1
|
Lucini Mas A, Canalis AM, Mattalloni MS, Pasqualini ME, Wunderlin DA, Baroni MV. Sesame defatted flour: antioxidant response and improvement in carbohydrate metabolism in high-fructose/high-saturated fatty acids diet-fed mice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:644-653. [PMID: 40109675 PMCID: PMC11914681 DOI: 10.1007/s13197-024-06049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 03/22/2025]
Abstract
The aim of this study was to evaluate the effect of dietary supplementation with defatted sesame seeds on a diet with low nutritional quality (high-fructose and high proportion of saturated fatty acids), in terms of the redox state and carbohydrate metabolism. C57BL/6 male mice were fed for 12 weeks with Control (C), Low Nutritional Quality (LNQ), or supplemented with sesame defatted flour (LNQ + S) diets. Levels of glucose, lactate, reactive oxygen species, antioxidant enzyme activity, reduced glutathione, and protein oxidation (AOPP) were determined. Overall, LNQ increased liver glucose (+ 20%), lactate (+ 60%) and AOPP (+15%) with respect to C, and modulated the enzymatic and non-enzymatic endogenous antioxidants. However, sesame supplementation restored glucose and lactate levels to those of C group and modulated the endogenous antioxidant systems, contributing to a reduction in oxidative damage in proteins. In conclusion, supplementation with sesame showed beneficial effects in mice fed a low nutritional quality diet. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06049-2.
Collapse
Affiliation(s)
- Agustín Lucini Mas
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de La Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alejandra Mariel Canalis
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET). Pabellón Biología Celular, Universidad Nacional de Córdoba, Córdoba, Argentina
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mara Soledad Mattalloni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Eugenia Pasqualini
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET). Pabellón Biología Celular, Universidad Nacional de Córdoba, Córdoba, Argentina
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Instituto de Biología Celular (IBC-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de La Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María Verónica Baroni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC-CONICET) SeCyT, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de La Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| |
Collapse
|
2
|
Su G, Yu C, Liang S, Wang W, Wang H. Multi-omics in food safety and authenticity in terms of food components. Food Chem 2024; 437:137943. [PMID: 37948800 DOI: 10.1016/j.foodchem.2023.137943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
One of the main goals of food science is to ensure the high quality and safety of food. The inspection technology for known hazards has matured, and the identification of unknown and potential food safety hazards, as well as the identification of their composition and origin, is a challenge faced by food safety. Food safety and authenticity require multi-omics methods to support the implementation of qualitative discrimination to precise quantitative analysis, from targeted screening to non-target detection, and from multi component to full component analysis to address these challenges. The present review aims to provide characterizations, advantages, the latest progress, and prospects of using omics (including genomics, proteomics, and metabonomics) in food safety and authenticity. Multi omics strategies used to detect and verify different standard biomarkers of food will contribute to understanding the basic relationship between raw materials, processing, foods, nutrition, food safety, and human health.
Collapse
Affiliation(s)
- Guangyue Su
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR of China
| | - Chong Yu
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shuwen Liang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wei Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haifeng Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
3
|
Gómez-Velázquez HDJ, Aparicio-Fernández X, Escobar-Ortiz A, Feregrino-Pérez AA, Reynoso-Camacho R, Pérez-Ramírez IF. Phytochemical Fingerprint of Chia Sprouts Grown Under Chemical Elicitation with Salicylic Acid and Hydrogen Peroxide. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:127-136. [PMID: 38206479 DOI: 10.1007/s11130-023-01133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
Chia seeds (CS) and sprouts are rich sources of phenolic compounds and polyunsaturated fatty acids (PUFA). We hypothesized that the application of chemical stressors, such as salicylic acid (SA) and hydrogen peroxide (H2O2), would induce changes in the polyphenol and fatty acid profile of chia sprouts, leading to an increase in their nutraceutical potential. This study aimed to assess the effect of non-elicited (NE) and chemically elicited (CE with 1-mM SA and 20-mM H2O2) sprouting on the polyphenol and fatty acid (FA) profiles of chia through high-resolution liquid chromatography-mass spectrometry and chemometric analyses. NE and CE chia sprouts showed increased content and diversity of polyphenols compared to the CS but with lower content of FA. Interestingly, rosmarinic acid was the major polyphenol identified in CS and was increased about 4-fold in all chia sprouts, whereas the major PUFA of CS, α-linolenic acid, was reduced by 39%. Regarding the chemical elicitation, the multivariate analyses indicated that SA-elicited chia sprouts were characterized by their high content of most polyphenols, mainly flavones and isoflavones, as well as a high antioxidant capacity, whereas H2O2-elicited chia sprouts were differentiated by protects their PUFA composition and seedling growth parameters. These results demonstrate that the chemical elicitation with SA and H2O2 represents a promising approach for improving sprouts' nutraceutical quality and could be used in further research to develop strategies for agriculture and food production.
Collapse
Affiliation(s)
- Haiku D J Gómez-Velázquez
- Departamento de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco, México
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - Xochitl Aparicio-Fernández
- Departamento de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco, México
| | | | - Ana A Feregrino-Pérez
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, El Marqués, Querétaro, México
| | | | - Iza F Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, México.
| |
Collapse
|
4
|
Kefale H, Segla Koffi Dossou S, Li F, Jiang N, Zhou R, Wang L, Zhang Y, Li D, You J, Wang L. Widely targeted metabolic profiling provides insights into variations in bioactive compounds and antioxidant activity of sesame, soybean, peanut, and perilla. Food Res Int 2023; 174:113586. [PMID: 37986527 DOI: 10.1016/j.foodres.2023.113586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Oilseeds are important sources of diversified nutraceuticals with marked health attributes. Thus, a better understanding of metabolome differences between common oilseeds will be conducive to the food pharmacy. This study aimed to compare the metabolite profiles and antioxidant activity of sesame, soybean, peanut, and perilla seeds and reveal the variation in bioactive compounds. LC-MS-based widely targeted metabolic profiling identified a total of 975 metabolites, of which 753 were common to the four crops. Multivariate analyses unveiled a crop-specific accumulation of metabolites, with 298-388 DAMs (differentially accumulated metabolites) identified. Amino acid metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, and lipid metabolism were the most differentially regulated pathways. Furthermore, we revealed the variation in the relative content of 48, 20, 18, 9, 18, 11, and 6 differentially accumulated bioactive flavonoids, phenolic acids, amino acids, vitamins, terpenoids, alkaloids, and coumarins, respectively. Most of the flavonoids accumulated highly in soybean, followed by perilla. Sesame exhibited a better amino acid profile than other oilseeds. DPPH and FRAP assays showed that the antioxidant activity of perilla seed extracts was the highest, followed by soybean, peanut, and sesame. Our results provide data support for the comprehensive use of sesame, perilla, soybean, and peanut seeds in food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Habtamu Kefale
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Department of Plant Science, College of Agriculture & Natural Resources, Debre Markos University, Ethiopia
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng Li
- Amway (China) Botanical R&D Center, Wuxi 214115, China
| | - Nanjun Jiang
- Amway (China) Botanical R&D Center, Wuxi 214115, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
5
|
Meng Z, Liu D, Li S, Xu Z, Deng Q, Liu Y. A fast multi-residue analysis of twenty-four classes of pesticide in sesame (Sesamum indicum L.) and their migration into processed products. Food Res Int 2023; 173:113322. [PMID: 37803633 DOI: 10.1016/j.foodres.2023.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
Sesame is widely used as a nutritional supplement or condiment because of its nutritious properties and palatable flavor. However, the extensive use of pesticides in sesame fields has paradoxically decreased the nutritional vantage. The current study used QuEChERS with a low-temperature freezing method to develop a multi-residue analytical approach to detect target analytes (pesticides) in sesame seed, sesame oil, sesame paste, and sesame meal. The migration ability of target pesticides during oil processing was investigated using HPLC-MS/MS and GC-MS: 35% of pesticides decreased, with processing factors (PFs) lower than 0.98, whereas 65% migrated from the seed to the oil during processing. The migration success of methoxyfenozide was the highest, while clothianidin and pymetrozine demonstrated a significantly lower rate of transfer. The results provide insight into the types of pesticides that should be used in farming practices of sesame to decrease the impact on human health.
Collapse
Affiliation(s)
- Ziwei Meng
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Dan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Shuhui Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Zhiyi Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Qianqian Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Yang Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
6
|
Jadhav PD, Shim YY, Paek OJ, Jeon JT, Park HJ, Park I, Park ES, Kim YJ, Reaney MJT. A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics). Int J Mol Sci 2023; 24:8202. [PMID: 37175910 PMCID: PMC10179091 DOI: 10.3390/ijms24098202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
With the increasing accessibility of cannabis (Cannabis sativa L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards.
Collapse
Affiliation(s)
- Pramodkumar D. Jadhav
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
- Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea;
| | - Ock Jin Paek
- Herbal Medicines Research Division, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Jung-Tae Jeon
- Yuhan Care R&D Center, Yuhan Care Co., Ltd., Yongin 17084, Republic of Korea
| | - Hyun-Je Park
- Yuhan Care R&D Center, Yuhan Care Co., Ltd., Yongin 17084, Republic of Korea
- Yuhan Natural Product R&D Center, Yuhan Care Co., Ltd., Andong 36618, Republic of Korea
| | - Ilbum Park
- Yuhan Care R&D Center, Yuhan Care Co., Ltd., Yongin 17084, Republic of Korea
| | - Eui-Seong Park
- Yuhan Care R&D Center, Yuhan Care Co., Ltd., Yongin 17084, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea;
| | - Martin J. T. Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
- Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea;
| |
Collapse
|
7
|
Gai F, Janiak MA, Sulewska K, Peiretti PG, Karamać M. Phenolic Compound Profile and Antioxidant Capacity of Flax ( Linum usitatissimum L.) Harvested at Different Growth Stages. Molecules 2023; 28:molecules28041807. [PMID: 36838795 PMCID: PMC9960924 DOI: 10.3390/molecules28041807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The profile of phenolic compounds changes during the growth of a plant and this change affects its antioxidant potential. The aim of this research has been to find the growth stage of flax with the highest antioxidant capacity, and to determine the phenolic compounds responsible for such a capacity. Flax was harvested in six growth stages: from stem extension to mature seeds. The phenolic compounds were identified using LC-TOF-MS and quantified in an extract and in the fresh matter (FM) of each growth stage. The radical scavenging activity against ABTS•+ and DPPH•, the ferric-reducing antioxidant power (FRAP), and the antioxidant activity in the β-carotene-linoleic acid emulsion system were determined. Mono- and di-C-glycosyl flavones were found to be the most abundant phenolics of the aerial parts of flax, which also showed the highest content of isoorientin (210-538 µg/g FM). Coniferin, its derivative, and hydroxycinnamic acid derivatives were also detected. The plant was richer in flavone C-glycosides from stem extension to seed ripening (1105-1413 µg/g FM) than at the mature seed stage (557 µg/g FM). Most of the individual flavone C-glycoside contents in the extracts decreased when increasingly older plants were considered; however, the isoorientin content did not change significantly from the steam extension to the seed ripening stages. The antiradical activity against ABTS•+ and FRAP was higher for the aerial parts of the flax harvested at the flowering, brown capsule, and seed ripening stages, mainly due to the presence of flavone C-glycosides. The oxidation of β-carotene-linoleic acid emulsion was instead inhibited more effectively by the extracts from plants at the brown capsule and mature seed stages. Coniferin and its derivative were significantly involved in this activity. The extracts from the aerial parts of the flax harvested from flowering to seed ripening could be a valuable source of flavone C-glycosides for use as nutraceuticals and components of functional foods.
Collapse
Affiliation(s)
- Francesco Gai
- Institute of Sciences of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Michał A. Janiak
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Katarzyna Sulewska
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Pier Giorgio Peiretti
- Institute of Sciences of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Magdalena Karamać
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
8
|
Li H, Tahir ul Qamar M, Yang L, Liang J, You J, Wang L. Current Progress, Applications and Challenges of Multi-Omics Approaches in Sesame Genetic Improvement. Int J Mol Sci 2023; 24:3105. [PMID: 36834516 PMCID: PMC9965044 DOI: 10.3390/ijms24043105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Sesame is one of the important traditional oil crops in the world, and has high economic and nutritional value. Recently, due to the novel high throughput sequencing techniques and bioinformatical methods, the study of the genomics, methylomics, transcriptomics, proteomics and metabonomics of sesame has developed rapidly. Thus far, the genomes of five sesame accessions have been released, including white and black seed sesame. The genome studies reveal the function and structure of the sesame genome, and facilitate the exploitation of molecular markers, the construction of genetic maps and the study of pan-genomes. Methylomics focus on the study of the molecular level changes under different environmental conditions. Transcriptomics provide a powerful tool to study abiotic/biotic stress, organ development, and noncoding RNAs, and proteomics and metabonomics also provide some support in studying abiotic stress and important traits. In addition, the opportunities and challenges of multi-omics in sesame genetics breeding were also described. This review summarizes the current research status of sesame from the perspectives of multi-omics and hopes to provide help for further in-depth research on sesame.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Junchao Liang
- Jiangxi Province Key Laboratory of Oil Crops Biology, Crop Research Institute, Nanchang Branch of National Center of Oil Crops Improvement, Jiangxi Academy of Agricultural Sciences, Nanchang 330000, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
9
|
Wang Y, Wang B, Wang D. Detection of chicken adulteration in beef via ladder-shape melting temperature isothermal amplification (LMTIA) assay. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2081514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yongzhen Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Food and Pharmacy College, Xuchang University, Xuchang, Henan, PR China
| | - Borui Wang
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Deguo Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Food and Pharmacy College, Xuchang University, Xuchang, Henan, PR China
| |
Collapse
|
10
|
Yongzhen W, Wang B, Wang D. Detection of pork adulteration in beef with ladder-shape melting temperature isothermal amplification (LMTIA) assay. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2129791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Wang Yongzhen
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| | - Borui Wang
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Deguo Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| |
Collapse
|
11
|
Brigante FI, Lucini Mas A, Erban A, Fehrle I, Martinez-Seidel F, Kopka J, Wunderlin DA, Baroni MV. Authenticity assessment of commercial bakery products with chia, flax and sesame seeds: Application of targeted and untargeted metabolomics results from seeds and lab-scale cookies. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Lucini Mas A, Brigante FI, Salvucci E, Ribotta P, Martinez ML, Wunderlin DA, Baroni MV. Novel cookie formulation with defatted sesame flour: Evaluation of its technological and sensory properties. Changes in phenolic profile, antioxidant activity, and gut microbiota after simulated gastrointestinal digestion. Food Chem 2022; 389:133122. [PMID: 35580479 DOI: 10.1016/j.foodchem.2022.133122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
Defatted sesame flour (DSF), a coproduct of the sesame oil extraction process, is often discarded despite having high polyphenol content. The aim of this study was to improve the antioxidant properties of cookies with increasing amounts of DSF (5, 10, and 20%) and study its impact on processing and gastrointestinal digestion. Besides, we evaluated the effect of this incorporation on the technological and sensory properties of cookies. The formulation with 10% (SFC10) showed technological quality similar to control, and was the most accepted by consumers. After baking, 13 out of 25 polyphenols from DSF were observed, and only 19% of the initial SFC10 polyphenols would be potentially absorbed after digestion. Besides, the addition of DSF benefits the microbiota composition after colonic fermentation. In conclusion, supplementation with 10% of DSF in cookies improves sensorial acceptance and antioxidant properties, without affecting the technological ones.
Collapse
Affiliation(s)
- Agustin Lucini Mas
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n, Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Medina Allende esquina Haya de La Torre, Edificio Ciencias II, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Federico I Brigante
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n, Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Medina Allende esquina Haya de La Torre, Edificio Ciencias II, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Emiliano Salvucci
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Pablo Ribotta
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n, Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química Industrial y Aplicada, Av. Vélez Sarsfield 1611, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Marcela L Martinez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química Industrial y Aplicada, Av. Vélez Sarsfield 1611, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET), and Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniel A Wunderlin
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n, Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Medina Allende esquina Haya de La Torre, Edificio Ciencias II, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María V Baroni
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n, Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Medina Allende esquina Haya de La Torre, Edificio Ciencias II, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
13
|
Brigante FI, García ME, López Radcenco A, Moyna G, Wunderlin DA, Baroni MV. Identification of chia, flax and sesame seeds authenticity markers by NMR-based untargeted metabolomics and their validation in bakery products containing them. Food Chem 2022; 387:132925. [DOI: 10.1016/j.foodchem.2022.132925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
|
14
|
Wang Y, Wang B, Wang D. Development of a Ladder-Shape Melting Temperature Isothermal Amplification Assay for Detection of Duck Adulteration in Beef. J Food Prot 2022; 85:1203-1209. [PMID: 35687733 DOI: 10.4315/jfp-22-015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/28/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Ladder-shape melting temperature isothermal amplification (LMTIA) is a newly developed technology, and the objective of this study was to establish its effectiveness for detection of duck adulteration in beef. LMTIA primers were designed with the prolactin receptor gene of Anas platyrhynchos as the target. The LMTIA reaction system was optimized, and its performance was compared with that of the loop-mediated isothermal amplification (LAMP) assay in terms of specificity, sensitivity, and limit of detection (LOD). Our results showed that the LMTIA assay was able to specifically detect 10 ng of genomic DNAs (gDNAs) of A. platyrhynchos, without detecting 10 ng of gDNAs of Bos taurus, Sus scrofa, Gallus gallus, Capra hircus, Felis catus, and Canis lupus familiaris. The sensitivity of the LMTIA assay was 1 ng of gDNAs of A. platyrhynchos; it was able to detect duck adulteration in beef with a 0.1% LOD. Although the LAMP assay could not clearly distinguish A. platyrhynchos from G. gallus, it had a sensitivity of 10 ng of gDNAs of A. platyrhynchos and a LOD of 1% duck adulteration in beef. This study may help facilitate the surveillance of commercial adulteration of beef with duck meat. HIGHLIGHTS
Collapse
Affiliation(s)
- Yongzhen Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, People's Republic of China
| | - Borui Wang
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Deguo Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, People's Republic of China
| |
Collapse
|
15
|
Tomita R, Nishijo N, Hayama T, Fujioka T. Discrimination of Malignant Pleural Mesothelioma Cell Lines Using Amino Acid Metabolomics with HPLC. Biol Pharm Bull 2022; 45:724-729. [PMID: 35650101 DOI: 10.1248/bpb.b21-00972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a malignancy closely associated with asbestos exposure. Although early diagnosis provides a chance of effective treatment and better prognosis, invasive biopsy and cytological procedure are required for definitive diagnosis. In this study, we developed a method to differentiate between MPM and control cell lines, named "amino acid metabolomics," consisting in the assessment of the balance of their amino acid levels in the cell culture medium. Culture media of MESO-1 (MPM cell line) and Met-5A (control) cells were used in this study to evaluate amino acid levels using HPLC, following the fluorescence derivatization method. The time-dependent changes in amino acid levels were visualized on the score plot following principal component analysis, and the results revealed differential changes in amino acid levels between the two cell culture supernatants. A discriminative model based on linear discriminant analysis could distinguish MPM and control cells.
Collapse
Affiliation(s)
- Ryoko Tomita
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Nao Nishijo
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | | | | |
Collapse
|
16
|
Prandi B, Righetti L, Caligiani A, Tedeschi T, Cirlini M, Galaverna G, Sforza S. Assessing food authenticity through protein and metabolic markers. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:233-274. [PMID: 36064294 DOI: 10.1016/bs.afnr.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter aims to address an issue of ancient origins, but more and more topical in a globalized world in which consumers and stakeholders are increasingly aware: the authenticity of food. Foods are systems that can also be very complex, and verifying the correspondence between what is declared and the actual characteristics of the product is often a challenging issue. The complexity of the question we want to answer (is the food authentic?) means that the answer is equally articulated and makes use of many different analytical techniques. This chapter will consider the chemical analyses of foods aimed at guaranteeing their authenticity and will focus on frontier methods that have been developed in recent years to address the need to respond to ever-increasing guarantees of authenticity. Targeted and non-targeted approaches will be considered for verifying the authenticity of foods, through the study of different classes of constituents (proteins, metabolites, lipids, flavors). The numerous approaches available (proteomics, metabolomics, lipidomics) and the related analytical techniques (LC-MS, GC-MS, NMR) are first described from a more general point of view, after which their specific application for the purposes of authentication of food is addressed.
Collapse
Affiliation(s)
- Barbara Prandi
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Stefano Sforza
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
17
|
Zhao J, Li A, Jin X, Liang G, Pan L. Discrimination of Geographical Origin of Agricultural Products From Small-Scale Districts by Widely Targeted Metabolomics With a Case Study on Pinggu Peach. Front Nutr 2022; 9:891302. [PMID: 35685882 PMCID: PMC9172448 DOI: 10.3389/fnut.2022.891302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Geographical indications of agricultural products are characterized by high quality and regional attributes, while they are more likely to be counterfeited by similar products from nearby regions. Accurate discrimination of origin on small geographical scales is extremely important for geographical indications of agricultural products to avoid food fraud. In this study, a widely targeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry combined with multivariate statistical analysis was used to distinguish the geographical origin of Pinggu Peach of Beijing and its two surrounding areas in Heibei province (China). Orthogonal partial least squares-discriminant analysis (OPLS-DA) based on 159 identified metabolites showed significant separation from Pinggu and the other adjacent regions. The number of the most important discriminant variables (VIP value >1) was up to 62, which contributed to the differentiation model. The results demonstrated that the metabolic fingerprinting combined with OPLS-DA could be successfully implemented to differentiate the geographical origin of peach from small-scale origins, thus providing technical support to further ensure the authenticity of geographical indication products. The greenness of the developed method was assessed using the Analytical GREEnness Metric Approach and Software (ARGEE) tool. It was a relatively green analytical method with room for improvement.
Collapse
Affiliation(s)
- Jie Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Risk Assessment Lab for Agro-Products, Ministry of Agriculture, Beijing, China
| | - An Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Risk Assessment Lab for Agro-Products, Ministry of Agriculture, Beijing, China
| | - Xinxin Jin
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Risk Assessment Lab for Agro-Products, Ministry of Agriculture, Beijing, China
| | - Gang Liang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Risk Assessment Lab for Agro-Products, Ministry of Agriculture, Beijing, China
| | - Ligang Pan
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Risk Assessment Lab for Agro-Products, Ministry of Agriculture, Beijing, China
| |
Collapse
|
18
|
Evaluation of Portable Vibrational Spectroscopy Sensors as a Tool to Detect Black Cumin Oil Adulteration. Processes (Basel) 2022. [DOI: 10.3390/pr10030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Black cumin oil adulteration has become a concern because it has numerous health benefits and a high price. Therefore, a simple, non-destructive, and rapid method to identify adulterations in black seed oil is necessary to protect the quality of the oils. This study aimed to perform a non-invasive method to authenticate black cumin oil by portable FT-NIR, FT-MIR, and Raman spectrometers. Spectra were collected with portable devices and analyzed using Soft Independent Modelling of Class Analogy (SIMCA) to generate a classification model to identify pure black cumin oil and partial least squares regression (PLSR) to predict the adulterant levels. For confirmation, the fatty acid profile of the oils was determined by gas chromatography (GC). SIMCA and PLSR models provided a very high performance in detecting adulterated samples in all portable units. These portable units showed great potential for rapid and non-destructive monitoring to identify adulterated black cumin oils.
Collapse
|
19
|
Brigante FI, Podio NS, Wunderlin DA, Baroni MV. Comparative metabolite fingerprinting of chia, flax and sesame seeds using LC-MS untargeted metabolomics. Food Chem 2022; 371:131355. [PMID: 34808769 DOI: 10.1016/j.foodchem.2021.131355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Chia, flax, and sesame seeds are well known for their nutritional quality and are commonly included in bakery products. So far, the development of methods to verify their presence and authenticity in foods is a requisite and a raised need. In this work we applied untargeted metabolomics to propose authenticity markers. Seeds were analyzed by HPLC-MS/MS and 9938 features in negative mode and 9044 in positive mode were obtained by Mzmine. After isotopes grouping, alignment, gap-filling, filtering adducts, and normalization, PCA was applied to explore the dataset and recognize pre-existent classification patterns. OPLS-DA analysis and S-Plots were used as supervised methods. Twenty-five molecules (12 in negative mode and 13 in positive mode) were selected as discriminant for the three seeds, polyphenols and lignans were identified among them. To the best of our knowledge, this is the first approach using non-target HPLC-MS/MS for the authentication of chia, flax and sesame seeds.
Collapse
Affiliation(s)
- Federico I Brigante
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n; Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica and ISIDSA-SECyT, Medina Allende esq. Haya de La Torre, Edif. Ciencias II, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Natalia S Podio
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n; Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica and ISIDSA-SECyT, Medina Allende esq. Haya de La Torre, Edif. Ciencias II, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Daniel A Wunderlin
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n; Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica and ISIDSA-SECyT, Medina Allende esq. Haya de La Torre, Edif. Ciencias II, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Maria V Baroni
- ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), CONICET and Universidad Nacional de Córdoba, Bv. Dr. Juan Filloy s/n; Cdad. Universitaria, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica and ISIDSA-SECyT, Medina Allende esq. Haya de La Torre, Edif. Ciencias II, Cdad. Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
20
|
Soon JM. Food fraud countermeasures and consumers: A future agenda. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Pu ZJ, Zhang S, Tang YP, Shi XQ, Tao HJ, Yan H, Chen JQ, Yue SJ, Chen YY, Zhu ZH, Zhou GS, Su SL, Duan JA. Study on changes in pigment composition during the blooming period of safflower based on plant metabolomics and semi-quantitative analysis. J Sep Sci 2021; 44:4082-4091. [PMID: 34514725 DOI: 10.1002/jssc.202100439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Red and yellow pigments are the major ingredients of safflower, often used to color food and cosmetics. Carthamin was the main component of red pigment and hydroxysafflor yellow A and anhydrosafflower yellow B were representative components of yellow pigment. Plant metabolomics and semi-quantitative analysis were used to analyze the changes of pigment composition during the blooming period, especially these characteristic components. Carthamin, hydroxysafflor yellow A, anhydrosafflower yellow B, and other components were screened out as differential metabolites based on plant metabolomics. Then semi-quantitative analysis was used to quantify these three representative components of pigments. Experimental results showed that the content of pigments has dynamic changes along with flowering, in the early blooming period, yellow pigment accumulated much and red pigment was low in content. In the middle period, the accumulation rate of the yellow pigment slowed down and content was stabilized. In the next step, the content of yellow pigments gradually decreased, and the content of red pigments gradually increased. Later, the level of yellow pigment decreased significantly, and the accumulation rate of red pigment increased significantly. Last, the appearance color of safflower was red, with yellow parts barely visible, and accumulation of red pigment was the highest and of the yellow pigment was the lowest in content.
Collapse
Affiliation(s)
- Zong-Jin Pu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuo Zhang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jia-Qian Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
22
|
|
23
|
Kuang X, Kong Y, Hu X, Li K, Guo X, Liu C, Han L, Li D. Defatted flaxseed flour improves weight loss and lipid profile in overweight and obese adults: a randomized controlled trial. Food Funct 2021; 11:8237-8247. [PMID: 32966475 DOI: 10.1039/d0fo00838a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SCOPE Studies have suggested that foods rich in dietary fiber may contribute to body weight loss and lower triacylglycerol (TG) levels. This study aimed to investigate the effect of flaxseed meal (FM) (a by-product of flaxseed after oil processing) supplemented biscuits on body weight, body composition, and blood lipids in overweight and obese participants. METHOD AND RESULTS In a double-blind randomized controlled trial, 53 overweight and obese adults (18-36 years of age) were recruited and randomized to consume control biscuits or biscuits supplemented with FM for their breakfast for 60 days (approximately 100 g per day). Significant group × time interaction (P = 0.011) was observed for body weight, and the body weight of the FM group was significantly lower than that of the control group (P = 0.049). We also found significant group × time interactions for body mass index (BMI) (P = 0.008), TG (P = 0.041) and interleukin-6 (IL-6) (P = 0.016). In addition, after 60 days of intervention, the body weight, BMI and TG levels of the FM group significantly decreased compared to those of the control group. On day 60, the serum concentration of IL-6 in the FM group was significantly lower than that in the control group. CONCLUSIONS FM supplemented biscuits have a beneficial effect on body weight, BMI and TG of overweight and obese subjects (ClinicalTrials.gov registration number: ChiCTR1900022833).
Collapse
Affiliation(s)
- Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China. and School of Public Health, Qingdao University, Qingdao, China
| | - Yan Kong
- Institute of Nutrition and Health, Qingdao University, Qingdao, China. and School of Public Health, Qingdao University, Qingdao, China
| | - Xiaojie Hu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China. and School of Public Health, Qingdao University, Qingdao, China
| | - Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China. and School of Public Health, Qingdao University, Qingdao, China
| | - Xiaofei Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao, China. and School of Public Health, Qingdao University, Qingdao, China
| | - Chunxiao Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China. and School of Public Health, Qingdao University, Qingdao, China
| | - Lei Han
- Department of Clinical Nutrition, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China. and School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Liu HY, Wadood SA, Xia Y, Liu Y, Guo H, Guo BL, Gan RY. Wheat authentication:An overview on different techniques and chemometric methods. Crit Rev Food Sci Nutr 2021; 63:33-56. [PMID: 34196234 DOI: 10.1080/10408398.2021.1942783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal crops and is consumed as a staple food around the globe. Wheat authentication has become a crucial issue over the last decades. Recently, many techniques have been applied in wheat authentication including the authentication of wheat geographical origin, wheat variety, organic wheat, and wheat flour from other cereals. This paper collected related literature in the last ten years, and attempted to highlight the recent studies on the discrimination and authentication of wheat using different determination techniques and chemometric methods. The stable isotope analysis and elemental profile of wheat are promising tools to obtain information regarding the origin, and variety, and to differentiate organic from conventional farming of wheat. Image analysis, genetic parameters, and omics analysis can provide solutions for wheat variety, organic wheat, and wheat adulteration. Vibrational spectroscopy analyses, such as NIR, FTIR, and HIS, in combination with multivariate data analysis methods, such as PCA, LDA, and PLS-DA, show great potential in wheat authenticity and offer many advantages such as user-friendly, cost-effective, time-saving, and environment friendly. In conclusion, analytical techniques combining with appropriate multivariate analysis are very effective to discriminate geographical origin, cultivar classification, and adulterant detection of wheat.
Collapse
Affiliation(s)
- Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Syed Abdul Wadood
- Department of Food and Nutrition, University of Home Economics, Lahore, Pakistan
| | - Yu Xia
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Huan Guo
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Bo-Li Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu, China
| |
Collapse
|
25
|
Velázquez-Gutiérrez S, Alpizar-Reyes E, Guadarrama-Lezama A, Báez-González J, Alvarez-Ramírez J, Pérez-Alonso C. Influence of the wall material on the moisture sorption properties and conditions of stability of sesame oil hydrogel beads by ionic gelation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Alasalvar C, Chang SK, Bolling B, Oh WY, Shahidi F. Specialty seeds: Nutrients, bioactives, bioavailability, and health benefits: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:2382-2427. [PMID: 33719194 DOI: 10.1111/1541-4337.12730] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Seeds play important roles in human nutrition and health since ancient time. The term "specialty" has recently been applied to seeds to describe high-value and/or uncommon food products. Since then, numerous studies have been conducted to identify various classes of bioactive compounds, including polyphenols in specialty seeds. This review discusses nutrients, fat-soluble bioactives, polyphenols/bioactives, antioxidant activity, bioavailability, health benefits, and safety/toxicology of commonly consumed eight specialty seeds, namely, black cumin, chia, hemp, flax, perilla, pumpkin, quinoa, and sesame. Scientific results from the existing literature published over the last decade have been compiled and discussed. These specialty seeds, having numerous fat-soluble bioactives and polyphenols, together with their corresponding antioxidant activities, have increasingly been consumed. Hence, these specialty seeds can be considered as a valuable source of dietary supplements and functional foods due to their health-promoting bioactive components, polyphenols, and corresponding antioxidant activities. The phytochemicals from these specialty seeds demonstrate bioavailability in humans with promising health benefits. Additional long-term and well-design human intervention trials are required to ascertain the health-promoting properties of these specialty seeds.
Collapse
Affiliation(s)
| | - Sui Kiat Chang
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bradley Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Won Young Oh
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| |
Collapse
|