which can interfere with the three-dimensional structure of the scaffold. Herein, we applied low-temperature vacuum freeze-drying to remove mixed air bubbles under negative pressure. Type I and II rubber sponges were acid-solubilized via acid lysis and enzymolysis. Thereafter, vacuum negative pressure was applied to remove bubbles, and the cover glass press method was applied to shape the type I/II original scaffold. Vacuum negative pressure was applied for a second time to remove any residual bubbles. Subsequent application of carbamide/N-hydroxysuccinimide cross-linked the scaffold. The traditional method was used as the control group. The structure and number of residual bubbles and pore sizes of the two scaffolds were compared. Based on the relationship between the pressure and the number of residual bubbles, a curve was created, and the time of ice formation was calculated. The bubble content of the experimental group was significantly lower than that of the control group (P < 0.05). The pore diameter of the type I/II collagen scaffold was higher in the experimental group than in the control group. The time of icing effect of type I and II collagen solution was 136.54 ± 5.26 and 144.40 ± 6.45 s, respectively. The experimental scaffold had a more regular structure with actively proliferating chondrocytes that possessed adherent pseudopodia. The findings indicated that the vacuum negative pressure method did not affect the physical or chemical properties of collagen, and these scaffolds exhibited good biocompatibility with chondrocytes.
Collapse
Affiliation(s)
- Lu-Ming Nong
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Yu-Qing Jiang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Si-Yuan Zhou
- Department of Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Gong-Ming Gao
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Yong Ma
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Xi-Jia Jiang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Long Han
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China.
- Changzhou Second People's Hospital, No. 29 Xinglong Lane, Tian-Ning District, Changzhou City, 213000, Jiangsu Province, China.
| |
Collapse
|
16
|
Cutting Edge Aquatic-Based Collagens in Tissue Engineering. Mar Drugs 2023; 21:md21020087. [PMID: 36827128 PMCID: PMC9959471 DOI: 10.3390/md21020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.
Collapse
|
17
|
Effects of Extraction Methods on the Characteristics, Physicochemical Properties and Sensory Quality of Collagen from Spent-Hens Bones. Foods 2023; 12:foods12010202. [PMID: 36613418 PMCID: PMC9818810 DOI: 10.3390/foods12010202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The present study used acetic acid, sodium hydroxide, and pepsin extract acid-soluble collagen (ASC), alkali-soluble collagen (ALSC), and pepsin-soluble collagen (PSC) from the bones of spent-hens, and the effects of three extraction methods on the characteristics, processing properties, antioxidant properties and acceptability of chicken bone collagen were compared. The results showed that the extraction rates of ASC, ALSC and PSC extracted from bones of spent-hens were 3.39%, 2.42% and 9.63%, respectively. The analysis of the amino acid composition, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), and ultraviolet full spectrum showed that the collagen extracted by the three methods had typical collagen characteristics and stable triple-helix structure, but the triple helical structure of PSC is more stable, and acid and alkaline extraction seems to have adverse effects on the secondary structure of chicken bone collagen. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) scanning showed that PSC had higher thermal stability and more regular, loose, and porous microstructure. In addition, PSC has good processing properties, in vitro antioxidant activity, and organoleptic acceptability. Therefore, enzymatic hydrolysis was still one of the best methods to prepare collagen from bones of spent-hens, and enzyme-soluble collagen has wider application prospects in functional food and medicine and also provides an effective way for the high-value comprehensive utilization of waste chicken bone by-products.
Collapse
|
18
|
Guan Y, He J, Chen J, Li Y, Zhang X, Zheng Y, Jia L. Valorization of Fish Processing By-Products: Microstructural, Rheological, Functional, and Properties of Silver Carp Skin Type I Collagen. Foods 2022; 11:2985. [PMID: 36230061 PMCID: PMC9562877 DOI: 10.3390/foods11192985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to develop aquatic collagen production from fish processing by-product skin as a possible alternative to terrestrial sources. Silver carp skin collagen (SCSC) was isolated and identified as type I collagen, and LC-MS/MS analysis confirmed the SCSC as Hypophthalmichthys molitrix type I collagen, where the yield of SCSC was 40.35 ± 0.63% (dry basis weight). The thermal denaturation temperature (Td) value of SCSC was 30.37 °C, which was superior to the collagen of deep-sea fish and freshwater fish. Notably, SCSC had higher thermal stability than human placental collagen, and the rheological experiments showed that the SCSC was a shear-thinning pseudoplastic fluid. Moreover, SCSC was functionally superior to some other collagens from terrestrial sources, such as sheep, chicken cartilage, and pig skin collagen. Additionally, SCSC could provide a suitable environment for MC3T3-E1 cell growth and maintain normal cellular morphology. These results indicated that SCSC could be used for further applications in food, cosmetics, and biomedical fields.
Collapse
Affiliation(s)
- Yongxin Guan
- College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, China
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jianlin He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Junde Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yushuang Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xingkun Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yan Zheng
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Linyan Jia
- College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, China
| |
Collapse
|
19
|
Liu H, Guo Y, Xu X, Liu J, Zhang H, Qi L, Zhang C, Gao H. Comparative assessment of bone collagen recovered from different livestock and poultry species: microstructure, physicochemical characteristics and functional properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hong Liu
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Yujie Guo
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Xiong Xu
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Jiqian Liu
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Hongru Zhang
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Liwei Qi
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Chunhui Zhang
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Hongwei Gao
- Xinjiang Taikun Group Co., Ltd. Xinjiang Uygur, Autonomous Region Changji 831100 China
| |
Collapse
|
20
|
Ghaffari-Bohlouli P, Jafari H, Taebnia N, Abedi A, Amirsadeghi A, Niknezhad SV, Alimoradi H, Jafarzadeh S, Mirzaei M, Nie L, Zhang J, Varma RS, Shavandi A. Protein by-products: Composition, extraction, and biomedical applications. Crit Rev Food Sci Nutr 2022; 63:9436-9481. [PMID: 35546340 DOI: 10.1080/10408398.2022.2067829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.
Collapse
Affiliation(s)
| | - Hafez Jafari
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahta Mirzaei
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Lei Nie
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Amin Shavandi
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| |
Collapse
|
21
|
Oral Intake of Chicken Bone Collagen Peptides Anti-Skin Aging in Mice by Regulating Collagen Degradation and Synthesis, Inhibiting Inflammation and Activating Lysosomes. Nutrients 2022; 14:nu14081622. [PMID: 35458184 PMCID: PMC9032939 DOI: 10.3390/nu14081622] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
The effect of diet on skin aging has become an interesting research topic. Previous studies have mostly focused on the beneficial effects of collagen peptides derived from marine organisms on the aging skin when administered orally, while the beneficial effects of collagen peptides derived from poultry on aging skin have been rarely reported. In this study, collagen peptides were prepared from chicken bone by enzymatic hydrolysis, and the effect and mechanism of action of orally administered collagen peptides on alleviating skin aging induced by UV combined with D-galactose were investigated. The results showed that the chicken bone collagen had typical characteristics of collagen, and the chicken bone collagen peptides (CPs) were mainly small molecular peptides with a molecular weight of <3000 Da. In vivo experiments showed that CPs had a significant relieving effect on aging skin, indicated by the changes in the compostion and structure of the aging skin, improvement of skin antioxidant level, and inhibition of inflammation; the relieving effect was positively correlated with the dose of CPs. Further investigation showed that CPs first reduce the level of skin oxidation, inhibit the expression of the key transcription factor AP-1 (c-Jun and c-Fos), then activate the TGF-β/Smad signaling pathway to promote collagen synthesis, inhibit the expression of MMP-1/3 to inhibit collagen degradation, and inhibit skin inflammation to alleviate skin aging in mice. Moreover, the skin transcriptome found that lysosomes activated after oral administration of CPs may be an important pathway for CPs in anti-skin aging, and is worthy of further research. These results suggested that CPs might be used as a functional anti-aging nutritional component.
Collapse
|
22
|
Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, Wang Z, Zhou H, Yang T, Zhang Q, Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Hao L, Ma C, Li Z, Wang Y, Zhao X, Yu M, Hou H. Effects of type II collagen hydrolysates on osteoarthritis through the NF-κB, Wnt/β-catenin and MAPK pathways. Food Funct 2022; 13:1192-1205. [PMID: 35018959 DOI: 10.1039/d1fo03414f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Osteoarthritis (OA), a degenerative disease, has attracted extensive attention all over the world. In this study, a rat model involving medial meniscus resection (MMx) and anterior to medial collateral ligament (ACL) operation was successfully established to study the effects of bovine cartilage hydrolysates rich in type II collagen peptides (BIIP) on cartilage protection. The results of histological analysis indicated that oral administration of BIIP at doses of 200 and 500 mg kg-1 d-1 ameliorated cartilage degeneration. Moreover, the potential targets of BIIP affecting OA in vivo were studied by proteomics, and the effects of BIIP on OA through signaling pathways, such as NF-κB, Wnt/β-catenin and MAPK, were further explored at mRNA and protein levels. BIIP downregulated the expression of IL-6, RUNX2, NF-κB p65, HIF-2α, β-catenin and p-JNK, which may be the main factor leading to the prevention of OA. These results suggest that BIIP can be used as a novel potential substance of functional foods to exert chondroprotective action.
Collapse
Affiliation(s)
- Li Hao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, PR China
| | - Chengcheng Ma
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Zhaoxia Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Xue Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Mingxiao Yu
- Meitek Technology Co., Ltd, No. 1888 Dazhushan South Road, Qingdao, Shandong Province 266400, PR China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, PR China
| |
Collapse
|
24
|
Chen J, Wang G, Li Y. Preparation and Characterization of Thermally Stable Collagens from the Scales of Lizardfish ( Synodus macrops). Mar Drugs 2021; 19:md19110597. [PMID: 34822468 PMCID: PMC8620309 DOI: 10.3390/md19110597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Marine collagen is gaining vast interest because of its high biocompatibility and lack of religious and social restrictions compared with collagen from terrestrial sources. In this study, lizardfish (Synodus macrops) scales were used to isolate acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC). Both ASC and PSC were identified as type I collagen with intact triple-helix structures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and spectroscopy. The ASC and PSC had high amino acids of 237 residues/1000 residues and 236 residues/1000 residues, respectively. Thus, the maximum transition temperature (Tmax) of ASC (43.2 °C) was higher than that of PSC (42.5 °C). Interestingly, the Tmax of both ASC and PSC was higher than that of rat tail collagen (39.4 °C) and calf skin collagen (35.0 °C), the terrestrial collagen. Solubility tests showed that both ASC and PSC exhibited high solubility in the acidic pH ranges. ASC was less susceptible to the “salting out” effect compared with PSC. Both collagen types were nontoxic to HaCaT and MC3T3-E1 cells, and ASC was associated with a higher cell viability than PSC. These results indicated that ASC from lizardfish scales could be an alternative to terrestrial sources of collagen, with potential for biomedical applications.
Collapse
Affiliation(s)
- Junde Chen
- Correspondence: ; Tel./Fax: +86-0592-215527
| | | | | |
Collapse
|
25
|
Guo Y, Li X, Jia W, Huang F, Liu Y, Zhang C. Characterization of an intracellular aspartic protease (PsAPA) from Penicillium sp. XT7 and its application in collagen extraction. Food Chem 2021; 345:128834. [PMID: 33348133 DOI: 10.1016/j.foodchem.2020.128834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/09/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023]
Abstract
An intracellular aspartic protease, PsAPA, was identified from Penicillium sp. XT7. This protease was belonged to penicillopepsin and was expressed in Pichia pastoris GS115. The recombinant PsAPA had a specific activity of 4289.7 ± 261.7 U/mg. The pH and temperature maxima of the enzyme were 3.0 and 30 °C, respectively. The PsAPA was stable in the pH range from 3.0 to 6.0 and was completely inactivated after incubation at 50 °C for 15 min. Presence of Mn2+ and Cu2+ increased the proteolytic activity and β-mercaptoethanol and SDS showed inhibitory effects, whereas 0.05 M pepstatin A strongly inhibited it. PsAPA could effectively hydrolyze animal proteins, including myoglobin, and hemoglobin but not collagens. PsAPA increased the yield of collagen extraction compared to the acid extraction method. The above properties show that the novel low-temperature acidic protease, PsAPA, is comparable to commercial proteases (porcine pepsin) and has great potential for collagen extraction.
Collapse
Affiliation(s)
- Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Jia
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Huang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
26
|
Harris M, Potgieter J, Ishfaq K, Shahzad M. Developments for Collagen Hydrolysate in Biological, Biochemical, and Biomedical Domains: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2806. [PMID: 34070353 PMCID: PMC8197487 DOI: 10.3390/ma14112806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023]
Abstract
The collagen hydrolysate, a proteinic biopeptide, is used for various key functionalities in humans and animals. Numerous reviews explained either individually or a few of following aspects: types, processes, properties, and applications. In the recent developments, various biological, biochemical, and biomedical functionalities are achieved in five aspects: process, type, species, disease, receptors. The receptors are rarely addressed in the past which are an essential stimulus to activate various biomedical and biological activities in the metabolic system of humans and animals. Furthermore, a systematic segregation of the recent developments regarding the five main aspects is not yet reported. This review presents various biological, biochemical, and biomedical functionalities achieved for each of the beforementioned five aspects using a systematic approach. The review proposes a novel three-level hierarchy that aims to associate a specific functionality to a particular aspect and its subcategory. The hierarchy also highlights various key research novelties in a categorical manner that will contribute to future research.
Collapse
Affiliation(s)
- Muhammad Harris
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| | - Johan Potgieter
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
| | - Kashif Ishfaq
- Industrial and Manufacturing Engineering Department, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Muhammad Shahzad
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| |
Collapse
|
27
|
Zhang X, Xu S, Shen L, Li G. Factors affecting thermal stability of collagen from the aspects of extraction, processing and modification. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00033-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Collagen, as a thermal-sensitive protein, is the most abundant structural protein in animals. Native collagen has been widely applied in various fields due to its specific physicochemical and biological properties. The beneficial properties would disappear with the collapse of the unique triple helical structure during heating. Understanding thermal stability of collagen is of great significance for practical applications. Previous studies have shown the thermal stability would be affected by the different sources, extraction methods, solvent systems in vitro and modified methods. Accordingly, the factors affecting thermal stability of collagen are discussed in detail in this review.
Graphical abstract
Collapse
|
28
|
Luo J, Yang X, Cao Y, Li G, Meng Y, Li C. Structural characterization and in vitro immunogenicity evaluation of amphibian-derived collagen type II from the cartilage of Chinese Giant Salamander ( Andrias davidianus). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1941-1960. [PMID: 32584658 DOI: 10.1080/09205063.2020.1786882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Collagen type II (CT-II) has unique biological activities and functions, yet the knowledge on amphibian-derived CT-II is rare. Herein, acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were successfully isolated and characterized from the cartilage of Chinese Giant Salamander (CGS). The in vitro immunogenicity of collagen was then evaluated and compared with that of the standard bovine CT-II (SCT-II) by T-lymphocyte cell proliferation activity. Results demonstrated that ASC and PSC were predominantly CT-II along with minor collagen type I and maintained intact triple-helical structure of nature collagen. Compared with SCT-II, higher glycine content (337.80 and 339.93 residues/1000 residues) and lower degree of proline hydroxylation (51.81% and 52.52%) were observed in ASC and PSC. Additionally, PSC showed comparable T d (63 °C) and higher T m (109 °C) than SCT-II (64 °C and 103 °C, respectively), indicating its high thermal and structural stability. SEM revealed that the lyophilized ASC and PSC had interconnected porous network structures of collagen-based materials. Moreover, different from SCT-II, both ASC and PSC presented no immunogenicity because they did not cause obvious proliferation of murine T-lymphocyte regardless of the induced concentration of collagen increased from 8 to 417 μg/mL. These data suggested that the amphibian-derived CGS cartilage collagens avoid the immunogenic risk of terrestrial animal collagen, and show high thermal stability and potential advantage in biomedical application.
Collapse
Affiliation(s)
- Jianlin Luo
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Xiaojing Yang
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yu Cao
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Guoyong Li
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yonglu Meng
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Can Li
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| |
Collapse
|