1
|
Li Y, Liu Z, Li G, Yin X, Guo C, Jiang Y, Hu X, Yi J. Inactivated mechanisms of high pressure processing combined with mild temperature on pectin methylesterase and its inhibitor. Food Chem 2025; 484:144477. [PMID: 40300406 DOI: 10.1016/j.foodchem.2025.144477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/26/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
High pressure processing (HPP) of orange juice faces storage issues due to refrigeration need and cloud loss caused by pectin methylesterase (PME). Our previous research indicated that HPP conjunction with pectin methylesterase inhibitor (PMEI) enhanced juice stability, but not fully inactivated PME. This study explored the effectiveness of HPP with mild temperature treatments to fully inactivate PME and sterilize microorganisms in juice, using experimental analysis and molecular dynamics simulation. The findings revealed that PME activity was reduced by 94 % at 600 MPa and 60 °C, with completely inactivating at 80 °C. Conversely, PMEI exhibited resistance to pressure and temperature. Following processes at 600 MPa and above 60 °C, the tail-end helix structure of PME destabilized, with α-helices converting to β-sheets and disrupting hydrogen bonds within molecular chain. Conversely, the structure of PMEI was stable. Additionally, the combination of HPP and temperature treatment enhanced the binding affinity between PME and PMEI.
Collapse
Affiliation(s)
- Yantong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhuyin Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Guijing Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Xinyi Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China.
| |
Collapse
|
2
|
Wang B, Chen W, Jia R, Guo Z. Structural and physicochemical properties of debranched lotus seed starch treated with high hydrostatic pressure. Int J Biol Macromol 2025; 293:139422. [PMID: 39746420 DOI: 10.1016/j.ijbiomac.2024.139422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Lotus seeds represent a significant economic crop and are abundant in starch. To further enhance their application value, this study investigates the structural characteristics of lotus seed starch (LS) under the combined influence of pullulanase and high hydrostatic pressure (HHP). Pullulanase increased amylose content from 39.80 % to 72.26 %, and HHP increased amylose content further. LS crystals changed from C-type to B-type, and the ordered structure of LS was destroyed by enzymatic hydrolysis, and amylose single helix and partial double helix structure were formed. At low concentration, lotus seed amylose single helix tends to form amylose double helix structure with itself. At high concentrations, they tend to aggregate, forming a network structure with large surface area and loose order. HHP destroys the double helix structure of amylose, resulting in the decrease of starch crystallinity. These findings provide new insights into improving the processing properties and application range of lotus seed starch.
Collapse
Affiliation(s)
- Bailong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Wenjing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Ru Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China.
| |
Collapse
|
3
|
Huang R, Xie X, Xu C. An innovative approach to improve the taste, quality, and shelf life of aronia berry juice by integrating food ingredient technology with high-pressure processing (HPP) technology. J Food Sci 2025; 90:e70146. [PMID: 40135458 DOI: 10.1111/1750-3841.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/07/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
Aronia juice possesses multiple health benefits; however, unfavorable taste and storage instability limit its large-scale production and consumption. In this study, aronia juice was formulated with 2% (w/w) gum Arabic or 0.5% (w/w) egg white powder, treated with high-pressure processing (HPP) at 600 MPa for 5 min, and stored at 4°C for 12 months. A hedonic test (N = 60) was conducted, and the level of microorganisms, physicochemical properties, phenolic content, and antioxidant capacity during storage were evaluated. The results showed both formulations effectively reduced astringency, enhanced consumer liking, and improved physical and color stability of aronia juice. During storage, aerobic plate count, yeast counts, and mold counts remained below 1 log CFU/mL after HPP treatment. Only slight fluctuations were observed in pH, titratable acidity, °Brix, and °Brix: acid. Nonanthocyanin phenolic compounds and antioxidant capacity remained relatively stable. Overall, aronia juice formulated with gum Arabic or egg white powder and treated with HPP exhibited higher consumer acceptability, good storage stability, and an extended microbial shelf life at 4°C. These findings are valuable in meeting consumer demand for healthy fruit juices with an appealing taste while supporting the development of the aronia berry industry. PRACTICAL APPLICATION: This study presents an innovative approach to improve the taste, quality, and shelf life of aronia berry juice by integrating food ingredient technology with high-pressure processing technology. The technology also could be used for the commercial production of other high-polyphenol juices like aronia berry.
Collapse
Affiliation(s)
- Rui Huang
- Department of Food Science and Technology, The Food Processing Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xiaoqing Xie
- Department of Food Science and Technology, The Food Processing Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Changmou Xu
- Department of Food Science and Technology, The Food Processing Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Digital Agriculture, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
He X, Wang Y, Zhang W. New insight into amino acids on the structure and rheological properties of rice starch via ultra-high pressure processing. Food Chem 2025; 466:142201. [PMID: 39612842 DOI: 10.1016/j.foodchem.2024.142201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
There is a lack of research on the effects of amino acid starch interaction on the functional properties of products during Ultra-high pressure (UHP) processing. The functional properties of rice starch with the addition of Glu, Ala and Lys were studied under UHP processing. At 400 MPa, all amino acids reduced G' and weakened the gel strength, and the gel strength order was as follows: Control > Ala > Glu > Lys. At 500 MPa, Glu increased G' and G″, and enhanced the strength of the gel, but the addition of Lys had the opposite effects, the gel strength order was as follows: Glu > Ala > Control > Lys. With the increased of treatment pressure and time, the G' and G″ of all samples treated at 500 MPa decreased, and the gel strength weakened. This study will expand the application scope of rice starch as food gelling agents and functional food.
Collapse
Affiliation(s)
- Xinhua He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Jiang X, Li L, Wang C, Wang J, Lu X, Zheng B. Dynamic/static pressure-induced copolymerization and property changes of lotus seed starch with chlorogenic acid. Food Chem 2025; 464:141723. [PMID: 39476577 DOI: 10.1016/j.foodchem.2024.141723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 10/03/2024] [Indexed: 11/28/2024]
Abstract
Pressure promotes the formation of starch-polyphenol complexes, but their classification and properties are still unclear. This study aimed to elucidate the effects of dynamic high-pressure homogenization (10-50 MPa) and static hydrostatic pressure (100-500 MPa) on the copolymerization behavior and properties of lotus seed starch (LS)-endogenous polyphenol chlorogenic acid (CA) complexes. The results showed that both pressures induced LS-CA to form stable inclusion-type complexes and easily destructible noninclusion-type complexes. Increased pressure promoted the formation of inclusion-type complexes, with dynamic pressure having a particularly strong effect. However, noninclusion-type complexes began breaking down at 20 MPa under dynamic pressure and 300 MPa under static pressure. Inclusion-type complexes primarily improve starch ordering, and noninclusion-type complexes enhance water holding capacity, but excessive proportions of either type affect pasting performance. These findings offer insights into transforming specific starch structures through small molecular components and provide a theoretical basis for controlling functional starch product processing.
Collapse
Affiliation(s)
- Xiangfu Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenxin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianyi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Ijod G, Nawawi NIM, Sulaiman R, Ismail-Fitry MR, Adzahan NM, Anwar F, Azman EM. Elevating anthocyanin extraction from mangosteen pericarp: A comparative exploration of conventional and emerging non-thermal technology. Food Chem X 2024; 24:101882. [PMID: 39974709 PMCID: PMC11838107 DOI: 10.1016/j.fochx.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 02/21/2025] Open
Abstract
Mangosteen pericarp (MP) is abundant in bioactive compounds but is often discarded as waste, leading to environmental pollution. This study compared the extraction of dried MP using maceration and high-pressure processing (HPP). HPP at 10 min (500 MPa/20 °C) resulted in the highest ACNs, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities. It also significantly reduced residual enzyme activities (REA) of polyphenol oxidase (PPO) and peroxidase (POD) by 33.90 % and 8.27 %, respectively. Fourier-transform infrared spectroscopy (FT-IR) analysis revealed a new wavelength at 2665.25 cm-1, and scanning electron microscopy (SEM) showed significant pore formation in MP cells, indicating cell damage. HPP-10 min enhanced the extraction of bioactive compounds, which significantly elevated the thermal stability of ACNs at 60 °C. This suggests that HPP is a promising method for extracting and preserving ACNs and other bioactive compounds from dried MP, with potential applications as natural colorants.
Collapse
Affiliation(s)
- Giroon Ijod
- Department of Food Technology, Faculty of Food Science and Technology, 43400, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nur Izzati Mohamed Nawawi
- Department of Food Technology, Faculty of Food Science and Technology, 43400, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rabiha Sulaiman
- Department of Food Technology, Faculty of Food Science and Technology, 43400, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, 43400, Universiti Putra Malaysia, Selangor, Malaysia
| | - Noranizan Mohd Adzahan
- Department of Food Technology, Faculty of Food Science and Technology, 43400, Universiti Putra Malaysia, Selangor, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, 43400, Universiti Putra Malaysia, Selangor, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Ezzat Mohamad Azman
- Department of Food Technology, Faculty of Food Science and Technology, 43400, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
7
|
Yang Y, Lu Z, Ye H, Li J, Zhou Y, Zhang L, Deng G, Li Z. Proteomic and metabolomic insights into the mechanisms of calcium-mediated salt stress tolerance in hemp. PLANT MOLECULAR BIOLOGY 2024; 114:126. [PMID: 39557670 DOI: 10.1007/s11103-024-01525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
Industrial hemp (Cannabis sativa L.) is a multifaced crop that has the potential to be exploited for many industrial applications, and making use of salt lands is considered to be a sustainable development strategy for the hemp industry. However, no elite salt-tolerant hemp varieties have been developed, and therefore supplementing appropriate exogenous substances to saline soil is one possible solution. Calcium-containing compounds are well-known for their salt tolerance enhancing effects, but the underlying molecular mechanisms remain largely unclear. Here, we first assessed the ameliorative effects of calcium amendments on salt-stressed hemp plants and then investigated these mechanisms on hemp using integrative analysis of proteomics and metabolomics. The stress phenotypes could be lessened by Ca2+ treatment. Certain concentrations of Ca2+ maintained relative electrical conductivity and the contents of malondialdehyde and chlorophyll. Ca2+ treatment also generally led to greater accumulations of soluble proteins, soluble carbohydrates and proline, and enhanced the activities of superoxide dismutase and peroxidase. Through functional classification, pathway enrichment, and network analysis, our data reveal that accumulation of dipeptides is a prominent metabolic signature upon exogenous Ca2+ treatment, and that changes in mitochondrial properties may play an important role in enhancing the salt tolerance. Our results outline the complex metabolic alternations involved in calcium-mediated salt stress resistance, and these data and analyses would be useful for future functional studies.
Collapse
Affiliation(s)
- Yang Yang
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Zhenhua Lu
- School of Agriculture, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China
| | - Hailong Ye
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Jiafeng Li
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Yan Zhou
- School of Agriculture, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China
| | - Ling Zhang
- School of Agriculture, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Zheng Li
- School of Agriculture, Yunnan University, Kunming, 650091, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China.
| |
Collapse
|
8
|
Ignaczak A, Woźniak Ł, Salamon A, Szczepańska-Stolarczyk J, Trych U, Chobot M, Kowalska J, Kowalska H. Shaping the Physicochemical and Health-Promoting Properties of Carrot Snacks Produced by Microwave-Vacuum Drying with Preliminary Thermal and Enriching Treatment. Molecules 2024; 29:5100. [PMID: 39519741 PMCID: PMC11547784 DOI: 10.3390/molecules29215100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/19/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
This study analyzed the effects of thermal pre-treatments such as convective drying (P-CD), water (BL_W), and microwave blanching (M_BL) and osmotic enrichment pre-treatments with juices from pomegranate (PG), chokeberry (CH), and sea buckthorn (SB) on microwave-vacuum-dried (MVD) carrot properties. Convective drying (CD) and freeze-drying (FD) were used as a comparative method. The dry matter content and water activity of MVD carrots were varied, but in many cases, the values were comparable to those of FD-dried carrots. Pre-enrichment in CH juice significantly reduced the values of the color parameters L*, a*, and b*, regardless of the drying method. The smallest changes were observed in microwave pre-blanching (M_BL). The lowest loss in carotenoid content was observed in CD-dried carrots (14-34 mg/100 g d.m.). Blanching and enrichment in SB juice allowed significant retention of these compounds. As a result of drying carrots, the total phenolic content (TPC) increased. Compared to the raw material, the TPC content in dried carrots increased 3-9 times. Drying using the FD and MVD methods gave a similar effect of increasing the TPC content, including a greater effect after enrichment in CH juice. The highest average antioxidant activity against the DPPH• and ABTS•+ radicals was recorded for FD-dried carrots (6.9 and 30.0 mg Trolox/g d.m.). SB juice contributed to a significant increase in the total vitamin C content, even by 89.1%, compared to raw carrots. Applying osmotic pre-enrichment in PG juice increased the sugar content in dried FD and CD samples by 37.4-49.9%, and in MVD by 21-59%.
Collapse
Affiliation(s)
- Anna Ignaczak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (M.C.); (J.K.)
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka St., 02-532 Warsaw, Poland; (J.S.-S.); (U.T.)
| | - Łukasz Woźniak
- Department of Food Safety and Chemical Analysis, Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka St., 02-532 Warsaw, Poland;
| | - Agnieszka Salamon
- Department of Grain Processing and Bakery, Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka St., 02-532 Warsaw, Poland;
| | - Justyna Szczepańska-Stolarczyk
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka St., 02-532 Warsaw, Poland; (J.S.-S.); (U.T.)
| | - Urszula Trych
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka St., 02-532 Warsaw, Poland; (J.S.-S.); (U.T.)
| | - Małgorzata Chobot
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (M.C.); (J.K.)
| | - Jolanta Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (M.C.); (J.K.)
| | - Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (M.C.); (J.K.)
| |
Collapse
|
9
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
10
|
Maresca V, Capasso L, Rigano D, Stornaiuolo M, Sirignano C, Piacente S, Cerulli A, Marallo N, Basile A, Nebbioso A, Giordano D, Facchiano A, De Masi L, Bontempo P. Health-Promoting Effects, Phytochemical Constituents and Molecular Genetic Profile of the Purple Carrot 'Purple Sun' ( Daucus carota L.). Nutrients 2024; 16:2505. [PMID: 39125387 PMCID: PMC11314219 DOI: 10.3390/nu16152505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The purple carrot cultivar 'Purple Sun' (Daucus carota L.) is characterized by a relevant content of phenolic compounds and anthocyanins, which may play an important role in reducing the risk of chronic diseases and in the treatment of metabolic syndrome. In the present study, the genetic diversity, phytochemical composition, and bioactivities of this outstanding variety were studied for the first time. Genetic analysis by molecular markers estimated the level of genetic purity of this carrot cultivar, whose purple-pigmented roots were used for obtaining the purple carrot ethanol extract (PCE). With the aim to identify specialized metabolites potentially responsible for the bioactivities, the analysis of the metabolite profile of PCE by LC-ESI/LTQ Orbitrap/MS/MS was carried out. LC-ESI/HRMS analysis allowed the assignment of twenty-eight compounds, putatively identified as isocitric acid (1), phenolic acid derivatives (2 and 6), hydroxycinnamic acid derivatives (9, 10, 12-14, 16, 17, 19, 22, and 23), anthocyanins (3-5, 7, 8, 11, and 18), flavanonols (15 and 21), flavonols (20 and 24), oxylipins (25, 26, and 28), and the sesquiterpene 11-acetyloxytorilolone (27); compound 26, corresponding to the primary metabolite trihydroxyoctanoic acid (TriHOME), was the most abundant compound in the LC-ESI/HRMS analysis of the PCE, and hydroxycinnamic acid derivatives followed by anthocyanins were the two most represented groups. The antioxidant activity of PCE, expressed in terms of reactive oxygen species (ROS) level and antioxidant enzymes activity, and its pro-metabolic effect were evaluated. Moreover, the antibacterial activity on Gram (-) and (+) bacterial strains was investigated. An increase in the activity of antioxidant enzymes (SOD, CAT, and GPx), reaching a maximum at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL), was observed. PCE induced an initial decrease in ROS levels at 0.1 and 0.25 mg/mL concentrations, reaching the ROS levels of control at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL). Moreover, significant antioxidant and pro-metabolic effects of PCE on myoblasts were shown by a reduction in ROS content and an increase in ATP production linked to the promotion of mitochondrial respiration. Finally, the bacteriostatic activity of PCE was shown on the different bacterial strains tested, while the bactericidal action of PCE was exclusively observed against the Gram (+) Staphylococcus aureus. The bioactivities of PCE were also investigated from cellular and molecular points of view in colon and hematological cancer cells. The results showed that PCE induces proliferative arrest and modulates the expression of important cell-cycle regulators. For all these health-promoting effects, also supported by initial computational predictions, 'Purple Sun' is a promising functional food and an optimal candidate for pharmaceutical and/or nutraceutical preparations.
Collapse
Affiliation(s)
- Viviana Maresca
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (V.M.); (A.B.)
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.); (P.B.)
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy; (M.S.); (C.S.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy; (M.S.); (C.S.)
| | - Carmina Sirignano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy; (M.S.); (C.S.)
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (Salerno), Italy; (S.P.); (A.C.)
| | - Antonietta Cerulli
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (Salerno), Italy; (S.P.); (A.C.)
| | - Nadia Marallo
- Agronomist Consultant, Via S. Moccia 2/B, 83100 Avellino, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (V.M.); (A.B.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.); (P.B.)
| | - Deborah Giordano
- Institute of Food Science (ISA), National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy; (D.G.); (A.F.)
| | - Angelo Facchiano
- Institute of Food Science (ISA), National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy; (D.G.); (A.F.)
| | - Luigi De Masi
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Università 133, 80055 Portici (Naples), Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.); (P.B.)
| |
Collapse
|
11
|
Goraya RK, Singla M, Kaura R, Singh CB, Singh A. Exploring the impact of high pressure processing on the characteristics of processed fruit and vegetable products: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 38957008 DOI: 10.1080/10408398.2024.2373390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Consumers are increasingly interested in additive-free products with a fresh taste, leading to a growing trend in high pressure processing (HPP) as an alternative to thermal processing. This review explores the impact of HPP on the properties of juices, smoothies, and purees, as well as its practical applications in the food industry. Research findings have explained that HPP is a most promising technology in comparison to thermal processing, in two ways i.e., for ensuring microbial safety and maximum retention of micro and macro nutrients and functional components. HPP preserves natural color and eliminates the need for artificial coloring. The review also emphasizes its potential for enhancing flavor in the beverage industry. The review also discusses how HPP indirectly affects plant enzymes that cause off-flavors and suggests potential hurdle approaches for enzyme inactivation based on research investigations. Scientific studies regarding the improved quality insights on commercially operated high pressure mechanisms concerning nutrient retention have paved the way for upscaling and boosted the market demand for HPP equipment. In future research, the clear focus should be on scientific parameters and sensory attributes related to consumer acceptability and perception for better clarity of the HPP effect on juice and smoothies/purees.
Collapse
Affiliation(s)
- Rajpreet Kaur Goraya
- Advanced Post-Harvest Technology Centre, Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, Alberta, Canada
| | - Mohit Singla
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, India
| | - Robin Kaura
- Dairy Engineering Division, ICAR-NDRI, Karnal, India
| | - Chandra B Singh
- Advanced Post-Harvest Technology Centre, Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, Alberta, Canada
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Wang Y, Du K, Wang Q, Yang X, Meng D. A multidimensional strategy for characterization, distinction, and quality control of two Clinopodium medicinal plants. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118019. [PMID: 38467319 DOI: 10.1016/j.jep.2024.118019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinopodium chinense Kuntze (CC) and Clinopodium polycephalum (Vaniot) C. Y. Wu & S. J. Hsuan (CP) are both included in the Pharmacopoeia of the People's Republic of China (edition 2020) as the legitimate source of "Duan Xue Liu" (DXL), which is a crucial traditional Chinese medicine used as a clinical remedy for bleeding diseases. However, the differences in plant endogenous metabolites and bioactivities between CC and CP are still unclear. AIM OF THE STUDY This study aims to provide a scientific basis to investigate the differences between CC and CP ensuring the efficient and safe use of DXL. MATERIALS AND METHODS A multidimensional strategy including plant metabolomics, digital reference standard (DRS) analyzer, and biological activities assay was creatively constructed for the characterization, distinction, and quality control of CC and CP. RESULTS There were apparent differences in the metabolites between CC and CP. 7 compounds contributing to the differences were successfully identified. On that basis, linear calibration using two reference substances (LCTRS) methods was proved as a more accurate and specific quality analysis method for CC and CP. In addition, bioactivity assays showed that both CC and CP exhibited obvious hemostatic activity, while CC showed greater potential to resist inflammation and free radicals. CONCLUSION In summary, it was the first time to investigate the chemical constituents and bioactivities differences between CC and CP with the help of plant metabolomics, DRS study, and biological activity assays. These two plants were significantly separated in the integrated analysis, suggesting that we should pay attention to the distinction to prevent unexpected risks caused by medicinal materials.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Kaicheng Du
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Quanyou Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xinyong Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
13
|
Cortez N, Villegas C, Burgos V, Ortiz L, Cabrera-Pardo JR, Paz C. Therapeutic Potential of Chlorogenic Acid in Chemoresistance and Chemoprotection in Cancer Treatment. Int J Mol Sci 2024; 25:5189. [PMID: 38791228 PMCID: PMC11121551 DOI: 10.3390/ijms25105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Chemotherapeutic drugs are indispensable in cancer treatment, but their effectiveness is often lessened because of non-selective toxicity to healthy tissues, which triggers inflammatory pathways that are harmful to vital organs. In addition, tumors' resistance to drugs causes failures in treatment. Chlorogenic acid (5-caffeoylquinic acid, CGA), found in plants and vegetables, is promising in anticancer mechanisms. In vitro and animal studies have indicated that CGA can overcome resistance to conventional chemotherapeutics and alleviate chemotherapy-induced toxicity by scavenging free radicals effectively. This review is a summary of current information about CGA, including its natural sources, biosynthesis, metabolism, toxicology, role in combatting chemoresistance, and protective effects against chemotherapy-induced toxicity. It also emphasizes the potential of CGA as a pharmacological adjuvant in cancer treatment with drugs such as 5-fluorouracil, cisplatin, oxaliplatin, doxorubicin, regorafenib, and radiotherapy. By analyzing more than 140 papers from PubMed, Google Scholar, and SciFinder, we hope to find the therapeutic potential of CGA in improving cancer therapy.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|
14
|
Zhang M, Zhou C, Ma L, Su W, Jiang J, Hu X. Influence of ultrasound on the microbiological, physicochemical properties, and sensory quality of different varieties of pumpkin juice. Heliyon 2024; 10:e27927. [PMID: 38515695 PMCID: PMC10955300 DOI: 10.1016/j.heliyon.2024.e27927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/12/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
This study has investigated the effect of ultrasound (US) as an emerging non-thermal sterilization technique on microbial growth and quality changes in three freshly squeezed pumpkin juices (Cucurbita maxima Duchesne, Cucurbita moschata Duchesne, and Cucurbita pepo L.).The three pumpkin juices were ultrasonicated at different ultrasonic power (0-400 W), time (0-20 min), and temperature (0-30 °C), and the total colony counts of the treated pumpkin juices were less than 5 log CFU/mL, which complied with the food safety and consumption standards. Based on these results, we further investigated the effects of different ultrasonic power (25 kHz, 10 min, 20 °C, 0-400 W) on the physicochemical properties and sensory quality of the three pumpkin juices. The physicochemical properties (color, sugar content, organic acid content, soluble solids, and carotenoids) of treated pumpkin juice were retained or improved to some extent. The antioxidant capacity was also increased by 9.09%, 10.25%, and 16.9% compared to the untreated group. During sonication, the particle size of all samples decreased significantly, the microstructure broke down significantly, and the sensory qualities of pumpkin juice were well preserved after sonication.
Collapse
Affiliation(s)
- Manjun Zhang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Chunli Zhou
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Long Ma
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Wei Su
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Jian Jiang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xueyan Hu
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
15
|
Bilbao-Sainz C, Olsen C, Chiou BS, Rubinsky B, Wu VCH, McHugh T. Benefits of isochoric freezing for carrot juice preservation. J Food Sci 2024; 89:1324-1336. [PMID: 38317403 DOI: 10.1111/1750-3841.16963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/24/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024]
Abstract
Isochoric freezing (IF) at -5°C/77 and -10°C/100 MPa was used to preserve carrot juice for 12 weeks. The juice qualities were compared to those using heat treatment (HT) at 95°C for 15 s followed by cold storage at 4°C. The native population of total aerobic bacteria, yeasts, and molds in isochoric frozen juice remained below the detection limit for 12 weeks. In comparison, microbes started to grow in heat-treated juices after 3 weeks of refrigeration. The color of isochoric frozen juice appeared more deep orange than the fresh juice due to an increase in carotenoid extractability. IF was not effective in reducing the activities of peroxidase, polyphenol oxidase, and pectin methyl esterase compared with HT. However, the isochoric samples showed higher carotenoid content, polyphenol content, and antioxidant capacity compared to the fresh and heat-treated juices. PRACTICAL APPLICATION: Isochoric freezing was used to produce carrot juice with extended shelf life. Isochoric freezing could be a beneficial alternative to conventional heat treatment for carrot juice processing as the applied pressures reached total inactivation levels of spoilage microorganisms. Moreover, the low processing temperatures better retained desirable compounds and quality attributes of fresh juice throughout its shelf life.
Collapse
Affiliation(s)
- Cristina Bilbao-Sainz
- U.S. Department of Agriculture, Western Regional Research Center, Albany, California, USA
| | - Carl Olsen
- U.S. Department of Agriculture, Western Regional Research Center, Albany, California, USA
| | - Bor-Sen Chiou
- U.S. Department of Agriculture, Western Regional Research Center, Albany, California, USA
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, Berkeley, California, USA
| | - Vivian C H Wu
- U.S. Department of Agriculture, Western Regional Research Center, Albany, California, USA
| | - Tara McHugh
- U.S. Department of Agriculture, Western Regional Research Center, Albany, California, USA
| |
Collapse
|
16
|
Morata A, del Fresno JM, Gavahian M, Guamis B, Palomero F, López C. Effect of HHP and UHPH High-Pressure Techniques on the Extraction and Stability of Grape and Other Fruit Anthocyanins. Antioxidants (Basel) 2023; 12:1746. [PMID: 37760049 PMCID: PMC10526052 DOI: 10.3390/antiox12091746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The use of high-pressure technologies is a hot topic in food science because of the potential for a gentle process in which spoilage and pathogenic microorganisms can be eliminated; these technologies also have effects on the extraction, preservation, and modification of some constituents. Whole grapes or bunches can be processed by High Hydrostatic Pressure (HHP), which causes poration of the skin cell walls and rapid diffusion of the anthocyanins into the pulp and seeds in a short treatment time (2-10 min), improving maceration. Grape juice with colloidal skin particles of less than 500 µm processed by Ultra-High Pressure Homogenization (UHPH) is nano-fragmented with high anthocyanin release. Anthocyanins can be rapidly extracted from skins using HHP and cell fragments using UHPH, releasing them and facilitating their diffusion into the liquid quickly. HHP and UHPH techniques are gentle and protective of sensitive molecules such as phenols, terpenes, and vitamins. Both techniques are non-thermal technologies with mild temperatures and residence times. Moreover, UHPH produces an intense inactivation of oxidative enzymes (PPOs), thus preserving the antioxidant activity of grape juices. Both technologies can be applied to juices or concentrates; in addition, HHP can be applied to grapes or bunches. This review provides detailed information on the main features of these novel techniques, their current status in anthocyanin extraction, and their effects on stability and process sustainability.
Collapse
Affiliation(s)
- Antonio Morata
- enotecUPM, Department of Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.d.F.); (F.P.); (C.L.)
| | - Juan Manuel del Fresno
- enotecUPM, Department of Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.d.F.); (F.P.); (C.L.)
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Buenaventura Guamis
- Centre d’Innovació, Recerca I Transferència en Tecnologia Dels Aliments (CIRTTA), TECNIO, XaRTA, Departament de Ciència Animal I Dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Felipe Palomero
- enotecUPM, Department of Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.d.F.); (F.P.); (C.L.)
| | - Carmen López
- enotecUPM, Department of Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.d.F.); (F.P.); (C.L.)
| |
Collapse
|
17
|
Javed M, Amir M, Amjad A, Shah M, Anwar M, Ahmed F. VIABILITY OF MICROENCAPSULATED PROBIOTICS (LACTOBACILLUS REUTERI) IN GUAVA JUICE. THE JOURNAL OF ANIMAL AND PLANT SCIENCES 2023; 33:644-654. [DOI: 10.36899/japs.2023.3.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Probiotics play a pivotal role to reduce gastrointestinal problems by exerting a drastic effect on various pathogenic microflora of the colon. Lactobacillus reuteri CECT-925 loaded beads were prepared by emulsion containing sodium alginate and sesame seed oil. Encapsulation was done by spraying emulsion into a 0.5% solution of calcium chloride. Microencapsulated probiotics incorporated guava juice was assessed for physicochemical analysis at the 15-day interval for 60 days. The juice was tested for probiotics viability, titratable acidity, pH, total soluble solids and organoleptic properties. In the control sample, viable counts of encapsulated probiotics were reduced from 7.68 to 1.96 log10 CFU/ml while in T1, T2 and T3 the initial numbers 7.39, 7.7 and 7.87 were reduced to 5.97, 6.87 and 6.02 log10 CFU/ml respectively at the termination of the storage period. However, pH and sensory scores decreased while total soluble solids and titratable acidity increased. Results indicated that microencapsulation by sodium alginate in combination with sesame oil retained the viability of Lactobacillus reuteri > 90% in guava juice. The acceptability of the product was 82.04% till the end of the storage period
Collapse
Affiliation(s)
- M.S. Javed
- Department of Food Safety and Quality Management, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - M Amir
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - A Amjad
- Department of Human Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - M Shah
- Department of Biochemistry, Bahauddin Zakariya University Multan, Punjab-Pakistan
| | - M.J. Anwar
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - F Ahmed
- Institute of Technology, Estonian University of Life Sciences, Tartu-Estonia
| |
Collapse
|
18
|
Zheng N, Long M, Zhang Z, Du S, Huang X, Osire T, Xia X. Behavior of enzymes under high pressure in food processing: mechanisms, applications, and developments. Crit Rev Food Sci Nutr 2023; 64:9829-9843. [PMID: 37243343 DOI: 10.1080/10408398.2023.2217268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High pressure processing (HPP) offers the benefits of safety, uniformity, energy-efficient, and low waste, which is widely applied for microbial inactivation and shelf-life extension for foods. Over the past forty years, HPP has been extensively researched in the food industry, enabling the inactivation or activation of different enzymes in future food by altering their molecular structure and active site conformation. Such activation or inactivation of enzymes effectively hinders the spoilage of food and the production of beneficial substances, which is crucial for improving food quality. This paper reviews the mechanism in which high pressure affects the stability and activity of enzymes, concludes the roles of key enzymes in the future food processed using high pressure technologies. Moreover, we discuss the application of modified enzymes based on high pressure, providing insights into the future direction of enzyme evolution under complex food processing conditions (e.g. high temperature, high pressure, high shear, and multiple elements). Finally, we conclude with prospects of high pressure technology and research directions in the future. Although HPP has shown positive effects in improving the future food quality, there is still a pressing need to develop new and effective combined processing methods, upgrade processing modes, and promote sustainable lifestyles.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuang Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinlei Huang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Rathnakumar K, Kalaivendan RGT, Eazhumalai G, Raja Charles AP, Verma P, Rustagi S, Bharti S, Kothakota A, Siddiqui SA, Manuel Lorenzo J, Pandiselvam R. Applications of ultrasonication on food enzyme inactivation- recent review report (2017-2022). ULTRASONICS SONOCHEMISTRY 2023; 96:106407. [PMID: 37121169 PMCID: PMC10173006 DOI: 10.1016/j.ultsonch.2023.106407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/14/2023]
Abstract
Ultrasound processing has been widely applied in food sector for various applications such as decontamination and structural and functional components modifications in food. Enzymes are proteinaceous in nature and are widely used due to its catalytic activity. To mitigate the undesirable effects caused by the enzymes various technologies have been utilized to inactive the enzymes and improve the enzyme efficiency. Ultrasound is an emerging technology that produces acoustic waves which causes rapid formation and collapse of bubbles. It has the capacity to break the hydrogen bonds and interact with the polypeptide chains due to Vander Waals forces leading to the alteration of the secondary and tertiary structure of the enzymes thereby leading to loss in their biological activity. US effectively inactivates various dairy-related enzymes, including alkaline phosphatase (ALP), lactoperoxidase (LPO), and γ-glutamyl transpeptidase (GGTP) with increased US intensity and time without affecting the natural dairy flavors. The review also demonstrates that inactivation of enzymes presents in fruit and vegetables such as polyphenol oxidase (PPO), polygalacturonase (PG), Pectin methyl esterase (PME), and peroxidase. The presence of the enzymes causes detrimental effects causes off-flavors, off-colors, cloudiness, reduction in viscosity of juices, therefore the formation of high-energy free molecules during sonication affects the catalytic function of enzymes and thereby causing inactivation. Therefore this manuscript elucidates the recent advances made in the inactivation of common, enzymes infruits, vegetables and dairy products by the application of ultrasound and also explains the enzyme inactivation kinetics associated. Further this manuscript also discusses the ultrasound with other combined technologies, mechanisms, and its effects on the enzyme inactivation.
Collapse
Affiliation(s)
- Kaavya Rathnakumar
- Department of Food Science, University of Wisconsin, Madison 53707, WI, the United States of America
| | - Ranjitha Gracy T Kalaivendan
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Gunaseelan Eazhumalai
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Anto Pradeep Raja Charles
- Food Ingredients and Biopolymer Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, the United States of America
| | - Pratishtha Verma
- Department of Dairy and Food Science, South Dakota State University, Brookings - 57007, SD, the United States of America
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sweety Bharti
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straβe 7, 49610 Quakenbrück, Germany
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain.
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod 671124, Kerala, India.
| |
Collapse
|
20
|
Shkolnikov Lozober H, Okun Z, Parvari G, Shpigelman A. The Effect of Storage and Pasteurization (Thermal and High-Pressure) Conditions on the Stability of Phycocyanobilin and Phycobiliproteins. Antioxidants (Basel) 2023; 12:antiox12030568. [PMID: 36978816 PMCID: PMC10045346 DOI: 10.3390/antiox12030568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The utilization of natural blue pigments in foods is difficult as they are usually unstable during processing and the commonly applied pH. The current study focuses on natural blue pigment, possessing antioxidant properties, found in Arthrospira platensis (spirulina), and phycobiliproteins (PBP). These pigments are a complex of conjugated protein and non-protein components, known as phycocyanobilin. PBP has low stability during pasteurization (high-pressure or heat treatments), resulting in protein denaturation and color deterioration that limits the application. The phycocyanobilin pigment might also be liable to oxidation during pasteurization and storage, resulting in color deterioration. Yet, the instability of the pigment phycocyanobilin during the pasteurization process and storage conditions was never studied before, limiting the comprehensive understanding of the reasons for PBP instability. In this study, the stability of phycocyanobilin under high-pressure and high-temperature conditions was compared to the stability of phycobiliproteins. We revealed that phycobiliproteins have a higher color deterioration rate at 70–80 °C than at high-pressure (300–600 MPa) whereas phycocyanobilin remained stable during high-pressure and heat processing. During storage at pH 7, phycocyanobilin was oxidized, and the oxidation rate increased with increasing pH, while at lower pH phycocyanobilin had low solubility and resulted in aggregation.
Collapse
Affiliation(s)
- Hani Shkolnikov Lozober
- Faculty of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Zoya Okun
- Faculty of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Galit Parvari
- Faculty of Chemistry, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Avi Shpigelman
- Faculty of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence:
| |
Collapse
|
21
|
Feiten MC, Morigi I, Di Luccio M, Oliveira JV. Activity and stability of lipase from Candida Antarctica after treatment in pressurized fluids. Biotechnol Lett 2023; 45:287-298. [PMID: 36592260 DOI: 10.1007/s10529-022-03335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 01/03/2023]
Abstract
Lipase B from Candida antarctica (CalB) is one of the biocatalysts most used in organic synthesis due to its ability to act in several medium, wide substrate specificity and enantioselectivity, tolerance to non-aqueous environment, and resistance to thermal deactivation. Thus, the objective of this work was to treat CalB in supercritical carbon dioxide (SC-CO2) and liquefied petroleum gas (LPG), and measure its activity before and after high-pressure treatment. Residual specific hydrolytic activities of 132% and 142% were observed when CalB was exposed to SC-CO2 at 35 ℃, 75 bar and 1 h and to LPG at 65 ℃, 30 bar and 1 h, respectively. Residual activity of the enzyme treated at high pressure was still above 100% until the 20th day of storage at low temperatures. There was no difference on the residual activity loss of CalB treated with LPG and stored at different temperatures over time. Greater difference was observed between CalB treated with CO2 and flash-frozen in liquid nitrogen (- 196 ℃) followed by storage in freezer (- 10 ℃) and CalB stored in freezer at - 10 ℃. Such findings encourage deeper studies on CalB as well as other enzymes behavior under different types of pressurized fluids aiming at industrial application.
Collapse
Affiliation(s)
- Mirian Cristina Feiten
- Department of Technology, State University of Maringá (UEM), Angelo Moreira da Fonseca Ave, Umuarama, Paraná, 87506-370, Brazil.
| | - Iasmin Morigi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Technology Center/C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Marco Di Luccio
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Technology Center/C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - José Vladimir Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Technology Center/C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil
| |
Collapse
|
22
|
Bao S, Yin D, Zhao Q, Zhou Y, Hu Y, Sun X, Liu X, Ma T. Comprehensive evaluation of the effect of five sterilization methods on the quality of black carrot juice based on PCA, TOPSIS and GRA models. Food Chem X 2023; 17:100604. [PMID: 36974191 PMCID: PMC10039260 DOI: 10.1016/j.fochx.2023.100604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The effect of thermal pasteurization (TP), high temperature long time (HTLT), ultra-high temperature instantaneous (UHT), high hydrostatic pressure (HHP) and thermosonication (TS) sterilization on the physicochemical, sensory and functional properties of black carrot juice (BCJ) were studied. And for the first time, the comprehensive quality of sterilized BCJ was quantified by mathematical modeling. UHT was the least suitable sterilization method for BCJ resulting from the most severe deterioration in functional properties. TS had adverse effects on sensory and physicochemical properties, but significantly increased the total flavonoids and anthocyanins contents (p < 0.05) and showed the strongest antioxidant activity, making it a nutritional high-value processing method. TP and HHP balanced the improvement of sensory properties and the retention of functional properties, which were the most suitable sterilization methods for BCJ. This study determined the optimal sterilization methods of BCJ, and provided a scientific solution for the screening of high quality processing methods.
Collapse
|
23
|
Chen Z, Spilimbergo S, Mousavi Khaneghah A, Zhu Z, Marszałek K. The effect of supercritical carbon dioxide on the physiochemistry, endogenous enzymes, and nutritional composition of fruit and vegetables and its prospects for industrial application: a overview. Crit Rev Food Sci Nutr 2022; 64:5685-5699. [PMID: 36576196 DOI: 10.1080/10408398.2022.2157370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Consumers have an increasing demand for fruit and vegetables with high nutritional value worldwide. However, most fruit and vegetables are vulnerable to quality loss and spoilage during processing, transportation, and storage. Among the recently introduced emerging technologies, supercritical carbon dioxide (SCCO2) has been extensively utilized to treat and maintain fruit and vegetables mainly due to its nontoxicity, safety, and environmentally friendly. SCCO2 technology generates low processing costs and mild processing conditions (temperature and pressure) that allow for the application of CO2 at a supercritical state. This review aimed to summarize the current knowledge on the influence of SCCO2 technology on the quality attributes of fruit and vegetable products, such as physicochemical properties (pH, color, cloud, particle size distribution, texture), sensory quality, and nutritional composition (ascorbic acid, phenolic compounds, anthocyanins, carotenoids, and betalains). In addition, the effects and mechanisms of the SCCO2 technique on endogenous enzyme inactivation (polyphenol oxidase, peroxidase, and pectin methylesterase) were also elucidated. Finally, the prospects of the SCCO2 technique for industrial application was discussed from the economic and regulatory aspect.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Sara Spilimbergo
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
24
|
Pulsed high-pressure processing of barley-based non-dairy alternative milk: β-carotene retention, protein solubility and antioxidant activity. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Ravichandran C, Jayachandran LE, Kothakota A, Pandiselvam R, Balasubramaniam V. Influence of high pressure pasteurization on nutritional, functional and rheological characteristics of fruit and vegetable juices and purees-an updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Effect of high-pressure processing on the bioaccessibility of phenolic compounds from cloudy hawthorn berry (Crataegus pinnatifida) juice. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Bocker R, Silva EK. Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional, sensory and safety aspects. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2021.100098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
28
|
Pokhrel PR, Boulet C, Yildiz S, Sablani S, Tang J, Barbosa-Cánovas GV. Effect of high hydrostatic pressure on microbial inactivation and quality changes in carrot-orange juice blends at varying pH. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Shu B, Wang J, Wu G, Cao X, Huang F, Dong L, Zhang R, Liu H, Su D. Newly generated and increased bound phenolic in lychee pulp during heat-pump drying detected by UPLC-ESI-triple-TOF-MS/MS. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1381-1390. [PMID: 34363221 DOI: 10.1002/jsfa.11470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND During the thermal processing of fruit, it has been observed for phenolic compounds to either degrade, polymerize, or transfer into macromolecules. In this study, the bound and free phenolic compound composition, content, and phenolic-related enzyme activity of lychee pulp were investigated to determine whether the free phenolic had converted to bound phenolic during heat-pump drying (HPD). RESULTS It was found that after HPD, when compared with the fresh lychee pulp (control), the content of bound phenolics of dried lychee pulp had increased by 62.69%, whereas the content of free phenolics of dried lychee pulp decreased by 22.26%. It was also found that the antioxidant activity of bound phenolics had also increased after drying. With the use of high-performance liquid chromatography-tandem mass spectrometry, it was identified that (+)-gallocatechin, protocatechuic aldehyde, isorhamnetin-3-O-rutoside, 3,4-dihydroxybenzeneacetic acid, and 4-hydroxybenzoic acid were newly generated during HPD, when compared with the control sample. After drying, the contents of gallic acid, catechin, 4-hydroxybenzoic acid, vanillin, syringic acid, and quercetin in bound phenolics had also increased, and polyphenol oxidase and peroxidase still showed enzyme activity, which could be related to the conversion of free phenolics to bound phenolics. CONCLUSION Overall, during the thermal processing of lychee pulp, the free phenolics weres found to be converted into bound phenolics, new substances were generated, and antioxidant activity was increased. Hence, it was concluded that HPD improved the bound phenolics content of lychee pulp, thus providing theoretical support for the lychee processing industry. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bin Shu
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, P.R. China
- College of Life Science, Yangtze University, Jingzhou, P.R. China
| | - Junmin Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, P.R. China
- College of Life Science, Yangtze University, Jingzhou, P.R. China
| | - Guangxu Wu
- College of Life Science, Yangtze University, Jingzhou, P.R. China
| | - Xuejiao Cao
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, P.R. China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, P.R. China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, P.R. China
- College of Life Science, Yangtze University, Jingzhou, P.R. China
| | - Hesheng Liu
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
| | - Dongxiao Su
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, P.R. China
| |
Collapse
|
30
|
Lou X, Jin Y, Tian H, Yu H, Chen C, Hanna M, Lin Y, Yuan L, Wang J, Xu H. High-pressure and thermal processing of cloudy hawthorn berry (Crataegus pinnatifida) juice: Impact on microbial shelf-life, enzyme activity and quality-related attributes. Food Chem 2022; 372:131313. [PMID: 34655827 DOI: 10.1016/j.foodchem.2021.131313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/04/2022]
Abstract
The study aimed to evaluate the effect of high-pressure (HPP, 300/600 MPa for 2 and 6 min) and thermal processing (TP, 65 °C/30 min) on microbial shelf-life, enzyme-activity and quality-attributes of cloudy hawthorn berry juice (CHBJ) after processing and during storage (4 °C). The CHBJ shelf-life was at least 150 days when processed by HPP. No significant difference was observed in pH and titratable acidity (p > 0.05), while HPP significantly increased soluble sugar (p < 0.05) and simulated some fruity aroma compounds which improved the taste and flavor of CHBJ. However, HPP inhabited ineffectively enzyme-activity in comparison to TP, causing significant color changes (ΔE = 4.98 ± 0.03-5.10 ± 0.07) during 30-day storage (p < 0.05). Although particle size increased after HPP treatment, significant increases (68.76%-926.95%) were observed in viscosity (p < 0.05), due to enhanced extractability or modification of pectin induced by HPP, resulting in higher consistency of CHBJ. HPP is promising to extend shelf-life and improve quality-attributes of CHBJ.
Collapse
Affiliation(s)
- Xinman Lou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yu Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaixiang Tian
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haiyan Yu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Milford Hanna
- Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, NE 68588-6205, USA
| | - Yawen Lin
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Long Yuan
- Big Green (USA) Inc. and Bgreen Food Company, P.O. Box 8112, Rowland Heights, CA 91748, USA
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
31
|
Silva EK, Arruda HS, Mekala S, Pastore GM, Meireles MAA, Saldaña MD. Xylooligosaccharides and their chemical stability under high-pressure processing combined with heat treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Dey G, Ghosh A, Tangirala RK. “Technological convergence” of preventive nutrition with non‐thermal processing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gargi Dey
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
- GUT LEBEN INC. San Diego California USA
| | - Annesha Ghosh
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
| | - Rajendra K Tangirala
- GUT LEBEN INC. San Diego California USA
- Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| |
Collapse
|
33
|
Suo G, Zhou C, Su W, Hu X. Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage. ULTRASONICS SONOCHEMISTRY 2022; 84:105974. [PMID: 35288328 PMCID: PMC8921491 DOI: 10.1016/j.ultsonch.2022.105974] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 05/16/2023]
Abstract
Freshly squeezed pumpkin juice (Cucurbita moschata D.) was sonicated at various power levels at a constant frequency of 25 kHz and a treatment time of 10 min. Samples were stored in the dark for 0, 4, 8, and 12 days at 4 °C and were subsequently analyzed. The combined effects of power level and storage period on color parameters, carotenoid content, particle size distribution, cloud value, rheological characteristics, and microstructure were investigated. The results showed ultrasonic-treated samples had little effect on carotenoid content, cloud value, particle size distribution, and polydispersity during storage compared to those of the untreated samples. The L⁎, a⁎, b⁎, and C* values decreased significantly during 8-12 days of storage, resulting in a significant increase in ΔE, especially 400 W/10 min-treated samples. Meanwhile, the enzyme activity and rheological properties increased significantly on storage days 8-12. However, the microstructure of all samples did not change significantly during storage. Based on these results, during the storage period, the physical and chemical properties of 400 W/10 min-ultrasonic treated pumpkin juice were retained more than those in the untreated pumpkin juice. Therefore, ultrasonic treatment has broad application prospects in preserving bioactive substances and physicochemical properties and improving the storage life of fresh pumpkin juice.
Collapse
Affiliation(s)
- Guanwen Suo
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Chunli Zhou
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China.
| | - Wei Su
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Xueyan Hu
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| |
Collapse
|
34
|
Ma Y, Xu Y, Chen Y, Meng A, Liu P, Ye K, Yuan A. Effect of Different Sterilization Methods on the Microbial and Physicochemical Changes in Prunus mume Juice during Storage. Molecules 2022; 27:1197. [PMID: 35208989 PMCID: PMC8877700 DOI: 10.3390/molecules27041197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study evaluated the pasteurization (P), ozone (O3), ultrasonic (US), and high-hydrostatic-pressure (HHP) sterilization approaches for processing of Prunus mume regarding browning factors and microorganisms, compared with non-sterilization (control check, CK) treatment. The microorganisms (total bacterial count and fungi and yeast count) in the juice were identified after different sterilization techniques, while the quality parameter changes (degree of browning, color measurements, total phenolic content, reducing sugar, ascorbic acid, 5-hydroxymethyl furaldehyde (5-HMF), amino acid nitrogen, total soluble solids (TSS), pH value) were investigated. The results indicate that P and HHP treatment reduced non-enzymatic browning while substantially impacting the color measurements, TSS, and pH, while the sterilization effect was remarkable, with a rate exceeding 90%. Furthermore, the Prunus mume juices treated with P and HHP sterilization were used as the objects, and the CK group was used as the control group. They were placed at 4 °C, 25 °C and 37 °C, respectively, and stored in dark for 15 d. Sampling and determination were carried out on 0, 3, 6, 9, 12, and 15 d, respectively. M-&-Y (molds and yeasts) were not detected in the late storage period, and no obvious microbial growth was observed during storage, indicating that P and HHP treatments could ensure the microbial safety of Prunus mume juice. P- and HHP- treated Prunus mume juice has better quality and low temperature storage is beneficial for maintaining the quality of Prunus mume juice. Therefore, P treatment or HHP treatment combined with low temperature storage could achieve a more ideal storage effect. Overall, this study conclusively established that P and HHP methods were suitable for sterilizing Prunus mume juice. These techniques minimally affected overall product quality while better maintaining the quality parameters than the untreated juice samples and those exposed to O3 and US treatment.
Collapse
|
35
|
Houška M, Silva FVM, Evelyn, Buckow R, Terefe NS, Tonello C. High Pressure Processing Applications in Plant Foods. Foods 2022; 11:223. [PMID: 35053954 PMCID: PMC8774875 DOI: 10.3390/foods11020223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/04/2023] Open
Abstract
High pressure processing (HPP) is a cold pasteurization technology by which products, prepacked in their final package, are introduced to a vessel and subjected to a high level of isostatic pressure (300-600 MPa). High-pressure treatment of fruit, vegetable and fresh herb homogenate products offers us nearly fresh products in regard to sensorial and nutritional quality of original raw materials, representing relatively stable and safe source of nutrients, vitamins, minerals and health effective components. Such components can play an important role as a preventive tool against the start of illnesses, namely in the elderly. An overview of several food HPP products, namely of fruit and vegetable origin, marketed successfully around the world is presented. Effects of HPP and HPP plus heat on key spoilage and pathogenic microorganisms, including the resistant spore form and fruit/vegetable endogenous enzymes are reviewed, including the effect on the product quality. Part of the paper is devoted to the industrial equipment available for factories manufacturing HPP treated products.
Collapse
Affiliation(s)
- Milan Houška
- Food Research Institute Prague, 102 00 Prague, Czech Republic
| | - Filipa Vinagre Marques Silva
- LEAF, Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Evelyn
- Department of Chemical Engineering, University of Riau, Pekanbaru 28293, Indonesia;
| | - Roman Buckow
- Faculty of Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2006, Australia;
| | | | - Carole Tonello
- Hiperbaric, S. A., Condado de Trevino, 6, 09001 Burgos, Spain;
| |
Collapse
|
36
|
Tsikrika K, Tzima K, Rai DK. Recent advances in anti‐browning methods in minimally processed potatoes—A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Konstantina Tsikrika
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
- Laboratory of Food Microbiology and Biotechnology Department of Food Science and Technology Agricultural University of Athens Athens Greece
| | - Katerina Tzima
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| | - Dilip K. Rai
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| |
Collapse
|
37
|
Umair M, Jabbar S, Lin Y, Nasiru MM, Zhang J, Abid M, Murtaza MA, Zhao L. Comparative study: Thermal and non‐thermal treatment on enzyme deactivation and selected quality attributes of fresh carrot juice. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China
- Key Laboratory of Optoelectronic Devices and Systems College of Physics and Optoelectronic Engineering Ministry of Education and Guangdong Province Shenzhen University Shenzhen 518060 China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI) National Agricultural Research Centre (NARC) Islamabad 46000 Pakistan
| | - Yue Lin
- Department of Food Science and Engineering College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China
| | - Mustapha Muhammad Nasiru
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Jianhao Zhang
- College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi Rawalpindi 44000 Pakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition University of Sargodha Sargodha 40100 Pakistan
| | - Liqing Zhao
- Department of Food Science and Engineering College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China
| |
Collapse
|
38
|
Szwajgier D, Baranowska‐Wójcik E, Sosnowska B, Kukula‐Koch W, Paduch R, Sokołowska B, Waśko A, Solarska E. High‐pressure processing at increased temperatures provides enhanced removal of indigenous microbial contamination in beet/carrot juice without damaging the bioactive components. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition University of Life Sciences Skromna Street 8 Lublin 20‐704 Poland
| | - Ewa Baranowska‐Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition University of Life Sciences Skromna Street 8 Lublin 20‐704 Poland
| | - Bożena Sosnowska
- Department of Biotechnology, Microbiology and Human Nutrition University of Life Sciences Skromna Street 8 Lublin 20‐704 Poland
| | - Wirginia Kukula‐Koch
- Department of Pharmacognosy with Medicinal Plants Garden Medical University of Lublin Chodźki 1 Street Lublin 20‐093 Poland
| | - Roman Paduch
- Department of Virology and Immunology Institute of Microbiology and Biotechnology Maria Curie‐Skłodowska University Akademicka 19 Street Lublin 20‐033 Poland
- Department of General Ophthalmology Medical University Chmielna 1 Street Lublin 20‐079 Poland
| | - Barbara Sokołowska
- Department of Microbiology Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute 36 Rakowiecka str. Warsaw 02‐532 Poland
- Laboratory of Biological Materials Institute of High Pressure Physics Polish Academy of Sciences 29/37 Sokołowska str. Warsaw 01–142 Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition University of Life Sciences Skromna Street 8 Lublin 20‐704 Poland
| | - Ewa Solarska
- Department of Biotechnology, Microbiology and Human Nutrition University of Life Sciences Skromna Street 8 Lublin 20‐704 Poland
| |
Collapse
|
39
|
Abstract
Sustainable food supply has gained considerable consumer concern due to the high percentage of spoilage microorganisms. Food industries need to expand advanced technologies that can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds, provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to reduce food losses, and sustainable developments in preservation, nutritional security, and food safety are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved because they increase food quality, reduce water utilization, decrease emissions, improve energy efficiency, assure clean labeling, and utilize by-products from waste food. These processes include pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed light. This review describes the use of HPP in various processes for sustainable food processing. The influence of this technique on microbial, physicochemical, and nutritional properties of foods for sustainable food supply is discussed. This approach also emphasizes the limitations of this emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited global food source must have a balanced approach to the raw content, water, energy, and nutrient content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains the nutritional value. HPP technology meets the essential requirements for sustainable and clean labeled food production. It requires limited resources to produce nutritionally suitable foods for consumers’ health.
Collapse
|
40
|
Liu ZH, Li B. (-)-Epicatechin and β-glucan from highland barley grain modulated glucose metabolism and showed synergistic effect via Akt pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
41
|
Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Vacuum-steam pulsed blanching (VSPB) softens texture and enhances drying rate of carrot by altering cellular structure, pectin polysaccharides and water state. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
High-Pressure-Induced Sublethal Injuries of Food Pathogens-Microscopic Assessment. Foods 2021; 10:foods10122940. [PMID: 34945491 PMCID: PMC8700888 DOI: 10.3390/foods10122940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
High Hydrostatic Pressure (HHP) technology is considered an alternative method of food preservation. Nevertheless, the current dogma is that HHP might be insufficient to preserve food lastingly against some pathogens. Incompletely damaged cells can resuscitate under favorable conditions, and they may proliferate in food during storage. This study was undertaken to characterize the extent of sublethal injuries induced by HHP (300-500 MPa) on Escherichia coli and Listeria inncua strains. The morphological changes were evaluated using microscopy methods such as Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Epifluorescence Microscopy (EFM). The overall assessment of the physiological state of tested bacteria through TEM and SEM showed that the action of pressure on the structure of the bacterial membrane was almost minor or unnoticeable, beyond the L. innocua wild-type strain. However, alterations were observed in subcellular structures such as the cytoplasm and nucleoid for both L. innocua and E. coli strains. More significant changes after the HHP of internal structures were reported in the case of wild-type strains isolated from raw juice. Extreme condensation of the cytoplasm was observed, while the outline of cells was intact. The percentage ratio between alive and injured cells in the population was assessed by fluorescent microscopy. The results of HHP-treated samples showed a heterogeneous population, and red cell aggregates were observed. The percentage ratio of live and dead cells (L/D) in the L. innocua collection strain population was higher than in the case of the wild-type strain (69%/31% and 55%/45%, respectively). In turn, E. coli populations were characterized with a similar L/D ratio. Half of the cells in the populations were distinguished as visibly fluorescing red. The results obtained in this study confirmed sublethal HHP reaction on pathogens cells.
Collapse
|
44
|
High-Pressure Processing on Whole and Peeled Potatoes: Influence on Polyphenol Oxidase, Antioxidants, and Glycaemic Indices. Foods 2021; 10:foods10102425. [PMID: 34681473 PMCID: PMC8535207 DOI: 10.3390/foods10102425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Polyphenol oxidase (PPO) inactivation in five whole and peeled Irish potato cultivars was investigated using high-pressure processing (HPP) at 400 MPa and 600 MPa for 3 min. PPO activity was significantly lower in most of the HPP-treated samples, while the highest PPO inactivation was observed after HPP at 600 MPa. No significant (p > 0.05) changes were observed on the total phenolic content and antioxidant activity of all the HPP-treated potatoes. Regarding individual phenolic acids, chlorogenic acid was decreased significantly (p < 0.05) in all studied varieties with a concomitant increase (p < 0.05) in caffeic and quinic acid. Similarly, ferulic acid was also increased (p < 0.05) in all studied varieties after the HPP treatment, while there was a variation in rutin and 4-coumaric acid levels depending on the cultivar and the sample type. Anthocyanins in the coloured whole potato varieties (i.e., Kerr’s Pink and Rooster), tentatively identified as pelargonidin-O-ferulorylrutinoside-O-hexoside and pelargonidin-O-rutinoside-O-hexoside, also exhibited significantly (p < 0.05) higher levels in the HPP-treated samples as opposed to those untreated. Glycaemic indices of the potatoes treated with HPP did not differ with the corresponding untreated cultivars.
Collapse
|
45
|
Queiroz C, Lopes MLM, Da Silva AJR, Fialho E, Valente‐Mesquita VL. Effect of high hydrostatic pressure and storage in fresh‐cut cashew apple: Changes in phenolic profile and polyphenol oxidase activity. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christiane Queiroz
- Departamento de Nutrição Universidade Federal do Paraná Curitiba Brazil
- Instituto de Nutrição Josué de Castro Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Maria Lúcia M. Lopes
- Instituto de Nutrição Josué de Castro Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Antonio Jorge R. Da Silva
- Instituto de Pesquisa de Produtos Naturais Walter Mors Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Eliane Fialho
- Instituto de Nutrição Josué de Castro Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | |
Collapse
|
46
|
Szczepańska J, Pinto CA, Skąpska S, Saraiva JA, Marszałek K. Effect of static and multi-pulsed high pressure processing on the rheological properties, microbial and physicochemical quality, and antioxidant potential of apple juice during refrigerated storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Liu ZH, Li B. Procyanidin B1 and p-Coumaric Acid from Highland Barley Grain Showed Synergistic Effect on Modulating Glucose Metabolism via IRS-1/PI3K/Akt Pathway. Mol Nutr Food Res 2021; 65:e2100454. [PMID: 34342938 DOI: 10.1002/mnfr.202100454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/28/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Phenolic extract in highland barley grain has showed hypoglycemic effect, while little information is available about the active compounds and whether there exist additive or synergistic effect on modulating glucose metabolism. METHODS AND RESULTS Procyanidin B1 (PB) and p-coumaric acid (CA) are the active compounds in highland barley grain and show synergistic effect on improving glucose uptake and glycogen synthesis by upregulating glucose transporter (GLUT4) and downregulating glycogen synthase kinase-3β (GSK-3β) protein expression, respectively. The mechanism may be attributed to target insulin receptor (IRβ) and regulate insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (Akt) pathway. Furthermore, PB + CA exhibits synergistic effect on restoring glucose intolerance and insulin resistance, and improving hepatic glycogen synthesis in impaired glucose tolerance (IGT) mice. The postprandial blood glucose (PBG), homeostasis model assessment (HOMA)-IR values and serum insulin contents in PB + CA-treated IGT mice with dosage of 300 mg kg-1 BW are reversed to normal levels. Additionally, PC + CA shows additive effect on inhibiting gluconeogenesis in vitro and in vivo. CONCLUSION PB + CA in highland barley grain synergistically modulate glucose metabolism. These results may provide evidence of whole highland barley grain diet achieve superior effect on restoring IGT than isolated components.
Collapse
Affiliation(s)
- Ze-Hua Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Functional Dairy, Ministry of Education, Beijing, 100083, China
| |
Collapse
|
48
|
Mahesh M, Pandey H, Raja Gopal Reddy M, Prabhakaran Sobhana P, Korrapati D, Uday Kumar P, Vajreswari A, Jeyakumar SM. Carrot Juice Consumption Reduces High Fructose-Induced Adiposity in Rats and Body Weight and BMI in Type 2 Diabetic Subjects. Nutr Metab Insights 2021; 14:11786388211014917. [PMID: 34349520 PMCID: PMC8287410 DOI: 10.1177/11786388211014917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
Nutritional intervention is a key strategy in the control and management of non-communicable diseases. Here, initially, we evaluated the effects of carrot juice (CJ) on some of the physical and biochemical parameters in rats fed with high-fructose diet, then in type 2 diabetic subjects. For the animal study, weanling male Wistar rats were given control (n = 6) or high fructose (HFr; n = 24) diet for 8 weeks. Then, the HFr group rats were subdivided into 4 groups (n = 6 in each) and continued either on HFr diet or shifted to control diet, with or without CJ (0.3 mg β-carotene) ingestion orally for 8 weeks. At the end, the ingestion of CJ reversed the HFr-induced adiposity (23 ± 1.6 vs 18 ± 1.1, P = .038), hypertriglyceridemia (182 ± 18.2 vs 90 ± 10.5 mg/dL, P<0.001), and hyperinsulinemia (81 ± 14.7 vs 40 ± 7.5 µU/mL, P = .014), while increased the retinol levels in liver (240 ± 38.4 vs 492 ± 61.2 µg/g, P = .002) and adipose tissue (1.8 ± 0.09 vs 2.5 ± 0.18 µg/g, P = .026). On the other hand, in the diabetic subjects (7 males and females each, n = 14) compared to their baseline, the daily consumption of 50 mL CJ (~2400 µg β-carotene) for 6 weeks significantly reduced the body weight (69.4 ± 4.13 vs 69.0 ± 4.09 kg, P = .014), BMI (27.4 ± 1.07 vs 27.2 ± 1.06 kg/m2, P = .007), and fat% (33.4 ± 1.87 vs 31.9 ± 2.13, P = .029) with an increase in plasma β-carotene levels (0.21 ± 0.045 vs 0.45 ± 0.089 µmol/L, P = .044). Although CJ increased the glucose (145 ± 10.4 vs 165 ± 11.4 mg/dL, P = .039), insulin, and glycated hemoglobin levels remained unaltered. In conclusion, the consumption of carrot juice reversed the HFr-induced metabolic abnormalities in a rat model and decreased body weight and BMI of diabetic subjects.
Collapse
Affiliation(s)
- Malleswarapu Mahesh
- Division of Lipid Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Himanshi Pandey
- Division of Dietetics, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Mooli Raja Gopal Reddy
- Division of Lipid Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | | | - Damayanti Korrapati
- Division of Dietetics, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Putcha Uday Kumar
- Division of Pathology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | | | | |
Collapse
|
49
|
Ates C, Akdemir Evrendilek G, Uzuner S. High‐pressure processing of shalgam with respect to quality characteristics, microbial inactivation, and shelflife extension. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ceren Ates
- Department of Food Engineering Faculty of Engineering Bolu Abant Izzet Baysal University Bolu Turkey
| | - Gulsun Akdemir Evrendilek
- Department of Food Engineering Faculty of Engineering Bolu Abant Izzet Baysal University Bolu Turkey
- Department of Food Engineering Faculty of Engineering Ardahan University Ardahan Turkey
| | - Sibel Uzuner
- Department of Food Engineering Faculty of Engineering Bolu Abant Izzet Baysal University Bolu Turkey
| |
Collapse
|
50
|
Chacha JS, Zhang L, Ofoedu CE, Suleiman RA, Dotto JM, Roobab U, Agunbiade AO, Duguma HT, Mkojera BT, Hossaini SM, Rasaq WA, Shorstkii I, Okpala COR, Korzeniowska M, Guiné RPF. Revisiting Non-Thermal Food Processing and Preservation Methods-Action Mechanisms, Pros and Cons: A Technological Update (2016-2021). Foods 2021; 10:1430. [PMID: 34203089 PMCID: PMC8234293 DOI: 10.3390/foods10061430] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/05/2022] Open
Abstract
The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.
Collapse
Affiliation(s)
- James S. Chacha
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Liyan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Rashid A. Suleiman
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Joachim M. Dotto
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447 Arusha, Tanzania;
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Technology, University of Ibadan, Ibadan 200284, Nigeria
| | - Haile Tesfaye Duguma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 378 Jimma, Ethiopia
| | - Beatha T. Mkojera
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Sayed Mahdi Hossaini
- DIL German Institute of Food Technologies, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Ivan Shorstkii
- Department of Technological Equipment and Life-Support Systems, Kuban State Technological University, 350072 Krasnodar, Russia;
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Malgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|