1
|
Ni D, Gao F, Cao H, Song H, Huang K, Zhang Y, Wang X, Tan Z, Lu J, Guan X, Grim N. Moderate milling improved storage stability of quinoa based on the evaluation of lipid oxidation and physicochemical characteristics. J Food Sci 2025; 90:e17676. [PMID: 39980274 DOI: 10.1111/1750-3841.17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 02/22/2025]
Abstract
This study investigated the storage stability of quinoa across various milling degrees (MD) concerning lipid oxidation and physicochemical characteristics during different storage durations. The process of milling induced tissue disruption, potentially facilitating contact between internal components and air, thereby impacting the storage stability of quinoa. The findings highlighted that cooking quality and textural properties exhibited a more pronounced improvement from MD 19% to MD 27% over a 6 M storage period. Notably, peak viscosity demonstrated a negative correlation with springiness and a positive correlation with water absorption of milled quinoa throughout storage. Thermal property analysis indicated that the increase of storage time and the decomposition of fatty acids triggered heat release, consequently reducing the enthalpy (ΔH) in milled quinoa. Scanning electron microscopy further exposed the oxidation of lipids in quinoa with varying MD during storage. In contrast to quinoa with higher degrees of milling, quinoa with MD 19% showcased superior textural characteristics and enhanced storage stability.
Collapse
Affiliation(s)
- Danfeng Ni
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Feng Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiaoxue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Zhigang Tan
- Multi-Grain and Oil Department, Buhler (Wuxi) Commercial Co., Ltd, Jiangsu, PR China
| | - Jun Lu
- Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Nabil Grim
- Laboratoire de Transformations Intégrées de la Matière Renouvelable, Sorbonne Universités, Paris, France
| |
Collapse
|
2
|
Li H, Li C, Sun Y, He J, Pan D. Quinoa Polysaccharides: Extraction, Purification, Structure, Functional Properties, and Applications in Food Science and Health. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:49. [PMID: 39869277 DOI: 10.1007/s11130-024-01284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
Quinoa polysaccharides have attracted significant research interest in recent years due to their diverse biological activities, including antiviral, anti-inflammatory, antioxidant, and immunoregulatory properties. These attributes align with the growing global demand for natural, functional food ingredients, positioning quinoa polysaccharides as a valuable resource in food science and technology. This review presents an overview of the various bioactivities of quinoa polysaccharides, critically evaluates the methods used for their extraction and purification, describes their structural characteristics, and discusses their practical applications across multiple areas within the food industry, including food additives, meat products, health foods, and innovative food packaging. This study examines the relationship between the preparation methods and the structural characteristics of quinoa polysaccharides, as well as their versatile applications in the food industry, such as improving product quality and shelf life, enhancing nutritional value and antioxidant activity, and providing health benefits in functional foods. This review also emphasizes the need for further research on the emulsification and gelation properties of quinoa polysaccharides and highlights their significant market potential, driven by their diverse functional properties. From our perspective, quinoa polysaccharides, with their wide range of functional and health benefits, hold a promising future in the food and health industries, driven by technological advancements and consumer demands.
Collapse
Affiliation(s)
- Huimin Li
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China
| | - Chuyan Li
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China
| | - Yangying Sun
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China
| | - Jun He
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China.
| | - Daodong Pan
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China.
| |
Collapse
|
3
|
Nandan A, Koirala P, Dutt Tripathi A, Vikranta U, Shah K, Gupta AJ, Agarwal A, Nirmal N. Nutritional and functional perspectives of pseudocereals. Food Chem 2024; 448:139072. [PMID: 38547702 DOI: 10.1016/j.foodchem.2024.139072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/24/2024]
Abstract
An increase in the consumption of carbohydrate-rich cereals over past few decades has led to increased metabolic disorders in population. This nutritional imbalance in diets may be corrected by substituting cereal grains with pseudocereals that are richer in high-quality proteins, dietary fibers, unsaturated fats, and bioactive compounds (e.g., polyphenols and phytosterols) as compared to cereal grains. These nutrients have been associated with numerous health benefits, such as hypolipidemic, anti-inflammatory, anti-hypertensive, anti-cancer, and hepatoprotective properties, and benefits against obesity and diabetes. In this review, the nutritional composition and health benefits of quinoa, amaranth, and buckwheat are compared against wheat, maize, and rice. Subsequently, the processing treatments applied to quinoa, amaranth, and buckwheat and their applications into food products are discussed. This is relevant since there is substantial market potential for both pseudocereals and functional foods formulated with pseudocereals. Despite clear benefits, the current progress is slowed down by the fact that the cultivation of these pseudocereals is limited to its native regions. Therefore, to meet the global needs, it is imperative to support worldwide cultivation of these nutrient-rich pseudocereals.
Collapse
Affiliation(s)
- Alisha Nandan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Urvashi Vikranta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | | | - Aparna Agarwal
- Department of Food and Nutrition and Food Technology, Lady Irwin College, University of Delhi, New Delhi, India.
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
da Silva VT, Mateus N, de Freitas V, Fernandes A. Plant-Based Meat Analogues: Exploring Proteins, Fibers and Polyphenolic Compounds as Functional Ingredients for Future Food Solutions. Foods 2024; 13:2303. [PMID: 39063388 PMCID: PMC11275277 DOI: 10.3390/foods13142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
As the lack of resources required to meet the demands of a growing population is increasingly evident, plant-based diets can be seen as part of the solution, also addressing ethical, environmental, and health concerns. The rise of vegetarian and vegan food regimes is a powerful catalyzer of a transition from animal-based diets to plant-based diets, which foments the need for innovation within the food industry. Vegetables and fruits are a rich source of protein, and bioactive compounds such as dietary fibres and polyphenols and can be used as technological ingredients (e.g., thickening agents, emulsifiers, or colouring agents), while providing health benefits. This review provides insight on the potential of plant-based ingredients as a source of alternative proteins, dietary fibres and antioxidant compounds, and their use for the development of food- and alternative plant-based products. The application of these ingredients on meat analogues and their impact on health, the environment and consumers' acceptance are discussed. Given the current knowledge on meat analogue production, factors like cost, production and texturization techniques, upscaling conditions, sensory attributes and nutritional safety are factors that require further development to fully achieve the full potential of plant-based meat analogues.
Collapse
Affiliation(s)
- Vasco Trincão da Silva
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Giosuè C, Maniaci G, Gannuscio R, Ponte M, Pipi M, Di Grigoli A, Bonanno A, Alabiso M. Traits of Mortadella from Meat of Different Commercial Categories of Indigenous Dairy Cattle. Animals (Basel) 2024; 14:1980. [PMID: 38998092 PMCID: PMC11240349 DOI: 10.3390/ani14131980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The rising interest in healthier meat options prompted the exploration of alternatives to traditional pork-based products, incorporating meat from different livestock species, feeding regimens, and functional ingredients. This study investigates the production of healthier meat products by examining the physicochemical traits, fatty acid profile, and sensory properties of mortadella made with Cinisara meat of four young bulls and four adult cows, and four females of the Nebrodi Black Pig. All the animals were fed principally on natural resources. Nutritional analysis revealed different levels of moisture, protein, fat, and ash in raw materials, with pistachios contributing to a healthy fatty acid profile rich in monounsaturated and polyunsaturated fatty acids. Formulations using cow meat exhibited higher fat content and caloric value, resulting in sensory attributes such as more intense color, improved fat cube adhesion, and pronounced odors compared to young bull and control mortadella. Fatty acid analysis demonstrated distinctive profiles influenced by the meat type used and, as expected, bovine products showed higher contents of rumenic and other conjugated linoleic acids. Pork mortadella displayed greater ω6 and ω3 values, with a healthier ω6/ω3 ratio comparable to those found in cow products. Young bull mortadella showed the worse atherogenic and thrombogenic indices. The findings underscore the impact of raw materials on the nutritional and sensory attributes of mortadella, emphasizing the necessity for interventions to enhance fatty acid composition in processed meat products.
Collapse
Affiliation(s)
- Cristina Giosuè
- Institute for Anthropic Impacts and Sustainability in the Marine Environment, National Council of Research (IAS-CNR), Lungomare Cristoforo Colombo 4521, 90149 Palermo, Italy
| | - Giuseppe Maniaci
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Riccardo Gannuscio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Marialetizia Ponte
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Marianna Pipi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Antonino Di Grigoli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Adriana Bonanno
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Marco Alabiso
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
6
|
Marczak A, Mendes AC. Dietary Fibers: Shaping Textural and Functional Properties of Processed Meats and Plant-Based Meat Alternatives. Foods 2024; 13:1952. [PMID: 38928893 PMCID: PMC11202949 DOI: 10.3390/foods13121952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The search for alternative sources of plant-based ingredients to improve the textural and sensory properties of plant-based meat alternatives (PMAs) is a growing trend, with the potential to enhance the sustainability of global food systems. While much focus has been placed on plant-based proteins, it is known today that dietary fibers (DFs) can also play a key role in the textural and other physicochemical properties of traditional processed meat products and PMAs. This review examined the latest scientific literature regarding the advantages of using DF in food. It showcases the latest applications of DF in processed meats, PMAs, and the effects of DF on the functional properties of food products, thereby aiming to increase DF applications to create improved, healthier, and more sustainable meat and PMA foods. The predominant effects of DF on PMAs and processed meats notably include enhanced gel strength, emulsion stability, improved water-holding capacity, and the formation of a uniform, porous microstructure. DF also commonly enhances textural properties like hardness, chewiness, springiness, and cohesiveness. While the impact of DF on processed meats mirrors that of PMAs, selecting the right DF source for specific applications requires considering factors such as chemical structure, solubility, size, concentration, processing conditions, and interactions with other components to achieve the desired outcomes.
Collapse
Affiliation(s)
| | - Ana C. Mendes
- Research Group for Food Production Engineering, Technical University of Denmark (DTU)-Food, Henrik Dams Allé B202, 2800 Kgs., 2800 Lyngby, Denmark
| |
Collapse
|
7
|
Antioxidant, Antibacterial, Anti-Inflammatory, and Antiproliferative Activity of Sorghum Lignin (Sorghum bicolor) Treated with Ultrasonic Pulses. Metabolites 2023; 13:metabo13030394. [PMID: 36984833 PMCID: PMC10053315 DOI: 10.3390/metabo13030394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
This investigation aimed to determine the effect of high-power ultrasonic pulses on the antioxidant, antibacterial, and antiproliferative activity of sorghum (Sorghum bicolor) lignin. A lignin yield of 7.35% was obtained using the organosolv method. Additionally, the best conditions of the ultrasonic pulses were optimized to obtain a more significant increase in antioxidant capacity, resulting in 10 min for all treatments, with amplitudes of 20% for DPPH and FRAP, 18% for ABTS, and 14% for total phenols. The effect of ultrasonic pulses was mainly observed with FRAP (1694.88 µmol TE/g), indicating that the main antioxidant mechanism of lignin is through electron transport. Sorghum lignin with and without ultrasonic pulses showed high percentages of hemolysis inhibition (>80%) at concentrations of 0.003 to 0.33 mg/mL. The AB blood group and, in general, all Rh- groups are the most susceptible to hemolysis. Lignin showed high anti-inflammatory potential due to heat and hypotonicity (>82%). A higher antimicrobial activity of lignin on Escherichia coli bacteria was observed. The lignins evaluated without sonication and sonication presented higher activity in the cell line PC-3. No effect was observed on the lignin structure with the FT-IR technique between sonication and non-sonication; however, the organosolv method helped extract pure lignin according to HPLC.
Collapse
|
8
|
Wang Y, Liu X, Liang L, Zhu Y, Zhang J, Luo L, Wang P, Liu D. The protective effect of quinoa on the gastric mucosal injury induced by absolute ethanol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:944-956. [PMID: 36066553 DOI: 10.1002/jsfa.12208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/31/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Gastric mucosal injury caused by ethanol is a common gastrointestinal disease. Quinoa (Chenopodium quinoa Willd.), as a nutrient-rich grain, plays a significant role in preventing and treating gastric mucosal damage. The present study aimed to explore the protective effect of quinoa on alcohol-induced gastric mucosal damage and its possible mechanism. RESULTS The ethanol-induced gastric mucosal injury rat model was used for in vivo experiments and H2 O2 -induced GES-1 cells for in vitro experiments to elucidate the protective effect of quinoa. The results show that quinoa water extract can increase the superoxide dismutase level and decrease the malondialdehyde level in vitro and in vivo. Furthermore, quinoa also reduced the bleeding point and bleeding area in rats with ethanol-induced gastric mucosal injury and improved gastric histopathological changes. H2 O2 significantly increased the levels of inflammatory factors in GES-1 cells, which were markedly ameliorated by quinoa water extract. Likewise, quinoa water extract regulated the protein expression levels of Nrf2, Keap1, HO-1, p-IKK, and p-NF-κB through Nrf2 and nuclear factor-κB signaling pathways, reducing the production of oxidative stress and inflammation, thereby repairing the damaged gastric mucosa. CONCLUSION The findings of this study demonstrated that quinoa shows protective effect against ethanol-induced gastric mucosal injury through its anti-inflammatory and anti-oxidant effects. We propose that our research will provide a reference for quinoa as a functional food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yansheng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Xinnan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Lipeng Liang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Yanru Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Lifei Luo
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Ping Wang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Dailin Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| |
Collapse
|
9
|
Biasi V, Huber E, de Melo APZ, Hoff RB, Verruck S, Barreto PLM. Antioxidant effect of blueberry flour on the digestibility and storage of Bologna-type mortadella. Food Res Int 2023; 163:112210. [PMID: 36596139 DOI: 10.1016/j.foodres.2022.112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The aim of the study was to add blueberry flour (BF) to Bologna-type mortadella as a natural antioxidant and to evaluate its activity during in vitro digestion and refrigerated storage. Five treatments of mortadella were prepared: without antioxidant, with sodium erythorbate and with the addition of three levels of BF: 0.05 %, 0.075 % and 0.1 %. Twenty-three phenolic compounds were quantified in blueberry fruits and twenty-eight in BF, with prevalence of chlorogenic acid. The presence of BF did not affect the proximal composition of the mortadella, but it had a small effect on pH, hardness (texture profile) and instrumental color, as well as reduced lipid oxidation during refrigerated storage (2-8 °C) for 90 days. During in vitro digestion, the addition of BF increased the content of total phenolic compounds and the antioxidant activity of mortadella (p < 0.05), among all simulated stages. At a concentration of 0.05 %, BF can be used as a synthetic antioxidant substitute in Bologna-type mortadella, enhancing the use of blueberry fruits in the form of flour and enriching the product with natural antioxidants.
Collapse
Affiliation(s)
- Vanessa Biasi
- Postgraduate Program in Food Science, Federal University of Santa Catarina (UFSC), Avenue Admar Gonzaga, 1346, Florianópolis, SC 88034-001, Brazil; Food Engineering Department, Federal Institute Catarinense (IFC), Highway SC 283 - km 17, Concórdia, SC, 89703-720, Brazil.
| | - Eduardo Huber
- Food Engineering Department, Federal Institute Catarinense (IFC), Highway SC 283 - km 17, Concórdia, SC, 89703-720, Brazil
| | - Ana Paula Zapelini de Melo
- Postgraduate Program in Food Science, Federal University of Santa Catarina (UFSC), Avenue Admar Gonzaga, 1346, Florianópolis, SC 88034-001, Brazil
| | - Rodrigo Barcellos Hoff
- Ministry of Agriculture, Livestock and Food Supply, Federal Laboratory of Animal and Plant Health and Inspection (LFDA) - RS, Advanced Laboratorial Section (SLAV) - SC, João Grumiche, St. 117, Kobrasol, São José, SC 88102-600, Brazil
| | - Silvani Verruck
- Postgraduate Program in Food Science, Federal University of Santa Catarina (UFSC), Avenue Admar Gonzaga, 1346, Florianópolis, SC 88034-001, Brazil
| | - Pedro Luiz Manique Barreto
- Postgraduate Program in Food Science, Federal University of Santa Catarina (UFSC), Avenue Admar Gonzaga, 1346, Florianópolis, SC 88034-001, Brazil
| |
Collapse
|
10
|
Liu C, Ma R, Tian Y. An overview of the nutritional profile, processing technologies, and health benefits of quinoa with an emphasis on impacts of processing. Crit Rev Food Sci Nutr 2022; 64:5533-5550. [PMID: 36510748 DOI: 10.1080/10408398.2022.2155796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Consumers are becoming increasingly conscious of adopting a healthy lifestyle and demanding food with high nutritional values. Quinoa (Chenopodium quinoa Willd.) has attracted considerable attention and is consumed worldwide in the form of a variety of whole and processed products owing to its excellent nutritional features, including richness in micronutrients and bioactive phytochemicals, well-balanced amino acids composition, and gluten-free properties. Recent studies have indicated that the diverse utilization and final product quality of this pseudo-grain are closely related to the processing technologies used, which can result in variations in nutritional profiles and health benefits. This review comprehensively summarizes the nutritional properties, processing technologies, and potential health benefits of quinoa, suggesting that quinoa plays a promising role in enhancing the nutrition of processed food. In particular, the effects of different processing technologies on the nutritional profile and health benefits of quinoa are highlighted, which can provide a foundation for the updating and upgrading of the quinoa processing industry. It further discusses the present quinoa-based food products containing quinoa as partial or whole substitute for traditional grains.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Biasi V, Huber E, Goldoni TSH, de Melo APZ, Hoff RB, Verruck S, Barreto PLM. Goldenberry flour as a natural antioxidant in Bologna-type mortadella during refrigerated storage and in vitro digestion. Meat Sci 2022; 196:109041. [DOI: 10.1016/j.meatsci.2022.109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
12
|
Meat extenders from different sources as protein-rich alternatives to improve the technological properties and functional quality of meat products. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Kim H, Lee MY, Lee J, Jo YJ, Choi MJ. Effects of Glucono-δ-Lactone and Transglutaminase on the Physicochemical and Textural Properties of Plant-Based Meat Patty. Foods 2022; 11:3337. [PMID: 36359949 PMCID: PMC9657963 DOI: 10.3390/foods11213337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Due to growing interest in health and sustainability, the demand for replacing animal-based ingredients with more sustainable alternatives has increased. Many studies have been conducted on plant-based meat, but only a few have investigated the effect of adding a suitable binder to plant-based meat to enhance meat texture. Thus, this study investigated the effects of the addition of transglutaminase (TG) and glucono-δ-lactone (GdL) on the physicochemical, textural, and sensory characteristics of plant-based ground meat products. The addition of a high quantity of GdL(G10T0) had an effect on the decrease in lightness (L* 58.98) and the increase in redness (a* 3.62). TG and GdL also decreased in terms of cooking loss (CL) and water holding capacity (WHC) of PBMPs. G5T5 showed the lowest CL (3.8%), while G3T7 showed the lowest WHC (86.02%). The mechanical properties also confirmed that G3T7-added patties have significantly high hardness (25.49 N), springiness (3.7 mm), gumminess (15.99 N), and chewiness (57.76 mJ). The improved textural properties can compensate for the chewability of PBMPs. Although the overall preference for improved hardness was not high compared to the control in the sensory test, these results provide a new direction for improving the textural properties of plant-based meat by using binders and forming fibrous structures.
Collapse
Affiliation(s)
- Haesanna Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Mi-Yeon Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Jiseon Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Yeon-Ji Jo
- Department of Food Processing and Distribution, Gangneung-Wonju National University, Gangneung-si 25457, Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
14
|
Huang M, Mehany T, Xie W, Liu X, Guo S, Peng X. Use of food carbohydrates towards the innovation of plant-based meat analogs. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Younis K, Ashfaq A, Ahmad A, Anjum Z, Yousuf O. A Critical review focusing the effect of ingredients on the textural properties of plant-based meat products. J Texture Stud 2022. [PMID: 35717605 DOI: 10.1111/jtxs.12704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
Plant-based meat alternatives have been studied for decades, but have recently gained more attraction in the food industries and research communities. Concern about animal welfare, health, environment and moral beliefs acts as a driving force for the growth of plant-based meat products. The most challenging task in the development of meat analog is to imitate the texture of conventional meat products. The fabrication of plant-based meat product requires a wise selection and formulation of ingredients to perfectly mimic the fibrous structure of meat. Top-down and bottom-up approaches are the two most commonly used structuring techniques for the preparation of plant-based meat products. Development of comminuted meat product is easy as compared to the whole-muscle type plant-based meat products. Several plant-based ingredients such as texturized and non-texturized proteins, fats, binding agents, flavoring and coloring agents accompanied with different processing techniques (extrusion, shear cell, wet spinning, electrospinning, and freeze structuring) are used in the preparation of meat analogs. This paper aims to discuss the impact of ingredients on the textural properties of plant-based meat products.
Collapse
Affiliation(s)
- Kaiser Younis
- Department of Bioengineering, Integral University, Lucknow, U.P., India
| | - Alweera Ashfaq
- Department of Bioengineering, Integral University, Lucknow, U.P., India
| | - Alisha Ahmad
- Department of Bioengineering, Integral University, Lucknow, U.P., India
| | - Zayeema Anjum
- Department of Bioengineering, Integral University, Lucknow, U.P., India
| | - Owais Yousuf
- Department of Bioengineering, Integral University, Lucknow, U.P., India
| |
Collapse
|
16
|
Moura MAFE, Martins BDA, Oliveira GPD, Takahashi JA. Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Crit Rev Food Sci Nutr 2022; 63:10691-10708. [PMID: 35698908 DOI: 10.1080/10408398.2022.2085657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review aimed to compare alternative protein sources in terms of nutritional composition and health benefits with the purpose of disseminating up-to-date knowledge and contribute for diversification of the food marked and consumers decision-making. Plant-based is the most well-established category of alternative proteins, but there is still room for diversification. Less conventional species such as chia seeds are prominent sources of ω-3 (∼60% total lipids), while hempseed and quinoa are notable sources of ω-6 (up to 58% and 61%, respectively). Edible insects and microalgae are alternative foods rich in protein (up to 70%), fibers (∼30%), as well as peptides and polysaccharides with antimicrobial, antioxidant, anti-hypertensive, antidiabetic, antidepressant, antitumor, and immunomodulatory activities. Additionally, lipid contents in insect larvae can be as high as 50%, on a dry weight basis, containing fatty acids with anti-inflammatory and antitumor properties. In contrast, edible fungi have low lipid contents (∼2%), but are rich in carbohydrates (up to 79%) and have balanced amino acid profiles. The results suggest that food formulations combining different alternative protein sources can meet dietary requirements. Further studies on flavoring and texturing processes will help to create meat and dairy analogs, thus helping to broaden acceptance and applicability of alternative protein sources.
Collapse
Affiliation(s)
| | - Bruna de Almeida Martins
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geane P de Oliveira
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jacqueline A Takahashi
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
17
|
Choque Delgado GT, Carlos Tapia KV, Pacco Huamani MC, Hamaker BR. Peruvian Andean grains: Nutritional, functional properties and industrial uses. Crit Rev Food Sci Nutr 2022; 63:9634-9647. [PMID: 35544604 DOI: 10.1080/10408398.2022.2073960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Andean geography induces favorable conditions for the growth of food plants of high nutritional and functional value. Among these plants are the Andean grains, which are recognized worldwide for their nutritional attributes. The objective of this article is to show the nutritional and functional properties, as well as industrial potential, of Andean grains. Quinoa, amaranth, canihua, and Andean corn are grains that contain bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activities that benefit the health of the consumer. Numerous in vitro and in vivo studies demonstrate their functional potential. These high-Andean crops could be used industrially to add value to other functional food products. These reports suggest the inclusion of these grains in the daily diets of people and the application of their active compounds in the food industry.
Collapse
Affiliation(s)
- Grethel Teresa Choque Delgado
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Katerin Victoria Carlos Tapia
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Maria Cecilia Pacco Huamani
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
18
|
Sangaré M, Karoui R. Evaluation and monitoring of the quality of sausages by different analytical techniques over the last five years. Crit Rev Food Sci Nutr 2022; 63:8136-8160. [PMID: 35333686 DOI: 10.1080/10408398.2022.2053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sausages are among the most vulnerable and perishable products, although those products are an important source of essential nutrients for human organisms. The evaluation of the quality of sausages becomes more and more required by consumers, producers, and authorities to thwarter falsification. Numerous analytical techniques including chemical, sensory, chromatography, and so on, are employed for the determination of the quality and authenticity of sausages. These methods are expensive and time consuming, and are often sensitive to significant sources of variation. Therefore, rapid analytical techniques such as fluorescence spectroscopy, near infrared (NIR), mid infrared (MIR), nuclear magnetic resonance (NMR), among others were considered helpful tools in this domain. This review will identify current gaps related to different analytical techniques in assessing and monitoring the quality of sausages and discuss the drawbacks of existing analytical methods regarding the quality and authenticity of sausages from 2015 up to now.
Collapse
Affiliation(s)
- Moriken Sangaré
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
- Institut Supérieur des Sciences et Médecine Vétérinaire de Dalaba, Département de Technologie et Contrôle des Produits Alimentaires, DTCPA, ISSMV/Dalaba, Guinée
- Univ. Gamal Abdel Nasser de Conakry, Guinée, Uganc, Guinée
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
| |
Collapse
|
19
|
Kurek MA, Onopiuk A, Pogorzelska-Nowicka E, Szpicer A, Zalewska M, Półtorak A. Novel Protein Sources for Applications in Meat-Alternative Products—Insight and Challenges. Foods 2022; 11:foods11070957. [PMID: 35407043 PMCID: PMC8997880 DOI: 10.3390/foods11070957] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 01/01/2023] Open
Abstract
Many people are increasingly interested in a vegetarian or vegan diet. Looking at the research and the available options in the market, there are two generations of products based on typical proteins, such as soy or gluten, and newer generation proteins, such as peas or faba beans, or even proteins based on previously used feed proteins. In the review, we present the characteristics of several proteins that can be consumed as alternatives to first-generation proteins used in vegan foods. In the following part of the work, we describe the research in which novel protein sources were used in terms of the product they are used for. The paper describes protein sources such as cereal proteins, oilseeds proteins coming from the cakes after oil pressing, and novel sources such as algae, insects, and fungus for use in meat analog products. Technological processes that can make non-animal proteins similar to meat are also discussed, as well as the challenges faced by technologists working in the field of vegan products.
Collapse
|
20
|
Ortiz-Gómez V, Fernández-Quintero A, Roa-Acosta DF, Bravo-Gómez JE, Solanilla-Duque JF. Physicochemical Characterization of Quinoa (Chenopodium quinoa cv. Nariño) Co-products Obtained by Wet Milling. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.851433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, great interest has been shown in pseudocereals for their high nutritional value. Wet milling has been used to obtain macromolecules such as proteins and starches. However, the co-products obtained from this food industry have been studied little. A factorial design Box-benhken was used to study the effect of surfactant concentration (SDS), sodium hydroxide (NaOH) concentration and maceration temperature on structural and colorimetric properties. Structural properties were evaluated by infrared spectroscopy (FTIR-ATR) and color changes by the CIElab tristimulus method (L*, a*, b*). A decrease in temperature and NaOH causes a decrease in lightness (L*), resulting in lower starch content and higher protein content in the co-product. This behavior was correlated with the infrared spectroscopy (FTIR-ATR) spectra. The spectra show a possible structural change in the amylose/amylopectin ratio of the starch granule at 1,012 cm−1, 1,077 cm−1, and 1,150 cm−1 bands, which are associated with glycosidic bonds, these bonds were sensitive to NaOH concentration. While those bands assigned to Amide II (1,563 cm−1) and Amide I (1,633 cm−1), were sensitive to the effect of NaOH and maceration temperature, evidencing that protein content in the co-products is variable and depends significantly on the extraction conditions. The co-products obtained by wet milling could be used in the development of functional foods, such as bread, snacks, pasta and other products.
Collapse
|
21
|
Sayas-Barberá E, Valero-Asencio MM, Navarro Rodríguez-Vera C, Fernández-López J, Haros CM, Pérez-Álvarez JÁ, Viuda-Martos M. Effect of Different Black Quinoa Fractions (Seed, Flour and Wet-Milling Coproducts) upon Quality of Meat Patties during Freezing Storage. Foods 2021; 10:foods10123080. [PMID: 34945629 PMCID: PMC8700905 DOI: 10.3390/foods10123080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, the quality of meat patty samples containing different black quinoa fractions (seed, flour and wet-milling coproducts) was evaluated during freezing preservation. Composition, physicochemical parameters (aw, pH, colour and texture), cooking properties, lipid oxidation and sensory characteristic were studied in four batches (control and 8% concentration of quinoa seed, flour and wet-milling coproducts added) at 30, 60 and 90 days of freezing (−20 ± 1 °C). Different black quinoa fraction addition affected (p < 0.05) physiochemical properties, improved cooking properties and reduced lipid oxidations during freezing storage. Batches with flour and wet-milling coproducts added were the most stable for texture parameters and lipid oxidation during freezing. The results obtained showed that quinoa wet-milling co-products could be considered a valuable sustainable and organic food ingredient, maintaining nutritional and global qualities of the fresh meat product. In addition, freezing storage is an effective way to prolong the shelf life of patties with different black quinoa fractions, added without affecting quality.
Collapse
Affiliation(s)
- Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (E.S.-B.); (M.M.V.-A.); (C.N.R.-V.); (J.F.-L.); (J.Á.P.-Á.)
| | - María Maite Valero-Asencio
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (E.S.-B.); (M.M.V.-A.); (C.N.R.-V.); (J.F.-L.); (J.Á.P.-Á.)
| | - Casilda Navarro Rodríguez-Vera
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (E.S.-B.); (M.M.V.-A.); (C.N.R.-V.); (J.F.-L.); (J.Á.P.-Á.)
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (E.S.-B.); (M.M.V.-A.); (C.N.R.-V.); (J.F.-L.); (J.Á.P.-Á.)
| | - Claudia Monika Haros
- Cereal Group, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980 Valencia, Spain;
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (E.S.-B.); (M.M.V.-A.); (C.N.R.-V.); (J.F.-L.); (J.Á.P.-Á.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (E.S.-B.); (M.M.V.-A.); (C.N.R.-V.); (J.F.-L.); (J.Á.P.-Á.)
- Correspondence: ; Tel.: +34-966-749-661
| |
Collapse
|
22
|
Bender D, Schönlechner R. Recent developments and knowledge in pseudocereals including technological aspects. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Amaranth, buckwheat, quinoa, and less known, canihua are the most important pseudocereals. Their high nutritional value is well recognized and they are increasingly used for the development of a wide range of starch-based foods, which has been fostered by intensified research data performed in recent years. In addition to health driven motivations, also environmental aspects like the ongoing climate change are an important stimulus to increase agricultural biodiversity again. As pseudocereals are botanically classified as dicotyledonous plants their chemical, physical and processing properties differ significantly from the monocotyledonous cereals. Most important factors that need to be addressed for processing is their smaller seed kernel size, their specific starch structure and granule architecture, their gluten-free protein, but also their dietary fibre and secondary plant metabolites composition. This review gives a condensed overview of the recent developments and gained knowledge with special attention to the technological and food processing aspects of these pseudocereals.
Collapse
Affiliation(s)
- D. Bender
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - R. Schönlechner
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
23
|
Baioumy AA, Bobreneva IV, Tvorogova AA, Abedelmaksoud TG. Effect of quinoa seed and tiger nut mixture on quality characteristics of low-fat beef patties. INTERNATIONAL FOOD RESEARCH JOURNAL 2021. [DOI: 10.47836/ifrj.28.5.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The present work aimed to investigate the effect of a newly proposed mixture of quinoa seeds and tiger nuts (QTM) (1:1) on low-fat beef patties. The chemical composition, vitamins, minerals, and antioxidant activity of QTM were determined. The chemical composition, water-holding capacity, cooking loss, and sensory evaluation of low-fat beef patties prepared with 10% QTM as a partial fat replacer were also studied. Microbiological quality of frozen minced meat semi-finished products (burger patties, at -18°C) for 126 days was also determined. Based on the results, QTM contained 14.35% lipid, 9.37% protein, and 11.38% dietary fibre. Moreover, QTM also contained good amount of minerals and vitamins. The antioxidant activity of QTM was 20.41 mg/g. Results also showed that the addition of QTM had a positive effect on the sensorial quality of beef patties. Chemical composition, water-holding capacity, cooking loss, and pH profiles of newly formulated burger patties significantly improved following the addition of 10% QTM as a partial fat replacer. During the storage of semi-finished products, thiobarbituric values showed that the newly formulated beef patties had a lower level of lipid oxidation as compared to control. With lower microbial loads and lipid oxidation, the shelf life of the newly formulated beef patties also significantly increased as compared to control. As the conclusion, QTM could be applied as a functional component in meat products.
Collapse
|
24
|
Perez‐Baez AJ, Camou JP, Gonzalez‐Aguilar G, Lucas‐Gonzalez R, Valenzuela‐Melendres M, Viuda‐Martos M. Roselle (
Hibiscus sabdariffa
L.) extracts added to Frankfurt‐type sausages: Effects on chemical, physicochemical, and sensorial properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna Judith Perez‐Baez
- Centro de Investigación en Alimentación y Desarrollo Laboratorio de Ciencia y Tecnología de la Carne Hermosillo México
| | - Juan Pedro Camou
- Centro de Investigación en Alimentación y Desarrollo Laboratorio de Ciencia y Tecnología de la Carne Hermosillo México
| | - Gustavo Gonzalez‐Aguilar
- Centro de Investigación en Alimentación y Desarrollo Coordinación de Tecnología de Alimentos de Origen Vegetal Hermosillo México
| | - Raquel Lucas‐Gonzalez
- IPOA Research Group Agro‐Food Technology Department Higher Polytechnic School of Orihuela Miguel Hernández University Orihuela Spain
| | - Martin Valenzuela‐Melendres
- Centro de Investigación en Alimentación y Desarrollo Laboratorio de Ciencia y Tecnología de la Carne Hermosillo México
| | - Manuel Viuda‐Martos
- IPOA Research Group Agro‐Food Technology Department Higher Polytechnic School of Orihuela Miguel Hernández University Orihuela Spain
| |
Collapse
|
25
|
Fernández-López J, Viuda-Martos M, Pérez-Alvarez JA. Quinoa and chia products as ingredients for healthier processed meat products: technological strategies for their application and effects on the final product. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Green banana biomass: Physicochemical and functional properties and its potential as a fat replacer in a chicken mortadella. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021; 10:foods10030600. [PMID: 33809143 PMCID: PMC7999387 DOI: 10.3390/foods10030600] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Meat analogue research and development focuses on the production of sustainable products that recreate conventional meat in its physical sensations (texture, appearance, taste, etc.) and nutritional aspects. Minced products, like burger patties and nuggets, muscle-type products, like chicken or steak-like cuts, and emulsion products, like Frankfurter and Mortadella type sausages, are the major categories of meat analogues. In this review, we discuss key ingredients for the production of these novel products, with special focus on protein sources, and underline the importance of ingredient functionality. Our observation is that structuring processes are optimized based on ingredients that were not originally designed for meat analogues applications. Therefore, mixing and blending different plant materials to obtain superior functionality is for now the common practice. We observed though that an alternative approach towards the use of ingredients such as flours, is gaining more interest. The emphasis, in this case, is on functionality towards use in meat analogues, rather than classical functionality such as purity and solubility. Another trend is the exploration of novel protein sources such as seaweed, algae and proteins produced via fermentation (cellular agriculture).
Collapse
|
28
|
Modification of NaCl structure as a sodium reduction strategy in meat products: An overview. Meat Sci 2021; 174:108417. [PMID: 33387830 DOI: 10.1016/j.meatsci.2020.108417] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022]
Abstract
Sodium chloride (NaCl) is an indispensable ingredient in meat products, but the consumption of high doses of sodium contained in their formulations may bring about negative health implications. The replacement of NaCl by other salts in meat products has been a technological challenge. Accordingly, this review highlights the importance of NaCl over other sodium and non‑sodium salts in the saltiness perception and proposes the use of reduced-size and shapes of NaCl to maximize saltiness perception, while using less NaCl dosages in meat products. However, the effect of matrix components (water, proteins and fats) on the final salty taste is of special consideration. To counteract the effect of the matrix components, two main routes of incorporation of different NaCl types in meat products are discussed: encapsulation and protection of NaCl by the hydrophobic component of the meat product. Given the limited number of publications using this potential strategy, more studies on the application of these technological strategies are required.
Collapse
|
29
|
Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydr Polym 2020; 248:116819. [DOI: 10.1016/j.carbpol.2020.116819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
|
30
|
Fernández-López J, Viuda-Martos M, Sayas-Barberá ME, Navarro-Rodríguez de Vera C, Lucas-González R, Roldán-Verdú A, Botella-Martínez C, Pérez-Alvarez JA. Chia, Quinoa, and Their Coproducts as Potential Antioxidants for the Meat Industry. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1359. [PMID: 33066505 PMCID: PMC7602150 DOI: 10.3390/plants9101359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
Chia and quinoa have gained popularity among consumers worldwide due to the wide variety of nutrients but also to the bioactive compounds that they contain. Lately, their processing has generated different coproducts (non-commercial grains, flour, partially deoiled flour, rich-fiber fraction, and oil, among others), which could be reincorporated to the food chain with important technological properties, antioxidant activity included. Both sets of ingredients have been revealed a great technological potential for meat product development and innovation, taking into account that oxidation is one of the main reactions responsible for their deterioration and shelf life reduction. This review focuses on the antioxidant compounds of chia and quinoa coproducts and on the strategies used to add them to meat products highlighting their effect on the lipid oxidation control. Apart from the different ways in which quinoa and chia can be incorporated into meat products and their antioxidant properties, innovative approaches for increasing this antioxidant effect and counteracting any negative alterations they may cause will be discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jose Angel Pérez-Alvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312-Alicante, Spain; (J.F.-L.); (M.V.-M.); (M.E.S.-B.); (C.N.-R.d.V.); (R.L.-G.); (A.R.-V.); (C.B.-M.)
| |
Collapse
|
31
|
Öztürk-Kerimoğlu B, Kavuşan HS, Tabak D, Serdaroğlu M. Formulating Reduced-fat Sausages with Quinoa or Teff Flours: Effects
on Emulsion Characteristics and Product Quality. Food Sci Anim Resour 2020; 40:710-721. [PMID: 32968724 PMCID: PMC7492178 DOI: 10.5851/kosfa.2020.e46] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022] Open
Abstract
This study dealt with the use of quinoa flour (QF) or teff flour (TF) as partial
beef fat replacers in the formulation of emulsion-type sausages. A control (C)
group was manufactured with 20% beef fat, while the other three groups
were formulated with 10% beef fat plus 5% QF (Q), 5% TF
(T), and 2.5% QF+2.5% TF (QT). Water-holding capacity of
the emulsions was higher in Q (81.81%), T (82.20%), and QT
(84.10%) samples than in C (64.83%) samples. Total expressible
fluid and expressible fat were the lowest in Q and T samples, indicating the
highest emulsion stability of those groups. Incorporation of QF and TF into
formulations increased moisture and carbohydrate contents while decreased fat
and energy values. Besides, the use of QF was effective to increase protein and
dietary fiber contents. T sausages had lower luminosity (L*) and higher
yellowness (b*) than C sausages, whilst Q sausages did not result in significant
color changes. Higher cook yield values were recorded in Q (97.96%), T
(98.21%), and QT (98.15%) samples compared with C (96.44%)
samples. Inclusion of QF and TF to formulation led to lower hardness and
gumminess, while utilization of TF was also effective to decrease chewiness.
Consequently, healthier emulsified sausages were obtained by the inclusion of QF
or TF that could decrease the fat content more than 50% without
sacrificing overall quality, bringing advantages by quinoa over teff for
increasing nutritional value and leading minimal modifications on color and
texture.
Collapse
Affiliation(s)
- Burcu Öztürk-Kerimoğlu
- Ege University, Engineering Faculty, Food
Engineering Department, 35100 Bornova, Izmir,
Turkey
- Corresponding author : Burcu
Öztürk Kerimoğlu, Ege University, Engineering Faculty, Food
Engineering Department, 35100 Bornova, Izmir, Turkey Tel:
+90-232-311-30-26 Fax: +90-232-311-48-31 E-mail:
| | - Hülya Serpil Kavuşan
- Ege University, Engineering Faculty, Food
Engineering Department, 35100 Bornova, Izmir,
Turkey
| | - Damla Tabak
- Ege University, Engineering Faculty, Food
Engineering Department, 35100 Bornova, Izmir,
Turkey
| | - Meltem Serdaroğlu
- Ege University, Engineering Faculty, Food
Engineering Department, 35100 Bornova, Izmir,
Turkey
| |
Collapse
|
32
|
Pintado T, Delgado-Pando G. Towards More Sustainable Meat Products: Extenders as a Way of Reducing Meat Content. Foods 2020; 9:E1044. [PMID: 32756372 PMCID: PMC7466187 DOI: 10.3390/foods9081044] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022] Open
Abstract
The low efficiency of animal protein (meat products) production is one of the main concerns for sustainable food production. However, meat provides high-quality protein among other compounds such as minerals or vitamins. The use of meat extenders, non-meat substances with high protein content, to partially replace meat, offers interesting opportunities towards the reformulation of healthier and more sustainable meat products. The objective of this review is to give a general point of view on what type of compounds are used as meat extenders and how they affect the physicochemical and sensory properties of reformulated products. Plant-based ingredients (pulses, cereals, tubers and fruits) have been widely used to replace up to 50% of meat. Mushrooms allow for higher proportions of meat substitution, with adequate results in reduced-sodium reformulated products. Insects and by-products from the food industry are novel approaches that present an opportunity to develop more sustainable meat products. In general, the use of meat extenders improves the yield of the products, with slight sensory modifications. These multiple possibilities make meat extenders' use the most viable and interesting approach towards the production of healthier meat products with less environmental impact.
Collapse
Affiliation(s)
- Tatiana Pintado
- Institute of Food Science, Technology and Nutrition (CSIC), José Antonio Novais 10, 28040 Madrid, Spain;
| | | |
Collapse
|
33
|
Uzlaşır T, Aktaş N, Gerçekaslan KE. Pumpkin Seed Oil as a Partial Animal Fat Replacer in Bologna-type Sausages. Food Sci Anim Resour 2020; 40:551-562. [PMID: 32734263 PMCID: PMC7372982 DOI: 10.5851/kosfa.2020.e32] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/06/2022] Open
Abstract
Beef fat was replaced with cold press pumpkin seed oil (PSO; 0%,
5%, 15%, and 20%) in the production of bologna-type
sausages. A value of pH, water-holding capacity (WHC), jelly-fat separation,
emulsion stability and viscosity values were determined in meat batters.
Thiobarbituric acid reactive substances (TBARS), color, and textural
characteristics (TPA, shear test, penetration test) were determined in
end-product at 1, 7, 14, 21, and 28 days of storage at 4°C. The pH values
were varied between 6.06 and 6.08. With the increase in the level of PSO in meat
batters, there was a significant increase in WHC, jelly-fat separation and
viscosity values (p<0.05) while a significant decrease in emulsion
stability (p<0.05). TBARS values of sausages were found to be
significantly higher than in the control group (p<0.05), and this trend
continued during storage. Increasing of PSO level were caused a significant
increase in L* and b* values while a decrease in a* value (p<0.05).
Hardness, adhesiveness and chewiness values were significantly reduced whereas
cohesiveness and resilience values increased (p<0.05). Maximum shear
force and work of shear was significantly decreased as the level of PSO
increased (p<0.05). Hardness, work of penetration and the resistance
during the withdrawal of the probe values (penetration tests) increased
significantly with the increase in the level of PSO (p<0.05). These
results indicate that PSO has potential to be use as a replacement of
animal-based fats in the production of bologna-type sausages.
Collapse
Affiliation(s)
- Türkan Uzlaşır
- Department of Food Engineering, Nevşehir Hacı Bektaş Veli University, Nevşehir 50300, Turkey
| | - Nesimi Aktaş
- Department of Food Engineering, Nevşehir Hacı Bektaş Veli University, Nevşehir 50300, Turkey
| | - Kamil Emre Gerçekaslan
- Department of Food Engineering, Nevşehir Hacı Bektaş Veli University, Nevşehir 50300, Turkey
| |
Collapse
|
34
|
Effects of Black Quinoa Wet-Milling Coproducts on the Quality Properties of Bologna-Type Sausages During Cold Storage. Foods 2020; 9:foods9030274. [PMID: 32138175 PMCID: PMC7142946 DOI: 10.3390/foods9030274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 11/16/2022] Open
Abstract
The incorporation of a new ingredient into foods could not only affect the intrinsic properties of the product but also its shelf life. The aim of this study was to investigate the effect of the black quinoa (both as whole seeds and as the fibre-rich fraction obtained as coproduct from its wet-milling process) on the shelf life of Bologna-type sausages during cold storage. Three treatments of Bologna-type sausages were produced: control, sausages with black quinoa seeds (2.5%), and sausages with their fibre-rich fraction (2.5%). The effect of the black quinoa added on the physicochemical properties (pH and colour), lipid oxidation, residual nitrite level, and microbiological quality of Bolognas during 21 days of cold storage was evaluated. Although the addition of quinoa products in Bologna-type sausages modified some colour parameters (day 0), these differences were masked through the storage period. Sausages with quinoa products added showing lipid oxidation values lower than the control for all the days studied. Sausages with quinoa products added showed higher residual nitrite levels than control at all measurement times during the storage period. The addition of black quinoa did not affect microbial stability during storage. Black quinoa products can be considered promising ingredients to be used as antioxidants and natural nitrate sources in Bologna-type sausages without affecting their microbial safety during storage.
Collapse
|