1
|
Tu Z, Li S, Xu A, Yu Q, Cao Y, Tao M, Wang S, Liu Z. Improvement of Summer Green Tea Quality Through an Integrated Shaking and Piling Process. Foods 2025; 14:1284. [PMID: 40238596 PMCID: PMC11989215 DOI: 10.3390/foods14071284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
Summer green tea often suffers from an inferior flavor, attributed to its bitterness and astringency. In this study, an integrated shaking and piling process was performed to improve the flavor of summer green tea. The results demonstrated a significant improvement in the sweet and kokumi flavors, accompanied by a reduction in umami, astringency, and bitterness following the treatment. Additionally, the yellowness and color saturation were also enhanced by the treatment. A total of 146 non-volatile metabolites (NVMs) were identified during the study. The elevated levels of sweet-tasting amino acids (L-proline, L-glutamine, and L-threonine), soluble sugars, and peptides (such as gamma-Glu-Gln and glutathione) contributed to the enhanced sweetness and kokumi. Conversely, the decreased levels of ester-catechins, flavonoid glycosides, and procyanidins resulted in a reduction in umami, astringency, and bitterness. Furthermore, the decreased levels of certain NVMs, particularly ascorbic acid and saponarin, played a crucial role in enhancing the yellowness and color saturation of the summer green tea. Our findings offered a novel theoretical framework and practical guidelines for producing high-quality summer green tea.
Collapse
Affiliation(s)
- Zheng Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
- The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Anan Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Qinyan Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Yanyan Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| |
Collapse
|
2
|
Xu L, Zhong X, Liu C, Ren Y, Huang Y, Liu Y, Feng S, Fu D, Zhou X, Sun M, Liu Y, Yang M. Iron deficiency and toxicity trigger divergent metabolic responses and adaptive plasticity in Ulmus pumila: Insights from integrated transcriptomic and metabolomic analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109601. [PMID: 39919495 DOI: 10.1016/j.plaphy.2025.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
Iron homeostasis is critical for plant growth; however, the mechanisms underlying responses to iron deficiency and toxicity remain poorly understood. We investigated the adaptive strategies of Ulmus pumila, focusing on leaf physiological, transcriptomic, and metabolomic responses to iron stresses. Both iron deficiency and toxicity impaired chlorophyll biosynthesis, PS II efficiency, and chloroplast ultrastructure, resulting in reduced photosynthetic capacity and etiolation/wilting phenotypes. Iron deficiency reduced antioxidant enzyme activity and ROS levels, while iron toxicity activated the antioxidant enzyme system in response to the ROS burst. Integrated transcriptomic and metabolomic analyses provided insights into the underlying mechanism of these divergent responses: iron deficiency promoted primary metabolic adjustments, particularly the upregulation of genes (e.g., MDH, ACO, and IDH) and metabolites (e.g., malic acid, citric acid, and fumaric acid) associated with the TCA cycle to meet energy demands. Conversely, iron toxicity triggered a metabolic shift from primary to secondary metabolism, upregulating the genes (e.g., CHS, CHI, and F3H) and metabolites (e.g., laricitrin, trifolin, and rutin) involved in flavonoids biosynthesis to mitigate oxidative stress. Overall, U. pumila employs distinct adaptive mechanisms to balance survival and growth under iron stress: prioritizing energy metabolism and iron uptake to meet energy demands and improve iron uptake efficiency under deficiency, and enhancing the secondary metabolism to mitigate oxidative damage under toxicity. These findings enhance understanding of plant nutrient homeostasis and stress adaptation, providing insights into mitigating the impacts of soil degradation on agriculture and forestry.
Collapse
Affiliation(s)
- Liren Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinyu Zhong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chong Liu
- Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yachao Ren
- Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei, 071000, China
| | - Yinran Huang
- Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yichao Liu
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, Hebei, 050061, China
| | - Shuxiang Feng
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, Hebei, 050061, China
| | - Donglin Fu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Mengying Sun
- Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei, 071000, China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Minsheng Yang
- Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei, 071000, China.
| |
Collapse
|
3
|
Wang K, Li C, Cao S, Lei C, Ji N, Zou Y, Tan M, Wang J, Zheng Y, Gao H. VOZ-dependent priming of salicylic acid-dependent defense against Rhizopus stolonifer by β-aminobutyric acid requires the TCP protein TCP2 in peach fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17176. [PMID: 39621553 DOI: 10.1111/tpj.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Vascular plant one-zinc finger (VOZ) transcription factors (TFs) play crucial roles in plant immunity. Nevertheless, how VOZs modulate defense signaling in response to elicitor-induced resistance is not fully understood. Here, the defense elicitor β-aminobutyric acid (BABA) resulted in the visible suppression of Rhizopus rot disease of peach fruit caused by Rhizopus stolonifer. Defense priming by BABA was notably associated with increased levels of salicylic acid (SA) and SA-dependent gene expression. Data-independent acquisition proteomic analysis revealed that two VOZ proteins (PpVOZ1 and PpVOZ2) were substantially upregulated in BABA-induced resistance (BABA-IR). Furthermore, the interaction of PpVOZ1 and PpVOZ2 and their potential target of the TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP)-family protein PpTCP2 screened from protein-protein interaction networks was confirmed by yeast two-hybrid (Y2H), luciferase complementation imaging and glutathione S-transferase pull-down assays. Furthermore, subcellular localization, yeast one-hybrid, electrophoretic mobility shift assay and dual-luciferase reporter assays demonstrated that nuclear localization of both PpVOZ1 and PpVOZ2 was critical for their contribution to BABA-IR, as these proteins potentiated the PpTCP2-mediated transcriptional activation of isochorismate synthase genes (ICS1/2). The overexpression of both PpVOZ1 and PpVOZ2 could activate the transcription of SA-dependent genes and provide disease resistance in transgenic Arabidopsis. In contrast, the ppvoz1cas9 and ppvoz2cas9 loss-of-function mutations and the voz1cas9 voz2cas9 double mutation attenuated BABA-IR against R. stolonifer. Therefore, the three identified positive TFs, PpVOZ1, PpVOZ2, and PpTCP2, synergistically contribute to the BABA-activated priming of systemic acquired resistance in postharvest peach fruit by a VOZ-TCP-ICS regulatory module.
Collapse
Affiliation(s)
- Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, P.R. China
| | - Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, P.R. China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Yanyu Zou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Meilin Tan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Jinsong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Haiyan Gao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, P.R. China
| |
Collapse
|
4
|
Wu L, Chen X, Lin J, Lin H, Liao N, Li C, Hu Y, Sun Y. Study on dynamic alterations of volatile organic compounds reveals aroma development over enzymatic-catalyzed process of Tieguanyin oolong tea production. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100227. [PMID: 39497732 PMCID: PMC11533622 DOI: 10.1016/j.fochms.2024.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024]
Abstract
To elucidate the formation of characteristic aroma over enzymatic-catalyzed processes (ECP), GC-MS-based volatile-metabolomic combined with desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) were employed to analyze the changes of volatile organic compounds (VOCs) in Tieguanyin tea. A total of 579 VOCs were obtained, from which 24 components involved in five pathways were identified as biomarkers. Among these, four VOCs including 2-furancarboxylic acid, 4-methylbenzaldehyde, N-benzylformamide, cuminaldehyde, were detected in both DESI-MSI and GC-MS analysis, exhibiting dynamic changes along processing steps. RNA-sequencing analysis indicated the genes referring to stress response were activated during tea processing, facilitating the accumulation of flora-fruity aroma in tea leaf. Metabolic pathways analysis revealed that the increase in floral-fruity related components such as volatile terpenoids, phenylpropanoids/benzenoids, indole, alongside a decrease in green leaf volatiles including (E)-2-Hexenal, (Z)-3-Hexenol, played a crucial role in development of characteristic aroma, which could be a feasible index for evaluating processing techniques or quality of oolong tea.
Collapse
Affiliation(s)
- Liangyu Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Xiaolan Chen
- Anxi Tiekuanyin Group, 1 Wulipo, Guanqiao Town, Anxi County 362441, PR China
| | - Jiaqi Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Hongzheng Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Ningkai Liao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Chenxue Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Yunfei Hu
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, 788 East Second Ring Road, Anxi 362300, PR China
| | - Yun Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| |
Collapse
|
5
|
Hao Z, Wang J, Zhuang J, Feng X, Lv H, Feng J, Ye S, Tian W, Pan G, Chen P, Lin H, Chu Q. Another inner truth of shaking: Water migration and transformation-advanced physicochemical alterations in tea leaves. Food Chem 2024; 467:142338. [PMID: 39647387 DOI: 10.1016/j.foodchem.2024.142338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Shaking, essential in oolong tea production, is becoming an innovative method to impart floral fragrance. Research on shaking primarily concentrates on biological underpinnings, including modifications in gene expression and stress-triggered enzymatic catalysis, and consequent physicochemical properties. Water phase and distribution, reshaped by shaking and affected the biological and physicochemical alterations of tea leaves, is always ignored. This work utilized TEM, LF-NMR, UPLC-QqQ-MS, and GC-TOF-MS to explore physicochemical alterations during shaking. Results revealed shaking induced stomatal opening, water migration from stems to leaf veins, and a reduction in free water, transformed into bound water. Mechanical stimulation disrupted cell microstructures, including vacuoles, chloroplasts, and cell walls, releasing precursors and enzyme substrates. Shaking triggered intracellular physicochemical reactions that decreased polyphenols, amino acids, chlorophyll, and carotenoids, while increasing organic acids and sugars. Also catalyzed the synthesis of aromatic compounds like (E)-nerolidol, β-ionone epoxide, and α-farnesene, shaping the floral-fruity aroma and mellow taste of tea.
Collapse
Affiliation(s)
- Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China.
| | - Jinyuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayun Zhuang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Helin Lv
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weisu Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guanjun Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China.
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Zheng J, Yu L, Aaqil M, Wang Q, Peng W, Zhuang L, Gong W, Zheng T, Zhao M, Wang C, Jiang X, Yan L, Yang R. Enhanced Fermentation of Pu-Erh Tea with Aspergillus niger: Quality and Microbial Community Analysis. Molecules 2024; 29:5647. [PMID: 39683805 DOI: 10.3390/molecules29235647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Post-fermented Pu-erh tea (PFPT) is a microbial fermented tea characterized by unique sensory attributes and multiple health benefits. Aspergillus niger is the dominant fungus involved in the fermentation process and plays a significant role in imparting the distinct characteristics of PFPT. To investigate the role of Aspergillus niger in the fermentation of Pu-erh tea, this study inoculated unsterilized sun-dried green tea with Aspergillus niger isolated from Pu-erh tea to enhance the fermentation process. Metabolites and microbial communities in sun-dried green tea (CK), fortified fermented tea (TF), and naturally fermented tea (NF) were analyzed using non-targeted metabolomics, 16S rDNA, and internal transcribed spacer sequencing. Non-targeted metabolomics revealed that Aspergillus niger significantly altered the metabolite profile of the tea samples, identifying a total of 200 different metabolites, with 95 showing significant increases and 105 significant decreases, predominantly enriched in metabolic pathways associated with amino acid biosynthesis and degradation. High-throughput sequencing revealed that although the relative abundance of the fungal community remained largely unchanged, the inoculation of Aspergillus niger significantly increased the abundance of Bacillales and Pseudomonas within the bacterial community, thereby influencing the dynamic balance of the microbial ecosystem. Collectively, the inoculation of Aspergillus niger altered the composition of the microbial community and metabolic activities, resulting in changes to the content of amino acid-dominated metabolites, thereby enhancing the flavor profile and overall quality of Pu-erh tea. These findings provide important insights for optimizing the production processes of Pu-erh tea and the application of microorganisms in other fermented foods.
Collapse
Affiliation(s)
- Jingchuan Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lijun Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Muhammad Aaqil
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qiaomei Wang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, China
| | - Wenshu Peng
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Li Zhuang
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| | - Wanying Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Tingting Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Miaomiao Zhao
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Chao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xingjiao Jiang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Yan
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Ruijuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
- Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| |
Collapse
|
7
|
Wang J, Qu L, Yu Z, Jiang Y, Yu C, Zhu X, Lin Q, Niu L, Yu Y, Lin Q, Shang Y, Yuan H, Hua J. Targeted quantitative metabolomic and flavor objective quantification technique reveal the impact mechanism of shaking on black tea quality and non-volatile metabolites. Food Chem 2024; 458:140226. [PMID: 38943961 DOI: 10.1016/j.foodchem.2024.140226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Shaking constitutes a pivotal technique for enhancing black tea quality; nevertheless, its impact on the transformation mechanism of non-volatile metabolites (NVMs) in black tea remains obscure. The present study aimed to investigate the impact of shaking-withering methods (SWM) and traditional-withering methods (TWM) on black tea quality and NVMs conversion. A total of 57 NVMs and 14 objective quantitative indicators were obtained. SWM enhanced sweetness and umami taste, as well as appearance and liquor color brightness of black tea. Eight key differential NVMs were identified by multivariate statistical and dose over threshold value analysis. Metabolic pathway and evolution law analysis revealed that SWM enhanced the oxidation of catechins and flavonol glycosides, promoted the decarboxylation of glutamic acid, then facilitated the formation of theaflavin-3,3'-digallate, finally enhanced the taste and color quality of black tea. This study offers theoretical guidance and technical support for the targeted processing of high-quality black tea.
Collapse
Affiliation(s)
- Jinjin Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Lichi Qu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Ziming Yu
- Xianning Academy of Agricultural Sciences, 168 Wenquan Hesheng Road, Xianning, Hubei 437199, PR China
| | - Yongwen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Chengfa Yu
- Fu'an Tea Industry Development Center, 11 Jiefang Road, Fu'an, Fujian, 355099, PR China
| | - Xizhe Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Qingju Lin
- Fu'an Tea Industry Development Center, 11 Jiefang Road, Fu'an, Fujian, 355099, PR China
| | - Linchi Niu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yaya Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Qing Lin
- Fu'an Tea Industry Development Center, 11 Jiefang Road, Fu'an, Fujian, 355099, PR China
| | - Yan Shang
- Hangzhou Zhishan Tea Co., LTD, 123 Tongwu Village Road West, Hangzhou, Zhejiang 310000, PR China
| | - Haibo Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Jinjie Hua
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
8
|
Hu Y, Wang J, Luo W, Tang J, Tuo Y, Liao N, Zhuang D, Yang K, Lin J, Zhang Y, Wu L. Study on metabolic variation reveals metabolites important for flavor development and antioxidant property of Hainan Dayezhong black tea. Food Res Int 2024; 196:115112. [PMID: 39614518 DOI: 10.1016/j.foodres.2024.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
To illustrate the development of chemical properties and characteristic flavor of Hainan Dayezhong black tea, the tea shoots under various manufacturing process were sampled and applied to targeted/widely-targeted metabolomic, transcriptomic, chemometric, and electronic sensory determinations. Totally, 2419 metabolites were identified in this study, of which 20 metabolites were selected as the biomarkers, mainly including amino acids, lipids, and pyrimidine derivatives. The metabolomic-transcriptomic integrated analysis indicated carbon fixation, flavonoid biosynthesis and amino acid metabolism were the major metabolic pathways over manufacturing process of Hainan Dayezhong black tea. The targeted metabolomic detection indicated the accumulations of free amino acids and reduction of total catechins, flavonol glycosides collectively contributed to the development of black tea taste; additionally, the antioxidative properties were decreasing along the production process. These results suggest that the tradeoff between bioactivity components and antioxidative capacity contribute to the characteristic flavor of Hainan Dayezhong black tea.
Collapse
Affiliation(s)
- Yunfei Hu
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, 788 East Second Ring Road, Anxi 362300, PR China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Jialin Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Wenyuan Luo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Jun Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Yanming Tuo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Ningkai Liao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Dawen Zhuang
- Hainan Zhenwuxiang Tea Industry Co., Ltd., 1 Shuimanxiang Road, Wuzhishan 572200, PR China
| | - Kehang Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Jinke Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Yue Zhang
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, 788 East Second Ring Road, Anxi 362300, PR China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Liangyu Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China.
| |
Collapse
|
9
|
Li Q, Hu Q, Ou X, He J, Yu X, Hao Y, Zheng Y, Sun Y. Insights into "Yin Rhyme": Analysis of nonvolatile components in Tieguanyin oolong tea during the manufacturing process. Food Chem X 2024; 23:101729. [PMID: 39253009 PMCID: PMC11381817 DOI: 10.1016/j.fochx.2024.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Tieguanyin (TGY) is renowned for its distinctive "Yin Rhyme" flavor. To elucidate the underlying formation mechanism, we conducted sensory evaluations, electronic tongue analysis, and widely-targeted metabolomics. Our sensory evaluations and electronic tongue results indicated that TGY exhibits a thick and mellow taste profile, contributing to the "Yin Rhyme" flavor. Metabolomics analysis of tea products revealed that TGY shows significantly higher concentrations of umami substances (L-glutamate, L-theanine) and bitter substances (valine, catechins) compared to Jinguanyin (JGY). Additionally, metabolomic analysis during different oolong tea processing stages revealed significant differences in 21 substances, including L-glutamate, L-theanine, valine, and catechins, between fresh leaves of both varieties. These substances exhibited distinct fluctuation patterns during processing, indicating that the cultivar plays a crucial role in developing the "Yin Rhyme" flavor, which was enhanced throughout processing. This study provides a theoretical foundation for understanding the formation of the unique "Yin Rhyme" flavor of TGY.
Collapse
Affiliation(s)
- Qiuming Li
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingcai Hu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxi Ou
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jihang He
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinru Yu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunzhi Hao
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yucheng Zheng
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Feng L, Liu P, Wang S, Teng J, Wang X, Zheng L, Ye F, Gui A, Xue J, Gao S, Zheng P. Effects of Microbial Proteins on Qingzhuan Tea Sensory Quality during Pile Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21089-21101. [PMID: 39267592 DOI: 10.1021/acs.jafc.4c06410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
To determine the effects of microbial proteins on Qingzhuan tea sensory quality during tea pile fermentation, tea leaf metabolomic and microorganism proteomic analyses were performed. In total, 1835 differential metabolites and 443 differentially expressed proteins of the microorganisms were identified. Correlation analysis between metabolomics and proteomics data revealed that the levels of microbial proteins EG II and CBH I cellulase may play important roles in cell wall construction and permeability, which were crucial for the interaction between tea leaves and microorganisms. Microbial proteins heat shock proteins (HSP), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and CuAO related to detoxification and stress responses showed a positive correlation with tea theanine, glutamine, γ-aminobutyric acid, glutamic acid, catechin, (-)-gallocatechin gallate, and (-)-catechin gallate, suggesting their effects on tea characteristic compound accumulation, thus affecting Qingzhuan tea sensory quality.
Collapse
Affiliation(s)
- Lin Feng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Panpan Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Shengpeng Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Jing Teng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Xueping Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Lin Zheng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Fei Ye
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Anhui Gui
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Jinjin Xue
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Shiwei Gao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Pengcheng Zheng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| |
Collapse
|
11
|
Wu W, Jiang X, Zhu Q, Yuan Y, Chen R, Wang W, Liu A, Wu C, Ma C, Li J, Zhang J, Peng Z. Metabonomics analysis of the flavor characteristics of Wuyi Rock Tea (Rougui) with "rock flavor" and microbial contributions to the flavor. Food Chem 2024; 450:139376. [PMID: 38648695 DOI: 10.1016/j.foodchem.2024.139376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Wuyi Rock Tea (WRT) has different characteristics of "rock flavor" due to different production areas. In this study, we investigated the flavor characteristics and key components of "rock flavor" and the influence of microorganisms on the substances by combining metabolomics and microbiomics with the Rougui WRTs from the Zhengyan, Banyan, and Waishan production areas. The results showed that Rougui has a strong floral and fruity aroma, which is mainly brought by hotrienol, and the sweet, smooth, and fresh taste is composed of epicatechin gallate, epigallocatechin, epigallocatechin gallate, caffeine, theanine, soluble sugar, and sweet and bitter amino acids. Bacteria Chryseobacterium, Pedobacter, Bosea, Agrobacterium, Stenotrophomonas, and Actinoplanes mainly influence the production of hotrienol, epicatechin gallate, and theanine. Fungi Pestalotiopsis, Fusarium, Elsinoe, Teichospora and Tetracladium mainly influence the production of non-volatile compounds. This study provides a reference for the biological formation mechanism of the characteristic aroma of WRT's "rock falvor".
Collapse
Affiliation(s)
- Wenmiao Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qi Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rongping Chen
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Wenzhen Wang
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Anxing Liu
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Chengjian Wu
- Wuyishan Kaijie Rock Tea City Co., LTD, Nanping 353000, China; Fujian Vocational College of Agriculture, Fuzhou 350119, China
| | | | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
12
|
Chen Y, Huang Y, An H, Liu J, Jiang Y, Ying J, Li S, Liu Z, Huang J. Effects of isolated scenting on the taste quality of broken green tea based on metabolomics. Food Chem X 2024; 22:101454. [PMID: 38808163 PMCID: PMC11130684 DOI: 10.1016/j.fochx.2024.101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
Liquid chromatography-mass spectrometry (LC-MS) combined with multivariate analysis were used to characterize the nonvolatile compounds of broken green tea and explore the effect of isolated scenting on metabolic profile and taste quality of broken green tea in this research. A total of 236 nonvolatile compounds were identified and 13 compounds were believed to be the key characteristic taste compounds of scented broken green tea. Meanwhile, the optimal isolated scenting time of broken green tea was determined to be 10 h based on the sensory evaluation and PLS results. The contents and types of flavonoids, organic acids and catechins lead to the difference of taste quality at different scenting times. Overall, these findings provided a theoretical basis for scenting to improve the taste of broken green tea, and provide a new idea for improving the taste of broken green tea.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yiwen Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Huimin An
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jiashun Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Youcang Jiang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jiaqi Ying
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Shi Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Wang J, Li Z. Effects of processing technology on tea quality analyzed using high-resolution mass spectrometry-based metabolomics. Food Chem 2024; 443:138548. [PMID: 38277939 DOI: 10.1016/j.foodchem.2024.138548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Fixation is a crucial step in green tea processing that can impact quality. In this study, we explored the differences in the chemical components of steamed and fried green teas made from the same batch of fresh tea leaves using different fixing methods. Results showed that concentrations of sucrose and free amino acids were significantly higher in steamed green tea. Abundances of 12 compounds including purine nucleoside, pyrimidine nucleoside derivatives, and catechins were higher in fried green tea, while 34 compounds such as amino acids and their derivatives, benzofurans and flavonoids were higher in steamed green tea. Thus, steaming retained more compounds associated with sweet and fresh tastes, such as free amino acids, while frying produced more compounds with bitter tastes, such as catechin. This might explain why steamed green tea is mellower than fried tea.
Collapse
Affiliation(s)
- Jie Wang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Li R, Wang T, Bo N, Wang Q, Chen Q, Liang Z, Guan Y, Jiang B, Ma Y, Zhao M. The carbohydrate metabolism and expression of carbohydrate-active enzyme genes in Aspergillus luchuensis fermentation of tea leaves. Front Microbiol 2024; 15:1408645. [PMID: 38894966 PMCID: PMC11183108 DOI: 10.3389/fmicb.2024.1408645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Carbohydrates, which make up 20 to 25% of tea beverages, are responsible for their flavor and bioactivity. Carbohydrates of pu-erh tea change during microbial fermentation and require further research. In this study, we examined the carbohydrate metabolism and expression of carbohydrate-active enzyme genes during the fermentation of tea leaves with Aspergillus luchuensis. Methods Widely targeted metabolomics analysis, high-performance anion-exchange chromatography measurements, and transcriptomics were used in this study. Results After fermentation, the levels of soluble sugar, hemicellulose, lignin, eight monosaccharides, and seven sugar alcohols increased. Meanwhile, the relative contents of polysaccharides, D-sorbitol, D-glucose, and cellulose decreased. High expression of 40 genes encoding 16 carbohydrate enzymes was observed during fermentation (FPKM>10). These genes encode L-iditol 2-dehydrogenase, pectinesterase, polygalacturonase, α-amylase, glucoamylase, endoglucanase, β-glucosidase, β-galactosidase, α-galactosidase, α-glucosidase, and glucose-6-phosphate isomerase, among others. Discussion These enzymes are known to break down polysaccharides and cell wall cellulose, increasing the content of monosaccharides and soluble sugars.
Collapse
Affiliation(s)
- Ruoyu Li
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Teng Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Nianguo Bo
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qi Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiuyue Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengwei Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yanhui Guan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Jiang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Ma
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ming Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
15
|
Wan Y, Huang J, Tang Q, Zhang S, Qin H, Dong Y, Wang X, Qiu C, Huang M, Zhang Z, Zhang Y, Zhou R. Characterizing the Contribution of Functional Microbiota Cultures in Pit Mud to the Metabolite Profiles of Fermented Grains. Foods 2024; 13:1597. [PMID: 38890826 PMCID: PMC11171501 DOI: 10.3390/foods13111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Elevating the flavor profile of strong flavors Baijiu has always been a focal point in the industry, and pit mud (PM) serves as a crucial flavor contributor in the fermentation process of the fermented grains (FG). This study investigated the influence of wheat flour and bran (MC and FC) as PM culture enrichment media on the microbiota and metabolites of FG, aiming to inform strategies for improving strong-flavor Baijiu flavor. Results showed that adding PM cultures to FG significantly altered its properties: FC enhanced starch degradation to 51.46% and elevated reducing sugar content to 1.60%, while MC increased acidity to 2.11 mmol/10 g. PM cultures also elevated FG's ester content, with increases of 0.36 times for MC-FG60d and 1.48 times for FC-FG60d compared to controls, and ethyl hexanoate rising by 0.91 times and 1.39 times, respectively. Microbial analysis revealed that Lactobacillus constituted over 95% of the Abundant bacteria community, with Kroppenstedtia or Bacillus being predominant among Rare bacteria. Abundant fungi included Rasamsonia, Pichia, and Thermomyces, while Rare fungi consisted of Rhizopus and Malassezia. Metagenomic analysis revealed bacterial dominance, primarily consisting of Lactobacillus and Acetilactobacillus (98.80-99.40%), with metabolic function predictions highlighting genes related to metabolism, especially in MC-FG60d. Predictions from PICRUSt2 suggested control over starch, cellulose degradation, and the TCA cycle by fungal subgroups, while Abundant fungi and bacteria regulated ethanol and lactic acid production. This study highlights the importance of PM cultures in the fermentation process of FG, which is significant for brewing high-quality, strong-flavor Baijiu.
Collapse
Affiliation(s)
- Yingdong Wan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Qiuxiang Tang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Suyi Zhang
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Hui Qin
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Yi Dong
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Xiaojun Wang
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Chuanfeng Qiu
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Mengyang Huang
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Zhu Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Yi Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| |
Collapse
|
16
|
Ye J, Zhang Q, Li M, Wang Y, Jia M, Hong L, Chen Y, Pang X, Jia X, Wang H. Tea Quality of the Mysterious "Dahongpao Mother Tree" ( Camellia sinensis). Foods 2024; 13:1548. [PMID: 38790849 PMCID: PMC11121314 DOI: 10.3390/foods13101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The quality of the Dahongpao mother tree (Camellia sinensis) remains a mystery to this day. In this study, for the first time, the differences between the Dahongpao mother tree (MD) and Dahongpao cuttings (PD), in terms of odor characteristics and taste characteristics were analyzed by metabomics. The results showed that MD had stronger floral, fruity, green, and woody odor characteristics than PD, and that the contributions were mainly from dihydromyrcenol, methyl salicylate, 2-isobutylpyrazine, 1,6-dihydrocarveol, gamma-terpineol, and linalyl acetate. Further, fresh and brisk taste and mellowness taste characteristics of MD were significantly higher than PD, with contributions mainly from amino acids and derivatives and organic acids. Secondly, bitterness taste characteristics of PD were significantly higher than MD, with contributions from phenolic acids, flavones, and flavonols. This study preliminarily unraveled the legend of the superior quality of the Dahongpao mother tree, and also provided an important reference for the breeding of tea-tree cuttings.
Collapse
Affiliation(s)
- Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (J.Y.); (Q.Z.)
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (J.Y.); (Q.Z.)
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Miao Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (J.Y.); (Q.Z.)
| | - Lei Hong
- College of Life Science, Longyan University, Longyan 364012, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiling Chen
- College of Life Science, Longyan University, Longyan 364012, China
| | - Xiaomin Pang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (J.Y.); (Q.Z.)
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (J.Y.); (Q.Z.)
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (J.Y.); (Q.Z.)
- College of Life Science, Longyan University, Longyan 364012, China
| |
Collapse
|
17
|
Xu L, Liu C, Ren Y, Huang Y, Liu Y, Feng S, Zhong X, Fu D, Zhou X, Wang J, Liu Y, Yang M. Nanoplastic toxicity induces metabolic shifts in Populus × euramericana cv. '74/76' revealed by multi-omics analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134148. [PMID: 38565012 DOI: 10.1016/j.jhazmat.2024.134148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
There is increasing global concern regarding the pervasive issue of plastic pollution. We investigated the response of Populus × euramericana cv. '74/76' to nanoplastic toxicity via phenotypic, microanatomical, physiological, transcriptomic, and metabolomic approaches. Polystyrene nanoplastics (PS-NPs) were distributed throughout the test plants after the application of PS-NPs. Nanoplastics principally accumulated in the roots; minimal fractions were translocated to the leaves. In leaves, however, PS-NPs easily penetrated membranes and became concentrated in chloroplasts, causing thylakoid disintegration and chlorophyll degradation. Finally, oxidant damage from the influx of PS-NPs led to diminished photosynthesis, stunted growth, and etiolation and/or wilting. By integrating dual-omics data, we found that plants could counteract mild PS-NP-induced oxidative stress through the antioxidant enzyme system without initiating secondary metabolic defense mechanisms. In contrast, severe PS-NP treatments promoted a shift in metabolic pattern from primary metabolism to secondary metabolic defense mechanisms, an effect that was particularly pronounced during the upregulation of flavonoid biosynthesis. Our findings provide a useful framework from which to further clarify the roles of key biochemical pathways in plant responses to nanoplastic toxicity. Our work also supports the development of effective strategies to mitigate the environmental risks of nanoplastics by biologically immobilizing them in contaminated lands.
Collapse
Affiliation(s)
- Liren Xu
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Chong Liu
- Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Yachao Ren
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| | - Yinran Huang
- Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Yichao Liu
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, Hebei 050061, China.
| | - Shuxiang Feng
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, Hebei 050061, China.
| | - Xinyu Zhong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Donglin Fu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Xiaohong Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Jinmao Wang
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Minsheng Yang
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| |
Collapse
|
18
|
Huang X, Zhu Y, Su W, Song S, Chen R. Widely-targeted metabolomics and transcriptomics identify metabolites associated with flowering regulation of Choy Sum. Sci Rep 2024; 14:10682. [PMID: 38724517 PMCID: PMC11081954 DOI: 10.1038/s41598-024-60801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Choy Sum, a stalk vegetable highly valued in East and Southeast Asia, is characterized by its rich flavor and nutritional profile. Metabolite accumulation is a key factor in Choy Sum stalk development; however, no research has focused on metabolic changes during the development of Choy Sum, especially in shoot tip metabolites, and their effects on growth and flowering. Therefore, in the present study, we used a widely targeted metabolomic approach to analyze metabolites in Choy Sum stalks at the seedling (S1), bolting (S3), and flowering (S5) stages. In total, we identified 493 metabolites in 31 chemical categories across all three developmental stages. We found that the levels of most carbohydrates and amino acids increased during stalk development and peaked at S5. Moreover, the accumulation of amino acids and their metabolites was closely related to G6P, whereas the expression of flowering genes was closely related to the content of T6P, which may promote flowering by upregulating the expressions of BcSOC1, BcAP1, and BcSPL5. The results of this study contribute to our understanding of the relationship between the accumulation of stem tip substances during development and flowering and of the regulatory mechanisms of stalk development in Choy Sum and other related species.
Collapse
Affiliation(s)
- Xinmin Huang
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China
| | - Yunna Zhu
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Wei Su
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Shiwei Song
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| | - Riyuan Chen
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Lin F, Wu H, Li Z, Huang Y, Lin X, Gao C, Wang Z, Yu W, Sun W. Effect of Mechanical Damage in Green-Making Process on Aroma of Rougui Tea. Foods 2024; 13:1315. [PMID: 38731686 PMCID: PMC11083345 DOI: 10.3390/foods13091315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Rougui Tea (RGT) is a typical Wuyi Rock Tea (WRT) that is favored by consumers for its rich taste and varied aroma. The aroma of RGT is greatly affected by the process of green-making, but its mechanism is not clear. Therefore, in this study, fresh leaves of RGT in spring were picked, and green-making (including shaking and spreading) and spreading (unshaken) were, respectively, applied after sun withering. Then, they were analyzed by GC-TOF-MS, which showed that the abundance of volatile compounds with flowery and fruity aromas, such as nerolidol, jasmine lactone, jasmone, indole, hexyl hexanoate, (E)-3-hexenyl butyrate and 1-hexyl acetate, in green-making leaves, was significantly higher than that in spreading leaves. Transcriptomic and proteomic studies showed that long-term mechanical injury and dehydration could activate the upregulated expression of genes related to the formation pathways of the aroma, but the regulation of protein expression was not completely consistent. Mechanical injury in the process of green-making was more conducive to the positive regulation of the allene oxide synthase (AOS) branch of the α-linolenic acid metabolism pathway, followed by the mevalonate (MVA) pathway of terpenoid backbone biosynthesis, thus promoting the synthesis of jasmonic acid derivatives and sesquiterpene products. Protein interaction analysis revealed that the key proteins of the synthesis pathway of jasmonic acid derivatives were acyl-CoA oxidase (ACX), enoyl-CoA hydratase (MFP2), OPC-8:0 CoA ligase 1 (OPCL1) and so on. This study provides a theoretical basis for the further explanation of the formation mechanism of the aroma substances in WRT during the manufacturing process.
Collapse
Affiliation(s)
- Fuming Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China;
| | - Huini Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterlnary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China;
| | - Xiying Lin
- Fuding Tea Technology Promotion Station, Ningde 355200, China;
| | - Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Wenquan Yu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| |
Collapse
|
20
|
Lin J, Lin H, Li C, Liao N, Zheng Y, Yu X, Sun Y, Wu L. Unveiling characteristic metabolic accumulation over enzymatic-catalyzed process of Tieguanyin oolong tea manufacturing by DESI-MSI and multiple-omics. Food Res Int 2024; 181:114136. [PMID: 38448105 DOI: 10.1016/j.foodres.2024.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/08/2024]
Abstract
To achieve an integrative understanding of the spatial distribution and chronological flavoring compounds accumulation, desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) and multi-omics techniques were performed on the leaf samples collected from the enzymatic-catalyzed-process (ECP) stage of Tieguanyin oolong tea manufacturing. The result of DESI-MSI visualization indicated transform or re-distribution of catechins, flavonols and amino acids were on-going attributing to the multi-stress over ECP stage. Out of identified 2621 non-volatiles and 45,771 transcripts, 43 non-volatiles and 12 co-expressed pathways were screened out as biomarkers and key cascades in response to adverse conditions. The targeted metabolic analysis on the characteristic flavoring compounds showed that the accumulations of free amino acids were enhanced, while catechins, flavonol glycosides, and alkaloids exhibited dynamic changes. This result suggests withering and turning-over process are compatible and collectively regulate the metabolic accumulation and development of flavoring metabolites, facilitating to the development of characteristic quality of Tieguanyin tea.
Collapse
Affiliation(s)
- Jiaqi Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China
| | - Hongzheng Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China
| | - Chenxue Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China
| | - Ningkai Liao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China
| | - Yucheng Zheng
- College of Tea and Food Science, Wuyi University, 358 Baihua Road, Wuyishan City, Fujian Province 354300, PR China
| | - Xinru Yu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China
| | - Yun Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China.
| | - Liangyu Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China.
| |
Collapse
|
21
|
Li C, Lin J, Hu Q, Sun Y, Wu L. An integrated metabolomic and transcriptomic analysis reveals the dynamic changes of key metabolites and flavor formation over Tieguanyin oolong tea production. Food Chem X 2023; 20:100952. [PMID: 37920364 PMCID: PMC10618703 DOI: 10.1016/j.fochx.2023.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
To interpret the formation characteristic flavor during oolong tea manufacturing process, the dynamic changes of key flavor components in samples from various processing steps of Tieguanyin oolong tea production were investigated using widely-targeted metabolomic and the transcriptomic approaches. As a result, a total of 1078 metabolites were determined, of which 62 compounds were identified as biomarkers significantly changed over the manufacturing process. Quantitative determination of the total 50,343 transcripts showed 7480 of them were co-expressed different genes. Glutamic acid served as a critical metabolism hub and a signaling molecule for diverse stress responses. Additionally, the targeted quantification results showed that the contents of catechins and xanthine alkaloids in dried tea were dramatically decreased by 20.19% and 7.15% respectively than those in fresh leaves, which potentially contributed to the alleviation of astringent or bitter palates, promoting the characteristic mellow and rich flavor of Tieguanyin oolong tea.
Collapse
Affiliation(s)
- Chenxue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Jiaqi Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Qingcai Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
22
|
Hu Q, Zheng Y, Yang Y, Ni ZX, Chen B, Wu Z, Huang H, Wu Q, Zhou ZW, Gao S, Lai Z, Lin H, Sun Y. Widely targeted metabolomics analysis reveals the formation of nonvolatile flavor qualities during oolong tea manufacturing: a case study of Jinguanyin. Front Nutr 2023; 10:1283960. [PMID: 38152463 PMCID: PMC10751955 DOI: 10.3389/fnut.2023.1283960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Background The manufacturing processes of oolong tea significantly impact its nonvolatile components, leading to the emergence of distinct flavor attributes. Understanding the dynamic changes in nonvolatile components during the manufacturing stages of the Jinguanyin (JGY) cultivar is crucial for unraveling the potential mechanism behind flavor formation. Methods Comprehensive metabolomics and sensomics analyses were conducted to investigate the dynamic changes in nonvolatile components throughout various phases of oolong tea processing, focusing on the JGY cultivar. Results A total of 1,005 nonvolatile metabolites were detected, with 562 recognized as significant differential metabolites during various phases of oolong tea processing. Notably, the third turning-over, third setting, and high-temperature treatments exhibited the most significant effects on the nonvolatile metabolites of oolong tea. JGY finished tea demonstrated a characteristic flavor profile, marked by mellowness, sweetness in aftertaste, and a significant Yin rhyme. This flavor profile was collectively promoted by the accumulation of amino acids and organic acids, the decrease in flavonols (3-O-glycosides) and sugar substances, the alteration of phenolic acids, and the stabilization of caffeine. Conclusion This study contribute to the understanding of the formation of oolong tea flavor qualities. The dynamic changes observed in various types of nonvolatile compounds during oolong tea processing shed light on the intricate interplay of metabolites and their influence on the final flavor characteristics.
Collapse
Affiliation(s)
- Qingcai Hu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yucheng Zheng
- College of Tea and Food Science, Wuyi University, Nanping, China
| | - Yun Yang
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-Xin Ni
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bin Chen
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zongjie Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiqing Huang
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingyang Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-wei Zhou
- College of Life Science, Ningde Normal University, Ningde, China
| | - Shuilian Gao
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongzheng Lin
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
23
|
Du Y, Lin Y, Zhang K, Rothenberg DO, Zhang H, Zhou H, Su H, Zhang L. The Chemical Composition and Transcriptome Analysis Reveal the Mechanism of Color Formation in Tea ( Camellia sinensis) Pericarp. Int J Mol Sci 2023; 24:13198. [PMID: 37686006 PMCID: PMC10487661 DOI: 10.3390/ijms241713198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
To elucidate the molecular mechanisms underlying the differential metabolism of albino (white), green, and purple pericarp coloration, biochemical profiling and transcriptome sequencing analyses were performed on three different tea pericarps, Zhongbaiyihao (Camellia sinensis L. var. Zhongbai), Jinxuan (Camellia sinensis L. var. Jinxuan), and Baitangziya (Camellia sinensis L. var. Baitang). Results of biochemical analysis revealed that low chlorophyll content and low chlorophyll/carotene ratio may be the biochemical basis for albino characteristics in the 'Zhongbaiyihao' pericarp. The differentially expressed genes (DEGs) involved in anthocyanin biosynthesis, including DFR, F3'5'H, CCoAOMT, and 4-coumaroyl-CoA, were highly expressed in the purple 'Baitangziya' pericarp. In the chlorophyll synthesis of white pericarp, GUN5 (Genome Uncoupled 5) and 8-vinyl-reductase both showed high expression levels compared to the green one, which indicated that albino 'Zhongbaiyihao' pericarp had a higher chlorophyll synthesis capacity than 'Jinxuan'. Meanwhile, chlorophyllase (CLH, CSS0004684) was lower in 'Baitang' than in 'Jinxuan' and 'Zhongbaiyihao' pericarp. Among the differentially expressed transcription factors, MYB59, WRKY41-like2 (CS ng17509), bHLH62 like1 (CS ng6804), and bHLH62-like3 (CSS0039948) were downregulated in Jinxuan pericarp, suggesting that transcription factors played a role in regulating tea pericarp coloration. These findings provide a better understanding of the molecular mechanisms and theoretical basis for utilizing functional components of tea pericarp.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lingyun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510640, China; (Y.D.); (Y.L.); (K.Z.); (D.O.R.); (H.Z.); (H.Z.); (H.S.)
| |
Collapse
|
24
|
Kong W, Zhu Q, Zhang Q, Zhu Y, Yang J, Chai K, Lei W, Jiang M, Zhang S, Lin J, Zhang X. 5mC DNA methylation modification-mediated regulation in tissue functional differentiation and important flavor substance synthesis of tea plant ( Camellia sinensis L.). HORTICULTURE RESEARCH 2023; 10:uhad126. [PMID: 37560013 PMCID: PMC10407603 DOI: 10.1093/hr/uhad126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 08/11/2023]
Abstract
In plants, 5mC DNA methylation is an important and conserved epistatic mark involving genomic stability, gene transcriptional regulation, developmental regulation, abiotic stress response, metabolite synthesis, etc. However, the roles of 5mC DNA methylation modification (5mC methylation) in tea plant growth and development (in pre-harvest processing) and flavor substance synthesis in pre- and post-harvest processing are unknown. We therefore conducted a comprehensive methylation analysis of four key pre-harvest tissues (root, leaf, flower, and fruit) and two processed leaves during oolong tea post-harvest processing. We found that differential 5mC methylation among four key tissues is closely related to tissue functional differentiation and that genes expressed tissue-specifically, responsible for tissue-specific functions, maintain relatively low 5mC methylation levels relative to non-tissue-specifically expressed genes. Importantly, hypomethylation modifications of CsAlaDC and TS/GS genes in roots provided the molecular basis for the dominant synthesis of theanine in roots. In addition, integration of 5mC DNA methylationomics, metabolomics, and transcriptomics of post-harvest leaves revealed that content changes in flavor metabolites during oolong tea processing were closely associated with transcription level changes in corresponding metabolite synthesis genes, and changes in transcript levels of these important synthesis genes were strictly regulated by 5mC methylation. We further report that some key genes during processing are regulated by 5mC methylation, which can effectively explain the content changes of important aroma metabolites, including α-farnesene, nerolidol, lipids, and taste substances such as catechins. Our results not only highlight the key roles of 5mC methylation in important flavor substance synthesis in pre- and post-harvest processing, but also provide epimutation-related gene targets for future improvement of tea quality or breeding of whole-tissue high-theanine varieties.
Collapse
Affiliation(s)
- Weilong Kong
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Yiwang Zhu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Jingjing Yang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Kun Chai
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Wenlong Lei
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Mengwei Jiang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Shengcheng Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| |
Collapse
|
25
|
Jiang L, Lu Y, Ma Y, Liu Z, He Q. Comprehensive investigation on volatile and non-volatile metabolites in low-salt doubanjiang with different fermentation methods. Food Chem 2023; 413:135588. [PMID: 36758388 DOI: 10.1016/j.foodchem.2023.135588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/18/2022] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Doubanjiang is a well-known fermented condiment in China, but the high-salt concentration in its traditional manufacture process greatly lengthens the fermentation time, and leads to potential health risks. Here, the effects of salt reduction and co-inoculated starters (Tetragenococcus halophilus and Zygosaccharomyces rouxii) on the volatile metabolites (VMs) and non-volatile metabolites (NVMs) of doubanjiang were investigated using metabolomics technology and chemometrics analysis. Results showed that 75 VMs were identified, and 12 of them had significant aroma contribution (ROVAs ≥ 1). In addition, 106 NVMs were defined as significantly different metabolites (p < 0.05; VIP ≥ 1). Salt reduction could significantly increase the concentrations of VMs, but this strategy also promoted some undesirable odors like 2-phetylfuran and hexanoic acid, which could be totally suppressed by inoculation of starter. Moreover, the two starters improved amino acid, ester, and acid metabolites. This study provides a deeper insight into the development of low-salt fermented foods.
Collapse
Affiliation(s)
- Li Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yunhao Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Yi Ma
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zishan Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
26
|
Jiang N, Hou S, Liu Y, Ren P, Xie N, Yuan Y, Hao Q, Liu M, Zhao Z. Combined LC-MS-based metabolomics and GC-IMS analysis reveal changes in chemical components and aroma components of Jujube leaf tea during processing. FRONTIERS IN PLANT SCIENCE 2023; 14:1179553. [PMID: 37265633 PMCID: PMC10231682 DOI: 10.3389/fpls.2023.1179553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Making tea from jujube leaves changed the chemical composition and aroma composition of jujube leaves. Here, Through LC-MS, GC-IMS, and GC-MS technology, we have revealed the effect of jujube leaf processing changes on metabolites. LC-MS identified 468 non-volatile metabolites, while GC-IMS and GC-MS detected 52 and 24 volatile metabolites, respectively. 109 non-volatile metabolites exhibiting more pronounced differences were screened. Most lipids and lipid-like molecules, organic acids, amino acids, and flavonoids increased significantly after processing. GC-IMS and GC-MS analysis revealed that the contents of aldehydes and ketones were significantly increased, while esters and partial alcohols were decreased after processing into jujube leaf tea. The main flavor substances of fresh jujube leaf and jujube leaf tea were eugenol and (E) - 2-Hexenal, respectively. Furthermore, amino acids and lipids were closely linked to the formation of volatile metabolites. Our study provided new insights into the changes in metabolites of jujube leaves processed into jujube leaf tea, and had great potential for industrial application. It laid a foundation for further research on fruit tree leaf tea.
Collapse
Affiliation(s)
- Nan Jiang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Shujuan Hou
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuye Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Peixing Ren
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Nuoyu Xie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Ye Yuan
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Qing Hao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhihui Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
27
|
Wen L, Yang L, Chen C, Li J, Fu J, Liu G, Kan Q, Ho CT, Huang Q, Lan Y, Cao Y. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods. Crit Rev Food Sci Nutr 2023; 64:8367-8383. [PMID: 37068005 DOI: 10.1080/10408398.2023.2199425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fermented foods are important components of the human diet. There is increasing awareness of abundant nutritional and functional properties present in fermented foods that arise from the transformation of substrates by microbial communities. Thus, it is significant to unravel the microbial communities and mechanisms of characteristic flavor formation occurring during fermentation. There has been rapid development of high-throughput and other omics technologies, such as metaproteomics and metabolomics, and as a result, there is growing recognition of the importance of integrating these approaches. The successful applications of multi-omics approaches and bioinformatics analyses have provided a solid foundation for exploring the fermentation process. Compared with single-omics, multi-omics analyses more accurately delineate microbial and molecular features, thus they are more apt to reveal the mechanisms of fermentation. This review introduces fermented foods and an overview of single-omics technologies - including metagenomics, metatranscriptomics, metaproteomics, and metabolomics. We also discuss integrated multi-omics and bioinformatic analyses and their role in recent research progress related to fermented foods, as well as summarize the main potential pathways involved in certain fermented foods. In the future, multilayered analyses of multi-omics data should be conducted to enable better understanding of flavor formation mechanisms in fermented foods.
Collapse
Affiliation(s)
- Linfeng Wen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lixin Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Cong Chen
- Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
28
|
Xiang P, Zhu Q, Zhang L, Xu P, Liu L, Li Y, Cheng B, Wang X, Liu J, Shi Y, Wu L, Lin J. Integrative analyses of transcriptome and metabolome reveal comprehensive mechanisms of Epigallocatechin-3-gallate (EGCG) biosynthesis in response to ecological factors in tea plant (Camellia sinensis). Food Res Int 2023; 166:112591. [PMID: 36914346 DOI: 10.1016/j.foodres.2023.112591] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), a flavoured and healthy compounds in tea, is affected by the ecological factors. However, the biosynthetic mechanisms of EGCG in response to the ecological factors remian unclear. In this study, a response surface method with a Box-Behnken design was used to investigate the relationship between EGCG accumulation and ecological factors; further, integrative transcriptome and metabolome analyses were performed to explore the mechanism underlying EGCG biosynthesis in response to environmental factors. The optimal environmental conditions obtained for EGCG biosynthesis were as follows: 28℃, 70 % relative humidity of the substrate, and 280 µmol·m-2·s-1 light intensity; the EGCG content was increased by 86.83 % compared to the control (CK1). Meanwhile, the order of EGCG content in response to the interaction of ecological factors was as follows: interaction of temperature and light intensity > interaction of temperature and relative humidity of the substrate > interaction of light intensity and relative humidity of the substrate, indicating that temperature was the dominant ecological factors. EGCG biosynthesis in tea plants was found to be comprehensively regulated by a series of structural genes (CsANS, CsF3H, CsCHI, CsCHS, and CsaroDE), miRNAs (miR164, miR396d, miR5264, miR166a, miR171d, miR529, miR396a, miR169, miR7814, miR3444b, and miR5240), and transcription factors (MYB93, NAC2, NAC6, NAC43, WRK24, bHLH30, and WRK70); further, the metabolic flux was regulated and converted from phenolic acid to the flavonoid biosynthesis pathway based on accelerated consumption of phosphoenolpyruvic acid, d-erythrose-4-phosphate, and l-phenylalanine in response to ambient changes in temperature and light intensity. Overall, the results of this study reveal the effect of ecological factors on EGCG biosynthesis in tea plants, providing novel insights for improving tea quality.
Collapse
Affiliation(s)
- Ping Xiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Luhuan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Puzhen Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijia Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bosi Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingjian Wang
- Institute of Photobiological Industry, Fujian Sanan Sino-Science Photobiotech Co., Ltd, Xiamen 361008, China
| | - Jianghong Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yutao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
29
|
Liao SY, Zhao YQ, Jia WB, Niu L, Bouphun T, Li PW, Chen SX, Chen W, Tang DD, Zhao YL, Zou Y, Zhu MZ, Xu W. Untargeted metabolomics and quantification analysis reveal the shift of chemical constituents between instant dark teas individually liquid-state fermented by Aspergillus cristatus, Aspergillus niger, and Aspergillus tubingensis. Front Microbiol 2023; 14:1124546. [PMID: 36846747 PMCID: PMC9947791 DOI: 10.3389/fmicb.2023.1124546] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Instant dark teas (IDTs) were individually liquid-state fermented using the fungi Aspergillus cristatus, Aspergillus niger, and Aspergillus tubingensis. To understand how the chemical constituents of IDTs were affected by the fungi, samples were collected and measured by liquid chromatography-tandem mass-tandem mass spectrometry (LC-MS/MS). Untargeted metabolomics analysis revealed that 1,380 chemical constituents were identified in positive and negative ion modes, and 858 kinds of chemical components were differential metabolites. Through cluster analysis, IDTs were different from the blank control, and their chemical constituents mostly included carboxylic acids and their derivatives, flavonoids, organooxygen compounds, and fatty acyls. And the metabolites of IDTs fermented by A. niger and A. tubingensis had a high degree of similarity and were classified into one category, which showed that the fungus used to ferment is critical to the formation of certain qualities of IDTs. The biosynthesis of flavonoids and phenylpropanoid, which involved nine different metabolites such as p-coumarate, p-coumaroyl-CoA, caffeate, ferulate, naringenin, kaempferol, leucocyanidin, cyanidin, and (-)-epicatechin, were significant pathways influencing the quality formation of IDTs. Quantification analysis indicated that the A. tubingensis fermented-IDT had the highest content of theaflavin, theabrownin, and caffeine, while the A. cristatus fermented-IDT had the lowest content of theabrownin, and caffeine. Overall, the results provided new insights into the relationship between the quality formation of IDTs and the microorganisms used in liquid-state fermentation.
Collapse
Affiliation(s)
- Si-yu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yi-qiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wen-bao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Niu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Tunyaluk Bouphun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang, Thailand
| | - Pin-wu Li
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sheng-xiang Chen
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan-dan Tang
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yue-ling Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,*Correspondence: Yao Zou,
| | - Ming-zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China,Ming-zhi Zhu,
| | - Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Wei Xu,
| |
Collapse
|
30
|
Hao Z, Tan Y, Feng J, Lin H, Sun Z, Zhuang JY, Chen Q, Jin X, Sun Y. Integrated metabolomic and transcriptomic analysis reveal the effect of mechanical stress on sugar metabolism in tea leaves ( Camellia sinensis) post-harvest. PeerJ 2023; 11:e14869. [PMID: 36785711 PMCID: PMC9921968 DOI: 10.7717/peerj.14869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Sugar metabolites not only act as the key compounds in tea plant response to stress but are also critical for tea quality formation during the post-harvest processing of tea leaves. However, the mechanisms by which sugar metabolites in post-harvest tea leaves respond to mechanical stress are unclear. In this study, we aimed to investigate the effects of mechanical stress on saccharide metabolites and related post-harvest tea genes. Withered (C15) and mechanically-stressed (V15) for 15 min Oolong tea leaves were used for metabolome and transcriptome sequencing analyses. We identified a total of 19 sugar metabolites, most of which increased in C15 and V15. A total of 69 genes related to sugar metabolism were identified using transcriptome analysis, most of which were down-regulated in C15 and V15. To further understand the relationship between the down-regulated genes and sugar metabolites, we analyzed the sucrose and starch, galactose, and glycolysis metabolic pathways, and found that several key genes of invertase (INV), α-amylase (AMY), β-amylase (BMY), aldose 1-epimerase (AEP), and α-galactosidase (AGAL) were down-regulated. This inhibited the hydrolysis of sugars and might have contributed to the enrichment of galactose and D-mannose in V15. Additionally, galactinol synthase (Gols), raffinose synthase (RS), hexokinase (HXK), 6-phosphofructokinase 1 (PFK-1), and pyruvate kinase (PK) genes were significantly upregulated in V15, promoting the accumulation of D-fructose-6-phosphate (D-Fru-6P), D-glucose-6-phosphate (D-glu-6P), and D-glucose. Transcriptome and metabolome association analysis showed that the glycolysis pathway was enhanced and the hydrolysis rate of sugars related to hemicellulose synthesis slowed in response to mechanical stress. In this study, we explored the role of sugar in the response of post-harvest tea leaves to mechanical stress by analyzing differences in the expression of sugar metabolites and related genes. Our results improve the understanding of post-harvest tea's resistance to mechanical stress and the associated mechanism of sugar metabolism. The resulting treatment may be used to control the quality of Oolong tea.
Collapse
|
31
|
Yang L, Fan W, Xu Y. Chameleon-like microbes promote microecological differentiation of Daqu. Food Microbiol 2023; 109:104144. [DOI: 10.1016/j.fm.2022.104144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
|
32
|
Yue C, Cao H, Zhang S, Hao Z, Wu Z, Luo L, Zeng L. Aroma characteristics of Wuyi rock tea prepared from 16 different tea plant varieties. Food Chem X 2023; 17:100586. [PMID: 36845464 PMCID: PMC9945420 DOI: 10.1016/j.fochx.2023.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Wuyi rock tea (WRT) is famous for its long history and unique characteristic of floral, fruity and nutty flavors. This study investigated the aroma characteristics of WRTs prepared from 16 different oolong tea plant varieties. The sensory evaluation results showed that all WRTs had an 'Yan flavor' taste, and the odor was strong and lasting. Roasted, floral and fruity odors were the prime aroma profiles for WRTs. Furthermore, a total of 368 volatile compounds were detected using HS-SPME-GC-MS and analyzed with OPLS-DA and HCA methods. The volatile compounds heterocyclic compounds, esters, hydrocarbons, terpenoids and ketones were the major aromatic components of the WRTs. Specifically, the volatile profiles among newly selected cultivars were comparatively analyzed, and 205 differential volatile compounds were found with variable importance in the projection (VIP) values above 1.0. These results indicated that the aroma profiles of WRTs were mainly dependent on the cultivar specificities of volatile compounds.
Collapse
Affiliation(s)
- Chuan Yue
- College of Food Science/Tea Research Institute, Southwest University, Beibei, Chongqing 400715, China
| | - Hongli Cao
- College of Food Science/Tea Research Institute, Southwest University, Beibei, Chongqing 400715, China
| | - Shaorong Zhang
- College of Food Science/Tea Research Institute, Southwest University, Beibei, Chongqing 400715, China
| | - Zhilong Hao
- College of Horticulture/Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China,Corresponding authors.
| | - Zongjie Wu
- Wuyi Mountain Yan Sheng Tea Industry Co., Ltd, Wuyishan 354301, China
| | - Liyong Luo
- College of Food Science/Tea Research Institute, Southwest University, Beibei, Chongqing 400715, China
| | - Liang Zeng
- College of Food Science/Tea Research Institute, Southwest University, Beibei, Chongqing 400715, China,Corresponding authors.
| |
Collapse
|
33
|
Tian Y, Li G, Du X, Zeng T, Chen L, Xu W, Gu T, Tao Z, Lu L. Integration of LC-MS-Based and GC-MS-Based Metabolic Profiling to Reveal the Effects of Domestication and Boiling on the Composition of Duck Egg Yolks. Metabolites 2023; 13:metabo13010135. [PMID: 36677059 PMCID: PMC9866831 DOI: 10.3390/metabo13010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Egg yolks contain abundant lipids, proteins, and minerals that provide not only essential nutrients for embryonic development but also cheap sources of nutrients for consumers worldwide. Previous composition analyses of egg yolks primarily focused on nutrients such as lipids and minerals. However, few studies have reported the effects of domestication and heating on yolk composition and characteristics. The objective of this study was to investigate the impact of domestication and boiling on the metabolite contents of egg yolks via untargeted metabolomics using GC-MS and LC-MS. In this study, eggs were collected from Fenghua teals, captive mallards, and Shaoxing ducks. Twelve duck eggs (half raw and half cooked) were randomly selected from each variety, and the egg yolks were separated for metabolic profiling. The analysis identified 1205 compounds in the egg yolks. Domestication generated more differential metabolites than boiling, which indicated that the changes in the metabolome of duck egg yolk caused by domestication were greater than those caused by boiling. In a comparative analysis of domestic and mallard ducks, 48 overlapping differential metabolites were discovered. Among them, nine metabolites were upregulated in domesticated ducks, including monoolein, emodin, daidzein, genistein, and glycitein, which may be involved in lipid metabolism; some of them may also act as phytoestrogens (flavonoids). Another 39 metabolites, including imethylethanolamine, harmalan, mannitol, nornicotine, linoleic acid, diphenylamine, proline betaine, alloxanthin, and resolvin d1, were downregulated by domestication and were linked to immunity, anti-inflammatory, antibacterial, and antioxidant properties. Furthermore, four overlapping differential metabolites that included amino acids and dipeptides were discovered in paired comparisons of the raw and boiled samples. Our findings provided new insights into the molecular response of duck domestication and supported the use of metabolomics to examine the impact of boiling on the composition of egg yolks.
Collapse
Affiliation(s)
- Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Xizhong Du
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Zhengrong Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Correspondence: ; Tel.: +86-571-8640-6682
| |
Collapse
|
34
|
Wang Y, Li C, Lin J, Sun Y, Wei S, Wu L. The Impact of Different Withering Approaches on the Metabolism of Flavor Compounds in Oolong Tea Leaves. Foods 2022; 11:foods11223601. [PMID: 36429193 PMCID: PMC9689020 DOI: 10.3390/foods11223601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, complementary metabolomic and proteomic analyses were conducted on the solar- and indoor-withered oolong tea leaves, and freshly plucked leaves as the control, for the purpose to reveal the mechanisms underlying the initial formation of some flavor determinants during the early stage of oolong tea processing. As a result, a total of 978 non-volatile compounds and 152 volatile compounds were identified, the flavonoids and several esters were differently accumulated in various tea samples. In total, 7048 proteins were qualitatively and quantitatively determined, the analysis on pathway enrichment showed that phenylpropanoid, flavonoid metabolisms, and protein processing in endoplasmic reticulum were the major pathways discriminating the different tea samples. The joint protein-metabolite analysis showed that the multiple stresses such as dehydration, heat, and ultra-violet irradiation occurred during the withering step induced the dynamic and distinct changes in the biochemical network in the treated leaves compared to fresh leaves. The significant decreases in flavonoids, xanthine alkaloids, and several amino acids contributed to the alleviation of bitter or astringent taste of withered leaves, although the decomposition of L-theanine resulted in the loss of umami flavor over the solar-withering step. Moreover, the fruity or floral aromas, especially volatile terpenoids and phenylpropanoids/benzenoids, were retained or accumulated in the solar withered leaves, potentially aiding the formation of a better characteristic flavor of oolong tea made by indoor withered tea leaves. Distinct effects of solar- and indoor-withering methods on the flavor determinant formation provide a novel insight into the relationship between the metabolite accumulation and flavor formation during the withering step of oolong tea production.
Collapse
Affiliation(s)
- Yahui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenxue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaqi Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (S.W.); (L.W.)
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.W.); (L.W.)
| |
Collapse
|
35
|
The stress-induced metabolites changes in the flavor formation of oolong tea during enzymatic-catalyzed process: A case study of Zhangping Shuixian tea. Food Chem 2022; 391:133192. [PMID: 35597038 DOI: 10.1016/j.foodchem.2022.133192] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022]
Abstract
To interpret the environmental stresses induced dynamic changes of volatile and non-volatile constitutes in oolong tea leaves during enzymatic-catalyzed processes (ECP), metabolomic and proteomic studies were carried out using the processed leaf samples collected at the different stages of ECP for Zhangping Shuixian tea manufacture. Non-processed leaves were applied as control. Out of identified 980 non-volatiles and 157 volatiles, 40 non-volatiles and 8 volatiles were screened out as biomarkers, respectively. The integrated analysis on metabolites-proteins showed that phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism were significantly enriched and highly correlated to the dynamic changes of key metabolites during ECP stage. A biological pathway network was constructed to illuminate the enzymatic-catalyzed production of critical flavoring compounds, including carbohydrates, amino acids, flavonoids, and volatile phenylpropanoids/benzenoids. The electronic-sensory analyses indicated leaf dehydration and mechanical wounding occurred over the sun-withering and turning-over steps are indispensable to form characteristic flavor of Shuixian tea.
Collapse
|
36
|
Volatile metabolomics and coexpression network analyses provide insight into the formation of the characteristic cultivar aroma of oolong tea (Camellia sinensis). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tea (Camelliasinensis) is the world’s most widely consumed non-alcoholic beverage with essential economic and health benefits since it is an excellent source of polyphenols, catechins, amino acids, flavonoids, carotenoids, vitamins, and polysaccharides. The aim of this review is to summarize the main secondary metabolites in tea plants, and the content and distribution of these compounds in six different types of tea and different organs of tea plant were further investigated. The application of these secondary metabolites on food processing, cosmetics industry, and pharmaceutical industry was reviewed in this study. With the rapid advancements in biotechnology and sequencing technology, omics analyses, including genome, transcriptome, and metabolome, were widely used to detect the main secondary metabolites and their molecular regulatory mechanisms in tea plants. Numerous functional genes and regulatory factors have been discovered, studied, and applied to improve tea plants. Research advances, including secondary metabolites, applications, omics research, and functional gene mining, are comprehensively reviewed here. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on tea plants.
Collapse
|
38
|
Influence of thermophilic microorganism on non-volatile metabolites during high-temperature pile-fermentation of Chinese dark tea based on metabolomic analysis. Food Sci Biotechnol 2022; 31:827-841. [DOI: 10.1007/s10068-022-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
|
39
|
Sun Z, Chen D, Zhu L, Zhao Y, Lin Z, Li X, Dai W. A comprehensive study of the differences in protein expression and chemical constituents in tea leaves (Camellia sinensis var. sinensis) with different maturity using a combined proteomics and metabolomics method. Food Res Int 2022; 157:111397. [DOI: 10.1016/j.foodres.2022.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
|
40
|
Hu J, Yan J, Wu L, Bao Y, Yu D, Li J. Insight into halotolerance of a robust heterotrophic nitrifying and aerobic denitrifying bacterium Halomonas salifodinae. BIORESOURCE TECHNOLOGY 2022; 351:126925. [PMID: 35272037 DOI: 10.1016/j.biortech.2022.126925] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Studies toward biotreating hypersaline wastewater containing different salts and halotolerant mechanism of robust strains are important but still rare. Here an isolated bacterium Halomonas salifodinae can perform simultaneous nitrification and denitrification (SND) at 15% salinity, showing high nitrogen removal efficiencies of over 98% via response surface methodology optimization. Besides NaCl, this robust strain had high resistance to other salts (KCl, Na2SO4, and K2SO4) and can efficiently remove nitrogen in saline wastewater containing heavy metals such as Fe(II), Mn(II), Zn(II), Cr(VI), Ni(II), and Cu(II). After repeated-batch culturing at different salinities, the treated strains with different halotolerant capabilities were used as single strain model to study halotolerant mechanism via metabolic analysis. The halotolerant bacterium can convert D-proline and glutamic acid to glutamine as well as lactulose to trehalose. The accumulated intracellular compatible solutes can resist high osmotic pressure and bound water molecule in hypersaline wastewater to accomplish high-efficiency SND processes.
Collapse
Affiliation(s)
- Jie Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jiabao Yan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ling Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yanzhou Bao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Danqing Yu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
41
|
Cai H, Zhong Z, Li Z, Zhang X, Fu H, Yang B, Zhang L. Metabolomics in quality formation and characterisation of tea products: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhanming Li
- School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang 212004 China
| | - Xiaojing Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hongwei Fu
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Bingxian Yang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Lin Zhang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| |
Collapse
|
42
|
Widely Targeted Metabolomics Analysis Reveals the Differences of Nonvolatile Compounds in Oolong Tea in Different Production Areas. Foods 2022; 11:foods11071057. [PMID: 35407144 PMCID: PMC8998066 DOI: 10.3390/foods11071057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
The flavor differences in Oolong tea from different producing areas are caused by its complex differential compounds. In this study, representative samples of Oolong tea from four countries were collected, and their differential nonvolatile compounds were analyzed by a combination of widely targeted metabolomics, chemometrics, and quantitative taste evaluation. A total of 801 nonvolatile compounds were detected, which could be divided into 16 categories. We found that the difference in these compounds’ content among Oolong teas from three producing areas in China was the largest. There were 370 differential compounds related to the producing areas of Oolong tea, which were mainly distributed in 67 Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. In total, 81 differential nonvolatile compounds made important contributions to the taste differences in Oolong tea from different producing areas, among which the number of flavonoids was the largest. Finally, the characteristic compounds of Oolong tea in six producing areas were screened. This study comprehensively identifies the nonvolatile compounds of Oolong tea in different producing areas for the first time, which provides a basis for the analysis of flavor characteristics, quality directional control, and the identification and protection of geographical landmark agricultural products of Oolong tea from different producing areas.
Collapse
|
43
|
|
44
|
Li M, Xiao Y, Zhong K, Wu Y, Gao H. Delving into the Biotransformation Characteristics and Mechanism of Steamed Green Tea Fermented by Aspergillus niger PW-2 Based on Metabolomic and Proteomic Approaches. Foods 2022; 11:foods11060865. [PMID: 35327286 PMCID: PMC8951510 DOI: 10.3390/foods11060865] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Aspergillus niger is one of the dominant microorganisms presented in dark tea fermentation. In this study, the biotransformation of steamed green tea leaves fermented by A. niger PW-2 was characterized using metabolomic and proteomic approaches. We observed that, after fermentation, the contents of volatile compounds contributing to the “green” aroma, including linalool, L-α-terpineol and geraniol, decreased significantly. Meanwhile, the astringency taste and contents of metabolites contributing to the taste (catechins) reduced significantly during fermentation. Additionally, the contents of theabrownins, which have health benefits, obviously increased. The bitter and umami tastes were also changed due to the variations in bitter-taste and umami-taste amino acids. We also found that glycoside hydrolases, tannases, catechol oxidases, peroxidases and laccases secreted by A. niger PW-2 were responsible for the metabolism of phenolic compounds and their derivatives (theaflavins, thearubingins and theabrownins). Finally, the metabolic pathways involved in the biosynthesis and degradation of characteristic metabolites were found to reveal the biotransformation characteristics of dark tea fermented with A. niger PW-2.
Collapse
Affiliation(s)
- Maoyun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (M.L.); (K.Z.); (H.G.)
| | - Yue Xiao
- West China School of Public Health, Sichuan University, Chengdu 610065, China;
| | - Kai Zhong
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (M.L.); (K.Z.); (H.G.)
| | - Yanping Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (M.L.); (K.Z.); (H.G.)
- Correspondence:
| | - Hong Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (M.L.); (K.Z.); (H.G.)
| |
Collapse
|
45
|
Wang P, Gu M, Shao S, Chen X, Hou B, Ye N, Zhang X. Changes in Non-Volatile and Volatile Metabolites Associated with Heterosis in Tea Plants ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3067-3078. [PMID: 35199525 DOI: 10.1021/acs.jafc.1c08248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterosis or hybrid vigor is extensively used in plant breeding. However, the contribution of metabolites to heterosis is still elusive. Here, we systematically identified the non-volatile and volatile metabolites of two hybrids and their parents in Camellia sinensis. The metabolomics analysis showed prevalent non-additive accumulation in hybrids, among which the non-additive nucleotides, alkaloids, organic acids, and tannins contribute to the positive heterosis of hybrids, including typical inosine, guanosine, adenosine, caffeine, succinic acid, adipic acid, xylonic acid, and gallic acid. The catechins and free amino acids in hybrids showed negative heterosis compared to its maternal cultivar TGY. Furthermore, the significant accumulation of non-additive terpenes combined with the mild heterosis of other types of volatiles contributes to the aroma of tea plant hybrids. The genetics of volatiles from different parents affect the aroma of hybrids processed into oolong tea. The comprehensive heterosis of these non-additive metabolites may play an important role in the formation of desirable breeding traits for hybrids. Our results provide insights into the utilization of heterosis breeding and the regulation of heterosis metabolites in tea plants.
Collapse
Affiliation(s)
- Pengjie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Mengya Gu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Shuxian Shao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Xiaomin Chen
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Binghao Hou
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
46
|
Song Y, Huang F, Li X, Zhang H, Liu J, Han D, Rui M, Wang J, Zhang C. DIA-based quantitative proteomic analysis on the meat quality of porcine Longissimus thoracis et lumborum cooked by different procedures. Food Chem 2022; 371:131206. [PMID: 34619635 DOI: 10.1016/j.foodchem.2021.131206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 12/23/2022]
Abstract
A DIA-based quantitative proteomic strategy was used to investigate the effects of different cooking procedures (steaming and boiling) on pork meat quality. Results showed that steamed meats had higher redness, cohesion, springiness, but lower lightness, yellowness, shear force, hardness, chewiness and cooking loss than boiled meats. In total of 1608 proteins were identified and 103 proteins exhibited significant difference (fold change > 1.5, P < 0.05). These DAPs mainly involved in protein structure, metabolic enzyme, protein turnover and oxidation stress. ALDOC, PVALB, PPP1R14C, AMPD1, CRYAB and SOD1 were validated as potential indicators of color variations in cooked meat. CFL1, COL1A1, COL3A1, RTN4, NRAP, NT5C3A, and SOD1 might be potential biomarker for texture changes of cooked meats. Moreover, these validated proteins exhibited significant (P < 0.05) correlation with cooking loss and could be serve as candidate predictors for cooking loss changes of meats in different cooking procedures.
Collapse
Affiliation(s)
- Yu Song
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Huang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiqian Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong Han
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Maoneng Rui
- Lijiang Sanchuan Industrial Group Co., Ltd., Lijiang, Yunnan Province 674200, China
| | - Jipeng Wang
- Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou, Fujian Province 363000, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
47
|
Yin Q, Wei Y, Han X, Chen J, Gao H, Sun W. Unraveling the Glucosylation of Astringency Compounds of Horse Chestnut via Integrative Sensory Evaluation, Flavonoid Metabolism, Differential Transcriptome, and Phylogenetic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 12:830343. [PMID: 35185970 PMCID: PMC8850972 DOI: 10.3389/fpls.2021.830343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 06/12/2023]
Abstract
The seeds of Chinese horse chestnut are used as a source of starch and escin, whereas the potential use of whole plant has been ignored. The astringency and bitterness of tea produced from the leaves and flowers were found to be significantly better than those of green tea, suggesting that the enriched flavonoids maybe sensory determinates. During 47 flavonoids identified in leaves and flowers, seven flavonol glycosides in the top 10 including astragalin and isoquercitrin were significantly higher content in flowers than in leaves. The crude proteins of flowers could catalyze flavonol glucosides' formation, in which three glycosyltransferases contributed to the flavonol glucosylation were screened out by multi-dimensional integration of transcriptome, evolutionary analyses, recombinant enzymatic analysis and molecular docking. The deep exploration for flavonol profile and glycosylation provides theoretical and experimental basis for utilization of flowers and leaves of Aesculus chinensis as additives and dietary supplements.
Collapse
Affiliation(s)
- Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiding Wei
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyan Han
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jingwang Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Sun
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Xue J, Liu P, Guo G, Wang W, Zhang J, Wang W, Le T, Yin J, Ni D, Jiang H. Profiling of dynamic changes in non-volatile metabolites of shaken black tea during the manufacturing process using targeted and non-targeted metabolomics analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Liu X, Wang L, Wu S, Zhou L, Gao S, Xie X, Wang L, Gu W, Wang G. Formation of resting cells is accompanied with enrichment of ferritin in marine diatom Phaeodactylum tricornutum. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Widely Targeted Metabolomics Analysis Reveals Great Changes in Nonvolatile Metabolites of Oolong Teas during Long-Term Storage. Molecules 2021; 26:molecules26237278. [PMID: 34885857 PMCID: PMC8658923 DOI: 10.3390/molecules26237278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
As a semifermented tea, oolong is exceedingly popular worldwide for its elegant, flowery aroma and mellow, rich taste. However, recent marketing trends for old oolong teas and their chemical quality largely remain unexplored. In this study, we applied widely targeted metabolomics using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combined with multivariate analysis to investigate the chemical change of oolong teas in the aging process. With the increasing of store time, most nongalloylated catechins; tannins, including TFs and proanthocyanidins; flavonols and glycosylated flavonols; amino acids and their derivatives; nucleotides and their derivatives; and lots of alkaloids and phospholipids declined, while most fatty acids and organic acids increased, and galloylated catechins, GA, and caffeine were almost stable. The result also suggested that approximately seven years (but not an infinite extension) was a special period for oolong tea storage, which brings about excellent taste.
Collapse
|