1
|
Andonegi M, Diez AG, Costa CM, Romanyuk KN, Kholkin AL, de la Caba K, Guerrero P, Lanceros-Mendez S. Piezoelectric properties of collagen films: Insights into their potential for electroactive biomedical applications. Int J Biol Macromol 2025; 309:142799. [PMID: 40188926 DOI: 10.1016/j.ijbiomac.2025.142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Electroactive biomaterials and, in particular, piezoelectric ones are gaining insight into tissue engineering and biomedical applications. Collagen is one of the most available biomaterials found in nature, and the present study focus on the evaluation of its piezoelectric response. Collagen extracted from bovine skin was used and the piezoelectric response was correlated to the physicochemical, thermal, morphological and mechanical properties. A dense fibrillar microstructure was observed and the mechanical properties, which depend on the specific amino acids composition, showed tensile strength and maximum strain values of 34 MPa and 18 %, respectively. Collagen films exhibited approximately 25 % weight loss after 1 day in PBS solution, increasing to about 30 % and 100 % at day 2 and 4, respectively. A piezoelectric response of 0.44 pm/V was obtained, demonstrating the collagen film suitability for electroactive materials in biomedical applications.
Collapse
Affiliation(s)
- Mireia Andonegi
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal.
| | - Ander G Diez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| | - Konstantin N Romanyuk
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrei L Kholkin
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
2
|
Liu H, Shangguan W, Zhao P, Cao C, Yu M, Huang Q, Cao L. Size Effects of Nanoenabled Agrochemicals in Sustainable Crop Production: Advances, Challenges, and Perspectives. ACS NANO 2025; 19:54-72. [PMID: 39725553 DOI: 10.1021/acsnano.4c09803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Nanoenabled agrochemicals mainly including nanopesticides and nanofertilizers based on nanotechnology play a crucial role in plant protection and food security. These agrochemicals exhibit high dose delivery efficiency and biological activity due to their unique nanoscale properties. However, nanoscale properties can also be a double-edged sword, posing potential risks to both humans and the environment. As nanoenabled agrochemicals become more widely used, it is essential to have an objective and comprehensive discussion of the size effects of these agrochemicals. In this paper, we reviewed the research progress on the size effects of nanoenabled agrochemicals in terms of dose delivery, biological activity, and nontarget safety. We investigated the complex factors affecting size effects and sought to draw insights from research in biomedicine, engineering, food, and other relevant fields. Based on the literatures review, it could be concluded that "the smaller the better" is not always the case. We further outlooked the development prospects of studying the size effects of nanoenabled agrochemicals, emphasizing the necessity for thorough and in-depth research while critically identifying key issues that need to be addressed. In conclusion, a proper comprehension of the size effects of nanoenabled agrochemicals bridges the gap between the scientific community and industry, bolstering the role in advancing sustainable agriculture.
Collapse
Affiliation(s)
- Hongyi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Wenjie Shangguan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Pengyue Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Manli Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Qiliang Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Lidong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| |
Collapse
|
3
|
Gui N, Zhang X, Yang C, Ran R, Yang C, Zeng X, Li G. A high-strength collagen-based antimicrobial film grafted with ε-polylysine fabrication by riboflavin-mediated ultraviolet irradiation for pork preservation. Food Chem 2024; 461:140889. [PMID: 39173254 DOI: 10.1016/j.foodchem.2024.140889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
In this study, a UV-cured collagen-based film (C-P-H film) with high mechanical strength and antimicrobial properties was developed by riboflavin-mediated ultraviolet irradiation of collagen solution containing histidine-modified ε-polylysine. Fourier transform infrared analysis indicated that covalent cross-linking was formed between the collagen molecule and the histidine-grafted ε-polylysine. Compared with the pure collagen film, the C-P-H film containing 5 wt% histidine-modified ε-polylysine showed higher tensile strength (145.98 MPa), higher thermal denaturation temperature (76.5 °C), lower water vapor permeability (5.54 × 10-11 g m-1 s-1 Pa) and excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus. In addition, the wrapping of the C-P-H film effectively inhibited bacterial growth of pork during storage time, successfully prolonging the shelf-life of pork by approximately 4 days compared to that of plastic wrap. These results suggested that collagen-based film grafted with histidine-modified ε-polylysine via riboflavin-mediated ultraviolet irradiation process had a great potential for pork preservation.
Collapse
Affiliation(s)
- Nina Gui
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Xiaoxia Zhang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Chun Yang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Ruimin Ran
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Changkai Yang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Xingling Zeng
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
4
|
Wang Y, Hou X, Yu H, Guan W, Ma Y, Ali MKA. Nano-Biochar Prepared from High-Pressure Homogenization Improves Thermal Conductivity of Ethylene Glycol-Based Coolant. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1308. [PMID: 39120413 PMCID: PMC11314575 DOI: 10.3390/nano14151308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
As an environmentally friendly material, biochar is increasingly being utilized in the field of heat transfer and thermal conduction. In this study, nano-biochar was prepared from high-pressure homogenization (HPH) using sesame stalks as the raw material. It was incorporated into ethylene glycol (EG) and its dispersion stability, viscosity, and thermal conductivity were investigated. The nano-biochar was stably dispersed in EG for 28 days. When the concentration of the nano-biochar added to EG was less than 1%, the impact on viscosity was negligible. The addition of 5 wt.% nano-biochar to EG improved the thermal conductivity by 6.72%, which could be attributed to the graphitized structure and Brownian motion of the nano-biochar. Overall, nano-biochar has the potential to be applied in automotive thermal management.
Collapse
Affiliation(s)
- Youheng Wang
- Hubei Key Laboratory of Advanced Technology for Automotive Components, School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Y.); (W.G.); (Y.M.)
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China
- Chongqing Research Institute, Wuhan University of Technology, Chongqing 410121, China
| | - Xianjun Hou
- Hubei Key Laboratory of Advanced Technology for Automotive Components, School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Y.); (W.G.); (Y.M.)
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China
- Chongqing Research Institute, Wuhan University of Technology, Chongqing 410121, China
| | - Hong Yu
- Hubei Key Laboratory of Advanced Technology for Automotive Components, School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Y.); (W.G.); (Y.M.)
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China
| | - Weiwei Guan
- Hubei Key Laboratory of Advanced Technology for Automotive Components, School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Y.); (W.G.); (Y.M.)
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China
| | - Yuxin Ma
- Hubei Key Laboratory of Advanced Technology for Automotive Components, School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Y.); (W.G.); (Y.M.)
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China
| | - Mohamed Kamal Ahmed Ali
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
- Automotive and Tractors Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| |
Collapse
|
5
|
Mei S, Xu B, Wan J, Chen J. Preparation of CNT/CNF/PDMS/TPU Nanofiber-Based Conductive Films Based on Centrifugal Spinning Method for Strain Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:4026. [PMID: 38931809 PMCID: PMC11207652 DOI: 10.3390/s24124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Flexible conductive films are a key component of strain sensors, and their performance directly affects the overall quality of the sensor. However, existing flexible conductive films struggle to maintain high conductivity while simultaneously ensuring excellent flexibility, hydrophobicity, and corrosion resistance, thereby limiting their use in harsh environments. In this paper, a novel method is proposed to fabricate flexible conductive films via centrifugal spinning to generate thermoplastic polyurethane (TPU) nanofiber substrates by employing carbon nanotubes (CNTs) and carbon nanofibers (CNFs) as conductive fillers. These fillers are anchored to the nanofibers through ultrasonic dispersion and impregnation techniques and subsequently modified with polydimethylsiloxane (PDMS). This study focuses on the effect of different ratios of CNTs to CNFs on the film properties. Research demonstrated that at a 1:1 ratio of CNTs to CNFs, with TPU at a 20% concentration and PDMS solution at 2 wt%, the conductive films crafted from these blended fillers exhibited outstanding performance, characterized by electrical conductivity (31.4 S/m), elongation at break (217.5%), and tensile cycling stability (800 cycles at 20% strain). Furthermore, the nanofiber-based conductive films were tested by attaching them to various human body parts. The tests demonstrated that these films effectively respond to motion changes at the wrist, elbow joints, and chest cavity, underscoring their potential as core components in strain sensors.
Collapse
Affiliation(s)
- Shunqi Mei
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
- The Advanced Textile Technology Innovation Center (Jianhu Laboratory), Shaoxing 312000, China
- School of Mechanical & Electrical Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Bin Xu
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
| | - Jitao Wan
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
| | - Jia Chen
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
| |
Collapse
|
6
|
Chen J, Li J, Li Y, Wu S. Fabrication and characterisation of collagen/pullulan ultra-thin fibers by electrospinning. Food Chem X 2024; 21:101138. [PMID: 38304044 PMCID: PMC10831494 DOI: 10.1016/j.fochx.2024.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Collagen electrospun fibers are promising materials for food packaging and tissue engineering. The conventional electrospinning of collagen, however, is usually carried out by dissolving it in organic reagents, which are toxic. In this study, collagen/pullulan (COL/PUL) ultra-thin fibers were prepared by electrospinning using acetic acid as a solvent. Compared to the conventional preparation method, the proposed method is safe and does not produce toxic solvent residues. The introduction of PUL increased the degree of molecular entanglement in the solution, so the viscosity of the COL/PUL electrospun solution increased from 0.50 ± 0.01 Pa∙s to 4.40 ± 0.08 Pa∙s, and the electrical conductivity decreased from 1954.00 ± 1.00 mS/cm to 1372.33 ± 0.58 mS/cm. Scanning electron microscopy analysis confirmed that PUL improved the spinnability of COL, and smooth, defect-free COL/PUL ultra-thin fibers with diameters of 215.32 ± 40.56 nm and 240.97 ± 53.93 nm were successfully prepared at a viscosity of greater than 1.18 Pa∙s. As the proportion of PUL increased, intramolecular hydrogen bonds became the dominant interaction between COL and PUL. The intermolecular hydrogen bonding content decreased from 52.05 % to 36.45 %, and the intramolecular hydrogen bonding content increased from 46.11 % to 62.95 %. The COL was gradually unfolded, the content of α-helices decreased from 33.57 % to 25.91 % and the random coils increased from 34.22 % to 40.09 %. More than 36 % of the triple helix fraction of COL was retained by the COL/PUL ultra-thin fibers, whereas only 16 % of the triple helix fraction of COL was retained by the COL nanofibers prepared with 2.2.2-trifluoroethanol. These results could serve as a reference for the development of green food COL-based fibers.
Collapse
Affiliation(s)
| | | | - Yushuang Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Sijia Wu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
7
|
Andonegi M, Meira RM, Correia DM, Pereira N, Costa CM, Lanceros-Mendez S, de la Caba K, Guerrero P. Biodegradable and biocompatible collagen-based hybrid materials for force sensing applications. Int J Biol Macromol 2024; 256:128486. [PMID: 38042312 DOI: 10.1016/j.ijbiomac.2023.128486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
With the aim of replacing synthetic macromolecules by biological macromolecules for advanced applications, collagen films were produced with two different ionic liquids (ILs), choline dihydrogen phosphate ([Ch][DHP]) and choline serinate ([Ch][Seri]), added in order to modulate the electrical responses. The films were prepared by casting, varying IL content between 0 and 6 wt%. The morphology and thermal properties of the resulting films were found to be independent of both IL type and content. However, the highest direct curret (d.c.) electrical conductivity (1.4 × 10-8 S·cm-1) was achieved for collagen films containing 3 wt% [Ch][DHP]. Furthermore, it was demonstrated that IL/collagen films were non-cytotoxic, with cell activity values exceeding 70 %. These collagen films were proven to be suitable for force sensing applications, displaying excellent sensitivity and stability upon repeated testing.
Collapse
Affiliation(s)
- Mireia Andonegi
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057, Braga, Portugal
| | - Rafaela M Meira
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057, Braga, Portugal
| | | | - Nelson Pereira
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057, Braga, Portugal
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057, Braga, Portugal; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
8
|
Ahmad MI, Li Y, Pan J, Liu F, Dai H, Fu Y, Huang T, Farooq S, Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int J Biol Macromol 2024; 254:128037. [PMID: 37963506 DOI: 10.1016/j.ijbiomac.2023.128037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Food-producing animals have the highest concentration of collagen in their extracellular matrix. Collagen and gelatin are widely used in food industry due to their specific structural, physicochemical, and biochemical properties, which enable them to improve health and nutritional value as well as to increase the stability, consistency, and elasticity of food products. This paper reviews the structural and functional properties including inherent self-assembly, gel forming, water-retaining, emulsifying, foaming, and thickening properties of collagen and gelatin. Then the colloid structures formed by collagen such as emulsions, films or coatings, and fibers are summarized. Finally, the potential applications of collagen and gelatin in muscle foods, dairy products, confectionary and dessert, and beverage products are also reviewed. The objective of this review is to provide the current market value, progress as well as applications of collagen and its derivatives in food industry.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jinfeng Pan
- National Engineering Research Centre for Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Centre for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, Jiangnan University, School of Food Science and Technology, International Joint Laboratory on Food Safety, Wuxi 214122, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Pei Y, Li W, Wang L, Cui J, Li L, Ling S, Tang K, Tian H. Mesostructured Fibrils Exfoliated in Deep Eutectic Solvent as Building Blocks of Collagen Membranes. Polymers (Basel) 2023; 15:4008. [PMID: 37836057 PMCID: PMC10574992 DOI: 10.3390/polym15194008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The mesoscale components of collagen (nanofibrils, fibrils, and fiber bundles) are well organized in native tissues, resulting in superior properties and diverse functions. In this paper, we present a simple and controlled liquid exfoliation method to directly extract medium-sized collagen fibers ranging from 102 to 159 nm in diameter from bovine Achilles tendon using urea/hydrochloric acid and a deep eutectic solvent (DES). In situ observations under polarized light microscopy (POM) and molecular dynamics simulations revealed the effects of urea and GuHCl on tendon collagen. FTIR study results confirmed that these fibrils retained the typical structural characteristics of type I collagen. These shed collagen fibrils were then used as building blocks to create independent collagen membranes with good and stable mechanical properties, excellent barrier properties, and cell compatibility. A new method for collagen processing is provided in this work by using DES-assisted liquid exfoliation for constructing robust collagen membranes with mesoscale collagen fibrils as building blocks.
Collapse
Affiliation(s)
- Ying Pei
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Wei Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Lu Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Jing Cui
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China;
| | - Lu Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Shengjie Ling
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China;
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Huafeng Tian
- Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Zhang M, Gao T, Han Y, Xue D, Jiang S, Li Q, Li C. Improvement of Structural, Rheological, and physicochemical properties of type I collagen by calcium lactate combined with ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 95:106373. [PMID: 36933502 PMCID: PMC10031159 DOI: 10.1016/j.ultsonch.2023.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Type I collagen has a relatively stable quality while quite resistant to digestion because of the complex triple helix structure. This study was conducted to explore the acoustic conditions of ultrasound (UD)-assisted calcium lactate processing of collagen and control the processing process through its sono-physico-chemical effects. The findings demonstrated that UD might lower the average particle size of collagen and increase its zeta potential. In contrast, the rise in calcium lactate concentration could dramatically limit the impact of UD processing. This may be because of its low acoustic cavitation effect, as demonstrated by the phthalic acid method (the fluorescence value decreased from 81245.67 to 18243.67). Poor changes in tertiary and secondary structures confirmed the detrimental effect of calcium lactate concentration on UD-assisted processing. Although UD-assisted calcium lactate processing can significantly alter the structure of collagen, the integrity of the collagen is basically preserved. Furthermore, the addition of UD and a trace amount of calcium lactate (0.1%) increased the roughness of the fiber structure. At this relatively low calcium lactate concentration, ultrasound improved the gastric digestibility of collagen by nearly 20%.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; International Joint Collaborative Research Laboratory for Animal Health and Food Safety, MOE, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingxuan Gao
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Han
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejiang Xue
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Pei Y, Yang W, Tang K, Kaplan DL. Collagen processing with mesoscale aggregates as templates and building blocks. Biotechnol Adv 2023; 63:108099. [PMID: 36649798 DOI: 10.1016/j.biotechadv.2023.108099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Collagen presents a well-organized hierarchical multilevel structure. Microfibers, fibers, and fiber bundles are the aggregates of natural collagen; which achieve an ideal balance of mechanical strength and toughness at the mesoscopic scale for biological tissue. These mesostructured aggregates of collagen isolated from biological tissues retain these inherent organizational features to enable their use as building blocks for constructing new collagen materials with ideal mechanical performance, thermal and dimensional stability. This strategy is distinct from the more common bottom-up or molecular-level design and assembly approach to generating collagen materials. The present review introduces the hierarchical structure of biological collagen with a focus on mesostructural features. Isolation strategies for these collagen aggregates (CAs) are summarized. Recent progress in the use of these mesostructural components for the construction of new collagen materials with emerging applications is reviewed, including in catalysis, environmental applications, biomedicine, food packaging, electrical energy storage, and flexible sensors. Finally, challenges and prospects are assessed for controllable production of CAs as well as material designs.
Collapse
Affiliation(s)
- Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Wen Yang
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - David L Kaplan
- Biomedical Engineering, Tufts University, MA 02155, United States
| |
Collapse
|
12
|
Zhao K, Tian X, Huang N, Zhang K, Wang Y, Zhang Y, Wang W. Tunable mechanical performances of collagen-based film: Effect of collagens in different hierarchies and cellulose nanofiber. PROGRESS IN ORGANIC COATINGS 2023; 176:107404. [DOI: 10.1016/j.porgcoat.2022.107404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
|
13
|
Matheus JRV, Dalsasso RR, Rebelatto EA, Andrade KS, Andrade LMD, Andrade CJD, Monteiro AR, Fai AEC. Biopolymers as green-based food packaging materials: A focus on modified and unmodified starch-based films. Compr Rev Food Sci Food Saf 2023; 22:1148-1183. [PMID: 36710406 DOI: 10.1111/1541-4337.13107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023]
Abstract
The ideal food packaging materials are recyclable, biodegradable, and compostable. Starch from plant sources, such as tubers, legumes, cereals, and agro-industrial plant residues, is considered one of the most suitable biopolymers for producing biodegradable films due to its natural abundance and low cost. The chemical modification of starch makes it possible to produce films with better technological properties by changing the functional groups into starch. Using biopolymers extracted from agro-industrial waste can add value to a raw material that would otherwise be discarded. The recent COVID-19 pandemic has driven a rise in demand for single-use plastics, intensifying pressure on this already out-of-control issue. This review provides an overview of biopolymers, with a particular focus on starch, to develop sustainable materials for food packaging. This study summarizes the methods and provides a potential approach to starch modification for improving the mechanical and barrier properties of starch-based films. This review also updates some trends pointed out by the food packaging sector in the last years, considering the impacts of the COVID-19 pandemic. Perspectives to achieve more sustainable food packaging toward a more circular economy are drawn.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Raul Remor Dalsasso
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Evertan Antonio Rebelatto
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Kátia Suzana Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Lidiane Maria de Andrade
- Department of Chemical Engineering, Polytechnic School, University of São Paulo (USP), São Paulo, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Zhao K, Tian X, Zhang K, Huang N, Wang Y, Zhang Y, Wang W. Using celluloses in different geometries to reinforce collagen-based composites: Effect of cellulose concentration. Int J Biol Macromol 2023; 226:202-210. [PMID: 36502942 DOI: 10.1016/j.ijbiomac.2022.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Cellulose is frequently used to strengthen biocomposite films, but few literature systematically deliberates the effects of concentration of celluloses in different geometries on the reinforcement of these composites. Here we prepared three types of celluloses, including rod-like cellulose nanocrystalline (CNC), long-chain cellulose nanofiber (CNF) and microscopic cellulosic fines (CF). The effect of concentration of the three celluloses was examined on the barrier properties to water and light, thermostability, microstructure, and mechanical properties of collagen (COL) films. The addition of celluloses increased the watertightness and thermostability of composite films. Besides, FTIR showed a increased hydrogen bonding for COL/CNF and COL/CNC composite films, but decrease for COL/CF composites. As the concentration of CF and CNF increased, the strength of composites improved. The TS for COL/CNF (124 MPa) and COL/CF composites (113 MPa) were largely increased, compared with that of collagen ones (90 MPa). Considering the factors of crystallinity, hydrogen bonding, and interfacial tortuosity, COL/CNF composites possessed better mechanical behaviors than that of COL/CF and COL/CNC composites. Furthermore, Halpin-Kardos and Ouali models well predicted the modulus of COL/CNF composites when CNF was below and above percolation threshold (2.7 wt%), respectively.
Collapse
Affiliation(s)
- Kaixuan Zhao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Kai Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Na Huang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yafei Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
15
|
Chen J, Liu J, Yang W, Pei Y. Collagen and Silk Fibroin as Promising Candidates for Constructing Catalysts. Polymers (Basel) 2023; 15:375. [PMID: 36679256 PMCID: PMC9863204 DOI: 10.3390/polym15020375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
A catalyst determines the mechanism of an organic chemical reaction, thus enabling the commercially viable formation of desired material products. Biopolymers offer new opportunities for the construction of catalysts by virtue of their biocompatibility, environmental benignity, and sustainability, as well as their low cost. Biopolymers are especially useful as carriers and precursors in catalysis application. The employment of biocompatible and biosustainable collagen and silk fibroin materials will revolutionize state-of-the-art electronic devices and systems that currently rely on conventional technologies. In this review, we first consider the ordered hierarchical structure, origin, and processing methods of collagen and silk fibroin. Then, the unique advantages and applicability of collagen and silk fibroin for constructing catalysts are summarized. Moreover, a summary of the state-of-the-art design, fabrication, and application of collagen- and silk fibroin-based catalysts, as well as the application of collagen- and silk-based catalysts, is presented by focusing on their roles as carriers and precursors, respectively. Finally, challenges and prospects are assessed for the construction and development of collagen and silk fibroin-based catalysts.
Collapse
Affiliation(s)
- Jiankang Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Tunuhe A, Liu P, Ullah M, Sun S, Xie H, Ma F, Yu H, Zhou Y, Xie S. Fungal-Modified Lignin-Enhanced Physicochemical Properties of Collagen-Based Composite Films. J Fungi (Basel) 2022; 8:jof8121303. [PMID: 36547636 PMCID: PMC9783068 DOI: 10.3390/jof8121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Renewable and biodegradable materials have attracted broad attention as alternatives to existing conventional plastics, which have caused serious environmental problems. Collagen is a potential material for developing versatile film due to its biosafety, renewability, and biodegradability. However, it is still critical to overcome the low mechanical, antibacterial and antioxidant properties of the collagen film for food packaging applications. To address these limitations, we developed a new technology to prepare composite film by using collagen and fungal-modified APL (alkali pretreatment liquor). In this study, five edible and medical fungi, Cunninghamella echinulata FR3, Pleurotus ostreatus BP3, Ganoderma lucidum EN2, Schizophyllum commune DS1 and Xylariaceae sp. XY were used to modify the APL, and that showed that the modified APL significantly improved the mechanical, antibacterial and antioxidant properties of APL/Collagen composite films. Particularly, the APL modified by BP3, EN2 and XY showed preferable performance in enhancing the properties of the composite films. The tensile strength of the film was increased by 1.5-fold in the presence of the APL modified by EN2. To further understand the effect of fungal-biomodified APL on the properties of the composite films, a correlation analysis between the components of APL and the properties of composite films was conducted and indicated that the content of aromatic functional groups and lignin had a positive correlation with the enhanced mechanical and antioxidant properties of the composite films. In summary, composite films prepared from collagen and fungal biomodified APL showed elevated mechanical, antibacterial and antioxidant properties, and the herein-reported novel technology prospectively possesses great potential application in the food packaging industry.
Collapse
Affiliation(s)
- Alitenai Tunuhe
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengyang Liu
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mati Ullah
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Su Sun
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- College of Urban Construction, Wuchang Shouyi University, Wuhan 430074, China
| | - Hua Xie
- Guangxi Shenguan Collagen Technology Research Institute, Guangxi Shenguan Collagen Biological Group, Wuzhou 543000, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaxian Zhou
- Guangxi Shenguan Collagen Technology Research Institute, Guangxi Shenguan Collagen Biological Group, Wuzhou 543000, China
- Correspondence: (Y.Z.); (S.X.); Tel.: +86-0774-2035538 (Y.Z.); +86-27-87792108 (S.X.)
| | - Shangxian Xie
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.Z.); (S.X.); Tel.: +86-0774-2035538 (Y.Z.); +86-27-87792108 (S.X.)
| |
Collapse
|
17
|
C NK, M. N. P, Hassim MT, Song JI. Development of Self-Healing Carbon/Epoxy Composites with Optimized PAN/PVDF Core-Shell Nanofibers as Healing Carriers. ACS OMEGA 2022; 7:42396-42407. [PMID: 36440110 PMCID: PMC9685786 DOI: 10.1021/acsomega.2c05496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Two-component self-healing carbon/epoxy composites were fabricated by incorporating healing agents between to carbon fiber laminates via the vacuum bagging method. Vinyl ester (VE), cobalt naphthalene (CN), and methyl ethyl ketone peroxide (MEKP) were encapsulated in a polyacrylonitrile (PAN)/Poly(vinylidene fluoride) (PVDF) shell via co-axial electrospinning. Varying nanofiber compositions were fabricated, namely, 10, 20, 30, and 40% PAN in PVDF nanofibers. The 20% PAN fibers were finalized as the shell material owing to their superior tensile properties and surface morphology. The behavior of the PAN/PVDF nanofibers encapsulating the healing agents was studied via Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA) to affirm the presence of the healing agents. Mechanical analysis in the presence of core-shell nanofibers indicated an enhancement of 7 and 5% in flexural strength and Izod impact strength, respectively. Three-point bending tests confirmed the autonomous healing characteristics of these nanofibers, which retained 62% of their initial strength after 24 h. FESEM and energy dispersive X-ray (EDX) analyses of the fracture surface confirmed that the resin was released from the nanofibers, restoring the initial properties of the composites.
Collapse
Affiliation(s)
- Naga Kumar C
- Department
of Mechanical Engineering, Changwon National
University, Changwon 51140, Gyeongsangnam, South Korea
| | - Prabhakar M. N.
- The
Research Institute of Mechatronics, Changwon
National University, Changwon 51140, Gyeongsangnam, South Korea
| | - Mohamad Tarmizie Hassim
- Department
of Smart Manufacturing Engineering, Changwon
National University, Changwon 51140, Gyeongsangnam, South Korea
| | - Jung-il Song
- Department
of Mechanical Engineering, Changwon National
University, Changwon 51140, Gyeongsangnam, South Korea
| |
Collapse
|
18
|
Tang P, Zheng T, Yang C, Li G. Enhanced physicochemical and functional properties of collagen films cross-linked with laccase oxidized phenolic acids for active edible food packaging. Food Chem 2022; 393:133353. [DOI: 10.1016/j.foodchem.2022.133353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/29/2022] [Accepted: 05/28/2022] [Indexed: 11/26/2022]
|
19
|
Collagen extracted from rabbit: meat and by-products: isolation and physicochemical assessment. Food Res Int 2022; 162:111967. [DOI: 10.1016/j.foodres.2022.111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
20
|
Tian X, Zhao K, Teng A, Li Y, Wang W. A rethinking of collagen as tough biomaterials in meat packaging: assembly from native to synthetic. Crit Rev Food Sci Nutr 2022; 64:957-977. [PMID: 35997287 DOI: 10.1080/10408398.2022.2111401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the high moisture-associated typical rheology and the changeable and harsh processing conditions in the production process, packaging materials for meat products have higher requirements including a sufficient mechanical strength and proper ductility. Collagen, a highly conserved structural protein consisting of a triple helix of Gly-X-Y repeats, has been proved to be suitable packaging material for meat products. The treated animal digestive tract (i.e. the casing) is the perfect natural packaging material for wrapping meat into sausage. Its thin walls, strong toughness and impact resistance make it the oldest and best edible meat packaging. Collagen casing is another wisdom of meat packaging, which is made by collagen fibers from hide skin, presenting a rapid growth in casing market. To strengthen mechanical strength and barrier behaviors of collagen-based packaging materials, different physical, chemical, and biological cross-linking methods are springing up exuberantly, as well as a variety of reinforcement approaches including nanotechnology. In addition, the rapid development of biomimetic technology also provides a good research idea and means for the promotion of collagen's assembly and relevant mechanical properties. This review can offer some reference on fundamental theory and practical application of collagenous materials in meat products.
Collapse
Affiliation(s)
- Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - KaiXuan Zhao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Anguo Teng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
21
|
Zhao K, Tian X, Xing J, Huang N, Zhang H, Zhao H, Wang W. Tunable mechanical behavior of collagen-based films: A comparison of celluloses in different geometries. Int J Biol Macromol 2022; 214:120-127. [PMID: 35661672 DOI: 10.1016/j.ijbiomac.2022.05.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/12/2023]
Abstract
Collagen (Col) films were reinforced by celluloses in different geometries: microcrystalline cellulose (MCC), cellulosic fines (CF), cellulose nanofiber (CNF) and cellulose nanocrystals (CNC). The reinforcement mechanisms were investigated by the elastoplasticity and fracture appearance. Compared with the fracture stress of collagen film (67.5 MPa), the Col-CNF films effectively borne the stress (95.8 MPa) by intercrystalline fracture, ascribing the abundant hydrogen bonding and mechanical locking between cellulose and collagen. The toughness of Col-CF films was increased by the interfibrillar slippage of CF and pull-off of CF within the matrix, improving the strain-to-break from 8.37% to 12.13%. The films added with MCC and CNC weaken the mechanical behavior, due to the defects and lack of mechanical locking. Besides, the effects of celluloses' geometries on the thickness, density, water-tightness, thermal stability, crystallinity and FTIR of films were also investigated. These provide the evidence that the geometries of fillers diversely improve the behaviors of collagen film offering strategies for the film with adjustable mechanical properties.
Collapse
Affiliation(s)
- Kaixuan Zhao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jinfeng Xing
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Na Huang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongjie Zhang
- National Engineering Lab for Pulp and Paper, China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China.
| | - Huanying Zhao
- Shandong Haiaos Biotechnology Co., Ltd., Shandong, Zibo, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
22
|
Tabatabaei F, Gelin A, Rasoulianboroujeni M, Tayebi L. Coating of 3D printed PCL/TCP scaffolds using homogenized-fibrillated collagen. Colloids Surf B Biointerfaces 2022; 217:112670. [PMID: 35779329 DOI: 10.1016/j.colsurfb.2022.112670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Poly(3-caprolactone) (PCL)/β-tricalcium phosphate (β-TCP) composite scaffolds fabricated by three-dimensional (3D) printing are one of the common scaffolds for bone tissue regeneration. However, the main challenge of these 3D printed PCL/β-TCP scaffolds is the fact that many cells pass from porosities during in vitro cell seeding, leading to poor initial cell attachment. This study aimed to demonstrate the fabrication of a new collagen coating process for optimizing the hydrophilic property and cell-substrate interactions. This method may be used for coating collagen on any relevant biomedical constructs made of synthetic polymers to increase their biocompatibility and cell attachment. MATERIALS AND METHODS Porous composite scaffolds fabricated by 3D printing were coated with collagen by a novel method and compared to traditional methods. After plasma treatment, samples were inverted in a homogenized collagen solution, freeze-dried, stabilized by crosslinking, freeze-dried again, and fibrillated using a defined salt concentration. Samples were characterized by a 3D laser microscope, cytocompatibility assay, attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, water absorption, protein absorption, and bioactivity assay. RESULTS Homogenized collagen at pH= 7 resulted in a very uniform layer on the surface of scaffolds with significantly higher cell proliferation (p < 0.05). Collagen-coated scaffolds showed significantly higher water absorption, protein absorption, and bioactivity compared to non-coated samples (p < 0.05). CONCLUSION The results demonstrate that both the pH and collagen structure influence the coating of scaffolds, while the concentrations used in this study do not have a significant difference in this aspect. The combination of homogenization and fibrillization makes scaffolds more biocompatible and desirable for bone tissue engineering.
Collapse
Affiliation(s)
| | - Alexandra Gelin
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| | | | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA.
| |
Collapse
|
23
|
Karasu T, Erkoc-Biradli FZ, Öztürk-Öncel MÖ, Armutcu C, Uzun L, Garipcan B, Çorman ME. Synthesis and characterization of stimuli-responsive hydrogels: evaluation of external stimuli influence on L929 fibroblast viability. Biomed Phys Eng Express 2022; 8. [PMID: 35738237 DOI: 10.1088/2057-1976/ac7baa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/23/2022] [Indexed: 11/11/2022]
Abstract
In this study, poly(2-hydroxyethyl methacrylate) [p(HEMA)] based hydrogels responsive to the pH, temperature and magnetic field were synthesized. The surface properties of p(HEMA) were improved by designing the stimuli-responsive hydrogels made of MAGA, NIPAAm and methacrylate-decorated magnetite nanoparticles as a function of pH-, thermo- and magnetic responsive cell culture surfaces. These materials were then modified an abundant extracellular matrix component, type I collagen, which has been considered as a biorecognition element to increase the applicability of hydrogels to cell viability. Based on results from scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA), stimuli-responsive hydrogel demonstrated improved non-porous structures and thermal stability with a high degree of cross-linking. Mechanical analyses of the hydrogels also showed that stimuli-responsive hydrogels are more elastomeric due to the polymeric chains and heterogeneous amorphous segments compared to plain hydrogels. Furthermore, surface modification of hydrogels with collagen provided better biocompatibility, which was confirmed with L929 fibroblast cell adhesion. Produced stimuli-responsive hydrogels modulated cellular viability by changing pH and magnetic field.
Collapse
Affiliation(s)
- Tunca Karasu
- Department of Chemistry, Hacettepe University, Hacettepe Üniversitesi, Beytepe-Ankara, Ankara, 06800, TURKEY
| | - Fatma Zehra Erkoc-Biradli
- Boğaziçi Üniversitesi Biomedikal Mühendisliği Enstitüsü, Boğaziçi University, Kandilli-İstanbul, Istanbul, 34684, TURKEY
| | - M Özgen Öztürk-Öncel
- Boğaziçi Üniversitesi Biomedikal Mühendisliği Enstitüsü, Boğaziçi Üniversitesi, Kandilli, Istanbul, 34684, TURKEY
| | - Canan Armutcu
- Department of Chemistry, Hacettepe University, Hacettepe Ünviersitesi, Beytepe-Ankara, Ankara, 06800, TURKEY
| | - Lokman Uzun
- Department of Chemistry, Hacettepe University, Hacettepe Üniversitesi, Beytepe-Ankara, Ankara, 06800, TURKEY
| | - Bora Garipcan
- Boğaziçi Üniversitesi Biomedikal Mühendisliği Enstitüsü, Boğaziçi Üniversites, Kandilli, Istanbul, 34684, TURKEY
| | - Mehmet Emin Çorman
- Department of Biochemistry, University of Health Sciences, Sağlık Bilimleri Üniversitesi, Etlik, Istanbul, Ankara, 34668, TURKEY
| |
Collapse
|
24
|
Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, Wang Z, Zhou H, Yang T, Zhang Q, Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Zhang T, Yu Z, Ma Y, Chiou BS, Liu F, Zhong F. Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Song Z, Liu H, Huang A, Zhou C, Hong P, Deng C. Collagen/zein electrospun films incorporated with gallic acid for tilapia (Oreochromis niloticus) muscle preservation. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Tian X, Li S, Li Y, Wang W. Properties and thermal stability of Pickering high internal phase emulsion prepared by TGase cross‐linked collagen fibres. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaojing Tian
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Shuzhi Li
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Yu Li
- College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 China
| | - Wenhang Wang
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
28
|
Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem Rev 2021; 121:14088-14188. [PMID: 34415732 PMCID: PMC8630709 DOI: 10.1021/acs.chemrev.0c01333] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/12/2022]
Abstract
This review considers the most recent developments in supramolecular and supraparticle structures obtained from natural, renewable biopolymers as well as their disassembly and reassembly into engineered materials. We introduce the main interactions that control bottom-up synthesis and top-down design at different length scales, highlighting the promise of natural biopolymers and associated building blocks. The latter have become main actors in the recent surge of the scientific and patent literature related to the subject. Such developments make prominent use of multicomponent and hierarchical polymeric assemblies and structures that contain polysaccharides (cellulose, chitin, and others), polyphenols (lignins, tannins), and proteins (soy, whey, silk, and other proteins). We offer a comprehensive discussion about the interactions that exist in their native architectures (including multicomponent and composite forms), the chemical modification of polysaccharides and their deconstruction into high axial aspect nanofibers and nanorods. We reflect on the availability and suitability of the latter types of building blocks to enable superstructures and colloidal associations. As far as processing, we describe the most relevant transitions, from the solution to the gel state and the routes that can be used to arrive to consolidated materials with prescribed properties. We highlight the implementation of supramolecular and superstructures in different technological fields that exploit the synergies exhibited by renewable polymers and biocolloids integrated in structured materials.
Collapse
Affiliation(s)
- Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Caio G. Otoni
- Department
of Physical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos, Rod. Washington Luís, km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Marco Beaumont
- School
of Chemistry and Physics, Queensland University
of Technology, 2 George
Street, Brisbane, Queensland 4001, Australia
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna, A-3430 Tulln, Austria
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Tero Kämäräinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
29
|
Chen J, Wang G, Li Y. Preparation and Characterization of Thermally Stable Collagens from the Scales of Lizardfish ( Synodus macrops). Mar Drugs 2021; 19:md19110597. [PMID: 34822468 PMCID: PMC8620309 DOI: 10.3390/md19110597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Marine collagen is gaining vast interest because of its high biocompatibility and lack of religious and social restrictions compared with collagen from terrestrial sources. In this study, lizardfish (Synodus macrops) scales were used to isolate acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC). Both ASC and PSC were identified as type I collagen with intact triple-helix structures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and spectroscopy. The ASC and PSC had high amino acids of 237 residues/1000 residues and 236 residues/1000 residues, respectively. Thus, the maximum transition temperature (Tmax) of ASC (43.2 °C) was higher than that of PSC (42.5 °C). Interestingly, the Tmax of both ASC and PSC was higher than that of rat tail collagen (39.4 °C) and calf skin collagen (35.0 °C), the terrestrial collagen. Solubility tests showed that both ASC and PSC exhibited high solubility in the acidic pH ranges. ASC was less susceptible to the “salting out” effect compared with PSC. Both collagen types were nontoxic to HaCaT and MC3T3-E1 cells, and ASC was associated with a higher cell viability than PSC. These results indicated that ASC from lizardfish scales could be an alternative to terrestrial sources of collagen, with potential for biomedical applications.
Collapse
Affiliation(s)
- Junde Chen
- Correspondence: ; Tel./Fax: +86-0592-215527
| | | | | |
Collapse
|
30
|
Tian X, Wang Y, Duan S, Hao Y, Zhao K, Li Y, Dai R, Wang W. Evaluation of a novel nano-size collagenous matrix film cross-linked with gallotannins catalyzed by laccase. Food Chem 2021; 351:129335. [PMID: 33662910 DOI: 10.1016/j.foodchem.2021.129335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 01/31/2023]
Abstract
The effect of hydrolysis degree of gallotannins (GT, 1 mg/g) on cross-linking of nano-size collagen catalyzed by laccase (12 U/g) was studied, and the antibacterial properties of GT hydrolysates (HGT)-laccase (Lac) collagen films on minced cod were also investigated. The results showed that the tensile strength of HGT-Lac films (87.23-100.77 MPa) was higher than those added HGT alone (85.59-95.58 MPa) under the same hydrolysis degree of GT. Compared to the denaturation temperature (78.05 °C) of pure nano-size collagen film without addition of HGT and laccase, the denaturation temperature of HGT (80.75-86.30 °C) and HGT-Lac (91.97-101.64 °C) films increased greatly, especially for HGT-Lac films. Moreover, both HGT and HGT-Lac films showed some mild antibacterial properties for minced cod during storage at 4 °C for 8 days. Therefore, the combination of HGT and laccase could improve the performance of nano-size collagen film and extend the application of collagen in biodegradable/edible packaging.
Collapse
Affiliation(s)
- Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Songmei Duan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yanjie Hao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kaixuan Zhao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
31
|
Oldoni FC, Bernardo MP, Oliveira Filho JG, de Aguiar AC, Moreira FK, Mattoso LH, Colnago LA, Ferreira MD. Valorization of mangoes with internal breakdown through the production of edible films by continuous solution casting. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Xiao J, Ma Y, Wang W, Zhang K, Tian X, Zhao K, Duan S, Li S, Guo Y. Incorporation of gelatin improves toughness of collagen films with a homo-hierarchical structure. Food Chem 2021; 345:128802. [PMID: 33316715 DOI: 10.1016/j.foodchem.2020.128802] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022]
Abstract
In this study, gelatin (type A and type B) with/without transglutaminase (TGase) were added to collagen fiber films to form hierarchical structure and its effects on the film were investigated. The analysis of mechanical properties indicate that gelatin significantly increased the toughness of the collagen film, where the 10 wt% type A gelatin -contained films had highest tensile strength, elongation at break and work of fracture. However, TGase crosslinking compromised the benefits of type A gelatin greatly, while type B gelatin showed a slight improvement, due to the difference in crosslinking activity between them. In the meantime, the hydrogen bonds were formed between the collagen and gelatin according to the results of the Fourier transformation infrared. In general, it is expected that the hierarchical structure formed in the collagen/gelatin films can be used as an effective strategy to enhance the collagen matrix films' mechanical properties.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, 250353 Jinan, Shandong, China
| | - Yunhao Ma
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China.
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Songmei Duan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuzhi Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yang Guo
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
33
|
Lisitsyn A, Semenova A, Nasonova V, Polishchuk E, Revutskaya N, Kozyrev I, Kotenkova E. Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers (Basel) 2021; 13:1592. [PMID: 34063360 PMCID: PMC8156411 DOI: 10.3390/polym13101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Natural biopolymers are an interesting resource for edible films production, as they are environmentally friendly packaging materials. The possibilities of the application of main animal proteins and natural polysaccharides are considered in the review, including the sources, structure, and limitations of usage. The main ways for overcoming the limitations caused by the physico-chemical properties of biopolymers are also discussed, including composites approaches, plasticizers, and the addition of crosslinking agents. Approaches for the production of biopolymer-based films and coatings are classified according to wet and dried processes and considered depending on biopolymer types. The methods for mechanical, physico-chemical, hydration, and uniformity estimation of edible films are reviewed.
Collapse
Affiliation(s)
- Andrey Lisitsyn
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Anastasia Semenova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Viktoria Nasonova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| | - Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| |
Collapse
|
34
|
Liu K, Xu X, Liu H, Liu Z, Zhao K, Ma Y, Zhang K. Mechanical properties and water sensitivity of soybean protein isolate film improved by incorporation of sodium caseinate and transglutaminase. PROGRESS IN ORGANIC COATINGS 2021; 153:106154. [DOI: 10.1016/j.porgcoat.2021.106154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
|
35
|
Pei Y, Jordan KE, Xiang N, Parker RN, Mu X, Zhang L, Feng Z, Chen Y, Li C, Guo C, Tang K, Kaplan DL. Liquid-Exfoliated Mesostructured Collagen from the Bovine Achilles Tendon as Building Blocks of Collagen Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3186-3198. [PMID: 33398989 DOI: 10.1021/acsami.0c20330] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mesoscaled assemblies are organized in native collagen tissues to achieve remarkable and diverse performance and functions. In this work, a facile, low-cost, and controllable liquid exfoliation method was applied to directly extract these collagen mesostructures from bovine Achilles tendons using a sodium hydroxide (NaOH)/urea aqueous system with freeze-thaw cycles and sonication. A series of collagen fibrils with diameters of 26-230 nm were harvested using this process, and in situ observations under polarizing microscopy (POM) and using molecular dynamics simulations revealed the influence of the NaOH/urea system on the tendon collagen. FTIR and XRD results confirmed that these collagen fibrils preserved typical structural characteristics of type I collagen. These isolated collagen fibrils were then utilized as building blocks to fabricate free-standing collagen membranes, which exhibited good stability in solvents and outstanding mechanical properties and transparency, with potential for utility in optical and electronic sensors. Moreover, in vitro and vivo evaluations demonstrated that these new resulting collagen membranes had good cytocompatibility, biocompatibility, and degradability for potential applications in biomedicine. This work provides a new approach for collagen processing by liquid exfoliation with utility for the formation of robust collagen materials that consist of native collagen mesostructures as building blocks.
Collapse
Affiliation(s)
- Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kathryn E Jordan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ning Xiang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Rachael N Parker
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Luan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhibin Feng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310012, China
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
36
|
Xu M, Li T, Zhang S, Li W, He J, Yin C. Preparation and characterization of cellulose carbamate membrane with high strength and transparency. J Appl Polym Sci 2020. [DOI: 10.1002/app.50068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mengmeng Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Tao Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Shaojie Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Wenlong Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Jianlong He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Cuiyu Yin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| |
Collapse
|
37
|
Zhu Q, Li Y, Li S, Wang W. Fabrication and characterization of acid soluble collagen stabilized Pickering emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105875] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Tong C, Wu Z, Sun J, Lin L, Wang L, Guo Y, Huang Z, Wu C, Pang J. Effect of carboxylation cellulose nanocrystal and grape peel extracts on the physical, mechanical and antioxidant properties of konjac glucomannan films. Int J Biol Macromol 2020; 156:874-884. [DOI: 10.1016/j.ijbiomac.2020.04.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 12/28/2022]
|
39
|
Younis HGR, Abdellatif HRS, Ye F, Zhao G. Tuning the physicochemical properties of apple pectin films by incorporating chitosan/pectin fiber. Int J Biol Macromol 2020; 159:213-221. [PMID: 32416291 DOI: 10.1016/j.ijbiomac.2020.05.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022]
Abstract
Various biodegradable or edible films were designed to deal with the environmental threats from plastic films. To overcome the defects of pectin film, the feasibility for the incorporation of CH/PE fiber was explored. Micron-scale novel artificial CH/PE fibers in needle, spindle or whisker shape with a diameter around 25 μm were fabricated via a shearing regime in virtue of electrostatic complexing. The incorporation of CH/PE fiber (mixture) and its size-fractioned portions (small and large) substantially changed PE films in diverse ways. Structurally, the fiber-incorporated films were heterogeneous with the fibers concentrated in the upper layer, although they presented similar FT-IR spectra and XRD pattern to PE film. Regarding the film performance, the incorporation of CH/PE fibers, especially the small portion, rendered the PE film with higher values in water-proof ability, thermal stability, break resistibility, stretchability and UV blocking capacity. More importantly, this work provided an innovative strategy to improve the performance of edible films.
Collapse
Affiliation(s)
- Heba G R Younis
- College of Food Science, Southwest University, Chongqing 400715, China; Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Hassan R S Abdellatif
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|