1
|
Li D, Hao A, Shao W, Zhang W, Jiao F, Zhang H, Dong X, Zhan Y, Liu X, Mu C, Ding Z, Xue D, Chen J, Wang M. Maize kernel nutritional quality-an old challenge for modern breeders. PLANTA 2025; 261:43. [PMID: 39856412 DOI: 10.1007/s00425-025-04627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
MAIN CONCLUSION This article offers a comprehensive overview of the starch, protein, oil, and carotenoids content in maize kernels, while also outlining future directions for research in this area. Maize is one of the most important cereal crops globally. Maize kernels serve as a vital source of feed and food, and their nutritional quality directly impacts the dietary intake of both animals and humans. Maize kernels contain starch, protein, oil, carotenoids, and a variety of vitamins and minerals, all of which are important for maintaining life and promoting health. This review presents the current understanding of the content of starch, protein, amino acids, oil, and carotenoids in maize kernels, while also highlighting knowledge gaps that need to be addressed.
Collapse
Affiliation(s)
- Decui Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Anqi Hao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wen Shao
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Weiwei Zhang
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiyan Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xueyan Dong
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Yuan Zhan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xia Liu
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Chunhua Mu
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Zhaohua Ding
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - De Xue
- Zibo Boxin Agricultural Technology Co., Ltd, Zibo, 255000, China
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
- Zibo Boxin Agricultural Technology Co., Ltd, Zibo, 255000, China.
| | - Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
He Z, Shang X, Jin X, Wang X, Xing Y. Calcium and Magnesium Regulation of Kernel Sugar Content in Maize: Role of Endogenous Hormones and Antioxidant Enzymes. Int J Mol Sci 2024; 26:200. [PMID: 39796058 PMCID: PMC11719980 DOI: 10.3390/ijms26010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Ca and Mg are essential micronutrients for plant growth, and they play a crucial role in plant development and responses to adversity by influencing the activities of endogenous hormones and antioxidant enzymes. However, the specific mechanisms through which calcium (Ca) and magnesium (Mg) regulate the kernel sugar content through endogenous hormones and antioxidant enzymes remain unclear. In this study, we analyzed the impact of Ca and Mg on the physiology of maize leaves and kernel quality by determining the activities of antioxidant enzymes and endogenous hormones, and the kernel sugar content in maize leaves when supplemented with different levels of Ca and Mg. Our main findings were as follows: (1) Elevated Mg levels augmented superoxide dismutase (SOD) activity, bolstering antioxidant defenses, whereas low Ca and Mg levels diminished SOD activity. High Ca levels enhanced catalase (CAT) activity during kernel development. Low-Ca conditions stimulated gibberellin (GA) synthesis, while high-Ca and high-Mg conditions suppressed it. High Mg levels also elevated abscisic acid (ABA) levels, potentially improving stress tolerance. (2) High Ca levels increased the reducing sugar content in kernels, augmenting the energy supply, while both low and high Mg levels increased soluble sugars, with low Mg levels specifically enhancing the sucrose content, which is a critical energy reserve in plants. (3) CAT exerted a pivotal regulatory role in the sugar accumulation in maize kernels. GA, under the influence of Ca, modulated the sucrose and soluble sugar contents by inhibiting CAT, whereas ABA, under the influence of Mg, promoted CAT activity, thereby affecting the kernel sugar content. This study reveals a new mechanism through which the addition of Ca and Mg regulate the sugar content in maize kernels by affecting endogenous hormones and antioxidant enzyme activities. These findings not only enhance our understanding of the role of micronutrients in plant growth and development but also provide new strategies for improving crop yield and stress tolerance.
Collapse
Affiliation(s)
- Zhaoquan He
- School of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China
| | - Xue Shang
- School of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
- College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoze Jin
- School of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China
| | - Xiukang Wang
- School of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China
| | - Yingying Xing
- School of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China
| |
Collapse
|
3
|
Jiménez MD, Salinas Alcón CE, Lobo MO, Sammán N. Andean Crops Germination: Changes in the Nutritional Profile, Physical and Sensory Characteristics. A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:551-562. [PMID: 38976203 DOI: 10.1007/s11130-024-01209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Andean crops such as quinoa, amaranth, cañihua, beans, maize, and tarwi have gained interest in recent years for being gluten-free and their high nutritional values; they have high protein content with a well-balanced essential amino acids profile, minerals, vitamins, dietary fiber, and antioxidant compounds. During the germination bioprocess, the seed metabolism is reactivated resulting in the catabolism and degradation of macronutrients and some anti-nutritional compounds. Therefore, germination is frequently used to improve nutritional quality, protein digestibility, and availability of certain minerals and vitamins; furthermore, in specific cases, biosynthesis of new bioactive compounds could occur through the activation of secondary metabolic pathways. These changes could alter the technological and sensory properties, such as the hardness, consistency and viscosity of the formulations prepared with them. In addition, the flavor profile may undergo improvement or alteration, a critical factor to consider when integrating sprouted grains into food formulations. This review summarizes recent research on the nutritional, technological, functional, and sensory changes occur during the germination of Andean grains and analyze their potential applications in various food products.
Collapse
Affiliation(s)
- M D Jiménez
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - C E Salinas Alcón
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - M O Lobo
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - N Sammán
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina.
| |
Collapse
|
4
|
Sodedji KAF, Assogbadjo AE, Lee B, Kim HY. An Integrated Approach for Biofortification of Carotenoids in Cowpea for Human Nutrition and Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:412. [PMID: 38337945 PMCID: PMC10856932 DOI: 10.3390/plants13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Stress-resilient and highly nutritious legume crops can alleviate the burden of malnutrition and food security globally. Here, we focused on cowpea, a legume grain widely grown and consumed in regions at a high risk of micronutrient deficiencies, and we discussed the past and present research on carotenoid biosynthesis, highlighting different knowledge gaps and prospects for increasing this micronutrient in various edible parts of the crop. The literature survey revealed that, although carotenoids are important micronutrients for human health and nutrition, like in many other pulses, the potential of carotenoid biofortification in cowpea is still underexploited. We found that there is, to some extent, progress in the quantification of this micronutrient in cowpea; however, the diversity in content in the edible parts of the crop, namely, grains, pods, sprouts, and leaves, among the existing cowpea genetic resources was uncovered. Based on the description of the different factors that can influence carotenoid biosynthesis and accumulation in cowpea, we anticipated that an integrated use of omics in breeding coupled with mutagenesis and genetic engineering in a plant factory system would help to achieve a timely and efficient increase in carotenoid content in cowpea for use in the food systems in sub-Saharan Africa and South Asia.
Collapse
Affiliation(s)
- Kpedetin Ariel Frejus Sodedji
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin;
| | - Achille Ephrem Assogbadjo
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin;
| | - Bokyung Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Zou Q, Huang L, Gu J, Pang B, Shang C. Physiological changes of microalga Dunaliella parva under the treatment of PEG, CaCl2. PLoS One 2023; 18:e0295973. [PMID: 38100462 PMCID: PMC10723680 DOI: 10.1371/journal.pone.0295973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Carotenoids are antioxidants, which reduce various chronic diseases of human, and have many industrial applications. The halophilic Dunaliella parva (D. parva) is rich in carotenoids. The compounds CaCl2 and PEG are the popular metabolic enhancers. To further enhance carotenogenesis, D. parva was treated with two compounds polyethylene glycol (PEG) and CaCl2. Application of CaCl2 and PEG enhanced the carotenoids contents and the antioxidant activities of carotenoids compared to control group (no treatment of CaCl2 or PEG). The highest carotenoids contents were obtained by treating D. parva with 40 ppm CaCl2 (3.11 mg/g dry weight, DW) and 80 ppm PEG (2.78 mg/g DW) compared with control group (1.96 mg/g DW). When D. parva was treated with 40 ppm CaCl2 and 80 ppm PEG, protein contents reached the highest values (90.28 mg/g DW and 89.57 mg/g DW) compared to that of control group (73.42 mg/g DW). The antioxidant activities of carotenoids samples were determined. Generally, the antioxidant activities of carotenoids from D. parva treated with PEG and CaCl2 were superior to that of control group. The antioxidant activities of carotenoids mainly contained reducing power, hydroxyl radical scavenging activity and superoxide radical scavenging activity. The reducing powers of carotenoids extracts from 20 ppm CaCl2 group (2.07%/mg carotenoids) and 120 ppm PEG group (1.59%/mg carotenoids) were significantly higher than that of control group (<1.25%/mg carotenoids). The superoxide radical scavenging activities of carotenoids extracts from 40 ppm CaCl2 group (70.33%/mg carotenoids) and 80 ppm PEG group (65.94%/mg carotenoids) were significantly higher than that of control group (<55%/mg carotenoids). This paper laid a foundation for massive accumulation of carotenoids in microalga D. parva.
Collapse
Affiliation(s)
- Qiman Zou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Limei Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Jinghui Gu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Bingbing Pang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Changhua Shang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
6
|
Feng D, Wang X, Gao J, Zhang C, Liu H, Liu P, Sun X. Exogenous calcium: Its mechanisms and research advances involved in plant stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1143963. [PMID: 37025147 PMCID: PMC10070993 DOI: 10.3389/fpls.2023.1143963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Abiotic stresses are various environmental factors that inhibit a normal plant growth and limit the crop productivity. Plant scientists have been attempting for a long time to understand how plants respond to these stresses and find an effective and feasible solution in mitigating their adverse impacts. Exogenous calcium ion as an essential element for the plant growth, development and reproduction has proven to be effective in alleviating plant stresses through enhancing its resistance or tolerance against them. With a comprehensive review of most recent advances and the analysis by VOSviewer in the researches on this focus of "exogenous calcium" and "stress" for last decade, this paper summarizes the mechanisms of exogenous calcium that are involved in plant defensive responses to abiotic stresses and classifies them accordingly into six categories: I) stabilization of cell walls and membranes; II) regulation of Na+ and K+ ratios; III) regulation of hormone levels in plants; IV) maintenance of photosynthesis; V) regulation of plant respiratory metabolism and improvement of root activities; and VI) induction of gene expressions and protein transcriptions for the stress resistance. Also, the progress and advances from the updated researches on exogenous calcium to alleviate seven abiotic stresses such as drought, flooding, salinity, high temperature, low temperature, heavy metals, and acid rain are outlined. Finally, the future research perspectives in agricultural production are discussed.
Collapse
Affiliation(s)
- Di Feng
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xuejie Wang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Junping Gao
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Chenxi Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Hao Liu
- Key Laboratory of Crop Water Requirement and Regulation of the Ministry of Agriculture and Rural Afairs/Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Ping Liu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xiaoan Sun
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| |
Collapse
|
7
|
Jiao P, Jin S, Chen N, Wang C, Liu S, Qu J, Guan S, Ma Y. Improvement of cold tolerance in maize ( Zea mays L.) using Agrobacterium-mediated transformation of ZmSAMDC gene. GM CROPS & FOOD 2022; 13:131-141. [PMID: 35819059 PMCID: PMC9291676 DOI: 10.1080/21645698.2022.2097831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Maize (Zea mays L.) is a food crop sensitive to low temperatures. As one of the abiotic stress hazards, low temperatures seriously affect the yield of maize. However, the genetic basis of low-temperature adaptation in maize is still poorly understood. In this study, maize S-adenosylmethionine decarboxylase (SAMDC) was localized to the nucleus. We used Agrobacterium-mediated transformation technology to introduce the SAMDC gene into an excellent maize inbred line variety GSH9901 and produced a cold-tolerant transgenic maize line. After three years of single-field experiments, the contents of polyamines (PAs), proline (Pro), malondialdehyde (MDA), antioxidant enzymes and ascorbate peroxidases (APXs) in the leaves of the transgenic maize plants overexpressing the SAMDC gene significantly increased, and the expression of elevated CBF and cold-responsive genes effectively increased. The agronomic traits of the maize overexpressing the SAMDC gene changed, and the yield traits significantly improved. However, no significant changes were found in plant height, ear length, and shaft thickness. Therefore, SAMDC enzymes can effectively improve the cold tolerance of maize.
Collapse
Affiliation(s)
- Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China.,Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Shiyou Jin
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China.,Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China.,Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China.,Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.,College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Qu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.,College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.,College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.,College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
8
|
Wang SP, Yeh YT, Sridhar K, Tsai PJ. Effect of stress on germination of djulis (Chenopodium formosanum Koidz.) sprouts: a natural alternative to enhance the betacyanin and phenolic compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4561-4569. [PMID: 35137423 DOI: 10.1002/jsfa.11813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Germination is regarded as a natural method for improving the bioavailability of seed nutrients against stress, which enhances the accumulation of bioactive compounds. The present study aimed to determine the effect of stress (H2 O2 , catechin, gallic acid, tyrosine, and NaCl) during germination of djulis (Chenopodium formosanum Koidz.) sprouts on betacyanin, phytochemicals, and antioxidant capacities. RESULTS The betacyanin and antioxidant activities of the djulis sprouts increased significantly compared to seeds. The lowest betacyanin was found in NaCl-stressed sprouts. The djulis sprouts reported the presence of celosianins I and II (50.72%), which was absent in seeds. Hydroxycinnamic acids accounted for > 60% of the total phenolic compounds in sprouts, whereas rutin predominated in the seeds. CONCLUSION Germination under stress may represent an effective natural method for improving the bioactive potential of sprouts, an alternative to use seeds, in the development of bioactive compounds-enriched healthy foods that are good for public health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ssu-Ping Wang
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Yi-Tyng Yeh
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Kandi Sridhar
- UMR1253, Science et Technologie du Lait et de l'œuf, INRAE, L'Institut Agro Rennes-Angers, Rennes, France
| | - Pi-Jen Tsai
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Taiwan
| |
Collapse
|
9
|
Toro MT, Ortiz J, Becerra J, Zapata N, Fierro P, Illanes M, López MD. Strategies of Elicitation to Enhance Bioactive Compound Content in Edible Plant Sprouts: A Bibliometric Study. PLANTS (BASEL, SWITZERLAND) 2021; 10:2759. [PMID: 34961237 PMCID: PMC8709354 DOI: 10.3390/plants10122759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 05/13/2023]
Abstract
Vegetable sprouts are a food source that presents high content of bioactive compounds which can also be enhanced through elicitation mechanisms. To better understand the scientific production and research trends on this topic, a bibliometric analysis by means of the Web of Science database was carried out. The results showed significant growth in research on the elicitation of edible plants sprouts. The three most productive journals were the Journal of Agricultural and Food Chemistry, followed by Food Chemistry and LWT-Food Science and Technology. The co-occurrence of keyword analysis of the different authors showed that the main research topics in this domain were 'germination', 'antioxidant activity', 'sprouts', 'glucosinolates' and 'phenolics'. The countries with the highest number of scientific publications were China, followed by India and USA. The productivity patterns of the authors conformed to Lotka's law. This study provides an overview of research on elicitation to enrich bioactive compounds in sprouts, and the need to review and update the trends on this subject.
Collapse
Affiliation(s)
- María Trinidad Toro
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - Jaime Ortiz
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Santiago 8320000, Chile;
| | - José Becerra
- Natural Products Chemistry Laboratory, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Víctor Lamas 1290, Concepción 4070386, Chile;
| | - Nelson Zapata
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - Paulo Fierro
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - Marcelo Illanes
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - María Dolores López
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| |
Collapse
|
10
|
Lagnika C, Riaz A, Jiang N, Song J, Li D, Liu C, Wei Q, Zhang M. Effects of pretreatment and drying methods on the quality and stability of dried sweet potato slices during storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Camel Lagnika
- Institute of Farm Product Processing Jiangsu Academy of Agricultural Sciences Nanjing P.R. China
- School of Science and Techniques for the Conservation and Processing of Agricultural Products, Sakété National University of Agriculture Porto‐Novo Benin
| | - Asad Riaz
- Institute of Farm Product Processing Jiangsu Academy of Agricultural Sciences Nanjing P.R. China
| | - Ning Jiang
- Institute of Farm Product Processing Jiangsu Academy of Agricultural Sciences Nanjing P.R. China
| | - Jiangfeng Song
- Institute of Farm Product Processing Jiangsu Academy of Agricultural Sciences Nanjing P.R. China
| | - Dajing Li
- Institute of Farm Product Processing Jiangsu Academy of Agricultural Sciences Nanjing P.R. China
| | - Chunquan Liu
- Institute of Farm Product Processing Jiangsu Academy of Agricultural Sciences Nanjing P.R. China
| | - Qiuyu Wei
- Institute of Farm Product Processing Jiangsu Academy of Agricultural Sciences Nanjing P.R. China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi P.R. China
| |
Collapse
|
11
|
Wang M, Zhu Y, Wang P, Gu Z, Yang R. Effect of γ-aminobutyric Acid on Phenolics Metabolism in Barley Seedlings under Low NaCl Treatment. Antioxidants (Basel) 2021; 10:antiox10091421. [PMID: 34573053 PMCID: PMC8467947 DOI: 10.3390/antiox10091421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
It has been revealed that high NaCl stress (>60 mmol L-1) induced phenolics accumulation in barley seedlings, with γ-aminobutyric acid (GABA) playing a key role. Interestingly, low NaCl stimulus (20 mmol L-1) enhancing phenolics synthesis and growth of barley seedlings was also reported recently. Hence, exogenous GABA and its bio-synthesis inhibitor 3-mercaptopropionic acid (3-MP) were applied to reveal the mechanism of GABA regulating phenolics metabolism in barley seedlings treated with 20 mmol L-1 NaCl. The contents of total phenolics and flavonoids significantly increased by 11.64% and 14.52% under NaCl, respectively. The addition of GABA further increased phenolics and flavonoids contents, especially for gallic acid, protocatechuic acid, caffeic acid, and quercetin, compared with NaCl treatment. Simultaneously, GABA increased the activities and mRNA levels of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H), and 4-coumalyl CoA ligase (4CL). The addition of 3-MP suppressed the above effects, except for increasing the protein levels of PAL, C4H, and 4CL. Low concentration of NaCl not only promoted growth, but also stimulated endogenous GABA metabolism to affect key enzymes activities and mRNA levels for phenolics synthesis in barley seedlings.
Collapse
Affiliation(s)
- Mian Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (M.W.); (P.W.); (Z.G.)
| | - Yahui Zhu
- College of Food Science and Technology, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China;
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (M.W.); (P.W.); (Z.G.)
| | - Zhenxin Gu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (M.W.); (P.W.); (Z.G.)
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (M.W.); (P.W.); (Z.G.)
- Correspondence: ; Tel./Fax: +86-025-84396293
| |
Collapse
|
12
|
Optimum Parameters for Extracting Three Kinds of Carotenoids from Pepper Leaves by Response Surface Methodology. SEPARATIONS 2021. [DOI: 10.3390/separations8090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To determine the optimum parameters for extracting three carotenoids including zeaxanthin, lutein epoxide, and violaxanthin from pepper leaves by response surface methodology (RSM), a solvent of acetone and ethyl acetate (1:2) was used to extract carotenoids with four independent factors: ultrasound time (20–60 min); ratio of sample to solvent (1:12–1:4); saponification time (10–50 min); and concentration of saponification solution (KOH–methanol) (10–30%). A second-order polynomial model produced a satisfactory fitting of the experimental data with regard to zeaxanthin (R2 = 75.95%, p < 0.0197), lutein epoxide (R2 = 90.24%, p < 0.0001), and violaxanthin (R2 = 73.84%, p < 0.0809) content. The optimum joint extraction conditions of zeaxanthin, lutein epoxide, and violaxanthin were 40 min, 1:8, 32 min, and 20%, respectively. The optimal predicted contents for zeaxanthin (0.823022 µg/g DW), lutein epoxide (4.03684 µg/g dry; DW—dry weight), and violaxanthin (16.1972 µg/g DW) in extraction had little difference with the actual experimental values obtained under the optimum extraction conditions for each response: zeaxanthin (0.8118 µg/g DW), lutein epoxide (3.9497 µg/g DW), and violaxanthin (16.1590 µg/g DW), which provides a theoretical basis and method for cultivating new varieties at low temperatures and weak light resistance.
Collapse
|
13
|
He W, Luo H, Xu H, Zhou Z, Li D, Bao Y, Fu Q, Song J, Jiao Y, Zhang Z. Effect of exogenous methyl jasmonate on physiological and carotenoid composition of yellow maize sprouts under NaCl stress. Food Chem 2021; 361:130177. [PMID: 34077883 DOI: 10.1016/j.foodchem.2021.130177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
Carotenoid content in maize sprouts can be increased by NaCl stress, although high NaCl concentrations negatively impact plant growth. The effects of exogenous methyl jasmonate (MeJA) on contents of carotenoid and antioxidant capacity of yellow maize sprouts under NaCl stress were investigated. Our results showed that treatments of NaCl both alone and combined with MeJA enhanced the carotenoid accumulation in maize sprouts. Moreover, the carotenoid biosynthesis related genes showed different expression patterns under addition of MeJA treatment. Additionally, the combined treatment led to significantly higher content of most carotenoids profiles and the addition of MeJA could alleviate the harmful effect caused by NaCl stress. Furthermore, the combined treatment improved antioxidant enzyme activities and radical scavenging capacity. The results implied that MeJA is kind of effective plant growth regulator for enhancing carotenoid accumulation in maize sprouts by up-regulating the expression levels of key genes involved in carotenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Weiwei He
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hao Luo
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Hao Xu
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Zhiyi Zhou
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Qun Fu
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Jiangfeng Song
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Yan Jiao
- Xinghua Dongao Food Co., Ltd, Taizhou, Jiangsu 225700, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| |
Collapse
|
14
|
Zhao Y, Li SL, Chen HY, Zou Y, Zheng QW, Guo LQ, Wu GH, Lu J, Lin JF, Ye ZW. Enhancement of carotenoid production and its regulation in edible mushroom Cordyceps militaris by abiotic stresses. Enzyme Microb Technol 2021; 148:109808. [PMID: 34116757 DOI: 10.1016/j.enzmictec.2021.109808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Cordyceps militaris carotenoids are widely used as food additives, animal feed supplements, and so on. However, the biosynthetic pathway of carotenoids in C. militaris is still obscure. In this paper, changes of mycelial morphology and carotenoid accumulation of C. militaris were investigated under oxidative (KMnO4) and osmotic stress (NaCl). Subsequently, qRT-PCR was employed to detect the expression levels of genes related to carotenogenesis to explore the mechanism of adaptation to abiotic stress. When the concentrations of KMnO4 and NaCl were respectively 0.4 g/L and 2 g/L, carotenoid accumulation reached a maximum of 6616.82 ± 666.43 μg/g and 6416.77 ± 537.02 μg/g. Under the oxidative stress condition of KMnO4, the expressions of psy and hsp70 increased significantly compared with control. Besides, the genes fus3 and hog1 were significantly enriched in the MAPK signal pathway. Compared with the control group, there was no significant difference in expression of psy in the NaCl group. Moreover, the accumulation of triacylglycerols may contribute significantly to the increase in carotenoid accumulation. The increased accumulation of antioxidant carotenoids induced under environmental stress is to resist oxidative conditions. Fus3 and Hog1 signaling in the MAPK pathway was activated and subsequently take effects on the resistance of oxidative condition by regulating related metabolic processes. C. militaris resist the stress of high oxygen by producing a large amount of glycerol and carotenoids when this fungus is cultured in a saline environment for a long time.
Collapse
Affiliation(s)
- Yi Zhao
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510642, China
| | - Shu-Li Li
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510642, China
| | - Hai-Ying Chen
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510642, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510642, China
| | - Qian-Wang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510642, China
| | - Li-Qiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510642, China
| | - Guang-Hong Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Lu
- Faculty of Health & Environmental Sciences, Auckland University of Technology, Auckland, 1142, New Zealand
| | - Jun-Fang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510642, China.
| | - Zhi-Wei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|