1
|
Wang T, Chen G, Tan S, Li L, Jiang B, Wang D, Liu Q. Trace phospholipid and fatty acid differences between dairy and plant-based milk products by 1H and 31P NMR spectroscopy combined with multivariate statistical analysis. Food Chem 2025; 470:142700. [PMID: 39752742 DOI: 10.1016/j.foodchem.2024.142700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025]
Abstract
With development of modern food industry, plant-based milk products are widely used to replace dairy products to cook different kinds of food. Due to different origins, it is necessary to assess the nutrition difference between dairy and plant-based milk products. Phospholipids and unsaturated fatty acids, as the important nutrients in cream and butter, were closely related to body development and health. This study developed a rapid determination of phospholipids and double bonds in creams and butters based on 31P NMR and 1H NMR for nutritional difference assessment. Unsupervised principal component analysis and supervised orthogonal least squares discriminant analysis showed marked differences between dairy and plant-based milk products. Eight compounds were screened by variable importance in projection, fold change and P-value. Furthermore, two biomarkers (phosphatidylserine and phosphatidylethanolamine) were identified to distinguish dairy and plant-based milk products. The study demonstrated that 31P NMR has great potential for rapidly distinguishing milk origins.
Collapse
Affiliation(s)
- Tongtong Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China.
| | - Gang Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Sijia Tan
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Bin Jiang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Dan Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Qingyi Liu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| |
Collapse
|
2
|
Scettri A, Baroldi I, Allari L, Bolognini L, Guardini K, Schievano E. NMR sugar-profile in genuine grape must. Food Chem 2024; 451:139374. [PMID: 38657517 DOI: 10.1016/j.foodchem.2024.139374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
The wine market has always faced the problem of fraud, including the addition of exogenous sugar solutions to grape musts to increase the final alcohol content. Since in some countries the practice of chaptalization is prohibited (except by adding concentrated must) it is necessary to broaden the analytical techniques that allow the identification of this type of fraud. The aim of this study was to define an NMR-based sugar profile of genuine grape must to set concentration limits for each sugar as parameters of authenticity. Glucose, fructose, together with eleven minor sugars were quantified in 82 genuine Italian grape musts, developing an analytical procedure based on highly selective chemical shift filters followed by TOCSY. Alongside the characteristic myo- and scyllo-inositol, significant contents of mannose, galactose, and trehalose were also found. Otherwise, maltose, rhamnose, arabinose, sucrose and lactose are present in lower concentrations and show great concentration variability.
Collapse
Affiliation(s)
- Anna Scettri
- Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova, Italy
| | - Ilenia Baroldi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | | | | | | | - Elisabetta Schievano
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
3
|
Wang D, Zhang M, Jiang Q, Mujumdar AS. Intelligent System/Equipment for Quality Deterioration Detection of Fresh Food: Recent Advances and Application. Foods 2024; 13:1662. [PMID: 38890891 PMCID: PMC11171494 DOI: 10.3390/foods13111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
The quality of fresh foods tends to deteriorate rapidly during harvesting, storage, and transportation. Intelligent detection equipment is designed to monitor and ensure product quality in the supply chain, measure appropriate food quality parameters in real time, and thus minimize quality degradation and potential financial losses. Through various available tracking devices, consumers can obtain actionable information about fresh food products. This paper reviews the recent progress in intelligent detection equipment for sensing the quality deterioration of fresh foods, including computer vision equipment, electronic nose, smart colorimetric films, hyperspectral imaging (HSI), near-infrared spectroscopy (NIR), nuclear magnetic resonance (NMR), ultrasonic non-destructive testing, and intelligent tracing equipment. These devices offer the advantages of high speed, non-destructive operation, precision, and high sensitivity.
Collapse
Affiliation(s)
- Dianyuan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (D.W.); (Q.J.)
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi 214122, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (D.W.); (Q.J.)
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi 214122, China
| | - Qiyong Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (D.W.); (Q.J.)
| | - Arun S. Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne decBellevue, QC H9X 3V9, Canada;
| |
Collapse
|
4
|
Biswas A, Hazra SK, Chaudhari SR. Detection of barley malt syrup as an adulterant in honey by 1H NMR profile. Food Chem 2023; 429:136842. [PMID: 37454619 DOI: 10.1016/j.foodchem.2023.136842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Currently, Barley Malt Syrup (BMS) is one of the forms of growing adulteration in honey. However, there have been no reports regarding its identification by NMR. In this aspect, we proposed a 1H NMR profiling method to discriminate between authentic and honey adulterated with BMS. The authenticated honey samples were artificially adulterated with varying percentages of BMS. It was found that a marker peak primarily falling around the 5.40 ppm region exhibited discrimination between pure and adulterated samples. Furthermore, NMR data of the samples were analyzed using statistical models. The findings demonstrate that NMR sugar profiles region, when combined with PCA analysis, can effectively detect varying degrees of adulteration. Despite qualitative nature of the outcomes, spiking studies have revealed that approach can reliably identify sugar addition at levels as low as 5-10%. Overall, NMR-based approach proves to be effective in detecting BMS as an adulterant in honey.
Collapse
Affiliation(s)
- Anisha Biswas
- Department of Plantation Products, Spice and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudipta Kumar Hazra
- Department of Plantation Products, Spice and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Sachin R Chaudhari
- Department of Plantation Products, Spice and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Schievano E, Piana L, Tessari M. Automatic nmr-based protocol for assessment of honey authenticity. Food Chem 2023; 420:136094. [PMID: 37062082 DOI: 10.1016/j.foodchem.2023.136094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
1H NMR analysis of organic extracts of honey is a powerful technique to confirm its botanical origin, thanks to the presence of signals that are specific to each floral typology. Similarly, signals from bee metabolites provide an important tool to verify honey entomological origin. Here, we present a method for honey screening that does not require any detailed analysis of the NMR spectrum for the detection and quantification of such markers. Our approach is based on the measurement of two spectral parameters, named entomological factor (EF) and aromatic factor (AF), calculated by integration of well-defined regions of the NMR spectrum. The values of EF and AF can reveal direct or indirect dilution of honey with sugar syrups. This method was tested on honeys of different floral origins and could identify all adulterated samples previously recognized by official techniques. Notably, several samples found compliant by official methods were proven non-genuine by the proposed approach.
Collapse
|
6
|
A comprehensive overview of emerging techniques and chemometrics for authenticity and traceability of animal-derived food. Food Chem 2023; 402:134216. [DOI: 10.1016/j.foodchem.2022.134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/21/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
|
7
|
Sobolev AP, Ingallina C, Spano M, Di Matteo G, Mannina L. NMR-Based Approaches in the Study of Foods. Molecules 2022; 27:7906. [PMID: 36432006 PMCID: PMC9697393 DOI: 10.3390/molecules27227906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, the three different NMR-based approaches usually used to study foodstuffs are described, reporting specific examples. The first approach starts with the food of interest that can be investigated using different complementary NMR methodologies to obtain a comprehensive picture of food composition and structure; another approach starts with the specific problem related to a given food (frauds, safety, traceability, geographical and botanical origin, farming methods, food processing, maturation and ageing, etc.) that can be addressed by choosing the most suitable NMR methodology; finally, it is possible to start from a single NMR methodology, developing a broad range of applications to tackle common food-related challenges and different aspects related to foods.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Magnetic Resonance Laboratory “Segre-Capitani”, Institute for Biological Systems, CNR, Via Salaria, Km 29.300, 00015 Monterotondo, Italy
| | - Cinzia Ingallina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Kaempferol-3-O-galactoside as a marker for authenticating Lespedeza bicolor Turcz. monofloral honey. Food Res Int 2022; 160:111667. [DOI: 10.1016/j.foodres.2022.111667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
|
9
|
Brar DS, Pant K, Krishna R, Kaur S, Rasane P, Nanda V, Saxena S, Gautam S. A comprehensive review on unethical honey: Validation by emerging techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Quality assessment and chemical diversity of Australian propolis from Apis mellifera bees. Sci Rep 2022; 12:13574. [PMID: 35945451 PMCID: PMC9362168 DOI: 10.1038/s41598-022-17955-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
The propolis industry is well established in European, South American and East Asian countries. Within Australia, this industry is beginning to emerge with a few small-scale producers. To contribute to the development of the Australian propolis industry, the present study aimed to examine the quality and chemical diversity of propolis collected from various regions across Australia. The results of testing 158 samples indicated that Australian propolis had pure resin yielding from 2 to 81% by weight, total phenolic content and total flavonoid content in one gram of dry extract ranging from a few up to 181 mg of gallic acid equivalent and 145 mg of quercetin equivalent, respectively. Some Australian propolis showed more potent antioxidant activity than the well-known Brazilian green, Brazilian red, and Uruguayan and New Zealand poplar-type propolis in an in vitro DPPH assay. In addition, an HPLC–UV analysis resulted in the identification of 16 Australian propolis types which can be considered as high-grade propolis owing to their high total phenolic content. Chemometric analysis of their 1H NMR spectra revealed that propolis originating from the eastern and western coasts of Australia could be significantly discriminated based on their chemical composition.
Collapse
|
11
|
|
12
|
Zhang G, Abdulla W. New Zealand honey botanical origin classification with hyperspectral imaging. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Kumar P, Rani A, Singh S, Kumar A. Recent advances on
DNA
and omics‐based technology in Food testing and authentication: A review. J Food Saf 2022. [DOI: 10.1111/jfs.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pramod Kumar
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Alka Rani
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Shalini Singh
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Anuj Kumar
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| |
Collapse
|
14
|
Determination of the Carbohydrate Profile and Invertase Activity of Adulterated Honeys after Bee Feeding. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The higher demand for honey from consumers, combined with its limited availability, has led to different types of honey adulteration, causing substantial economic as well as negative impacts on consumers’ nutrition and health. Therefore, a need has emerged for reliable and cost-effective quality control methods to detect honey adulteration to ensure both the safety and quality of honey. To simulate the process with those applied by beekeepers in real-time, bee colonies were fed with different types of bee feeding (sugar syrup, candy paste and commercial syrup). The produced samples were analyzed for their carbohydrate profile and their invertase activity with the aim to find the effects of bee feeding on the quality of the final product. Honey samples produced after feeding with commercial syrup presented low fructose (22.9 %) and glucose (31.7 %) concentrations and high content of maltose (20.1%), while the samples that came from bee feeding with sugar syrup and candy paste had high concentrations of sucrose (6.2 % and 3.2 %, respectively), exceeding in some cases the legislative limits. Moreover, the samples coming from sugar feeding had lower values of invertase activity, while the group with inverted syrup was clearly discriminated through multi-discriminant analysis. The invertase activity of control samples was found at 153.7 U/kg, which was significantly higher compared to the other groups. The results showed that bee feeding during honey production might lead to adulteration, which can be detected through routine analyses, including the carbohydrate profile and the invertase activity.
Collapse
|
15
|
Cagliani L, Maestri G, Consonni R. Detection and evaluation of saccharide adulteration in Italian honey by NMR spectroscopy. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Dumancas GG, Setijadi C, Dufour B, Aglobo J, Carisma MS, Bello GA, Dalisay DS, Saludes JP. Comparison of Genetic and Non-genetic Algorithm Partial Least Squares for Sugar Quantification in Philippine Honeys. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2033985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Gerard G. Dumancas
- Department of Chemistry, Loyola Science Center, The University of Scranton, Scranton, PA, USA
- Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig City, Philippines
| | - Catherine Setijadi
- Department of Mathematics and Physical Sciences, Louisiana State University–Alexandria, Alexandria, LA, USA
| | - Ben Dufour
- Department of Mathematics and Physical Sciences, Louisiana State University–Alexandria, Alexandria, LA, USA
| | - Jastine Aglobo
- Gregor Mendel Research Laboratories, University of San Agustin, Iloilo City, Philippines
| | - Marjorie S. Carisma
- Gregor Mendel Research Laboratories, University of San Agustin, Iloilo City, Philippines
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
| | - Ghalib A. Bello
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Doralyn S. Dalisay
- Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig City, Philippines
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City, Philippines
| | - Jonel P. Saludes
- Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig City, Philippines
- Gregor Mendel Research Laboratories, University of San Agustin, Iloilo City, Philippines
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines
| |
Collapse
|
17
|
Honey authenticity: the opacity of analytical reports - part 1 defining the problem. NPJ Sci Food 2022; 6:11. [PMID: 35136083 PMCID: PMC8825849 DOI: 10.1038/s41538-022-00126-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
The composition of honey, a complex natural product, challenges analytical methods attempting to determine its authenticity particularly in the face of sophisticated adulteration. Of the advanced analytical techniques available, only isotope ratio mass spectrometry (IRMS) is generally accepted for its reproducibility and ability to detect certain added sugars, with nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) being subject to stakeholder differences of opinion. Herein, recent reviews of honey adulteration and the techniques to detect it are summarised in the light of which analytical reports are examined that underpinned a media article in late 2020 alleging foreign sugars in UK retailers' own brand honeys. The requirement for multiple analytical techniques leads to complex reports from which it is difficult to draw an overarching and unequivocal authenticity opinion. Thus arose two questions. (1) Is it acceptable to report an adverse interpretation without exhibiting all the supporting data? (2) How may a valid overarching authenticity opinion be derived from a large partially conflicting dataset?
Collapse
|
18
|
Labsvards KD, Rudovica V, Kluga R, Rusko J, Busa L, Bertins M, Eglite I, Naumenko J, Salajeva M, Viksna A. Determination of Floral Origin Markers of Latvian Honey by Using IRMS, UHPLC-HRMS, and 1H-NMR. Foods 2021; 11:foods11010042. [PMID: 35010167 PMCID: PMC8750591 DOI: 10.3390/foods11010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
The economic significance of honey production is crucial; therefore, modern and efficient methods of authentication are needed. During the last decade, various data processing methods and a combination of several instrumental methods have been increasingly used in food analysis. In this study, the chemical composition of monofloral buckwheat (Fagopyrum esculentum), clover (Trifolium repens), heather (Calluna vulgaris), linden (Tilia cordata), rapeseed (Brassica napus), willow (Salix cinerea), and polyfloral honey samples of Latvian origin were investigated using several instrumental analysis methods. The data from light stable isotope ratio mass spectrometry (IRMS), ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), and nuclear magnetic resonance (NMR) analysis methods were used in combination with multivariate analysis to characterize honey samples originating from Latvia. Results were processed using the principal component analysis (PCA) to study the potential possibilities of evaluating the differences between honey of different floral origins. The results indicate the possibility of strong differentiation of heather and buckwheat honeys, and minor differentiation of linden honey from polyfloral honey types. The main indicators include depleted δ15N values for heather honey protein, elevated concentration levels of rutin for buckwheat honey, and qualitative presence of specific biomarkers within NMR for linden honey.
Collapse
Affiliation(s)
- Kriss Davids Labsvards
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Street 3, LV-1076 Riga, Latvia
- Correspondence: ; Tel.: +371-26395784
| | - Vita Rudovica
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Rihards Kluga
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Janis Rusko
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Street 3, LV-1076 Riga, Latvia
| | - Lauma Busa
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Maris Bertins
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Ineta Eglite
- Latvian Beekeeping Association, Rigas Street 22, LV-3004 Jelgava, Latvia;
| | - Jevgenija Naumenko
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Marina Salajeva
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Arturs Viksna
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| |
Collapse
|
19
|
|
20
|
Luo X, Dong Y, Gu C, Zhang X, Ma H. Processing Technologies for Bee Products: An Overview of Recent Developments and Perspectives. Front Nutr 2021; 8:727181. [PMID: 34805239 PMCID: PMC8595947 DOI: 10.3389/fnut.2021.727181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
Increased demand for a more balanced, healthy, and safe diet has accelerated studies on natural bee products (including honey, bee bread, bee collected pollen royal jelly, propolis, beeswax, and bee venom) over the past decade. Advanced food processing techniques, such as ultrasonication and microwave and infrared (IR) irradiation, either has gained popularity as alternatives or combined with conventional processing techniques for diverse applications in apiculture products at laboratory or industrial scale. The processing techniques used for each bee products have comprehensively summarized in this review, including drying (traditional drying, infrared drying, microwave-assisted traditional drying or vacuum drying, and low temperature high velocity-assisted fluidized bed drying), storage, extraction, isolation, and identification; the assessment methods related to the quality control of bee products are also fully mentioned. The different processing techniques applied in bee products aim to provide more healthy active ingredients largely and effectively. Furthermore, improved the product quality with a shorter processing time and reduced operational cost are achieved using conventional or emerging processing techniques. This review will increase the positive ratings of the combined new processing techniques according to the needs of the bee products. The importance of the models for process optimization on a large scale is also emphasized in the future.
Collapse
Affiliation(s)
- Xuan Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yating Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chen Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
Herbert-Pucheta JE, Lozada-Ramírez JD, Ortega-Regules AE, Hernández LR, Anaya de Parrodi C. Nuclear Magnetic Resonance Metabolomics with Double Pulsed-Field-Gradient Echo and Automatized Solvent Suppression Spectroscopy for Multivariate Data Matrix Applied in Novel Wine and Juice Discriminant Analysis. Molecules 2021; 26:molecules26144146. [PMID: 34299421 PMCID: PMC8307358 DOI: 10.3390/molecules26144146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
The quality of foods has led researchers to use various analytical methods to determine the amounts of principal food constituents; some of them are the NMR techniques with a multivariate statistical analysis (NMR-MSA). The present work introduces a set of NMR-MSA novelties. First, the use of a double pulsed-field-gradient echo (DPFGE) experiment with a refocusing band-selective uniform response pure-phase selective pulse for the selective excitation of a 5–10-ppm range of wine samples reveals novel broad 1H resonances. Second, an NMR-MSA foodomics approach to discriminate between wine samples produced from the same Cabernet Sauvignon variety fermented with different yeast strains proposed for large-scale alcohol reductions. Third a comparative study between a nonsupervised Principal Component Analysis (PCA), supervised standard partial (PLS-DA), and sparse (sPLS-DA) least squares discriminant analysis, as well as orthogonal projections to a latent structures discriminant analysis (OPLS-DA), for obtaining holistic fingerprints. The MSA discriminated between different Cabernet Sauvignon fermentation schemes and juice varieties (apple, apricot, and orange) or juice authentications (puree, nectar, concentrated, and commercial juice fruit drinks). The new pulse sequence DPFGE demonstrated an enhanced sensitivity in the aromatic zone of wine samples, allowing a better application of different unsupervised and supervised multivariate statistical analysis approaches.
Collapse
Affiliation(s)
- José Enrique Herbert-Pucheta
- Consejo Nacional de Ciencia y Tecnología-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Carretera México-Texcoco km 38.5, Chapingo, Estado de México 56230, Mexico;
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, Ciudad de México 11340, Mexico
| | - José Daniel Lozada-Ramírez
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| | - Ana E. Ortega-Regules
- Departamento de Ciencias de la Salud, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| | - Luis Ricardo Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
- Correspondence: (L.R.H.); (C.A.d.P.); Tel.: +52-222-2292412 (L.R.H.); +52-222-2292005 (C.A.d.P.)
| | - Cecilia Anaya de Parrodi
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
- Correspondence: (L.R.H.); (C.A.d.P.); Tel.: +52-222-2292412 (L.R.H.); +52-222-2292005 (C.A.d.P.)
| |
Collapse
|
22
|
Mei J, Zhao F, Xu R, Huang Y. A review on the application of spectroscopy to the condiments detection: from safety to authenticity. Crit Rev Food Sci Nutr 2021; 62:6374-6389. [PMID: 33739226 DOI: 10.1080/10408398.2021.1901257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Condiments are the magical ingredients that make the food present a richer taste. In recent years, due to the increasing consciousness of food safety and human health, much progress has been made in developing rapid and nondestructive techniques for the evaluation of food condiments safety, authentication, and traceability. The potential of spectroscopy techniques, such as near-infrared (NIR), mid-infrared (MIR), Raman, fluorescence, inductively coupled plasma (ICP), and hyperspectral imaging techniques, has been widely enhanced by numerous applications in this field because of their advantages over other analytical techniques. Following a brief introduction of condiment and safety basics, this review mainly focuses on recent vibrational and atomic spectral applications for condiment nondestructive analysis and evaluation, including (1) chemical hazards detection; (2) microbiological hazards detection; and (3) authenticity concerns. The review shows current spectroscopies to be effective tools that will play indispensable roles for food condiment evaluation. In addition, online/real-time applications of these techniques promise to be a huge growth field in the near future.
Collapse
Affiliation(s)
- Jianhua Mei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China.,Health Food Industry Research Institute (Xinghua), China Agricultural University, Xinghua, Jiangsu, 225700, P. R. China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, P. R. China
| | - Runqi Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China.,Health Food Industry Research Institute (Xinghua), China Agricultural University, Xinghua, Jiangsu, 225700, P. R. China
| | - Yue Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China.,Health Food Industry Research Institute (Xinghua), China Agricultural University, Xinghua, Jiangsu, 225700, P. R. China
| |
Collapse
|
23
|
Tsagkaris AS, Koulis GA, Danezis GP, Martakos I, Dasenaki M, Georgiou CA, Thomaidis NS. Honey authenticity: analytical techniques, state of the art and challenges. RSC Adv 2021; 11:11273-11294. [PMID: 35423655 PMCID: PMC8695996 DOI: 10.1039/d1ra00069a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Honey is a high-value, globally consumed, food product featuring a high market price strictly related to its origin. Moreover, honey origin has to be clearly stated on the label, and quality schemes are prescribed based on its geographical and botanical origin. Therefore, to enhance food quality, it is of utmost importance to develop analytical methods able to accurately and precisely discriminate honey origin. In this study, an all-time scientometric evaluation of the field is provided for the first time using a structured keyword on the Scopus database. The bibliometric analysis pinpoints that the botanical origin discrimination was the most studied authenticity issue, and chromatographic methods were the most frequently used for its assessment. Based on these results, we comprehensively reviewed analytical techniques that have been used in honey authenticity studies. Analytical breakthroughs and bottlenecks on methodologies to assess honey quality parameters using separation, bioanalytical, spectroscopic, elemental and isotopic techniques are presented. Emphasis is given to authenticity markers, and the necessity to apply chemometric tools to reveal them. Altogether, honey authenticity is an ever-growing field, and more advances are expected that will further secure honey quality.
Collapse
Affiliation(s)
- Aristeidis S Tsagkaris
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague Technická 5, 166 28 Prague 6 - Dejvice Prague Czech Republic
| | - Georgios A Koulis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Georgios P Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens 75 Iera Odos 118 55 Athens Greece
| | - Ioannis Martakos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Marilena Dasenaki
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Constantinos A Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens 75 Iera Odos 118 55 Athens Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| |
Collapse
|
24
|
López-Aguilar R, Zuleta-Prada H, Hernández-Montes A, Herbert-Pucheta JE. Comparative NMR Metabolomics Profiling between Mexican Ancestral & Artisanal Mezcals and Industrialized Wines to Discriminate Geographical Origins, Agave Species or Grape Varieties and Manufacturing Processes as a Function of Their Quality Attributes. Foods 2021; 10:foods10010157. [PMID: 33451115 PMCID: PMC7828614 DOI: 10.3390/foods10010157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 01/06/2023] Open
Abstract
The oenological industry has benefited from the use of Nuclear Magnetic Resonance (1H-NMR) spectroscopy in combination with Multivariate Statistical Analysis (MSA) as a foodomics tool for retrieving discriminant features related to geographical origins, grape varieties, and further quality controls. Said omics methods have gained such attention that Intergovernmental Organizations and Control Agencies are currently recommending their massive use amongst countries as quality compliances for tracking standard and degradation parameters, fermentation products, polyphenols, amino acids, geographical origins, appellations d’origine contrôlée and type of monovarietal strains in wines. This study presents, for the first time, a 1H-NMR/MSA profiling of industrial Mexican wines, finding excellent statistical features to discriminate between oenological regions and grape varieties with supervised Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA). In a comparative way, it is applied with the 1H-NMR/OPLS-DA workflow for the first time in ancestral and artisanal Mexican mezcals with promising results to discriminate between regions, agave species and manufacturing processes. The central aim of this comparative study is to extrapolate the know-how of wine-omics into the non-professionalized mezcal industry for establishing the NMR acquisition, preprocessing and statistical analysis basis to implement novel, non-invasive and highly reproducible regional, agave species and manufacturing-quality controls.
Collapse
Affiliation(s)
- Rosa López-Aguilar
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, km. 38.5 Carretera México-Texcoco, 56230 Chapingo, Estado de México, Mexico;
| | - Holber Zuleta-Prada
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km. 38.5 Carretera México-Texcoco, 56230 Chapingo, Estado de México, Mexico;
| | - Arturo Hernández-Montes
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, km. 38.5 Carretera México-Texcoco, 56230 Chapingo, Estado de México, Mexico;
- Correspondence: (A.H.-M.); (J.E.H.-P.); Tel.: +52-5959521787 (A.H.-M.); +52-5521050381 (J.E.H.-P.)
| | - José Enrique Herbert-Pucheta
- Consejo Nacional de Ciencia y Tecnología-Laboratorio Nacional de Investigación y Servicio Agroalimentario Forestal, Universidad Autónoma Chapingo, 56230 Chapingo, Estado de México, Mexico
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Estado de México, Mexico
- Correspondence: (A.H.-M.); (J.E.H.-P.); Tel.: +52-5959521787 (A.H.-M.); +52-5521050381 (J.E.H.-P.)
| |
Collapse
|
25
|
Zhang J, Chen H, Fan C, Gao S, Zhang Z, Bo L. Classification of the botanical and geographical origins of Chinese honey based on 1H NMR profile with chemometrics. Food Res Int 2020; 137:109714. [PMID: 33233286 DOI: 10.1016/j.foodres.2020.109714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
In this paper, we report a newly developed non-target 1H NMR detection associated with chemometrics method to classify the botanical and geographical origins of the monofloral Chinese honey. 1H NMR tests of 218 monofloral honey samples of 8 classes (Acacia, Jujube, Linden, Longan, Orange, Rape, Sunflower, Vitex) collected in 2017-2019 across China were conducted under the optimal sample preparation conditions and NMR acquisition parameters. The whole profiles of NMR spectra instead of individual or partial signals from specific components were processed and extracted, then fed to SIMCA-P to classify the botanical and geographical origins through non-target statistical analysis. For the botanical origins, most of them could be classified clearly according to Principal Component Analysis (PCA) with both R2 and Q2 close to 1. Orthogonal Partial Least Squares Discrimination Analysis (OPLS-DA) model could classify the honey floral types successfully with R2Y and Q2 greater than 0.85. It is found that the integral bin for data extraction has no obvious influence on the classification. For the geographical origins, the classification at different geographical levels (providence and town) could be successfully distinguished by OPLS-DA model. The promising preliminary results with the geographical classification at 40 km level unambiguously demonstrate the application of this NMR-based multi-species non-targeted method for the honey authenticity. Successful result is obtained on a pilot prediction of the geographical classification. Comparing with the methods based on other techniques, the advantages of this reported one are less sample amount needed, simple preparation, short test time, and non-targeted multi-species detection.
Collapse
Affiliation(s)
- Jialin Zhang
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, China
| | - Hui Chen
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, China
| | - Chunlin Fan
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, China
| | - Shuai Gao
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, China
| | - Zijuan Zhang
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, China.
| | - Lin Bo
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, China
| |
Collapse
|
26
|
Carabetta S, Di Sanzo R, Campone L, Fuda S, Rastrelli L, Russo M. High-Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD) and Chemometrics for Geographical and Floral Authentication of Honeys from Southern Italy ( Calabria region). Foods 2020; 9:foods9111625. [PMID: 33171783 PMCID: PMC7694965 DOI: 10.3390/foods9111625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC–PAD) combined with chemometric analysis was developed to describe, for the first time, the sugar profile of sixty-one honeys of different botanical origin produced in southern Italy (Calabria Region). The principal component and linear discriminant analysis used to describe the variability of sugar data were able to discriminate the honeys according to their botanical origin with a correlation index higher than 90%. For the purpose of the robustness of the conclusions of this study, the analytical advantages of the HPAEC–PAD method have been statistically demonstrated compared to the official Italian HPLC–RI method (Refractive Index detection). Finally, as the characterization of the floral and geographical origin of honey became an important issue due to high consumer demand, 13 acacia honeys originating from Europe and China were studied by using the same method. By chemometric method it was possible to discriminate the different geographical origin with an index of 100%. All results proved the possibility to identify the sugar profile obtained by HPAEC–PAD combined with a robust statistical analysis, as a tool of authentication.
Collapse
Affiliation(s)
- Sonia Carabetta
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (R.D.S.); (S.F.); (M.R.)
- Correspondence: ; Tel.: +39-333-287-1686
| | - Rosa Di Sanzo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (R.D.S.); (S.F.); (M.R.)
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milan, Italy;
| | - Salvatore Fuda
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (R.D.S.); (S.F.); (M.R.)
| | - Luca Rastrelli
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy;
| | - Mariateresa Russo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (R.D.S.); (S.F.); (M.R.)
| |
Collapse
|
27
|
Abstract
The purpose of this study was to determine the changes in the contents of flavonoids that were the most prevalent in acacia and multifloral honey during one year of storage. Samples were stored in transparent glass containers, at room temperature, on open shelves exposed to light during daytime. Eight individual flavonoids identified and quantified using HPLC-Diode Array Detector (DAD) belongs to three subgroups: flavonols (quercetin, luteolin, kaempferol and galangin), total flavanons (hesperetin and pinocembrin) and total flavones (apigenin and chrysin). Obtained results revealed that multifloral honey had more total flavonoids than acacia samples did. On average from all of the samples, multifloral honey had more of quercetin, hesperetin, luteolin, kaempferol and apigenin than acacia honey did. Content of flavonoids increased in samples between the 1st and 6th month of storage and then started to decrease until the 9th month, when they remained relatively constant all the way until the 12th month of storage. In conclusion, acacia and multifloral honey after one-year of storage still can be a valuable source of flavonoids.
Collapse
|
28
|
Adamchuk L, Sukhenko V, Akulonok O, Bilotserkivets T, Vyshniak V, Lisohurska D, Lisohurska O, Slobodyanyuk N, Shanina O, Galyasnyj I. Methods for determining the botanical origin of honey. POTRAVINARSTVO 2020. [DOI: 10.5219/1386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The demand for monofloral, original, and special (functional) kinds of honey, or those with geographical indication, is forecast. At the same time, there is a need to improve the methods for determining the botanical and geographical origin of honey. The purpose of the research was to select and apply a variety of techniques for identifying the botanical origin of honey for its correspondence to acacia species. Samples of honey from the Kyiv, Odesa, and Dnipro regions extracted in the spring and summer period were used in the research. Organoleptic, physicochemical, NMR spectrometry, and advanced melissopalynology methods were applied. The tests were carried out at the laboratories of the Department of Certification and Standardization of Agricultural Products, NULES, Ukraine; the Ukrainian Laboratory of Quality and Safety of Agricultural Products; and the Bruker BioSpin GmbH company (Germany). According to the research results, the requirements for acacia honey were met by the organoleptic method for samples B1 and B2; by the physicochemical method for A0 and A2; by NMR spectroscopy for not a single sample, all being assessed as polyfloral; and by pollen analysis for B1 and B2. The conducted studies confirm the need for a comprehensive approach to the identification of the botanical origin of honey for its conformity to acacia species. There is a need to review the physicochemical indicators for the compliance of honey with the acacia species obtained in Ukraine. After all, even the modern NMR spectrometry technique indicated that the specially fabricated sample that did not contain acacia pollen grains was acacia honey. Identification of the botanical origin of monofloral honey, in particular acacia, should be carried out in the following sequence: pollen analysis (by dominant pollen grains), safety (presence of antibiotics, pesticides), physicochemical parameters according to international requirements, organoleptic parameters.
Collapse
|
29
|
Roby MHH, Abdelaliem YF, Esmail AHM, Mohdaly AAA, Ramadan MF. Evaluation of Egyptian honeys and their floral origins: phenolic compounds, antioxidant activities, and antimicrobial characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20748-20756. [PMID: 32248421 DOI: 10.1007/s11356-020-08586-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
This study reports the physicochemical characterization of clover (Trifolium hybridum) and citrus (Citrus sinensis) honeys produced in Fayoum, Egypt, by evaluating the analysis of moisture content, pH, total soluble solids (TSS), electric conductivity (EC), total sugars, crude protein, ash content, total acidity, hydroxymethylfurfural (HMF), and total phenolic compounds (TPC). Antioxidant and antimicrobial activities of honey extracts and their flower extracts were determined. The results clearly indicated that ethanol gave the highest extraction yield of both clover and citrus flowers, while ethyl acetate showed the highest extraction recovery for the phenolic compounds, with TPC amounting to 338.5 and 536.4 mg gallic acid equivalent kg-1 fresh weight in clover and citrus flower extracts, respectively. Honey samples have less TPC than their flowers. The results showed that the TPC of citrus honey and its flowers was higher than clover honey and its flowers, respectively. Antioxidant activity was higher in extracts obtained from citrus flower than extracts of clover flower. The same trend was noticed for honey samples. Both clover and citrus honeys showed antimicrobial effects against tested microorganisms. HPLC analysis showed that p-coumaric acid was the main phenolic component in ethanol extracts of clover and citrus honeys, contributing about 83.0% and 52.2%, respectively. In citrus and clover flower extracts, syringic acid and quercetin were the main phenolics, respectively. It would be expected that characteristics of honey samples are mainly depended on the floral origin of nectar foraged by bees.
Collapse
Affiliation(s)
- Mohamed H H Roby
- Food Science and Technology, Faculty of Agriculture, Fayoum University, Faiyum, Egypt
| | | | | | - Adel A A Mohdaly
- Food Science and Technology, Faculty of Agriculture, Fayoum University, Faiyum, Egypt
| | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| |
Collapse
|
30
|
Creydt M, Fischer M. Food authentication in real life: How to link nontargeted approaches with routine analytics? Electrophoresis 2020; 41:1665-1679. [PMID: 32249434 DOI: 10.1002/elps.202000030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
In times of increasing globalization and the resulting complexity of trade flows, securing food quality is an increasing challenge. The development of analytical methods for checking the integrity and, thus, the safety of food is one of the central questions for actors from science, politics, and industry. Targeted methods, for the detection of a few selected analytes, still play the most important role in routine analysis. In the past 5 years, nontargeted methods that do not aim at individual analytes but on analyte profiles that are as comprehensive as possible have increasingly come into focus. Instead of investigating individual chemical structures, data patterns are collected, evaluated and, depending on the problem, fed into databases that can be used for further nontargeted approaches. Alternatively, individual markers can be extracted and transferred to targeted methods. Such an approach requires (i) the availability of authentic reference material, (ii) the corresponding high-resolution laboratory infrastructure, and (iii) extensive expertise in processing and storing very large amounts of data. Probably due to the requirements mentioned above, only a few methods have really established themselves in routine analysis. This review article focuses on the establishment of nontargeted methods in routine laboratories. Challenges are summarized and possible solutions are presented.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|