1
|
Xia S, Fang D, Guo Y, Shi C, Wang J, Lyu L, Wu Y, Deng Z, Su E, Cao F, Li W. Temperature-sensitive poly(N-isopropylacrylamide)/polylactic acid/lemon essential oil nanofiber films prepared via different electrospinning processes: Controlled release and preservation effect. Int J Biol Macromol 2024; 281:136217. [PMID: 39362443 DOI: 10.1016/j.ijbiomac.2024.136217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
To develop an optimized controlled-release system based on temperature-sensitive poly(N-isopropylacrylamide) (PNIPAAm) nanofibers, we prepared three types of temperature-controlled preservative films. These films were composed of PNIPAAm, polyvinyl alcohol (PVA), polylactic acid (PLA), and lemon essential oil (LEO), and were fabricated using uniaxial, coaxial, and layered spinning techniques. The nanofiber films obtained by layered spinning exhibited a sandwich structure, demonstrating superior physical barrier properties, mechanical strength, and thermal resistance. Fourier-transform infrared spectroscopy confirmed the hydrogen bonding interaction between the polylactic acid/lemon essential oil and PNIPAAm layers. LEO release tests showed that PNIPAAm functions as a temperature-responsive switch, suppressing LEO release below and promoting it above the critical solution temperature. After a sustained release at 40 °C for 5 days, the layered film maintained significant antibacterial activity, effectively extending the shelf life of blackberries to 4 days. Considering its physical barrier, mechanical, and sustained-release properties, the layered film derived from PNIPAAm shows great potential as an intelligent temperature-controlled cling film to effectively extend the freshness of perishable products.
Collapse
Affiliation(s)
- Shuqiong Xia
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Donglu Fang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| | - Yalong Guo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Chong Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Junying Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Fuliang Cao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Weilin Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Figueroa-Lopez KJ, Villabona-Ortíz Á, Ortega-Toro R. Sustainable Starch-Based Films from Cereals and Tubers: A Comparative Study on Cherry Tomato Preservation. Polymers (Basel) 2024; 16:2913. [PMID: 39458740 PMCID: PMC11511533 DOI: 10.3390/polym16202913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Biodegradable films are sustainable alternatives to conventional plastics, particularly in food preservation, where the barrier and mechanical properties are crucial for maintaining the physicochemical, microbiological, and sensory qualities of the product. This study evaluated films made from starches of corn, potato, cassava, yam, and wheat to determine their effectiveness in preserving cherry tomatoes. Amylose content, a key factor influencing the crystallinity and properties of the films, varied among the sources, with wheat starch having the highest (28.2%) and cassava the lowest (18.3%). The wheat starch film emerged as the best formulation, exhibiting the highest tensile strength and the lowest water vapor permeability (4.1 ± 0.3 g∙mm∙m-2∙h-1∙KPa-1), contributing to superior barrier performance. When applied to cherry tomatoes, the films based on wheat and corn starch showed the least moisture loss over fifteen days, highlighting their potential in fresh food preservation. These results suggest that starch-based films, specifically those rich in amylose, have significant potential as biodegradable packaging materials for food product conservation.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Food Packaging and Shelf-Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena 130015, Colombia
- Ethnopharmacology, Natural Products, and Food Research Group (GIEPRONAL), School of Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá 110911, Colombia
| | - Ángel Villabona-Ortíz
- Chemical Engineering Department, Universidad de Cartagena, Cartagena 130015, Colombia;
| | - Rodrigo Ortega-Toro
- Food Packaging and Shelf-Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena 130015, Colombia
| |
Collapse
|
3
|
Yarahmadi A, Dousti B, Karami-Khorramabadi M, Afkhami H. Materials based on biodegradable polymers chitosan/gelatin: a review of potential applications. Front Bioeng Biotechnol 2024; 12:1397668. [PMID: 39157438 PMCID: PMC11327468 DOI: 10.3389/fbioe.2024.1397668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 08/20/2024] Open
Abstract
Increased mass manufacturing and the pervasive use of plastics in many facets of daily life have had detrimental effects on the environment. As a result, these worries heighten the possibility of climate change due to the carbon dioxide emissions from burning conventional, non-biodegradable polymers. Accordingly, biodegradable gelatin and chitosan polymers are being created as a sustainable substitute for non-biodegradable polymeric materials in various applications. Chitosan is the only naturally occurring cationic alkaline polysaccharide, a well-known edible polymer derived from chitin. The biological activities of chitosan, such as its antioxidant, anticancer, and antimicrobial qualities, have recently piqued the interest of researchers. Similarly, gelatin is a naturally occurring polymer derived from the hydrolytic breakdown of collagen protein and offers various medicinal advantages owing to its unique amino acid composition. In this review, we present an overview of recent studies focusing on applying chitosan and gelatin polymers in various fields. These include using gelatin and chitosan as food packaging, antioxidants and antimicrobial properties, properties encapsulating biologically active substances, tissue engineering, microencapsulation technology, water treatment, and drug delivery. This review emphasizes the significance of investigating sustainable options for non-biodegradable plastics. It showcases the diverse uses of gelatin and chitosan polymers in tackling environmental issues and driving progress across different industries.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Behrooz Dousti
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mahdi Karami-Khorramabadi
- Department of Mechanical Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Alborz, Iran
| |
Collapse
|
4
|
Torres Vargas OL, Rodríguez Agredo IA, Galeano Loaiza YV. Effect of incorporating white pepper ( Piper nigrum L.) oleoresin on starch/alginate films. RSC Adv 2024; 14:15293-15301. [PMID: 38741955 PMCID: PMC11089458 DOI: 10.1039/d4ra00821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
The development of films based on natural components has demonstrated their potential for food preservation. In this research, the effect of the inclusion of white pepper oleoresin (WPO) in a film made from cassava starch and sodium alginate (FWPO) on the antimicrobial, physicochemical, mechanical, optical, and structural properties was evaluated. The films were formulated with different concentrations of WPO (0.0, 0.5, 1.0 and 1.5%). The results obtained indicated that the incorporation of WPO in the film increased the antioxidant activity against the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH), and an inhibitory effect against Escherichia coli and Staphylococcus aureus bacteria was also observed. Elongation at break (EB), water vapor permeability (WVP), moisture content, solubility, and luminosity (L*) decreased significantly (p < 0.05) with the addition of WPO. On the other hand, the tensile strength (TS), the value of b* (tendency toward yellow) and the opacity increased. Scanning electron microscopy (SEM) images showed a smooth, uniform appearance, and continuous dispersion between cassava starch, alginate and WPO. FTIR spectra showed the interactions between the film components. X-ray diffraction (XRD) patterns showed that the addition of WPO did not affect the structural stability of the films. The results obtained indicate the possible use of WPO in the packaging of food products, contributing to the improvement of food quality and safety.
Collapse
Affiliation(s)
- Olga Lucía Torres Vargas
- Group of Research on Agro-industrial Sciences, Interdisciplinary Science Institute, Food Engineering Laboratory, Universidad del Quindío Cra. 15# 12 N Armenia Quindío 630004 Colombia
| | - Iván Andrés Rodríguez Agredo
- Group of Research on Agro-industrial Sciences, Interdisciplinary Science Institute, Food Engineering Laboratory, Universidad del Quindío Cra. 15# 12 N Armenia Quindío 630004 Colombia
| | - Yessica Viviana Galeano Loaiza
- Group of Research on Agro-industrial Sciences, Interdisciplinary Science Institute, Food Engineering Laboratory, Universidad del Quindío Cra. 15# 12 N Armenia Quindío 630004 Colombia
| |
Collapse
|
5
|
Petry JM, Pellá MCG, Silva OA, Caetano J, Dragunski DC. Plasticizer concentration effect on films and coatings based on poly(vinyl alcohol) and cationic starch blends. Food Chem 2024; 438:137977. [PMID: 37976874 DOI: 10.1016/j.foodchem.2023.137977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Films based on poly(vinyl alcohol) (PVA) and cationic starch (CS) were combined with different percentages of sorbitol (S; 15.0, 22.5, and 30.0% w v-1) to assess the effect of plasticizer on the films. Spectroscopic analyses confirmed the interaction between them. However, micrographs indicated the formation of sorbitol crystals on the surface of the films, especially at higher sorbitol concentrations. The blends presented low water vapor transmission rate values, reaching (7.703 ± 0.000) g h-1 m-2 (PVA75CS25S15), and low solubility values for the films containing higher CS amounts. The lack of statistical differences in most parameters suggests that no significant gain comes from increasing the amount of sorbitol at percentages higher than 15%. As a coating, the blend PVA75CS25S15 successfully decreased the loss of moisture content in acerolas by 1.15 times (compared to the control), confirming the suitability of this matrix as a fruit coating.
Collapse
Affiliation(s)
- Jaiane Maiara Petry
- Center of Engineer and Exact Sciences, State University of West Parana, 85903-000 Toledo, PR, Brazil
| | | | - Otavio Augusto Silva
- Department of Chemistry, State University of Maringa, 5790, Av. Colombo, Maringa, Parana 87020-900, Brazil
| | - Josiane Caetano
- Center of Engineer and Exact Sciences, State University of West Parana, 85903-000 Toledo, PR, Brazil
| | - Douglas Cardoso Dragunski
- Center of Engineer and Exact Sciences, State University of West Parana, 85903-000 Toledo, PR, Brazil; Department of Chemistry, State University of Maringa, 5790, Av. Colombo, Maringa, Parana 87020-900, Brazil.
| |
Collapse
|
6
|
Filgueiras CT, Fakhouri FM, Garcia VADS, Velasco JI, Nogueira GF, Ramos da Silva L, de Oliveira RA. Effect of Adding Red Propolis to Edible Biodegradable Protein Films for Coating Grapes: Shelf Life and Sensory Analysis. Polymers (Basel) 2024; 16:888. [PMID: 38611145 PMCID: PMC11013751 DOI: 10.3390/polym16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Red propolis is an active ingredient of great nutritional interest which offers numerous benefits as an antioxidant and antimicrobial agent. Thus, the objective of this research was to evaluate the application of an edible and antimicrobial gelatine coating containing red propolis to increase the shelf life of grapes. Gelatine films with an addition of 5, 10, 15, 20 and 25% of red propolis extract were produced to evaluate their antimicrobial activity using the disk diffusion test in solid media. The films with 25% red propolis extract showed antimicrobial activity against the bacteria Staphylococcus aureus and Pseudomonas aeruginosa. The grapes were coated with pure gelatine, without a plasticizer and with gelatine with 25% red propolis and then stored for 1, 4, 10, 19 and 25 days at temperatures of 25 °C and 5 °C. The results showed that the gelatine coating with propolis reduced the mass loss of grapes stored at 25 °C for 19 days by 7.82% and by 21.20% for those kept at 5 °C for 25 days. The pH, total titratable acidity, soluble solids and color of the grapes increased due to the ripening process. Furthermore, the sensory acceptability indexes of the refrigerated grapes with coatings were superior (>78%) to those of the control samples (38%), proving the effectiveness of the coatings in maintaining the quality of grapes during storage.
Collapse
Affiliation(s)
- Cristina Tostes Filgueiras
- Faculty of Engineering, Federal University of Grande Dourados (FAEN/UFGD), Dourados 79804-970, MS, Brazil; (C.T.F.); (V.A.d.S.G.); (L.R.d.S.)
- School of Agricultural Engineering, University of Campinas, Campinas 13083-875, SP, Brazil;
| | - Farayde Matta Fakhouri
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Carrer de Colom 11, 08222 Terrassa-Barcelona, Spain
| | - Vitor Augusto dos Santos Garcia
- Faculty of Engineering, Federal University of Grande Dourados (FAEN/UFGD), Dourados 79804-970, MS, Brazil; (C.T.F.); (V.A.d.S.G.); (L.R.d.S.)
- Faculty of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - José Ignacio Velasco
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Carrer de Colom 11, 08222 Terrassa-Barcelona, Spain
| | - Gislaine Ferreira Nogueira
- Department of Biomedical and Health Sciences, Minas Gerais State University, Passos 37900-106, MG, Brazil;
| | - Luan Ramos da Silva
- Faculty of Engineering, Federal University of Grande Dourados (FAEN/UFGD), Dourados 79804-970, MS, Brazil; (C.T.F.); (V.A.d.S.G.); (L.R.d.S.)
- Faculty of Food Engineering, University of Campinas, (FEA/UNICAMP), Campinas 13083-970, SP, Brazil
| | | |
Collapse
|
7
|
A comparative study of starch-g-(glycidyl methacrylate)/synthetic polymer-based hydrogels. Carbohydr Polym 2023; 307:120614. [PMID: 36781274 DOI: 10.1016/j.carbpol.2023.120614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Chemical modification reactions and blending formation are two alternatives used to improve the properties of starch-based materials. This work used both approaches to evaluate how they would affect the properties of hydrogels. The hydrogels were based on corn starch (St), modified with glycidyl methacrylate (GMA; starch-g-GMA; GMASt), and blended with N,N'-dimethylacrylamide (DMAAm; GMAStxDMAAmy) or sodium acrylate (SA; GMAStxSAy). The results confirmed that the pure GMASt matrix had a low swelling degree (≈3 g g-1), but when blended with the synthetic polymers, this value reached ≈10 g g-1 (sample GMASt25DMAAm75). All matrices showed responsiveness towards pH variations. In general, they swelled more at pH 5 than at pH 7. While DMAAm had more influence on the swelling degree, SA was more efficient as a mechanical enhancer. Increasing 25 % of the amount of SA in the blend increased Young's Modulus by a factor of ≈10 times. It confirmed that both polymers effectively change the properties of GMASt, but in different ways.
Collapse
|
8
|
Matheus JRV, Dalsasso RR, Rebelatto EA, Andrade KS, Andrade LMD, Andrade CJD, Monteiro AR, Fai AEC. Biopolymers as green-based food packaging materials: A focus on modified and unmodified starch-based films. Compr Rev Food Sci Food Saf 2023; 22:1148-1183. [PMID: 36710406 DOI: 10.1111/1541-4337.13107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023]
Abstract
The ideal food packaging materials are recyclable, biodegradable, and compostable. Starch from plant sources, such as tubers, legumes, cereals, and agro-industrial plant residues, is considered one of the most suitable biopolymers for producing biodegradable films due to its natural abundance and low cost. The chemical modification of starch makes it possible to produce films with better technological properties by changing the functional groups into starch. Using biopolymers extracted from agro-industrial waste can add value to a raw material that would otherwise be discarded. The recent COVID-19 pandemic has driven a rise in demand for single-use plastics, intensifying pressure on this already out-of-control issue. This review provides an overview of biopolymers, with a particular focus on starch, to develop sustainable materials for food packaging. This study summarizes the methods and provides a potential approach to starch modification for improving the mechanical and barrier properties of starch-based films. This review also updates some trends pointed out by the food packaging sector in the last years, considering the impacts of the COVID-19 pandemic. Perspectives to achieve more sustainable food packaging toward a more circular economy are drawn.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Raul Remor Dalsasso
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Evertan Antonio Rebelatto
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Kátia Suzana Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Lidiane Maria de Andrade
- Department of Chemical Engineering, Polytechnic School, University of São Paulo (USP), São Paulo, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Rashid N, Khalid SH, Ullah Khan I, Chauhdary Z, Mahmood H, Saleem A, Umair M, Asghar S. Curcumin-Loaded Bioactive Polymer Composite Film of PVA/Gelatin/Tannic Acid Downregulates the Pro-inflammatory Cytokines to Expedite Healing of Full-Thickness Wounds. ACS OMEGA 2023; 8:7575-7586. [PMID: 36872957 PMCID: PMC9979366 DOI: 10.1021/acsomega.2c07018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Curcumin (Cur) entrapped poly(vinyl alcohol) (PVA)/gelatin composite films were prepared by cross-linking with tannic acid (TA) as bioactive dressings for rapid wound closure. Films were evaluated for mechanical strength, swelling index, water vapor transmission rate (WVTR), film solubility, and in-vitro drug release studies. SEM revealed uniform and smooth surfaces of blank (PG9) and Cur-loaded composite films (PGC4). PGC4 exhibited excellent mechanical strength (tensile strength (TS) and Young's modulus (YM) were 32.83 and 0.55 MPa, respectively), swelling ability (600-800% at pH 5.4, 7.4, and 9), WVTR (2003 ± 26), and film solubility (27.06 ± 2.0). Sustained release (81%) of the encapsulated payload was also observed for 72 h. The antioxidant activity determined by DPPH free radical scavenging showed that the PGC4 possessed strong % inhibition. The PGC4 formulation displayed higher antibacterial potential against S. aureus (14.55 mm zone of inhibition) and E. coli (13.00 mm zone of inhibition) compared to blank and positive control by the agar well diffusion method. An in-vivo wound healing study was carried out on rats using a full-thickness excisional wound model. Wounds treated with PGC4 showed very rapid healing about 93% in just 10 days post wounding as compared to 82.75% by Cur cream and 80.90% by PG9. Furthermore, histopathological studies showed ordered collagen deposition and angiogenesis along with fibroblast formation. PGC4 also exerted a strong anti-inflammatory effect by downregulating the expression of pro-inflammatory cytokines (TNF-α and IL-6 were lowered by 76% and 68% as compared to the untreated group, respectively). Therefore, Cur-loaded composite films can be an ideal delivery system for effective wound healing.
Collapse
Affiliation(s)
- Nida Rashid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Syed Haroon Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zunera Chauhdary
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hira Mahmood
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ayesha Saleem
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Umair
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
10
|
A comprehensive review on gelatin: Understanding impact of the sources, extraction methods, and modifications on potential packaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Multi-Shaded Edible Films Based on Gelatin and Starch for the Packaging Applications. Polymers (Basel) 2022; 14:polym14225020. [PMID: 36433147 PMCID: PMC9693176 DOI: 10.3390/polym14225020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Starch and gelatin are natural biopolymers that offer a variety of benefits and are available at relatively low costs. In addition to this, they are an appealing substitute for synthetic polymers for the manufacturing of packaging films. Such packaging films are not only biodegradable but are also edible. Moreover, they are environmentally friendly and remain extremely cost-effective. In lieu of this, films made from fish gelatin and cornstarch have been the subject of several experiments. The pristine gelatin films have poor performance against water diffusion but exhibit excellent flexibility. The goal of this study was to assess the performance of pristine gelatin films along with the addition of food plasticizers. For this purpose, solutions of gelatin/cornstarch were prepared and specified quantities of food colors/plasticizers were added to develop different shades. The films were produced by using a blade coating method and were characterized by means of their shaded colors, water vapor transmission rate (WVTR), compositional changes via Fourier transform infrared spectroscopy (FTIR), hardness, bendability, transparency, wettability, surface roughness, and thermal stability. It was observed that the addition of several food colors enhanced the moisture blocking effect, as a 10% reduction in WVTR was observed in the shaded films as compared to pristine films. The yellow-shaded films exhibited the lowest WVTR, i.e., around 73 g/m2·day when tested at 23 °C/65%RH. It was also observed that the films' WVTR, moisture content, and thickness were altered when different colors were added into them, although the chemical structure remained unchanged. The mechanical properties of the shaded films were improved by a factor of two after the addition of colored plasticizers. Optical examination and AFM demonstrated that the generated films had no fractures and were homogeneous, clear, and shiny. Finally, a biscuit was packaged in the developed films and was monitored via shore hardness. It was observed that the edible packed sample's hardness remained constant even after 5 days. This clearly suggested that the developed films have the potential to be used for packaging in various industries.
Collapse
|
12
|
Recent Advances and Applications in Starch for Intelligent Active Food Packaging: A Review. Foods 2022; 11:foods11182879. [PMID: 36141005 PMCID: PMC9498516 DOI: 10.3390/foods11182879] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 12/22/2022] Open
Abstract
At present, the research and innovation of packaging materials are in a period of rapid development. Starch, a sustainable, low-cost, and abundant polymer, can develop environmentally friendly packaging alternatives, and it possesses outstanding degradability and reproducibility in terms of improving environmental issues and reducing oil resources. However, performance limitations, such as less mechanical strength and lower barrier properties, limit the application of starch in the packaging industry. The properties of starch-based films can be improved by modifying starch, adding reinforcing groups, or blending with other polymers. It is of significance to study starch as an active and intelligent packaging option for prolonging shelf life and monitoring the extent of food deterioration. This paper reviews the development of starch-based films, the current methods to enhance the mechanical and barrier properties of starch-based films, and the latest progress in starch-based activity, intelligent packaging, and food applications. The potential challenges and future development directions of starch-based films in the food industry are also discussed.
Collapse
|
13
|
Investigation of physicochemical properties, antimicrobial and antioxidant activity of edible films based on chitosan/casein containing Origanum vulgare L. essential oil and its effect on quality maintenance of cherry tomato. Food Chem 2022; 396:133650. [PMID: 35839728 DOI: 10.1016/j.foodchem.2022.133650] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
Edible coatings prevent physicochemical and biological food deterioration. Using bioactive compounds like essential oils can enrich films. In this study, edible films from chitosan (C), casein (Z) and oregano (OEO) were developed, and their physicochemical, barrier, antimicrobial, antioxidant, and structural properties (FTIR, SEM) were investigated. The C1Z3 ratio had good mechanical and inhibitory properties, and OEO improves flexibility, barrier, hydrophobic, antimicrobial, and antioxidant properties. The physicochemical and microbiological properties of cherry tomatoes were affected by C1Z3 and C1Z3O1.5 coatings. Coated fruits were stored at 4 °C for 32 days. The best results for weight loss, shrinkage, and titratable acidity were found to be 17.88%, 31.12%, and 0.15% in C1Z3O1.5 coated cherry tomatoes, respectively.The TMAB of C1Z3O1.5 coated fruits was less than detectable and the fungal growth was inhibited for 28 days. Accordingly, by adding OEO to chitosan/casein coatings, the spoilage process of cherry tomatoes was delayed for long-term storage.
Collapse
|
14
|
Luciano CG, Caicedo Chacon WD, Valencia GA. Starch‐Based Coatings for Food Preservation: A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202100279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carla Giovana Luciano
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av Duque de Caxias North, 225, 13635–900 Pirassununga SP Brazil
| | - Wilson Daniel Caicedo Chacon
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| |
Collapse
|
15
|
Vargas-Torrico MF, von Borries-Medrano E, Valle-Guadarrama S, Aguilar-Méndez MA. Development of gelatin-carboxymethylcellulose coatings incorporated with avocado epicarp and coconut endocarp extracts to control fungal growth in strawberries for shelf-life extension. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2021.2024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maria Fernanda Vargas-Torrico
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| | - Erich von Borries-Medrano
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| | | | - Miguel A. Aguilar-Méndez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| |
Collapse
|
16
|
Ghosh M, Singh AK. Potential of engineered nanostructured biopolymer based coatings for perishable fruits with Coronavirus safety perspectives. PROGRESS IN ORGANIC COATINGS 2022; 163:106632. [PMID: 34931104 PMCID: PMC8674086 DOI: 10.1016/j.porgcoat.2021.106632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 05/25/2023]
Abstract
Fresh fruits are prioritized needs in order to fulfill the required health benefits for human beings. However, some essential fruits are highly perishable with very short shelf-life during storage because of microbial growth and infections. Thus improvement of fruits shelf-life is a serious concern for their proper utlization without generation of huge amount of fruit-waste. Among various methods employed in extension of fruits shelf-life, design and fabrication of edible nanocoatings with antimicrobial activities have attracted considerable interest because of their enormous potential, novel functions, eco-friendly nature and good durability. In recent years, scientific communities have payed increased attention in the development of advanced antimicrobial edible coatings to prolong the postharvest shelf-life of fruits using hydrocolloids. In this review, we attempted to highlight the technical breakthrough and recent advancements in development of edible fruit coating by the application of various types of agro-industrial residues and different active nanomaterials incorporated into the coatings and their effects on shelf-life of perishable fruits. Improvements in highly desired functions such as antioxidant/antimicrobial activities and mechanical properties of edible coating to significantly control the gases (O2/CO2) permeation by the incorporation of nanoscale natural materials as well as metal nanoparticles are reviewed and discussed. In addition, by compiling recent knowledge, advantages of coatings on fruits for nutritional security during COVID-19 pandemic are also summarized along with the scientific challenges and insights for future developments in fabrication of engineered nanocoatings.
Collapse
Affiliation(s)
- Moushumi Ghosh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Arun Kumar Singh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| |
Collapse
|
17
|
Ashfaq J, Channa IA, Shaikh AA, Chandio AD, Shah AA, Bughio B, Birmahani A, Alshehri S, Ghoneim MM. Gelatin- and Papaya-Based Biodegradable and Edible Packaging Films to Counter Plastic Waste Generation. MATERIALS 2022; 15:ma15031046. [PMID: 35160991 PMCID: PMC8840015 DOI: 10.3390/ma15031046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/20/2022]
Abstract
Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. In this work, commonly available household materials such as gelatin, soy protein, corn starch, and papaya were used to prepare cost-effective lab-scale biodegradable and edible packaging film as an effective alternative to commercial plastics to reduce waste generation. Prepared films were characterized in terms of Fourier transform infrared spectroscopy (FTIR), water vapor transmission rate (WVTR), optical transparency, and tensile strength. FTIR confirmed the addition of papaya and soy protein to the gelatin backbone. WVTR of the gelatin-papaya films was recorded to be less than 50 g/m2/day. This water vapor barrier was five times better than films of pristine gelatin. The gelatin, papaya, and soy protein films exhibited transparencies of around 70% in the visible region. The tensile strength of the film was 2.44 MPa, which improved by a factor of 1.5 for the films containing papaya and soy protein. The barrier qualities of the gelatin and gelatin-papaya films maintained the properties even after going through 2000 bending cycles. From the results, it is inferred that the prepared films are ideally suitable for food encapsulation and their production on a larger scale can considerably cut down the plastic wastage.
Collapse
Affiliation(s)
- Jaweria Ashfaq
- Department of Metallurgical, Materials & Environmental Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan; (J.A.); (A.A.S.); (A.A.S.)
| | - Iftikhar Ahmed Channa
- Department of Metallurgical, Materials & Environmental Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan; (J.A.); (A.A.S.); (A.A.S.)
- Correspondence: (I.A.C.); (A.D.C.)
| | - Asif Ahmed Shaikh
- Department of Metallurgical, Materials & Environmental Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan; (J.A.); (A.A.S.); (A.A.S.)
| | - Ali Dad Chandio
- Department of Metallurgical, Materials & Environmental Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan; (J.A.); (A.A.S.); (A.A.S.)
- Correspondence: (I.A.C.); (A.D.C.)
| | - Aqeel Ahmed Shah
- Department of Metallurgical, Materials & Environmental Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan; (J.A.); (A.A.S.); (A.A.S.)
| | - Bushra Bughio
- Larkana Campus, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana 77150, Pakistan;
| | - Ashfaque Birmahani
- Ojha Campus, DOW University of Health Sciences (DUHS), Karachi City 74200, Pakistan;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 1145, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| |
Collapse
|
18
|
Lu Y, Luo Q, Chu Y, Tao N, Deng S, Wang L, Li L. Application of Gelatin in Food Packaging: A Review. Polymers (Basel) 2022; 14:polym14030436. [PMID: 35160426 PMCID: PMC8838392 DOI: 10.3390/polym14030436] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Owing to the increasing environmental concerns and requirements for high-quality foods, edible films and coatings (based on proteins, polysaccharides, natural phenolic active substances, etc.) are being developed as effective alternatives to traditional plastic packaging. Gelatin is extracted from collagen. It is an ideal material for food packaging due to its versatile advantages such as low price, polymerization, biodegradability, good antibacterial and antioxidant properties, etc. However, gelatin film exists poor waterproof and mechanical properties, which limit its developments and applications in food packaging. Previous studies show that pure gelatin can be modified by adding active ingredients and incorporating them with bio-polymers to improve its mechanical properties, aiming to achieve the desirable effect of preservation. This review mainly shows the preparation and molding ways of gelatin-based edible films and the applications of gelatin modified with other biopolymers. Furthermore, this review provides the latest advances in gelatin-based biodegradable packaging and food applications that exhibit outstanding advantages in food preservation.
Collapse
Affiliation(s)
- Yanan Lu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Qijun Luo
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Yuchan Chu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Li Wang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| |
Collapse
|
19
|
Sáez-Orviz S, Marcet I, Rendueles M, Díaz M. Preparation of Edible Films with Lactobacillus plantarum and Lactobionic Acid Produced by Sweet Whey Fermentation. MEMBRANES 2022; 12:membranes12020115. [PMID: 35207037 PMCID: PMC8875862 DOI: 10.3390/membranes12020115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
Abstract
Cheese whey, one of the most abundant by-products of the dairy industry, causes economic losses and pollution problems. In this study, deproteinised sweet whey was fermented by Pseudomonas taetrolens LMG 2336 to produce a prebiotic compound (lactobionic acid, LBA). Endotoxins produced by these microorganisms were successfully removed using microfiltration techniques, allowing the fermented whey permeate to be used in the food industry. The fermented whey permeate was used to develop prebiotic edible films by adding two different concentrations of gelatine (0.45 and 0.9 g gelatine g−1 LBA; LBA45 and LBA90). Furthermore, Lactobacillus plantarum CECT 9567 was added as a probiotic microorganism (LP45 and LP90), creating films containing both a prebiotic and a probiotic. The mechanical properties, water solubility, light transmittance, colour, and microstructure of the films were fully characterised. Additionally, the LBA and probiotic concentration in LP45 and LP90 were monitored under storage conditions. The strength and water solubility of the films were affected by the presence of LBA, and though all these films were homogeneous, they were slightly opaque. In LP45 and LP90, the presence of LBA as a prebiotic improved the viability of L. plantarum during cold storage, compared to the control. Therefore, these films could be used in the food industry to coat different foodstuffs to obtain functional products.
Collapse
|
20
|
Morinval A, Averous L. Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2012802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexis Morinval
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| | - Luc Averous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| |
Collapse
|
21
|
Zhang C, Chi W, Meng F, Wang L. Fabricating an anti-shrinking κ-carrageenan/sodium carboxymethyl starch film by incorporating carboxylated cellulose nanofibrils for fruit preservation. Int J Biol Macromol 2021; 191:706-713. [PMID: 34582912 DOI: 10.1016/j.ijbiomac.2021.09.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
A stronger and dimension-stabilized film was obtained using κ-carrageenan and sodium carboxymethyl starch (CMS) with carboxylated cellulose nanocrystals (C-CNC) as a reinforcing agent and anti-shrinkage agent. C-CNC endowed the films with better mechanical properties as well as excellent dimensional stability. The film solutions showed shear thinning and acted as a pseudoplastic fluid. When C-CNC content was increased from 0% to 12%, the tensile strength and elongation at break of the films improved from 23.89 MPa to 38.37 MPa and 21.00% to 27.31%, respectively. The films maintained good thermal stability and barrier performance. The Zeta potential of the film suspension can reach below -30 mV, indicating C-CNC enhanced the electrostatic repulsion in the film-forming system, which favored the network structure more continuous and stable. By virtue of the excellent mechanical properties and dimensional stability, strawberries can be tightly wrapped without cracks by the coatings to delay the deterioration greatly. By comparing the weight loss rate, Vc, total soluble solid, hardness, titratable acid and pH, CCC12-coated strawberries were closer to fresh ones. Therefore, this study has developed a feasible, low-cost and green fruit coating that can be potentially utilized on a large-scale.
Collapse
Affiliation(s)
- Cijian Zhang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Wenrui Chi
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Fansong Meng
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
22
|
Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem Rev 2021; 121:14088-14188. [PMID: 34415732 PMCID: PMC8630709 DOI: 10.1021/acs.chemrev.0c01333] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/12/2022]
Abstract
This review considers the most recent developments in supramolecular and supraparticle structures obtained from natural, renewable biopolymers as well as their disassembly and reassembly into engineered materials. We introduce the main interactions that control bottom-up synthesis and top-down design at different length scales, highlighting the promise of natural biopolymers and associated building blocks. The latter have become main actors in the recent surge of the scientific and patent literature related to the subject. Such developments make prominent use of multicomponent and hierarchical polymeric assemblies and structures that contain polysaccharides (cellulose, chitin, and others), polyphenols (lignins, tannins), and proteins (soy, whey, silk, and other proteins). We offer a comprehensive discussion about the interactions that exist in their native architectures (including multicomponent and composite forms), the chemical modification of polysaccharides and their deconstruction into high axial aspect nanofibers and nanorods. We reflect on the availability and suitability of the latter types of building blocks to enable superstructures and colloidal associations. As far as processing, we describe the most relevant transitions, from the solution to the gel state and the routes that can be used to arrive to consolidated materials with prescribed properties. We highlight the implementation of supramolecular and superstructures in different technological fields that exploit the synergies exhibited by renewable polymers and biocolloids integrated in structured materials.
Collapse
Affiliation(s)
- Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Caio G. Otoni
- Department
of Physical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos, Rod. Washington Luís, km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Marco Beaumont
- School
of Chemistry and Physics, Queensland University
of Technology, 2 George
Street, Brisbane, Queensland 4001, Australia
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna, A-3430 Tulln, Austria
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Tero Kämäräinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
23
|
Bioactive packaging based on delipidated egg yolk protein edible films with lactobionic acid and Lactobacillus plantarum CECT 9567: Characterization and use as coating in a food model. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Iñiguez-Moreno M, Ragazzo-Sánchez JA, Calderón-Santoyo M. An Extensive Review of Natural Polymers Used as Coatings for Postharvest Shelf-Life Extension: Trends and Challenges. Polymers (Basel) 2021; 13:polym13193271. [PMID: 34641086 PMCID: PMC8512484 DOI: 10.3390/polym13193271] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.
Collapse
|
25
|
Cheng H, Chen L, McClements DJ, Yang T, Zhang Z, Ren F, Miao M, Tian Y, Jin Z. Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
|
27
|
Ahammed S, Liu F, Wu J, Khin MN, Yokoyama WH, Zhong F. Effect of transglutaminase crosslinking on solubility property and mechanical strength of gelatin-zein composite films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106649] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Chitosan/Collagen Hydrolysate Based Films Obtained from Hide Trimming Wastes Reinforced with Chitosan Nanoparticles. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09678-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Antioxidant properties of watermelon (Citrullus lanatus) rind pectin films containing kiwifruit (Actinidia chinensis) peel extract and their application as chicken thigh packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100636] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Amin U, Khan MU, Majeed Y, Rebezov M, Khayrullin M, Bobkova E, Shariati MA, Chung IM, Thiruvengadam M. Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. Int J Biol Macromol 2021; 183:2184-2198. [PMID: 34062159 DOI: 10.1016/j.ijbiomac.2021.05.182] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Bio-based packaging materials are gaining importance due to their biodegradability, sustainability and environmental friendliness. To control the food quality and improve the food safety standards, proteins polysaccharide and lipid-based packaging films are enriched with bioactive and functional substances. However, poor permeability and mechanical characteristics are the challenging areas in their commercialization. Scientists and researchers are using a combination of techniques i.e. hydrogels, crosslinking, etc. to improve the intermolecular forces between different components of the film formulation to counter these challenges More recently, biodegradable packaging materials, sometimes edible, are also used for the delivery of functional ingredients which reveals their potential for drug delivery to counter the nutrient deficiency problems. This study highlights the potentials of bio-based materials i.e. proteins, polysaccharides, lipids, etc. to develop biodegradable packaging materials. It also explores the additives used to improve the physicochemical and mechanical properties of biodegradable packaging materials. Furthermore, it highlights the novel trends in biodegradable packaging from a food safety and quality point of view.
Collapse
Affiliation(s)
- Usman Amin
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Usman Khan
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Yaqoob Majeed
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow 109316, Russian Federation; Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow 119991, Russian Federation
| | - Mars Khayrullin
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Elena Bobkova
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Ill Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
31
|
Kwak H, Shin S, Kim J, Kim J, Lee D, Lee H, Lee EJ, Hyun J. Protective coating of strawberries with cellulose nanofibers. Carbohydr Polym 2021; 258:117688. [PMID: 33593561 DOI: 10.1016/j.carbpol.2021.117688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023]
Abstract
Since shelf life of perishable foods is short, a compelling challenge is to prolong the freshness of foods with a cost-effective strategy. A perishable fruit, the strawberry, is chosen as a model perishable food and an edible film coating is applied to it using carboxymethylated cellulose nanofibers (CM-CNFs) stabilized by cationic salts. A transparent and impermeable CM-CNF film is formed at the strawberry surface using a dip coating process. The formation of the film is dependent on the electrostatic interaction between anionic CM-CNF and salt cations. Physical properties of the film are characterized and the effectiveness of edible film coating on the freshness of perishable fruit is evaluated by the measurement of weight loss, CO2 release, firmness, total solid sugar and acidity. Cellulose nanofiber is a promising cost-effective material appropriate for use as an edible coating that contributes to the long-term storage and prolonged freshness of foods.
Collapse
Affiliation(s)
- Hojung Kwak
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungchul Shin
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehwan Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Joonggon Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghan Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwarueon Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Jin Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinho Hyun
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
32
|
Cheng Y, Wang W, Zhang R, Zhai X, Hou H. Effect of gelatin bloom values on the physicochemical properties of starch/gelatin–beeswax composite films fabricated by extrusion blowing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Antioxidant Films from Cassava Starch/Gelatin Biocomposite Fortified with Quercetin and TBHQ and Their Applications in Food Models. Polymers (Basel) 2021; 13:polym13071117. [PMID: 33915891 PMCID: PMC8037226 DOI: 10.3390/polym13071117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Edible and active packaging are attractive for use in food packaging applications due to their functionality and sustainability. This research developed new antioxidant active food packaging materials from cassava starch/gelatin (7:3 w/w) composite films with varied antioxidant types (quercetin and tertiary butylhydroquinone (TBHQ)) and concentrations (0–200 mg/200 mL film-forming solution) and evaluated their properties. Antioxidant addition altered the mechanical and barrier properties of the films. At 34% relative humidity (RH), increasing the concentration of quercetin increased the tensile strength and decreased the elongation at break of the composite films. Increasing quercetin and TBHQ contents increased the film water solubility and water vapor transmission rate. Intermolecular interactions between the antioxidants and films, as found in Fourier transform infrared (FT-IR) spectra and XRD micrographs, were related to the changed film functionalities. In food application studies, the cassava starch/gelatin films containing quercetin and TBHQ retarded the oxidation of lard (more than 35 days) and delayed the redness discoloration of pork. Cassava starch/gelatin composite films integrated with quercetin and TBHQ can be utilized as active packaging that delays oxidation in foods.
Collapse
|
34
|
Shen Y, Ni ZJ, Thakur K, Zhang JG, Hu F, Wei ZJ. Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. Int J Biol Macromol 2021; 181:528-539. [PMID: 33794240 DOI: 10.1016/j.ijbiomac.2021.03.133] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
The clove essential oil (CEO) loaded nano and pickering emulsions prepared with Tween 80 and whey protein isolate/inulin mixture, respectively were incorporated into pullulan-gelatin film base fluid at three levels (0.2%, 0.4%, and 0.6%). The droplet sizes of NE and PE loaded with CEO were 15.93 nm and 266.9 nm, respectively. The PDI of CEOs with stable NE and PE were 0.262 and 0.259, respectively. Our results showed the improved compatibility between pullulan-gelatin and essential oil-loaded nanocarriers. The active film composed of PE carrier had the structural characteristics of high density, low water content, and low permeability, thus exhibiting excellent mechanical properties, water barrier properties, and appreciable antioxidant activities. Compared with NE, it was found that the CEO-loaded PE showed slow-release profile in the film sample. The prepared active film containing PE possessed a great potential to be used as effective and natural alternatives for active food packaging.
Collapse
Affiliation(s)
- Yi Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| |
Collapse
|
35
|
de Oliveira Begali D, Ferreira LF, de Oliveira ACS, Borges SV, de Sena Neto AR, de Oliveira CR, Yoshida MI, Sarantopoulos CIGL. Effect of the incorporation of lignin microparticles on the properties of the thermoplastic starch/pectin blend obtained by extrusion. Int J Biol Macromol 2021; 180:262-271. [PMID: 33737182 DOI: 10.1016/j.ijbiomac.2021.03.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 11/25/2022]
Abstract
The present study aimed to produce thermoplastic starch films with different concentrations of thermoplastic pectin and the addition of 4% lignin microparticles as a reinforcing and active agent. The pectin improved the modulus of elasticity, and decreased the elongation at break. In addition, it improved the UV light protection to 100% at 320 nm and 95.9% at 400 nm. The incorporation of lignin microparticles improved the thermal stability of the blends made with 25% and 50% thermoplastic pectin when compared to the pectin-free blends. The blend with 25% thermoplastic pectin led to an increase of 75.8% and 34% in elongation at break and deformation of the films, respectively. This blend also improved the UV light protection to 100% due to its dark brown color. Regarding the permeability properties, the films with 25% and 50% thermoplastic pectin showed lower oxygen permeability (48% and 65%) and an increase in the antioxidant activities from 2.7% to 71.08% and 4.1% to 79.28%, respectively. Thus, the polymer blend with 25% thermoplastic pectin with the incorporation of lignin microparticles proved to be a good alternative for use in foods sensitive to the effects of oxygen and UV light.
Collapse
Affiliation(s)
| | - Laura Fonseca Ferreira
- Food Science Department, Federal University of Lavras, P.O. Box 3037, 37200-900 Lavras, MG, Brazil
| | | | - Soraia Vilela Borges
- Food Science Department, Federal University of Lavras, P.O. Box 3037, 37200-900 Lavras, MG, Brazil
| | | | | | - Maria Irene Yoshida
- Department of Chemistry, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | | |
Collapse
|
36
|
Friedrich JC, Silva OA, Faria MG, Colauto NB, Gazzin ZC, Colauto GA, Caetano J, Dragunski DC. Improved antioxidant activity of a starch and gelatin-based biodegradable coating containing Tetradenia riparia extract. Int J Biol Macromol 2020; 165:1038-1046. [DOI: 10.1016/j.ijbiomac.2020.09.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
|
37
|
de Lima Barizão C, Crepaldi MI, Junior ODOS, de Oliveira AC, Martins AF, Garcia PS, Bonafé EG. Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. Int J Biol Macromol 2020; 165:582-590. [DOI: 10.1016/j.ijbiomac.2020.09.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
|
38
|
Basumatary IB, Mukherjee A, Katiyar V, Kumar S. Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables. Crit Rev Food Sci Nutr 2020; 62:1912-1935. [DOI: 10.1080/10408398.2020.1848789] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| |
Collapse
|
39
|
Chisenga SM, Tolesa GN, Workneh TS. Biodegradable Food Packaging Materials and Prospects of the Fourth Industrial Revolution for Tomato Fruit and Product Handling. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:8879101. [PMID: 33299850 PMCID: PMC7704214 DOI: 10.1155/2020/8879101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 12/21/2022]
Abstract
The environment and food safety are major areas of concern influencing the development of biodegradable packaging for partial replacement of petrochemical-based polymers. This review is aimed at updating the recent advances in biodegradable packaging material and the role of virtual technology and nanotechnology in the tomato supply chain. Some of the common biodegradable materials are gelatin, starch, chitosan, cellulose, and polylactic acid. The tensile strength, tear resistance, permeability, degradability, and solubility are some of the properties defining the selection and utilization of food packaging materials. Biodegradable films can be degraded in soil by microbial enzymatic actions and bioassimilation. Nanoparticles are incorporated into blended films to improve the performance of packaging materials. The prospects of the fourth industrial revolution can be realized with the use of virtual platforms such as sensor systems in authentification and traceability of food and packaging products. There is a research gap on the development of a hybrid sensor system unit that can integrate sampling headspace (SHS), detection unit, and data processing of big data for heterogeneous tomato-derived volatiles. Principal component analysis (PCA), linear discriminant analysis (LDA), and artificial neutral network (ANN) are some of the common mathematical models for data interpretation of sensor systems.
Collapse
Affiliation(s)
- S. M. Chisenga
- School of Engineering, Bioresources Engineering, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - G. N. Tolesa
- School of Engineering, Bioresources Engineering, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Department of Food Science and Postharvest Technology, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - T. S. Workneh
- School of Engineering, Bioresources Engineering, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
40
|
Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. Int J Biol Macromol 2020; 163:766-775. [DOI: 10.1016/j.ijbiomac.2020.07.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
|
41
|
Barra A, Santos JDC, Silva MRF, Nunes C, Ruiz-Hitzky E, Gonçalves I, Yildirim S, Ferreira P, Marques PAAP. Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2077. [PMID: 33096705 PMCID: PMC7589102 DOI: 10.3390/nano10102077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Jéssica D. C. Santos
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Mariana R. F. Silva
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Cláudia Nunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Idalina Gonçalves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Selçuk Yildirim
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Paula A. A. P. Marques
- Department of Mechanical Engineering, TEMA—Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
42
|
Ribeiro Sanches MA, Camelo-Silva C, Tussolini L, Tussolini M, Zambiazi RC, Becker Pertuzatti P. Development, characterization and optimization of biopolymers films based on starch and flour from jabuticaba (Myrciaria cauliflora) peel. Food Chem 2020; 343:128430. [PMID: 33406575 DOI: 10.1016/j.foodchem.2020.128430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
In this study, the influence of the concentration of flour from jabuticaba peel (FJP) and the concentration of glycerol (CG) on the physicochemical, barrier, mechanical, optical, spectroscopic and biodegradability properties of corn starch films was evaluated using response surface methodology. The increase in the concentrations of FJP and CG enhanced the thickness and permeability to water vapor, and made the films more hydrophilic. In addition to that, the interaction between the two variables caused reduction in the solubility of the films. High concentrations of FJP and CG reduced the maximum tensile strength, and increased CG increased the elongation and decreased the young's modulus of the films. Among the tests studied, the T1 film (15.80% FJP and 15.80% CG) was biodegradable, presenting the best mechanical and barrier properties such as low water vapor permeability, solubility and water holding capacity, showing great potential to be used as biodegradable packaging system.
Collapse
Affiliation(s)
- Marcio Augusto Ribeiro Sanches
- Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão 6.390, 78600-000 Barra do Garças, Mato Grosso, Brazil; Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Callebe Camelo-Silva
- Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão 6.390, 78600-000 Barra do Garças, Mato Grosso, Brazil
| | - Loyse Tussolini
- Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão 6.390, 78600-000 Barra do Garças, Mato Grosso, Brazil
| | - Martha Tussolini
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - Campus de Barra do Garças, Estrada de acesso a BR-158, Radial José Mauricio Zampa, 78600-000, Barra do Garças, Brazil
| | - Rui Carlos Zambiazi
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Paula Becker Pertuzatti
- Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão 6.390, 78600-000 Barra do Garças, Mato Grosso, Brazil; Programa de Pós-Graduação em Ciência de Materiais, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão 6.390, 78600-000 Barra do Garças, Mato Grosso, Brazil.
| |
Collapse
|
43
|
Cortés-Rodríguez M, Villegas-Yépez C, Gil González JH, Rodríguez PE, Ortega-Toro R. Development and evaluation of edible films based on cassava starch, whey protein, and bees wax. Heliyon 2020; 6:e04884. [PMID: 32984596 PMCID: PMC7492850 DOI: 10.1016/j.heliyon.2020.e04884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/20/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
Films and edible coatings based on biopolymers have been developed as a packaging, which can be obtained from biodegradable materials and have properties similar to common plastics. These edible materials have many applications in the food industry, preventing mass transfer between the product and the surrounding environment. The objective of this study was to develop and evaluate the physicochemical and mechanical properties of edible films based on cassava starch (CS), whey protein (WP), and beeswax (BW). Response surface methodology has been used and the experiments were carried out based on face-centred composite design. On the other hand, three CS-based controls were formulated to evaluate the effect of the inclusion of WP and BW. The optimization of multiple responses established the optimal formulation: CS (3.17 %), WP (1.30 %), BW (0.50 %), presenting the following response variables: tensile stress (1.92 MPa), elongation (40.4 %), Young's modulus (42.1 MPa), water vapor permeability 1.79 × 10-11 (g mm/s cm2 Pa), swelling capacity (300.3 %), thickness (0.128 mm), moisture content (6.74 %), and colour: lightness (89.9), chromaticity a∗ (-1.8), chromaticity b∗ (7.7), saturation (9.9), tone (101.1°), and yellowness index (17.7). The selection and evaluation of this optimal formulation are essential because it is the material that shows the best possible mechanical and physicochemical properties using the studied components. The results, especially its good mechanical properties and low permeability to water vapour, would allow its application as a coating for fruits, vegetables, among others, effectively delaying its weight loss due to dehydration.
Collapse
Affiliation(s)
- Misael Cortés-Rodríguez
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A–110, Medellín, Colombia
- Corresponding author.
| | - Camilo Villegas-Yépez
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A–110, Medellín, Colombia
| | - Jesús H. Gil González
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A–110, Medellín, Colombia
| | | | - Rodrigo Ortega-Toro
- Universidad de Cartagena, Programa de Ingeniería de Alimentos, Food Packaging and Shelf Life Research Group (FP&SL), Research Group in Complex Fluids Engineering and Food Rheology (IFCRA), Avenida del Consulado Calle 30 No. 48 – 152, Cartagena de Indias D.T. y C., Colombia
| |
Collapse
|
44
|
Abstract
In recent years, food packaging has evolved from an inert and polluting waste that remains after using the product toward an active item that can be consumed along with the food it contains. Edible films and coatings represent a healthy alternative to classic food packaging. Therefore, a significant number of studies have focused on the development of biodegradable enveloping materials based on biopolymers. Animal and vegetal proteins, starch, and chitosan from different sources have been used to prepare adequate packaging for perishable food. Moreover, these edible layers have the ability to carry different active substances such as essential oils—plant extracts containing polyphenols—which bring them considerable antioxidant and antimicrobial activity. This review presents the latest updates on the use of edible films/coatings with different compositions with a focus on natural compounds from plants, and it also includes an assessment of their mechanical and physicochemical features. The plant compounds are essential in many cases for considerable improvement of the organoleptic qualities of embedded food, since they protect the food from different aggressive pathogens. Moreover, some of these useful compounds can be extracted from waste such as pomace, peels etc., which contributes to the sustainable development of this industry.
Collapse
|
45
|
Xu D, Chen T, Liu Y. The physical properties, antioxidant and antimicrobial activity of chitosan–gelatin edible films incorporated with the extract from hop plant. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03294-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Jamróz E, Kopel P. Polysaccharide and Protein Films with Antimicrobial/Antioxidant Activity in the Food Industry: A Review. Polymers (Basel) 2020; 12:E1289. [PMID: 32512853 PMCID: PMC7361989 DOI: 10.3390/polym12061289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
From an economic point of view, the spoilage of food products during processing and distribution has a negative impact on the food industry. Lipid oxidation and deterioration caused by the growth of microorganisms are the main problems during storage of food products. In order to reduce losses and extend the shelf-life of food products, the food industry has designed active packaging as an alternative to the traditional type. In the review, the benefits of active packaging materials containing biopolymers (polysaccharides and/or proteins) and active compounds (plant extracts, essential oils, nanofillers, etc.) are highlighted. The antioxidant and antimicrobial activity of this type of film has also been highlighted. In addition, the impact of active packaging on the quality and durability of food products during storage has been described.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland;
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| |
Collapse
|
47
|
Francisco CB, Pellá MG, Silva OA, Raimundo KF, Caetano J, Linde GA, Colauto NB, Dragunski DC. Shelf-life of guavas coated with biodegradable starch and cellulose-based films. Int J Biol Macromol 2020; 152:272-279. [PMID: 32105683 DOI: 10.1016/j.ijbiomac.2020.02.249] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Camila Botin Francisco
- Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Square Mascarenhas de Moraes, 4282, Zone III, Umuarama, PR 87502-210, Brazil.; Department of Chemistry, State University of Maringa, Av. Colombo, 5790, CEP 87020-900 Maringa, Parana, Brazil
| | - Michelly G Pellá
- Department of Chemistry, State University of Maringa, Av. Colombo, 5790, CEP 87020-900 Maringa, Parana, Brazil
| | - Otavio Augusto Silva
- Department of Chemistry, State University of Maringa, Av. Colombo, 5790, CEP 87020-900 Maringa, Parana, Brazil
| | - Keila Fernanda Raimundo
- Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Square Mascarenhas de Moraes, 4282, Zone III, Umuarama, PR 87502-210, Brazil
| | - Josiane Caetano
- Center of Engineering and Exact Sciences, State University of Western Paraná, Street Rua da Faculdade, 645, Jardim Santa Maria, Toledo, PR 85903-000, Brazil
| | - Giani Andrea Linde
- Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Square Mascarenhas de Moraes, 4282, Zone III, Umuarama, PR 87502-210, Brazil
| | - Nelson B Colauto
- Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Square Mascarenhas de Moraes, 4282, Zone III, Umuarama, PR 87502-210, Brazil
| | - Douglas C Dragunski
- Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Square Mascarenhas de Moraes, 4282, Zone III, Umuarama, PR 87502-210, Brazil.; Center of Engineering and Exact Sciences, State University of Western Paraná, Street Rua da Faculdade, 645, Jardim Santa Maria, Toledo, PR 85903-000, Brazil..
| |
Collapse
|