1
|
Lv L, Wei F, Liu L, Song F, Hou X, Yang Q. Study on the Allergenicity of Tropomyosin from Different Aquatic Products Based on Conformational and Linear Epitopes Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4936-4946. [PMID: 39948035 DOI: 10.1021/acs.jafc.4c11853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Tropomyosin (TM) is a major allergen in aquatic products. The aim of this study was to analyze the allergenicity of TM from different aquatic products based on conformational and linear epitopes. Structural and allergenicity analyses of TM were conducted using intrinsic fluorescence, UV absorption spectra, circular dichroism, and animal experiments. Epitope mapping was performed through bioinformatics software and a one-bead, one-compound (OBOC) peptide library screening approach. The results showed that the structures of TMs from different aquatic products are similar. Cross-reactivity was observed among TMs from different aquatic products, with fish-TM showing lower cross-reactivity compared with other TMs. Additionally, 13, 14, 11, 13, and 12 linear epitopes, along with 2, 2, 1, 2, and 3 conformational epitopes, were identified for shrimp-TM, crab-TM, fish-TM, oyster-TM, and clam-TM, respectively. Overall, these findings provide a basis for elucidating the epitope localization and allergenicity relationship of TMs from different aquatic products.
Collapse
Affiliation(s)
- Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangling Wei
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lu Liu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Futeng Song
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiudan Hou
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Hu X, Wang H, Hu Y, Wen P, Wu X, Tu Z. Modulating allergenicity of prawn tropomyosin (penaeus chinensis) via pulsed electric field-induced conformational changes. Food Chem 2025; 463:141376. [PMID: 39321652 DOI: 10.1016/j.foodchem.2024.141376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The effect of electric field intensities (EFIs, 5-20 kV/cm) and treatment times (0.5-2 h) on allergenicity and spatial conformation of prawn tropomyosin was evaluated. The results demonstrated that the IgG and IgE binding capacity of tropomyosin maximally increased by 24.34 % and 29.16 % respectively, followed by a subsequent decrease after 20 kV/cm treatment for 1 h. Interestingly, 5-10 kV/cm treatments significantly decreased the α-helix content (P < 0.05) and fluorescence intensity, while 20 kV/cm treatment promoted extensive spiralization, resulting in a tightly packed structure. The increased flexibility further exposed the hydrolysis sites and strengthened the gastrointestinal digestibility of tropomyosin. Additionally, molecular dynamic simulation indicated that extended EFIs increased structural flexibility and depolymerized the tropomyosin dimers through destroying intermolecular hydrogen bonds (formed within arginine and glutamate), which allowed tropomyosin to be easily recognized by IgG/IgE. Whereas, decrease of solvent-accessibility surface area (SASA), hydrophobic surface area induced conformation folded and caused epitopes masked.
Collapse
Affiliation(s)
- Xiangfei Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Xiongchen Wu
- Jiangxi Agricultural Development Group Co., Ltd, Nanchang, Jiangxi, 330038, China.
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
3
|
Jiao S, Xie X, He Z, Sun Z, Wang Z, Zhang S, Cao H, Hammock BD, Liu X. Lateral Flow Immunochromatographic Assay for Competitive Detection of Crustacean Allergen Tropomyosin Using Phage-Displayed Shark Single-Domain Antibody. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1811-1821. [PMID: 38166198 DOI: 10.1021/acs.jafc.3c07569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The common food allergy crustacean tropomyosin (TM) poses a significant food safety challenge, which requires rapid and sensitive methods for screening TM in food. Herein, the variable new antigen receptor (VNAR) single-domain antibodies specific for the crustacean TM were isolated from a naïve phage-displayed shark VNAR library. Subsequently, a lateral flow immunochromatographic assay (LFIA) based on the gold nanoparticle-labeled phage-displayed shark VNAR (AuNPs@PSV) probe was developed for the detection of TM in food. The AuNPs@PSV-LFIA took 15 min for one test and had a visual limit of detection (vLOD) of 0.1 μg/mL and an instrumental LOD of 0.02 μg/mL. Good selectivity, accuracy, precision, and stability were confirmed for the AuNPs@PSV-LFIA. Moreover, the test results of 21 commercially available food products consisted of the allergen labels and were validated by a commercial ELISA kit. Therefore, this work demonstrated the great potential of VNAR for detecting TM in food by LFIA.
Collapse
Affiliation(s)
- Sujia Jiao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zheming Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Site-specific labeling of antibodies with quantum dots could promote to retain the antigen binding capacity of antibodies. Food Chem 2023; 413:135655. [PMID: 36796266 DOI: 10.1016/j.foodchem.2023.135655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
A major concern with antibody labeling is the decreased antigen affinity binding capacity of antibodies, owing mainly to the randomly oriented binding of the marker. Herein, a universal approach for site-specific photocrosslinking of quantum dots (QDs) to the Fc-terminal of antibodies was investigated utilizing antibody Fc-terminal affinity proteins. Results showed that the QDs only bound to the heavy chain of the antibody. Further comparative tests confirmed that the site-specific directed labeling approach maximizes the retention of the antigen-binding capacity of the natural antibody. Compared with the commonly employed random orientation labeling approach, the directional labeling approach allows the labeled antibody showed 6 times greater binding affinity to antigen. QDs-labeled monoclonal antibodies were applied to fluorescent immunochromatographic test strips for the detection of shrimp tropomyosin (TM). The established procedure has a detection limit of 0.054 μg/mL. Thus, the site-specific labeling approach significantly improves the antigen binding capacity of the labeled antibody.
Collapse
|
5
|
Giovannini M, Beken B, Buyuktiryaki B, Barni S, Liccioli G, Sarti L, Lodi L, Pontone M, Bartha I, Mori F, Sackesen C, du Toit G, Lopata AL, Muraro A. IgE-Mediated Shellfish Allergy in Children. Nutrients 2023; 15:2714. [PMID: 37375617 DOI: 10.3390/nu15122714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Shellfish, including various species of mollusks (e.g., mussels, clams, and oysters) and crustaceans (e.g., shrimp, prawn, lobster, and crab), have been a keystone of healthy dietary recommendations due to their valuable protein content. In parallel with their consumption, allergic reactions related to shellfish may be increasing. Adverse reactions to shellfish are classified into different groups: (1) Immunological reactions, including IgE and non-IgE allergic reactions; (2) non-immunological reactions, including toxic reactions and food intolerance. The IgE-mediated reactions occur within about two hours after ingestion of the shellfish and range from urticaria, angioedema, nausea, and vomiting to respiratory signs and symptoms such as bronchospasm, laryngeal oedema, and anaphylaxis. The most common allergenic proteins involved in IgE-mediated allergic reactions to shellfish include tropomyosin, arginine kinase, myosin light chain, sarcoplasmic calcium-binding protein, troponin c, and triosephosphate isomerase. Over the past decades, the knowledge gained on the identification of the molecular features of different shellfish allergens improved the diagnosis and the potential design of allergen immunotherapy for shellfish allergy. Unfortunately, immunotherapeutic studies and some diagnostic tools are still restricted in a research context and need to be validated before being implemented into clinical practice. However, they seem promising for improving management strategies for shellfish allergy. In this review, epidemiology, pathogenesis, clinical features, diagnosis, and management of shellfish allergies in children are presented. The cross-reactivity among different forms of shellfish and immunotherapeutic approaches, including unmodified allergens, hypoallergens, peptide-based, and DNA-based vaccines, are also addressed.
Collapse
Affiliation(s)
- Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Burcin Beken
- Department of Pediatric Allergy & Immunology, School of Medicine, Acibadem University, 34303 Istanbul, Turkey
| | - Betul Buyuktiryaki
- Division of Pediatric Allergy, Department of Pediatrics, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Giulia Liccioli
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Lucrezia Sarti
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
- Immunology Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Matteo Pontone
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Irene Bartha
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London SE1 9RT, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Cansin Sackesen
- Division of Pediatric Allergy, Department of Pediatrics, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - George du Toit
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London SE1 9RT, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE5 9NU, UK
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, Singapore 387380, Singapore
| | - Antonella Muraro
- Food Allergy Referral Centre, Department of Mother and Child Health, University of Padua, 35128 Padua, Italy
| |
Collapse
|
6
|
Huang Y, Li Z, Wu Y, Li Y, Pramod S, Chen G, Zhu W, Zhang Z, Wang H, Lin H. Comparative analysis of allergenicity and predicted linear epitopes in α and β parvalbumin from turbot (Scophthalmus maximus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2313-2324. [PMID: 36606403 DOI: 10.1002/jsfa.12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Parvalbumin (PV) can be subdivided into two phylogenetic lineages, αPV and βPV. The bony fish βPV is considered a major fish allergen. However, there is no available report on the immunological property and epitope mapping of bony fish αPV. RESULTS To characterize the allergenic property of bony fish αPV and investigate the difference in allergenic property of bony fish αPV and βPV, turbot (Scophthalmus maximus) αPV and βPV were identified by mass spectrometry and were expressed in Escherichia coli system in this study. Spectra analysis and three-dimensional (3D) modeling showed the similar structure between αPV and βPV. However, αPV exhibited lower immunoglobulin E/immunoglobulin G (IgE/IgG) binding capacity than βPV. Three identified βPV epitopes possessed higher IgE reactivity and more hydrophobic residues than three identified αPV epitopes. In addition, less similarity in sequence homology of αPV epitopes was observed with allergen sequences in database. CONCLUSION These finding expanded information on fish PV epitopes and substantiated the difference in allergenicity and epitope mapping between fish αPV and βPV, which will improve the epitope-based detection tools of PV and diagnostic of PV induced fish allergy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Yeting Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Yonghong Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
- Department of Research and Development, HOB Biotech Group Corp., Ltd, Suzhou, P. R. China
| | - Siddanakoppalu Pramod
- Department of Studies and Research in Biochemistry, Davangere University, Davangere, India
| | - Guanzhi Chen
- Department of Dermatology, Affiliated Hospital of Medical College Qingdao University, Qingdao, P. R. China
| | - Wenjia Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
7
|
Xu L, Zhang XM, Wen YQ, Zhao JL, Xu TC, Yong L, Lin H, Zhang HW, Li ZX. Comparison of tropomyosin released peptide and epitope mapping after in vitro digestion from fish (Larimichthys crocea), shrimp (Litopenaeus vannamei) and clam (Ruditapes philippinarum) through SWATH-MS based proteomics. Food Chem 2023; 403:134314. [DOI: 10.1016/j.foodchem.2022.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
|
8
|
Zhao J, Zeng J, Liu Y, Lin H, Gao X, Wang H, Zhang Z, Lin H, Li Z. Understanding the Mechanism of Increased IgG/IgE Reactivity but Decreased Immunodetection Recovery in Thermally Induced Shrimp ( Litopenaeus vannamei) Tropomyosin via Multispectroscopic and Molecular Dynamics Simulation Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3444-3458. [PMID: 36750428 DOI: 10.1021/acs.jafc.2c08221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Despite the fact that tropomyosin (TM) has highly stable structural characteristics, thermal processing can adversely influence its immunodetection, and the mechanism involved has not been elucidated. Purified TM was heated at various temperatures, and then the IgG/IgE-binding capacity and immunodetection recovery were determined; meanwhile, the structural alterations were analyzed via spectroscopic and molecular dynamics simulation techniques. The obtained results demonstrated that heat-treated TM showed significantly increased IgG/IgE reactivity, confirmed by indirect ELISA and immunoblotting analysis, which might be attributed to the increased structural flexibility, and thus allowed TM to be recognized IgG/IgE easily. However, these structural alterations during thermal processing would contribute to the masking of some epitopes located in TM's surface due to the presence of curled or folded conformation with a considerable reduction of the solvent-accessible surface and radius of gyration, which primarily caused immunodetection recovery reduction in the sandwich ELISA (sELISA) test. The number of antigen binding sites might play a crucial role in a sandwich immunodetection system for sensitive and precise analysis in processed foods.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Yuhai Liu
- Dawning International Information Industry Co., Ltd., No.169, Songling Road, Qingdao City 266101, Shandong Province, PR China
| | - Hang Lin
- Department of Allergy, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao City 266003, Shandong Province, PR China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao City 266003, Shandong Province, PR China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| |
Collapse
|
9
|
Wang FQ, Cheng JH, Keener KM. Changing the IgE Binding Capacity of Tropomyosin in Shrimp through Structural Modification Induced by Cold Plasma and Glycation Treatment. Foods 2023; 12:foods12010206. [PMID: 36613421 PMCID: PMC9819036 DOI: 10.3390/foods12010206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Tropomyosin (TM) is the major allergen of shrimp (Penaeus chinensis). Previous studies showed that separate cold plasma or glycation have their drawback in reducing allergenicity of TM, including effectiveness and reliability. In the current study, a new processing combining cold plasma (CP) and glycation was proposed and its effect on changing IgE binding capacity of TM from shrimp was investigated. Obtained results showed the IgE binding capacity of TM was reduced by up to 40% after CP (dielectric barrier discharge, 60 kV, 1.0 A) combined with glycation treatment (4 h, 80 °C), compared with the less than 5% reduction after single CP or glycation treatment. Notably, in contrast to the general way of CP prompting glycation, this study devised a new mode of glycation with ribose after CP pretreatment. The structural changes of TM were explored to explain the decreased IgE binding reactivity. The results of multi-spectroscopies showed that the secondary and tertiary structures of TM were further destroyed after combined treatment, including the transformation of 50% α-helix to β-sheet and random coils, the modification and exposure of aromatic amino acids, and the increase of surface hydrophobicity. The morphology analysis using atomic force microscope revealed that the combined processing made the distribution of TM particles tend to disperse circularly, while it would aggregate after either processing treatment alone. These findings confirmed the unfolding and reaggregation of TM during combined processing treatment, which may result in the remarkable reduction of IgE binding ability. Therefore, the processing of CP pretreatment combined with glycation has the potential to reduce or even eliminate the allergenicity of seafood.
Collapse
Affiliation(s)
- Feng-Qi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Correspondence:
| | - Kevin M. Keener
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON NIG 2W1, Canada
| |
Collapse
|
10
|
Zhao J, Li Y, Xu L, Zeng J, Liu Y, Timira V, Zhang Z, Lin H, Li Z. Thermal induced the structural alterations, increased IgG/IgE binding capacity and reduced immunodetection recovery of tropomyosin from shrimp (Litopenaeus vannamei). Food Chem 2022; 391:133215. [DOI: 10.1016/j.foodchem.2022.133215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
|
11
|
Li Xu L, Wei Zhang H, Lin H, Mei Zhang X, Qi Wen Y, Long Zhao J, Xing Li Z, Gasset M. SWATH-MS-based proteomics reveals functional biomarkers of Th1/Th2 responses of tropomyosin allergy in mouse models. Food Chem 2022; 383:132474. [PMID: 35189446 DOI: 10.1016/j.foodchem.2022.132474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 02/13/2022] [Indexed: 12/01/2022]
Abstract
Type-I food allergies are hypersensitive reactions compromising the immune organs and epithelial barriers. To investigate the organ-specific proteomic alterations of the allergy responses, the spleen and intestine of mice sensitized with high (shrimp and clam) and weak (fish) allergenic tropomyosins were analyzed using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS)-based proteomics. The results showed that Th1 and Th2 tropomyosin-induced responses in the spleen are characterized by the unique upregulation of innate (cochlin) and adaptive (Ig κ chain V-III region PC 7175) immune regulators, respectively. In the intestine, tropomyosin allergy concurred with the downregulation of 35 differentiating proteins featuring the overall impairment of metabolic pathways, absorption processes and ammonium ion responses. These data provide new functional biomarkers of tropomyosin-induced immune responses as well as candidate targets for intervention.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China; Institute of Physical Chemistry Rocasolano, Spanish National Research Council, 28006 Madrid, Spain
| | - Hong Wei Zhang
- Technology Center of Qingdao Customs District, Qingdao 266002 Shandong, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Xiao Mei Zhang
- Technology Center of Qingdao Customs District, Qingdao 266002 Shandong, China
| | - Yun Qi Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Jin Long Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China.
| | - María Gasset
- Institute of Physical Chemistry Rocasolano, Spanish National Research Council, 28006 Madrid, Spain.
| |
Collapse
|
12
|
Zhao J, Li Y, Xu L, Ji Y, Zeng J, Timira V, Zhang Z, Chen G, Lin H, Li Z. Insight into IgG/IgE binding ability, in vitro digestibility and structural changes of shrimp (Litopenaeus vannamei) soluble extracts with thermal processing. Food Chem 2022; 381:132177. [PMID: 35121318 DOI: 10.1016/j.foodchem.2022.132177] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/27/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
Abstract
The effects of six kinds of thermal processing on soluble protein recovery, potential allergenicity, in vitro digestibility and structural characteristics of shrimp soluble proteins were evaluated. Obtained results confirmed soluble protein recovery and IgG/IgE reactivity of shrimp soluble extracts were markedly suppressed by various thermal treatments with enhanced digestibility depended on the extent and type of heating applied, which correlated well with the structural alterations and modification. The maximum reduction of IgG/IgE-binding capacity and digestive stability were observed in the autoclaved shrimps because of unfolding of protein and hydrophobic residues exposed. Notably, tropomyosin (TM) and sarcoplasmic calcium-binding protein (SCP) were still IgG/IgE-reactive in various heat-processed shrimps, even higher IgG reactivity were found in heat-treated shrimps TM according to TM antiserum western-blotting and indirect ELISA results. Shrimp TM and SCP maintains its IgE/IgG-binding capacity after various cooking methods, thus most probably initiating allergic sensitization to both raw and cooked shrimps.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yonghong Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China; HOB Biotech Group Corp., Ltd., No. 218, Xinghu Road, Suzhou City, Jiangsu Province 215000, PR China
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yu Ji
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, No.16, Jiangsu Road, Qingdao City, Shandong Province 266071, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
13
|
Yu C, Ding X, Gao X, Lin H, Ullah Khan M, Lin H, Dang X, Li Z. Immunological Cross-Reactivity Involving Mollusc Species and Mite-Mollusc and Cross-Reactive Allergen PM Are Risk Factors of Mollusc Allergy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:360-372. [PMID: 34978452 DOI: 10.1021/acs.jafc.1c05421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine molluscs are seafood consumed worldwide and could cause food allergies, while investigation on their sensitizing components and cross-reactivity seems to be rare. Furthermore, allergy to mites may result in anaphylaxis in mollusc-allergic individuals owing to their cross-reactivity. The aim of the study was to identify cross-reactive allergens and investigate the cross-reactivity between different mollusc groups and mite-mollusc. The extracted mollusc and dust mite proteins were separated by SDS-PAGE, and IgE-binding components were recognized by immunoblotting with sera from patients sensitized to mollusc and mite. Cross-reactivity of different mollusc groups and mite-mollusc was assessed using ELISA and inhibition ELISA. The results of the immune detection, ELISA, and inhibition ELISA indicated that different mollusc groups and mite-mollusc showed varying degrees of cross-reactivity. The most frequently recognized cross-reactive protein was paramyosin from different mollusc groups and dust mite, while cross-reactive allergen paramyosin in the mite extract was identified and evaluated by MS and Allermatch, respectively. Inhibition ELISA studies also revealed that paramyosin played an important role in molluscan and mite-molluscan cross-reactivity. These findings contribute to a better understanding of the cross-reactivity involving mollusc species and mite-mollusc, which can be used to assist in the diagnosis and treatment of mite- and mollusc-allergic disorders.
Collapse
Affiliation(s)
- Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xue Ding
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong Province 266003, P. R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Hang Lin
- Department of Allergy, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xuewen Dang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| |
Collapse
|
14
|
Cheng JH, Wang H, Sun DW. An overview of tropomyosin as an important seafood allergen: Structure, cross-reactivity, epitopes, allergenicity, and processing modifications. Compr Rev Food Sci Food Saf 2021; 21:127-147. [PMID: 34954871 DOI: 10.1111/1541-4337.12889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/19/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
Tropomyosin (TM) is a major allergen in crustaceans, which often causes allergy and is fatal to some consumers. Currently, the most effective treatment is to avoid ingesting TM, although most adverse events occur in accidental ingestion. In this review, the molecular characterization, epitopes, cross-reactivity, and pathogenesis of TM are introduced and elucidated. Modification of TM by traditional processing methods such as heat treatment and enzymatic hydrolysis, and innovative processing technologies including high-pressure treatment, cold plasma (CP), ultrasound, pulsed electric field (PEF), pulsed ultraviolet, microwave and irradiation are discussed in detail. Particularly, enzymolysis, PEF, and CP technologies show great potential for modifying TM and more studies are needed to verify their effectiveness for the seafood industry. Possible mechanisms and the advantages/disadvantages of these technologies for the mitigation of TM allergenicity are also highlighted. Further work should be conducted to investigate the allergenicity caused by protein segments such as epitopes, examine the interaction sites between the allergen and the processing techniques and reveal the reduction mechanism of allergenicity.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Huifen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Belfield, Ireland
| |
Collapse
|
15
|
Xu LL, Gasset M, Lin H, Yu C, Zhao JL, Dang XW, Li ZX. Identification of the Dominant T-Cell Epitopes of Lit v 1 Shrimp Major Allergen and Their Functional Overlap with Known B-Cell Epitopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7420-7428. [PMID: 34170668 DOI: 10.1021/acs.jafc.1c02231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Development of efficient peptide-based immunotherapy for shrimp allergy relies on the identification of the dominant T-cell epitopes of its major allergen, tropomyosin. In this study, immunoinformatic tools, T-cell proliferation, cytokine release, IgG/IgE binding, and degranulation assays were used to identify and characterize the T-cell epitopes in Lit v 1 in comparison with previously validated B-cell epitopes. The results showed that of the six in silico predicted T-cell epitopes only one (T2: VQESLLKANIQLVEK, 60-74) promoted T-cell proliferation, the release of IL-2, and upregulated secretion of Th2-associated cytokines in the absence of IgG/IgE binding and degranulation activities. These findings support T2 as a candidate for the development of an efficient peptide-based vaccine for the immunotherapy for shrimp-allergic patients.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - María Gasset
- Institute of Physical Chemistry Rocasolano (IQFR), Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Jin Long Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xue Wen Dang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| |
Collapse
|
16
|
Buyuktiryaki B, Masini M, Mori F, Barni S, Liccioli G, Sarti L, Lodi L, Giovannini M, du Toit G, Lopata AL, Marques-Mejias MA. IgE-Mediated Fish Allergy in Children. ACTA ACUST UNITED AC 2021; 57:medicina57010076. [PMID: 33477460 PMCID: PMC7830012 DOI: 10.3390/medicina57010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
Fish allergy constitutes a severe problem worldwide. Its prevalence has been calculated as high as 7% in paediatric populations, and in many cases, it persists into adulthood with life-threatening signs and symptoms. The following review focuses on the epidemiology of Immunoglobulin E (IgE)-mediated fish allergy, its pathogenesis, clinical manifestations, and a thorough approach to diagnosis and management in the paediatric population. The traditional approach for managing fish allergy is avoidance and rescue medication for accidental exposures. Food avoidance poses many obstacles and is not easily maintained. In the specific case of fish, food is also not the only source of allergens; aerosolisation of fish proteins when cooking is a common source of highly allergenic parvalbumin, and elimination diets cannot prevent these contacts. Novel management approaches based on immunomodulation are a promising strategy for the future of these patients.
Collapse
Affiliation(s)
- Betul Buyuktiryaki
- Division of Pediatric Allergy, Koc University Hospital, 34010 Istanbul, Turkey;
| | - Marzio Masini
- Department of Pediatrics, Sapienza University of Rome, 00185 Rome, Italy;
| | - Francesca Mori
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Simona Barni
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Giulia Liccioli
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Lucrezia Sarti
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Lorenzo Lodi
- Department of Health Sciences, Division of Immunology, Section of Pediatrics, University of Florence and Meyer Children’s Hospital, 50139 Florence, Italy;
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Correspondence:
| | - George du Toit
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Children’s Allergy Service, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE5 9NU, UK
| | - Andreas Ludwig Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia;
| | - Maria Andreina Marques-Mejias
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Children’s Allergy Service, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| |
Collapse
|
17
|
Extraction of total wheat (Triticum aestivum) protein fractions and cross-reactivity of wheat allergens with other cereals. Food Chem 2021; 347:129064. [PMID: 33486358 DOI: 10.1016/j.foodchem.2021.129064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/24/2023]
Abstract
A one-step mild extraction of total wheat protein fractions was developed in this study, and the allergic cross-reactivity among dietary cereals were assessed by SDS-PAGE, western blotting, indirect ELISA, and inhibition ELISA using sera from 12 wheat allergic patients. The fractions of albumin, globulin, gliadin and glutenins in wheat flour can be obtained by a one-step extraction with Na2CO3-NaHCO3 (20 mM, pH 9.6, 0.5 M NaCl, 40% ethanol, 1 mM PMSF) in comparison to sequential extractions. Results showed high cross-reactivity in wheat, barley and rye due to close resemblance and high sequence identity (>50%), whereas nearly negligible cross-reactivity among rice, buckwheat, and quinoa was observed. Our research findings suggest that people with wheat allergy should rely primarily on the use of rice, quinoa and non-grain buckwheat, which is an effective substitute for wheat, while those with hypersensitivity should avoid the use of barley and rye in their diet.
Collapse
|
18
|
Dasanayaka BP, Li Z, Pramod SN, Chen Y, Khan MU, Lin H. A review on food processing and preparation methods for altering fish allergenicity. Crit Rev Food Sci Nutr 2020; 62:1951-1970. [PMID: 33307772 DOI: 10.1080/10408398.2020.1848791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
People eat many varieties of food to satiate their hunger. Among them, a few numbers of food cause overreaction of the body's immune system, and fish holds a permanent position on that list. Processing methods, including one treatment or a combination, can have different effects on the allergenic potential of food proteins. An important point to note, however, is that not all of these methods can eliminate the potential for protein allergy. Thus, it is essential to understand the risk involved with the consumption of processed fish and its derivatives. Fish could be prepared in various ways before come to the dining plate. It has shown some of these methods can effectively manipulate the allergenicity owing to the alterations occurred in the protein conformation. This article provides an overview of the impact of fish processing methods (thermal and non-thermal) on the allergenic potential of fish along with possible causative structural modification provokes allergen stability. The article begins with current trends related to fish consumption, proceeds with the prevalence and underlying mechanism of fish allergy. Properties of clinically relevant fish proteins, projected IgE epitopes of PV, cross-reactivity of fish allergens are also addressed in this context to understand and compare the behavioral patterns of PV profiles of different species on processing methods.
Collapse
Affiliation(s)
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | | | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing, P.R. China
| | - Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| |
Collapse
|
19
|
Xu LL, Zhang HW, Zhang XM, Lin H, Guo YM, Yu C, Sun LR, Li ZX. Natural Shrimp ( Litopenaeus vannamei) Tropomyosin Shows Higher Allergic Properties than Recombinant Ones as Compared through SWATH-MS-Based Proteomics and Immunological Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11553-11567. [PMID: 32941022 DOI: 10.1021/acs.jafc.0c03840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tropomyosin (TM) is the major shrimp allergen that could trigger anaphylactic reactions. Recently, recombinant TM (rTM) has been accepted widely in the field of allergen-specific immunotherapy, but the allergenicity of rTM has not been compared with natural TM (nTM) based on an in vitro digestion profile. In this work, IgG-/IgE binding, allergen peptides, and degranulation ability of the digested samples in simulated gastric fluid/simulated intestinal fluid/gastrointestinal models from nTM and rTM were evaluated by immunoassays, proteomics, and basophil degranulation assay. Results showed that pepsin-digested and trypsin-digested samples of rTM exhibited lower IgG-/IgE binding and degranulation than those of nTM. More peptides of the digested samples from rTM (57.8%) matched shrimp allergic epitopes than those from nTM (33.3%). However, the peptide SITDELDQTF (269-278) appeared most frequently. These findings would supply foundation data for epitope-based immunotherapy to shrimp allergic individuals.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Hong Wei Zhang
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, P. R. China
| | - Xiao Mei Zhang
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, P. R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Yu Man Guo
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Li Rui Sun
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| |
Collapse
|
20
|
Ahmed I, Lin H, Li Z, Xu L, Qazi IM, Luo C, Gao X, Khan MU, Iqbal A, Guo Y, Pavase TR, Sun L. Tyrosinase/caffeic acid cross-linking alleviated shrimp (Metapenaeus ensis) tropomyosin-induced allergic responses by modulating the Th1/Th2 immunobalance. Food Chem 2020; 340:127948. [PMID: 32896779 DOI: 10.1016/j.foodchem.2020.127948] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023]
Abstract
In this study, the effect of enzymatic cross-linking of shrimp tropomyosin (TM) with tyrosinase and caffeic acid (TM-Tyr/CA) on the allergic response were assessed using in vitro and in vivo models. The RBL-2H3 and KU812 cell lines were employed to evaluate the changes in the stimulation abilities of TM-Tyr/CA that showed significant inhibition of mediators and cytokines. The digestibility of cross-linked TM was improved and the recognitions of IgG/IgE were markedly reduced, as revealed by western blotting. TM-Tyr/CA decreased anaphylactic symptoms, and hindered the levels of IgG1, IgE, histamine, tryptase and mouse mast-cell protease-1 (mMCP-1) in mice sera. Cross-linked TM downregulated the production of interleukin (IL)-4, IL-5, and IL-13 by 51.36, 12.24 and 20.55%, respectively, whereas, IL-10 and IFN-γ were upregulated by 20.71 and 19.0%. TM-Tyr/CA showed reduced allergenicity and may have preventive effect in relieving TM induced allergic response via immunosuppression and positive modulation of T-helper (Th)1/Th2 immunobalance.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Ihsan Mabood Qazi
- Department of Food Science and Technology, The University of Agriculture Peshawar-Pakistan, Peshawar, Pakistan
| | - Chen Luo
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong Province 266003, PR China
| | - Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Amjad Iqbal
- Department of Agriculture, Garden Campus, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yuman Guo
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Tushar Ramesh Pavase
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Lirui Sun
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| |
Collapse
|
21
|
Xu LL, Chen J, Sun LR, Gao X, Lin H, Ahmed I, Pramod SN, Li ZX. Analysis of the allergenicity and B cell epitopes in tropomyosin of shrimp (Litopenaeus vannamei) and correlation to cross-reactivity based on epitopes with fish (Larimichthys crocea) and clam (Ruditapes philippinarum). Food Chem 2020; 323:126763. [PMID: 32334299 DOI: 10.1016/j.foodchem.2020.126763] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Tropomyosin (TM) is a highly conserved protein that considered as the major allergen of crustacean and mollusk species, while, fish-TM also shares high homology with low allergenicity. In this study, the amino acid sequence, B cell epitopes and allergenicity of shrimp (Litopenaeus vannamei), which is widely consumed, were evaluated by using immunoinformatic tools, dot-blot, enzyme-linked immunosorbent assay (ELISA) and mediator release assay. Meanwhile, cross-reactivity of allergic epitopes of fish-TM, shrimp-TM and clam-TM were assessed. Results showed that three IgE-binding epitopes (X1: 47-61, QKRMQQLENDLDQVQ; X2: 97-108, EDLERSEERLNT and X3: 244-257, RSVQKLQKEVDRLE) of shrimp-TM also exhibited degranulation ability. In comparison with epitopes from shrimp-TM, those from clam-TM showed high cross-reactivity (>80%) and degranulation ability, while those from fish-TM showed low cross-reactivity (<20%). These findings would apply a new understanding of the cross-reactivity of TM from fish, shrimp and clam in terms of allergenic epitopes.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jin Chen
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Li Rui Sun
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Xiang Gao
- Department of Allergy, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266071, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - S N Pramod
- Department of Studies in Biochemistry, Sahyadri Science College, Kuvempu University, Shimoga-577203, Karnataka 560037, India
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|