1
|
Chen M, Cheng JH, Sun DW. Reduced graphene oxide prepared by cold plasma green treatment in liquid phase for fluorescence biosensing of tropomyosin in shrimp. Food Chem 2025; 468:142458. [PMID: 39724724 DOI: 10.1016/j.foodchem.2024.142458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Graphene oxide (GO), renowned for its two-dimensional structure and exceptional fluorescence quenching capabilities, is a preferred choice for the construction of fluorescence biosensors. As the sensitivity demands for these sensors escalate, enhancing the fluorescence quenching performance of GO and reducing background fluorescence become paramount to optimize the sensor sensitivity. In this study, the use of cold plasma (CP) treatment with glucose solution as a reducing agent to refine GO into reduced graphene oxide (r-GO) with optimal fluorescence quenching abilities was explored. The efficacy of CP treatment was comprehensively analyzed, encompassing fluorescence quenching capacity, morphological alterations, and structural composition. The findings revealed that the ideal conditions for achieving r-GO with superior fluorescence quenching were achieved by treating a mixture of 0.5 mg/mL GO and 0.2 g/mL glucose with CP at 100 kV and 1 A for 10 min. Notably, the resulting r-GO demonstrated remarkable performance in the specific detection of tropomyosin in shrimp, achieving a detection limit of 0.0657 μg/mL, demonstrating its potential for highly sensitive biosensing applications.
Collapse
Affiliation(s)
- Meixi Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield Dublin 4, Ireland.
| |
Collapse
|
2
|
Liu C, Liu Q, Chen X, Guo M, Chen Z, Zhao J, Chen H, Guo S, Cen H, Yao G, Chen L, Wang Y, Yang PC, Wang L, Chen F. A novel label-free biosensor for myocardial ischemia biomarker detection via CRISPR/12a. Biosens Bioelectron 2025; 270:116954. [PMID: 39577179 DOI: 10.1016/j.bios.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/23/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Myocardial infarction (MI) is the leading cause of death worldwide. Here, we present a novel, label-free biosensor for detecting myocardial ischemia biomarkers via CRISPR/Cas12a. This system utilizes the unique properties of CRISPR/Cas12a and G-quadruplex-ThT-based biosensors, enabling sensitive and specific detection of ATP, a crucial biomarker in cardiovascular diseases, at concentrations as low as 23 nM. Our method demonstrates substantial improvements over traditional ATP detection techniques, such as high-performance liquid chromatography and enzymatic assays, which often require complex sample preparation methods and costly equipment. The feasibility of the biosensor was further demonstrated in various models, including heart failure in mice and hypoxic conditions in cardiomyocytes. This successfully showcased its ability to function as a practical tool for diagnosing and monitoring diseases characterized by ATP dysregulation, highlighting its effectiveness in real-world clinical scenarios. This biosensor is notable for its rapid response, ease of use, and potential for integration into point-of-care diagnostics. These features offer significant advantages for the early diagnosis and management of ischemic heart disease and other conditions where ATP serves as a key metabolic biomarker. This technology also offers significant potential for early diagnosis and monitoring of myocardial ischemia and cardiovascular diagnostics. These findings underscore the biosensor's capacity for real-time ATP monitoring, offering crucial insights into mitochondrial function and disease progression, particularly in cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510080, Guangdong Province, China
| | - Qiaojing Liu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Xiaoling Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Mingli Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Jiaxiong Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Sien Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Gengzhen Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Lu Chen
- Pharma Technology A/S, Åshøjvej 24, 4600, Køge, Denmark
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China; Department of Cardiovascular Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, Guangdong Province, China; Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China.
| | - Feng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu Province, China.
| |
Collapse
|
3
|
Zhang Y, Lei S, Zou W, Wang L, Yan J, Zhang X, Zhang W, Yang Q. Research progress on detection methods for food allergens. J Food Compost Anal 2025; 137:106906. [DOI: 10.1016/j.jfca.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Zhu C, Du H, Liu H, Qin H, Yan M, Li L, Qu F. Screening, identification, and application of aptamers against allergens in food matrices. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39659225 DOI: 10.1080/10408398.2024.2439037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Food allergies have become one of the most pressing issues in food safety and public health globally along with their incidence increasing in recent years. The reliable recognition of allergens from different sources, especially food-hidden allergens, is essential for preventing and controlling food allergies. Recently, aptamers, as emerging recognition elements, have gained considerable attention in food allergy, especially in the detection of food allergens. This review systematically summarizes the latest progress in screening, identification, and application of aptamers against food allergens over the past five years. We first introduce a brief overview of food allergy and aptamers, followed by a detailed focus on the aptamers' research against different food allergens broadly based on the major categories of the Big-8 allergens: highlighting the newly screened aptamers and their applied systematic evolution of ligands by exponential enrichment (SELEX) strategies, and emphasizing their practical applications including aptasensors, allergy inhibitors, or affinity adsorptions. Finally, the remaining challenges and future exploitations faced by aptamers in food allergens are comprehensively discussed and depicted. This review holds the promise of inspiring a broader range of researchers to gain an in-depth understanding of food allergy assisted by aptamer recognition and to facilitate improved biochemical analyses and successful application.
Collapse
Affiliation(s)
- Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongxia Du
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hao Liu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Meliana C, Liu J, Show PL, Low SS. Biosensor in smart food traceability system for food safety and security. Bioengineered 2024; 15:2310908. [PMID: 38303521 PMCID: PMC10841032 DOI: 10.1080/21655979.2024.2310908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The burden of food contamination and food wastage has significantly contributed to the increased prevalence of foodborne disease and food insecurity all over the world. Due to this, there is an urgent need to develop a smarter food traceability system. Recent advancements in biosensors that are easy-to-use, rapid yet selective, sensitive, and cost-effective have shown great promise to meet the critical demand for onsite and immediate diagnosis and treatment of food safety and quality control (i.e. point-of-care technology). This review article focuses on the recent development of different biosensors for food safety and quality monitoring. In general, the application of biosensors in agriculture (i.e. pre-harvest stage) for early detection and routine control of plant infections or stress is discussed. Afterward, a more detailed advancement of biosensors in the past five years within the food supply chain (i.e. post-harvest stage) to detect different types of food contaminants and smart food packaging is highlighted. A section that discusses perspectives for the development of biosensors in the future is also mentioned.
Collapse
Affiliation(s)
- Catarina Meliana
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, Zhejiang Province, China
| | - Jingjing Liu
- College of Automation Engineering, Northeast Electric Power University, Jilin, Jilin Province, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, Abu Dhabi Municipality, United Arab Emirates
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, Zhejiang Province, China
| |
Collapse
|
6
|
Feng X, Yan Z, Ren X, Jia Y, Sun J, Guo J, Gao Z, Li H, Long F. Sea Buckthorn Flavonoid Extracted with High Hydrostatic Pressure Alleviated Shrimp Allergy in Mice through the Microbiota and Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25094-25102. [PMID: 39495351 DOI: 10.1021/acs.jafc.4c06928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Sea buckthorn (Hippophaë rhamnoides L.) known as the deciduous shrub has been reported to have effects of antioxidant, anti-inflammatory, and immunomodulatory activities. Tropomyosin (TM) induced a regulatory immune response associated with food allergy. In this study, a mouse model of food allergy sensitized to tropomyosin (TM) was established to assess the antiallergic properties of sea buckthorn flavonoid extract (SBF). SBF alleviated mice's allergic symptoms and exhibited a significant reduction in the levels of IgE and histamine. Meanwhile, SBF repaired the allergic Th2 cell overpolarization generated by TM, via downregulating the IL-4 production and upregulating IFN-γ production to restore the balance of Th1/Th2 cells. Furthermore, the 16S RNA analysis showed that SBF primarily restored the gut microbiota via increasing the abundance in Chitinophilidae and decreasing in Burkholderiaceae, Pneumatobacteriaceae, and Sphingomonadaceae. Gut metabolomes determined by liquid chromatography-mass spectrometry (LC-MS) suggested that TM upregulated PE (14:0/22:1(13Z)) and SBF decreased formimino-l-glutamic acid and urocanic acid levels. According to the KEGG pathway analysis, SBF treatment has been shown to modulate glycerophospholipid and histidine metabolism to improve allergic reactions. SBF holds great promise as a novel potential agent for the treatment of food allergies.
Collapse
Affiliation(s)
- Xiaoping Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhuomin Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojing Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yining Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiao Sun
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jing Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huzhong Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
7
|
Jiao S, Chen X, He Z, Wu L, Xie X, Sun Z, Zhang S, Cao H, Hammock BD, Liu X. Colorimetric and surface-enhanced Raman scattering dual-mode lateral flow immunosensor using phage-displayed shark nanobody for the detection of crustacean allergen tropomyosin. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133821. [PMID: 38377914 DOI: 10.1016/j.jhazmat.2024.133821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Tropomyosin (TM) is the primary allergenic protein responsible for crustacean food allergies, and thus sensitive and rapid methods are required for the screening of crustacean TM in food. In this study, using the phage-displayed shark nanobody (PSN) as a multifunctional biomaterial, we developed a colorimetric and surface-enhanced Raman scattering dual-mode lateral flow immunosensor (CM/SERS-LFI) for competitive detection of crustacean TM. The SERS tag AuMBA@AgNPs with the Raman signal molecule 4-mercaptobenzoic acid (4-MBA) was prepared and immobilized on the PSN to construct the immunoprobe AuMBA@Ag-PSN. The probe can identify free TM that competes with TM on the T-line, and the optimized CM/SERS-LFI enables quantitative analysis of TM using the probe with a limit of detection (LOD) of 0.0026 μg/mL (SERS mode) and 0.0057 μg/mL (colorimetric mode), respectively. Additionally, it can implement a qualitative analysis by the naked eye with a visual LOD of 0.01 μg/mL. The CM/SERS-LFI exhibited excellent performance in the tests of selectivity, accuracy, precision, and stability. Moreover, the method's effectiveness in the analysis of real samples was confirmed by a commercial ELISA kit. Therefore, the developed CM/SERS-LFI was demonstrated to be a powerful and reliable tool for the rapid and sensitive detection of crustacean TM in food.
Collapse
Affiliation(s)
- Sujia Jiao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xincheng Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Long Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
8
|
Wang Y, Wang Z, Tong Y, Zhang D, Yun K, Yan J, Niu W. Aptamer-based fluorescent sensor for highly sensitive detection of methamphetamine. LUMINESCENCE 2024; 39:e4687. [PMID: 38332476 DOI: 10.1002/bio.4687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
The construction of a fluorescence aptamer sensor was achieved by employing the fundamental principle of fluorescence resonance energy transfer. By employing molecular modeling technologies to identify the binding site, the high-affinity aptamer APT-40nt was derived from the whole sequence and utilized on the graphene oxide (GO) fluorescent platform for the purpose of achieving a highly sensitive detection of methamphetamine (METH). The aptamer tagged with fluorescein (FAM) dye undergoes quenching in the presence of GO due to π-stacking interaction. With the addition of the target, the aptamer that has been tagged was detached from the GO surface, forming a stable complex with METH. This process resulted in fluorescence restoration of the system, and the degree of fluorescence restoration was proportional to METH concentration in the linear range of 1-50 and 50-200 nM. Notably, under optimized conditions, the detection limit of this aptasensor was as low as 0.78 nM, which meets the detection limit requirements of METH detection in saliva and urine in some countries and regions. Moreover, other common illicit drugs and metabolites had minimizing interference with the determination. The established aptasensor, therefore, has been successfully applied to detect METH in saliva and urine samples and exhibited satisfactory recoveries (87%-111%). This aptasensor has the advantages of low detection limit, excellent selectivity, ease of operation, and low cost, providing a promising strategy for on-site detection of METH in saliva and urine.
Collapse
Affiliation(s)
- Yandan Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Zheyu Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Yishuo Tong
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Dan Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Weifen Niu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| |
Collapse
|
9
|
Jin H, Cheng Y, Kong F, Huang H, Yang Z, Wang X, Cai X, Luo J, Ming T. Design and Validation of a Short Novel Estradiol Aptamer and Exploration of Its Application in Sensor Technology. Molecules 2024; 29:535. [PMID: 38276613 PMCID: PMC10819485 DOI: 10.3390/molecules29020535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The specific and sensitive detection of 17β-estradiol (E2) is critical for diagnosing and treating numerous diseases, and aptamers have emerged as promising recognition probes for developing detection platforms. However, traditional long-sequence E2 aptamers have demonstrated limited clinical performance due to redundant structures that can affect their stability and recognition ability. There is thus an urgent need to further optimize the structure of the aptamer to build an effective detection platform for E2. In this work, we have designed a novel short aptamer that retains the key binding structure of traditional aptamers to E2 while eliminating the redundant structures. The proposed aptamer was evaluated for its binding properties using microscale thermophoresis, a gold nanoparticle-based colorimetric method, and electrochemical assays. Our results demonstrate that the proposed aptamer has excellent specific recognition ability for E2 and a high affinity with a dissociation constant of 92 nM. Moreover, the aptamer shows great potential as a recognition probe for constructing a highly specific and sensitive clinical estradiol detection platform. The aptamer-based electrochemical sensor enabled the detection of E2 with a linear range between 5 pg mL-1 and 10 ng mL-1 (R2 = 0.973), and the detection capability of a definite low concentration level was 5 pg mL-1 (S/N = 3). Overall, this novel aptamer holds great promise as a valuable tool for future studies on the role of E2 in various physiological and pathological processes and for developing sensitive and specific diagnostic assays for E2 detection in clinical applications.
Collapse
Affiliation(s)
- Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing 100034, China
| | - Yan Cheng
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing 100034, China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Huang
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing 100034, China
| | - Zhenjun Yang
- State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xinyi Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Ming
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin 300190, China
| |
Collapse
|
10
|
Radomirović M, Gligorijević N, Stanić-Vučinić D, Rajković A, Ćirković Veličković T. Ultrasensitive Quantification of Crustacean Tropomyosin by Immuno-PCR. Int J Mol Sci 2023; 24:15410. [PMID: 37895089 PMCID: PMC10607643 DOI: 10.3390/ijms242015410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Tropomyosin is the major and predominant allergen among shellfish. This study developed an ultrasensitive immuno-PCR method for the quantification of crustacean tropomyosin in foods. The method couples sandwich ELISA with the real-time PCR (rtPCR) amplification of marker DNAs. Monoclonal anti-TPM antibody was the capture antibody, polyclonal rabbit anti-shrimp tropomyosin antibody was the detection antibody, while natural shrimp tropomyosin served as the standard. A double-stranded amino-DNA was covalently conjugated to a secondary anti-rabbit antibody and subsequently amplified and quantified via rtPCR. The quantification sensitivity of immuno-PCR was 20-fold higher than analogous ELISA, with LOQ 19.8 pg/mL. The developed immuno-PCR method is highly specific for the detection of crustacean tropomyosin and is highly precise in a broad concentration range. Tropomyosin recovery in the spiked vegetable soup was 87.7-115.6%. Crustacean tropomyosin was also quantified in commercial food products. The reported immuno-PCR assay is the most sensitive method for the quantification of crustacean tropomyosin and is the first immuno-PCR-based assay for the quantification of food allergen and food protein in general. The described method could be easily adapted for the specific and ultrasensitive immuno-PCR-based detection of traces of any food allergen that is currently being quantified with ELISA, which is of critical importance for people with food allergies.
Collapse
Affiliation(s)
- Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade—Faculty of Chemistry, 11000 Belgrade, Serbia; (M.R.); (D.S.-V.)
| | - Nikola Gligorijević
- Center for Chemistry, University of Belgrade—Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, 11000 Belgrade, Serbia;
| | - Dragana Stanić-Vučinić
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade—Faculty of Chemistry, 11000 Belgrade, Serbia; (M.R.); (D.S.-V.)
| | - Andreja Rajković
- Ghent University Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Republic of Korea
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade—Faculty of Chemistry, 11000 Belgrade, Serbia; (M.R.); (D.S.-V.)
- Ghent University Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Republic of Korea
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Alzhrani A, Al-Kattan K, Yaqinuddin A. Low-Cost Point-of-Care Monitoring of ALT and AST Is Promising for Faster Decision Making and Diagnosis of Acute Liver Injury. Diagnostics (Basel) 2023; 13:2967. [PMID: 37761334 PMCID: PMC10529728 DOI: 10.3390/diagnostics13182967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 09/29/2023] Open
Abstract
Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are important liver enzymes in clinical settings. Their levels are known to be elevated in individuals with underlying liver diseases and those consuming hepatotoxic drugs. Serum ALT and AST levels are crucial for diagnosing and assessing liver diseases. Serum ALT is considered the most reliable and specific candidate as a disease biomarker for liver diseases. ALT and AST levels are routinely analyzed in high-risk individuals for the bioanalysis of both liver function and complications associated with drug-induced liver injury. Typically, ALT and AST require blood sampling, serum separation, and testing. Traditional methods require expensive or sophisticated equipment and trained specialists, which is often time-consuming. Therefore, developing countries have limited or no access to these methods. To address the above issues, we hypothesize that low-cost biosensing methods (paper-based assays) can be applied to the analysis of ALT and AST levels in biological fluids. The paper-based biodetection technique can semi-quantitatively measure ALT and AST from capillary finger sticks, and it will pave the way for the development of an inexpensive and rapid alternative method for the early detection and diagnosis of liver diseases. This method is expected to significantly reduce the economic burden and aid routine clinical analysis in both developed and underdeveloped countries. The development of low-cost testing platforms and their diagnostic utility will be extremely beneficial in helping millions of patients with liver disorders.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Suliman Alsalameh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
| | - Alaa Alzhrani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
| |
Collapse
|
12
|
Chinnappan R, Ramadan Q, Zourob M. Isolation and Detection of Exosomal Mir210 Using Carbon Nanomaterial-Coated Magnetic Beads. J Funct Biomater 2023; 14:441. [PMID: 37754855 PMCID: PMC10531929 DOI: 10.3390/jfb14090441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that are found in various cellular compartments and play an important role in regulating gene expression. Extracellular miRNAs, such as those found within extracellular vesicles such as exosomes are involved in cell-to-cell communication. The intercellular transfer of miRNAs has been implicated in various diseases' pathogenesis including cancer and has been studied extensively as potential cancer biomarkers. However, the extraction of miRNA from exosomes is still a challenging task. The current nucleic acid extraction assays are expensive and labor-intensive. In this study, we demonstrated a microfluidic device for aptamer-based magnetic separation of the exosomes and subsequent detection of the miRNA using a fluorescence switching assay, which was enabled by carbon nanomaterials coated on magnetic beads. In the OFF state, the fluorophore-labelled cDNA is quenched using carbon nanomaterials. However, when the target miRNA210 is introduced, the cDNA detaches from the bead's surface, which leads to an increase in the fluorescence intensity (ON state). This increment was found to be proportional to miRNA concentration within the dynamic range of 0-100 nM with a detection limit of 5 pM. The assay was validated with spiked miRNA using the standard RT-PCR method. No notable cross-reactivity with other closely related miRNAs was observed. The developed method can be utilized for the minimally invasive detection of cancer biomarkers.
Collapse
Affiliation(s)
| | - Qasem Ramadan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia;
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
13
|
Fakhimahmadi A, Hasanaj I, Hofstetter G, Pogner C, Gorfer M, Wiederstein M, Szepannek N, Bianchini R, Dvorak Z, Jensen SA, Berger M, Jensen-Jarolim E, Hufnagl K, Roth-Walter F. Nutritional Provision of Iron Complexes by the Major Allergen Alt a 1 to Human Immune Cells Decreases Its Presentation. Int J Mol Sci 2023; 24:11934. [PMID: 37569310 PMCID: PMC10418924 DOI: 10.3390/ijms241511934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Alternaria alternata is a common fungus strongly related with severe allergic asthma, with 80% of affected individuals being sensitized solely to its major allergen Alt a 1. Here, we assessed the function of Alt a 1 as an innate defense protein binding to micronutrients, such as iron-quercetin complexes (FeQ2), and its impact on antigen presentation in vitro. Binding of Alt a 1 to FeQ2 was determined in docking calculations. Recombinant Alt a 1 was generated, and binding ability, as well as secondary and quaternary structure, assessed by UV-VIS, CD, and DLS spectroscopy. Proteolytic functions were determined by casein and gelatine zymography. Uptake of empty apo- or ligand-filled holoAlt a 1 were assessed in human monocytic THP1 cells under the presence of dynamin and clathrin-inhibitors, activation of the Arylhydrocarbon receptor (AhR) using the human reporter cellline AZ-AHR. Human PBMCs were stimulated and assessed for phenotypic changes in monocytes by flow cytometry. Alt a 1 bound strongly to FeQ2 as a tetramer with calculated Kd values reaching pico-molar levels and surpassing affinities to quercetin alone by a factor of 5000 for the tetramer. apoAlt a 1 but not holoAlta 1 showed low enzymatic activity against casein as a hexamer and gelatin as a trimer. Uptake of apo- and holo-Alt a 1 occurred partly clathrin-dependent, with apoAlt a 1 decreasing labile iron in THP1 cells and holoAlt a 1 facilitating quercetin-dependent AhR activation. In human PBMCs uptake of holoAlt a 1 but not apoAlt a 1 significantly decreased the surface expression of the costimulatory CD86, but also of HLADR, thereby reducing effective antigen presentation. We show here for the first time that the presence of nutritional iron complexes, such as FeQ2, significantly alters the function of Alt a 1 and dampens the human immune response, thereby supporting the notion that Alt a 1 only becomes immunogenic under nutritional deprivation.
Collapse
Affiliation(s)
- Aila Fakhimahmadi
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ilir Hasanaj
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Gerlinde Hofstetter
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clara Pogner
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria; (C.P.); (M.G.)
| | - Markus Gorfer
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria; (C.P.); (M.G.)
| | - Markus Wiederstein
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria;
| | - Nathalie Szepannek
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Sebastian A. Jensen
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Markus Berger
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Cui W, Liu J, Zhao W, Zhang J, Wang Y, Li Q, Wang R, Qiao M, Xu S. An enzyme-free and label-free fluorescent aptasensor for sensitive detection of kanamycin in milk samples based on hybridization chain reaction. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Adeeb S, Al-Kattan K, Yaqinuddin A. Aptasensors Are Conjectured as Promising ALT and AST Diagnostic Tools for the Early Diagnosis of Acute Liver Injury. Life (Basel) 2023; 13:1273. [PMID: 37374056 DOI: 10.3390/life13061273] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Abnormal levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in human serum are the most sensitive indicator of hepatocellular damage. Because liver-related health problems are directly linked to elevated levels of ALT and AST, it is important to develop accurate and rapid methods to detect these enzymes for the early diagnosis of liver disease and prevention of long-term liver damage. Several analytical methods have been developed for the detection of ALT and AST. However, these methods are based on complex mechanisms and require bulky instruments and laboratories, making them unsuitable for point-of-care application or in-house testing. Lateral flow assay (LFA)-based biosensors, on the other hand, provide rapid, accurate, and reliable results, are easy to operate, and are affordable for low-income populations. However, due to the storage, stability, batch-to-batch variations, and error margins, antibody-based LFAs are considered unaffordable for field applications. In this hypothesis, we propose the selection of aptamers with high affinity and specificity for the liver biomarkers ALT and AST to build an efficient LFA device for point-of-care applications. Though the aptamer-based LFA would be semiquantitative for ALT and AST, it would be an inexpensive option for the early detection and diagnosis of liver disease. Aptamer-based LFA is anticipated to minimize the economic burden. It can also be used for routine liver function tests regardless of the economic situation in each country. By developing a low-cost testing platform, millions of patients suffering from liver disease can be saved.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Salma Adeeb
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
16
|
Zhou J, Wang Y, Zhou C, Zheng L, Fu L. A ratiometric fluorescent aptasensor based on EXPAR to detect shellfish tropomyosin in food system. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Gut Microbiome Proteomics in Food Allergies. Int J Mol Sci 2023; 24:ijms24032234. [PMID: 36768555 PMCID: PMC9917015 DOI: 10.3390/ijms24032234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Food allergies (FA) have dramatically increased in recent years, particularly in developed countries. It is currently well-established that food tolerance requires the strict maintenance of a specific microbial consortium in the gastrointestinal (GI) tract microbiome as alterations in the gut microbiota can lead to dysbiosis, causing inflammation and pathogenic intestinal conditions that result in the development of FA. Although there is currently not enough knowledge to fully understand how the interactions between gut microbiota, host responses and the environment cause food allergies, recent advances in '-omics' technologies (i.e., proteomics, genomics, metabolomics) and in approaches involving systems biology suggest future headways that would finally allow the scientific understanding of the relationship between gut microbiome and FA. This review summarizes the current knowledge in the field of FA and insights into the future advances that will be achieved by applying proteomic techniques to study the GI tract microbiome in the field of FA and their medical treatment. Metaproteomics, a proteomics experimental approach of great interest in the study of GI tract microbiota, aims to analyze and identify all the proteins in complex environmental microbial communities; with shotgun proteomics, which uses liquid chromatography (LC) for separation and tandem mass spectrometry (MS/MS) for analysis, as it is the most promising technique in this field.
Collapse
|
18
|
Fata F, Gabriele F, Angelucci F, Ippoliti R, Di Leandro L, Giansanti F, Ardini M. Bio-Tailored Sensing at the Nanoscale: Biochemical Aspects and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020949. [PMID: 36679744 PMCID: PMC9866807 DOI: 10.3390/s23020949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
The demonstration of the first enzyme-based electrode to detect glucose, published in 1967 by S. J. Updike and G. P. Hicks, kicked off huge efforts in building sensors where biomolecules are exploited as native or modified to achieve new or improved sensing performances. In this growing area, bionanotechnology has become prominent in demonstrating how nanomaterials can be tailored into responsive nanostructures using biomolecules and integrated into sensors to detect different analytes, e.g., biomarkers, antibiotics, toxins and organic compounds as well as whole cells and microorganisms with very high sensitivity. Accounting for the natural affinity between biomolecules and almost every type of nanomaterials and taking advantage of well-known crosslinking strategies to stabilize the resulting hybrid nanostructures, biosensors with broad applications and with unprecedented low detection limits have been realized. This review depicts a comprehensive collection of the most recent biochemical and biophysical strategies for building hybrid devices based on bioconjugated nanomaterials and their applications in label-free detection for diagnostics, food and environmental analysis.
Collapse
|
19
|
Zhu Z, Liang A, Haotian R, Tang S, Liu M, Xie B, Luo A. Application of Biosensors in the Detection of SARS-CoV-2. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22120483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
20
|
Li R, Zhang Y, Zhao J, Wang Y, Wang H, Zhang Z, Lin H, Li Z. Quantum-dot-based sandwich lateral flow immunoassay for the rapid detection of shrimp major allergen tropomyosin. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Zhao J, Timira V, Ahmed I, Chen Y, Wang H, Zhang Z, Lin H, Li Z. Crustacean shellfish allergens: influence of food processing and their detection strategies. Crit Rev Food Sci Nutr 2022; 64:3794-3822. [PMID: 36263970 DOI: 10.1080/10408398.2022.2135485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite the increasing popularity of crustacean shellfish among consumers due to their rich nutrients, they can induce a serious allergic response, sometimes even life-threatening. In the past decades, a variety of crustacean allergens have been identified to facilitate the diagnosis and management of crustacean allergies. Although food processing techniques can ease the risk of crustacean shellfish allergy, no available processing methods to tackle crustacean allergies thoroughly. Strict dietary avoidance of crustacean shellfish and its component is the best option for the protection of sensitized individuals, which should rely on the compliance of food labeling and, as such, on their verification by sensitive, reliable, and accurate detection techniques. In this present review, the physiochemical properties, structure aspects, and immunological characteristics of the major crustacean allergens have been described and discussed. Subsequently, the current research progresses on how various processing techniques cause the alterations and modifications in crustacean allergens to produce hypoallergenic crustacean food products were summarized and discussed. Particularly, various analytical methodologies employed in crustacean shellfish allergen detection, and the effect of food processing and matrix on these techniques, are also herein emphasized for the appropriate selection of analytical detection tools to safeguard consumers safety.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Yan Chen
- China National Center for Food Safety Risk Assessment, Chaoyang District, Beijing, P.R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
22
|
Calabria D, Zangheri M, Pour SRS, Trozzi I, Pace A, Lazzarini E, Calabretta MM, Mirasoli M, Guardigli M. Luminescent Aptamer-Based Bioassays for Sensitive Detection of Food Allergens. BIOSENSORS 2022; 12:644. [PMID: 36005040 PMCID: PMC9405952 DOI: 10.3390/bios12080644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 02/06/2023]
Abstract
The presence of hidden allergens in food products, often due to unintended contamination along the food supply chain (production, transformation, processing, and transport), has raised the urgent need for rapid and reliable analytical methods for detecting trace levels of such species in food products. Indeed, food allergens represent a high-risk factor for allergic subjects due to potentially life-threatening adverse reactions. Portable biosensors based on immunoassays have already been developed as rapid, sensitive, selective, and low-cost analytical platforms that can replace analyses with traditional bench-top instrumentation. Recently, aptamers have attracted great interest as alternative biorecognition molecules for bioassays, since they can bind a variety of targets with high specificity and selectivity, and they enable the development of assays exploiting a variety of transduction and detection technologies. In particular, aptasensors based on luminescence detection have been proposed, taking advantage of the development of ultrasensitive tracers and enhancers. This review aims to summarize and discuss recent efforts in the field of food allergen analysis using aptamer-based bioassays with luminescence detection.
Collapse
Affiliation(s)
- Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
- Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Ilaria Trozzi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Andrea Pace
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Elisa Lazzarini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Maria Maddalena Calabretta
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|
23
|
Dong X, Raghavan V. A comprehensive overview of emerging processing techniques and detection methods for seafood allergens. Compr Rev Food Sci Food Saf 2022; 21:3540-3557. [PMID: 35676763 DOI: 10.1111/1541-4337.12987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
Abstract
Seafood is rich in nutrients and plays a significant role in human health. However, seafood allergy is a worldwide health issue by inducing adverse reactions ranging from mild to life-threatening in seafood-allergic individuals. Seafood consists of fish and shellfish, with the major allergens such as parvalbumin and tropomyosin, respectively. In the food industry, effective processing techniques are applied to seafood allergens to lower the allergenicity of seafood products. Also, sensitive and rapid allergen-detection methods are developed to identify and assess allergenic ingredients at varying times. This review paper provides an overview of recent advances in processing techniques (thermal, nonthermal, combined [hybrid] treatments) and main allergen-detection methods for seafood products. The article starts with the seafood consumption and classification, proceeding with the prevalence and symptoms of seafood allergy, followed by a description of biochemical characteristics of the major seafood allergens. As the topic is multidisciplinary in scope, it is intended to provide information for further research essential for food security and safety.
Collapse
Affiliation(s)
- Xin Dong
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
24
|
Dong X, Raghavan V. Recent advances of selected novel processing techniques on shrimp allergenicity: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
|
26
|
Liu R, Zhang F, Sang Y, Katouzian I, Jafari SM, Wang X, Li W, Wang J, Mohammadi Z. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Li H, Li T, Wang Y, Zhang S, Sheng H, Fu L. Liquid chromatography coupled to tandem mass spectrometry for comprehensive quantification of crustacean tropomyosin and arginine kinase in food matrix. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
A spotlight on analytical prospects in food allergens: From emerging allergens and novel foods to bioplastics and plant-based sustainable food contact materials. Food Chem 2022; 388:132951. [PMID: 35447585 DOI: 10.1016/j.foodchem.2022.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/21/2022]
Abstract
The present review throws a spotlight on new and emerging food safety concerns in view of a well-established food allergen risk arising from global socio-economic changes, international trade, circular economy, environmental sustainability, and upcycling. Food culture globalization needs harmonization of regulations, technical specifications, and reference materials towards mutually recognised results. In parallel, routine laboratories require high-throughput reliable analytical strategies, even in-situ testing devices, to test both food products and food contact surfaces for residual allergens. Finally, the currently neglected safety issues associated to possible allergen exposure due to the newly proposed bio- and plant-based sustainable food contact materials require an in-depth investigation.
Collapse
|
29
|
Fan S, Ma J, Li C, Wang Y, Zeng W, Li Q, Zhou J, Wang L, Wang Y, Zhang Y. Determination of Tropomyosin in Shrimp and Crab by Liquid Chromatography–Tandem Mass Spectrometry Based on Immunoaffinity Purification. Front Nutr 2022; 9:848294. [PMID: 35308292 PMCID: PMC8927901 DOI: 10.3389/fnut.2022.848294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 01/13/2023] Open
Abstract
A UPLC-MS/MS method was developed for the detection of tropomyosin (TM) in shrimp and crab. After simple extraction, the samples were purified by immunoaffinity column and then digested by trypsin. The obtained sample was separated by Easy-nLC 1000-Q Exactive. The obtained spectrums were analyzed by Thermo Proteome Discoverer 1.4 software and then ANIQLVEK with high sensitivity was selected as the quantitative signature peptide. Isotope-labeled internal standard was used in the quantitative analysis. The method showed good linearity in the range of 5–5,000 μg/L with a limit of quantification (LOQ) of 0.1 mg/kg. The average recoveries were 77.22–95.66% with RSDs ≤ 9.97%, and the matrix effects were between 88.53 and 112.60%. This method could be used for rapid screening and quantitative analysis of TM in shrimp and crab. Thus, it could provide technical support for self-testing of TM by food manufacturers and promote further improvement of allergen labeling in China.
Collapse
Affiliation(s)
- Sufang Fan
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Junmei Ma
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Food Inspection and Research Institute, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chunsheng Li
- Biology Institute of Hebei Academy of Science, Shijiazhuang, China
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wen Zeng
- Department of Chemical Engineering, Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Tsinghua University, Beijing, China
| | - Qiang Li
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Jinru Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Liming Wang
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Yi Wang
- Department of Chemical Engineering, Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Tsinghua University, Beijing, China
- Yi Wang
| | - Yan Zhang
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Food Inspection and Research Institute, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Yan Zhang
| |
Collapse
|
30
|
He Y, Hu C, Li Z, Wu C, Zeng Y, Peng C. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors. Mater Today Bio 2022; 14:100231. [PMID: 35280329 PMCID: PMC8896867 DOI: 10.1016/j.mtbio.2022.100231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases (such as Corona Virus Disease 2019) and tumors pose a tremendous challenge to global public health. Early diagnosis of infectious diseases and tumors can lead to effective control and early intervention of the patient's condition. Over the past few decades, carbon nanomaterials (CNs) have attracted widespread attention in different scientific disciplines. In the field of biomedicine, carbon nanotubes, graphene, carbon quantum dots and fullerenes have the ability of improving the accuracy of the diagnosis by the improvement of the diagnostic approaches. Therefore, this review highlights their applications in the diagnosis of infectious diseases and tumors over the past five years. Recent advances in the field of biosensing, bioimaging, and nucleic acid amplification by such CNs are introduced and discussed, emphasizing the importance of their unique properties in infectious disease and tumor diagnosis and the challenges and opportunities that exist for future clinical applications. Although the application of CNs in the diagnosis of several diseases is still at a beginning stage, biosensors, bioimaging technologies and nucleic acid amplification technologies built on CNs represent a new generation of promising diagnostic tools that further support their potential application in infectious disease and tumor diagnosis.
Collapse
Affiliation(s)
| | | | - Zhijia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yuanyuan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
31
|
Wang Y, Li L, Li H, Peng Y, Fu L. A fluorometric sandwich biosensor based on rationally imprinted magnetic particles and aptamer modified carbon dots for the detection of tropomyosin in seafood products. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Sheng K, Jiang H, Fang Y, Wang L, Jiang D. Emerging electrochemical biosensing approaches for detection of allergen in food samples: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Screening and Identification of Specific Aptamers for Shellfish Allergen Tropomyosin with Capillary Electrophoresis-SELEX. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02211-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Das J, Mishra HN. Recent advances in sensors for detecting food pathogens, contaminants, and toxins: a review. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03951-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Cheng JH, Wang H, Sun DW. An overview of tropomyosin as an important seafood allergen: Structure, cross-reactivity, epitopes, allergenicity, and processing modifications. Compr Rev Food Sci Food Saf 2021; 21:127-147. [PMID: 34954871 DOI: 10.1111/1541-4337.12889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/19/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
Tropomyosin (TM) is a major allergen in crustaceans, which often causes allergy and is fatal to some consumers. Currently, the most effective treatment is to avoid ingesting TM, although most adverse events occur in accidental ingestion. In this review, the molecular characterization, epitopes, cross-reactivity, and pathogenesis of TM are introduced and elucidated. Modification of TM by traditional processing methods such as heat treatment and enzymatic hydrolysis, and innovative processing technologies including high-pressure treatment, cold plasma (CP), ultrasound, pulsed electric field (PEF), pulsed ultraviolet, microwave and irradiation are discussed in detail. Particularly, enzymolysis, PEF, and CP technologies show great potential for modifying TM and more studies are needed to verify their effectiveness for the seafood industry. Possible mechanisms and the advantages/disadvantages of these technologies for the mitigation of TM allergenicity are also highlighted. Further work should be conducted to investigate the allergenicity caused by protein segments such as epitopes, examine the interaction sites between the allergen and the processing techniques and reveal the reduction mechanism of allergenicity.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Huifen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Belfield, Ireland
| |
Collapse
|
36
|
Aptamer-Based Fluorescent Biosensor for the Rapid and Sensitive Detection of Allergens in Food Matrices. Foods 2021; 10:foods10112598. [PMID: 34828878 PMCID: PMC8623274 DOI: 10.3390/foods10112598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Food allergies have seriously affected the life quality of some people and even endangered their lives. At present, there is still no effective cure for food allergies. Avoiding the intake of allergenic food is still the most effective way to prevent allergic diseases. Therefore, it is necessary to develop rapid, accurate, sensitive, and reliable analysis methods to detect food allergens from different sources. Aptamers are oligonucleotide sequences that can bind to a variety of targets with high specificity and selectivity, and they are often combined with different transduction technologies, thereby constructing various types of aptamer sensors. In recent years, with the development of technology and the application of new materials, the sensitivity, portability, and cost of fluorescence sensing technology have been greatly improved. Therefore, aptamer-based fluorescence sensing technology has been widely developed and applied in the specific recognition of food allergens. In this paper, the classification of major allergens and their characteristics in animal and plant foods were comprehensively reviewed, and the preparation principles and practical applications of aptamer-based fluorescence biosensors are summarized. In addition, we hope that this article can provide some strategies for the rapid and sensitive detection of allergens in food matrices.
Collapse
|
37
|
Devi S, Sharma N, Ahmed T, Huma ZI, Kour S, Sahoo B, Singh AK, Macesic N, Lee SJ, Gupta MK. Aptamer-based diagnostic and therapeutic approaches in animals: Current potential and challenges. Saudi J Biol Sci 2021; 28:5081-5093. [PMID: 34466086 PMCID: PMC8381015 DOI: 10.1016/j.sjbs.2021.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Fast and precise diagnosis of infectious and non-infectious animal diseases and their targeted treatments are of utmost importance for their clinical management. The existing biochemical, serological and molecular methods of disease diagnosis need improvement in their specificity, sensitivity and cost and, are generally not amenable for being used as points-of-care (POC) device. Further, with dramatic changes in environment and farm management practices, one should also arm ourselves and prepare for emerging and re-emerging animal diseases such as cancer, prion diseases, COVID-19, influenza etc. Aptamer - oligonucleotide or short peptides that can specifically bind to target molecules - have increasingly become popular in developing biosensors for sensitive detection of analytes, pathogens (bacteria, virus, fungus, prions), drug residues, toxins and, cancerous cells. They have also been proven successful in the cellular delivery of drugs and targeted therapy of infectious diseases and physiological disorders. However, the in vivo application of aptamer-mediated biosensing and therapy in animals has been limited. This paper reviews the existing reports on the application of aptamer-based biosensors and targeted therapy in animals. It also dissects the various modifications to aptamers that were found to be successful in in vivo application of the aptamers in diagnostics and therapeutics. Finally, it also highlights major challenges and future directions in the application of aptamers in the field of veterinary medicine.
Collapse
Affiliation(s)
- Sapna Devi
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Touqeer Ahmed
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Zul I. Huma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Bijayalaxmi Sahoo
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Amit Kumar Singh
- Experimental Animal Facility, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, U.P., India
| | - Nino Macesic
- Clinic for Reproduction and Theriogenology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Sung Jin Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Mukesh Kumar Gupta
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
38
|
Jiang D, Sheng K, Jiang H, Wang L. A biomimetic "intestinal microvillus" cell sensor based on 3D bioprinting for the detection of wheat allergen gliadin. Bioelectrochemistry 2021; 142:107919. [PMID: 34371348 DOI: 10.1016/j.bioelechem.2021.107919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
A biomimetic "intestinal microvillus" electrochemical cell sensor based on three-dimensional (3D) bioprinting was developed, which can specifically and accurately detect wheat gliadin. Self-assembled flower-like copper oxide nanoparticles (FCONp) and hydrazide-functionalized multiwalled carbon nanotubes (MWCNT-CDH) were innovatively synthesized to improve the sensor performance. A conductive biocomposite hydrogel (bioink) was prepared by mixing FCONp and MWCNT-CDH based on GelMA gel. The cluster-shaped microvillus structure of small intestine was accurately printed on the screen printing electrode with the prepared bioink using stereolithography 3D-bioprinting technology, and then the Rat Basophilic Leukemia cells were immobilized on the gel skeleton. Next, the developed cell sensor was used to effectively detect wheat allergen gliadin. The experimental results show that the bioprinted cell sensor sensitively detects wheat gliadin when the optimized cell numbers and immobilized time are 1 × 106 cells/mL and 10 min, respectively. The linear detection range is 0.1-0.8 ng/mL, and the detection limit is 0.036 ng/mL. The electrochemical cell sensor based on 3D printing technology has excellent stability and reproducibility. Thus, a simple and novel electrochemical detection approach for food allergens was established in this study with potential application in food safety detection and evaluation.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Kaikai Sheng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
39
|
Pavase TR, Lin H, Soomro MA, Zheng H, Li X, Wang K, Li Z. Visual detection of tropomyosin, a major shrimp allergenic protein using gold nanoparticles (AuNPs)-assisted colorimetric aptasensor. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:382-394. [PMID: 37073291 PMCID: PMC10077205 DOI: 10.1007/s42995-020-00085-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
A gold nanoparticle-based label-free colorimetric assay was developed to detect the shrimp allergenic protein tropomyosin (TM), an important biomarker responsible for severe clinical reactivity to shellfish. In a gold nanoparticles (AuNPs)-tropomyosin-binding aptamer (TMBA) complex, the aptamer adsorbs onto the surface of AuNPs and dissociates in the presence of TM. In addition, AuNPs tend to aggregate in the presence of ionic salt, revealing a color change (i.e., wine-red to purple/blue) with a shift in the maximum absorption peak from 520 nm. In the presence of specific binding TM, the aptamer folds into a tertiary structure where it more efficiently stabilizes AuNPs toward the salt-induced aggregation with a hypsochromic shift in the absorption spectra compared to the stabilized AuNPs by aptamer alone. Based on the aggregation and sensitive spectral transformation principle, the AuNPs-based colorimetric aptasensor was successfully applied to detect TM with a range of 10-200 nmol/L and a low detection limit of 40 nmol/L in water samples. The reliability, selectivity, and sensitivity of the aptasensor was then tested with food samples spiked with TM. The observed detection limit was as low as 70 nmol/L in shrimp, 90 nmol/L in tofu, and 80 nmol/L in eggs, respectively. We anticipate the proposed AuNPs-based colorimetric aptasensor assay possesses a high potential for the easy and efficient visual colorimetric detection of TM. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00085-5.
Collapse
Affiliation(s)
- Tushar Ramesh Pavase
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Hong Lin
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Maqsood Ahmed Soomro
- Fish Molecular Immunology Laboratory, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Hongwei Zheng
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xiaxia Li
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Kexin Wang
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Zhenxing Li
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
40
|
Li J, Wang H, Cheng JH. DNA, protein and aptamer-based methods for seafood allergens detection: Principles, comparisons and updated applications. Crit Rev Food Sci Nutr 2021; 63:178-191. [PMID: 34184960 DOI: 10.1080/10408398.2021.1944977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The increasing number of people with seafood allergy has caused a series of problems for practitioners and consumers in the seafood industry year by year. Thereby, development of efficient, convenient and low-cost allergen detection methods is urgently needed. This review introduces three important existing seafood allergen detection methods associated with DNA-based, protein-based and aptamer-based. Their principles and biological characteristics are firstly presented. The core of these three methods are DNA amplification techniques, specific binding of antigens and antibodies, and specific binding of aptamers and ligands, respectively. Among them, DNA-based detection method is an indirect analysis, which takes the gene of allergen as the detection object and is characterized by good stability and high sensitivity. Protein-based and aptamer-based, methods employ indirect analysis for allergen detection. The difference is that the latter uses an easily synthesized and highly efficient aptamer as the detection probe, showing great promising potentials. The advantages and disadvantages of the three mentioned detection methods are also discussed. In the future, as more efficient and reliable detection methods for seafood allergens come into practice, the possibility of seafood allergy patients eating seafood products by mistake will be greatly reduced, which will ensure the food safety and the health of allergy patients.
Collapse
Affiliation(s)
- Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Huifen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
41
|
Xu J, Ye Y, Ji J, Sun J, Sun X. Advances on the rapid and multiplex detection methods of food allergens. Crit Rev Food Sci Nutr 2021; 62:6887-6907. [PMID: 33830835 DOI: 10.1080/10408398.2021.1907736] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
With the gradually increasing prevalence of food allergy in recent years, food allergy has become a major public health problem worldwide. The clinical symptoms caused by food allergy seriously affect people's quality of life; there are unknown allergen components in novel food and hidden allergens caused by cross contamination in food processing, which pose a serious risk to allergy sufferers. Thus, rapid and multiplex detection methods are required to achieve on-site detection or examination of allergic components, so as to identify the risk of allergy in time. This paper reviews the progress of high-efficiency detection of food allergens, including enhanced traditional detection techniques and emerging detection techniques with the ability high-throughput detection or screening potential food allergen, such as xMAP, biosensors, biochips, etc. focusing on their sensitivity, applicability of each method in food, along with their pretreatment, advantages, limitation in the application of food analysis. This paper also introduces the challenges faced by these high-efficiency detection technologies, as well as the potential of customized allergen screening methods and rapid on-site detection technology as future research directions.
Collapse
Affiliation(s)
- Jiayuan Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
42
|
Microfluidic strategies for sample separation and rapid detection of food allergens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
The Construction and Application of Aptamer to Simultaneous Identification of Enrofloxacin and Ciprofloxacin Residues in Fish. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01937-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Aquino A, Conte-Junior CA. A Systematic Review of Food Allergy: Nanobiosensor and Food Allergen Detection. BIOSENSORS-BASEL 2020; 10:bios10120194. [PMID: 33260424 PMCID: PMC7760337 DOI: 10.3390/bios10120194] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Several individuals will experience accidental exposure to an allergen. In this sense, the industry has invested in the processes of removing allergenic compounds in food. However, accidental exposure to allergenic proteins can result from allergenic substances not specified on labels. Analysis of allergenic foods is involved in methods based on immunological, genetic, and mass spectrometry. The traditional methods have some limitations, such as high cost. In recent years, biosensor and nanoparticles combined have emerged as sensitive, selective, low-cost, and time-consuming techniques that can replace classic techniques. Nevertheless, each nanomaterial has shown a different potential to specific allergens or classes. This review used Preferred Reporting Items for Systematic Reviews and the Meta-Analysis guidelines (PRISMA) to approach these issues. A total of 104 articles were retrieved from a standardized search on three databases (PubMed, Scopus and Web of Science). The systematic review article is organized by the category of allergen detection and nanoparticle detection. This review addresses the relevant biosensors and nanoparticles as gold, carbon, graphene, quantum dots to allergen protein detection. Among the selected articles it was possible to notice a greater potential application on the allergic proteins Ah, in peanuts and gold nanoparticle-base as a biosensor. We envision that in our review, the association between biosensor and nanoparticles has shown promise in the analysis of allergenic proteins present in different food samples.
Collapse
Affiliation(s)
- Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 21941-909, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24230-340, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Correspondence: ; Tel.: +55-(21)-3938-7825
| |
Collapse
|
45
|
Han X, Cao M, Zhou B, Yu C, Liu Y, Peng B, Meng L, Wei JF, Li L, Huang W. Specifically immobilizing His-tagged allergens to magnetic nanoparticles for fast and quantitative detection of allergen-specific IgE in serum samples. Talanta 2020; 219:121301. [DOI: 10.1016/j.talanta.2020.121301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
|
46
|
Zhou J, Ai R, Weng J, Li L, Zhou C, Ma A, Fu L, Wang Y. A “on-off-on” fluorescence aptasensor using carbon quantum dots and graphene oxide for ultrasensitive detection of the major shellfish allergen Arginine kinase. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Fu L, Qian Y, Zhou J, Zheng L, Wang Y. Fluorescence-based quantitative platform for ultrasensitive food allergen detection: From immunoassays to DNA sensors. Compr Rev Food Sci Food Saf 2020; 19:3343-3364. [PMID: 33337031 DOI: 10.1111/1541-4337.12641] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 01/10/2023]
Abstract
Food allergies are global health issue with an increasing prevalence that affect food safety; hence, food allergen detection, labeling, and management are considered to be important priorities in the food industry. In this critical review, we provide a comprehensive overview of several fluorescence-based platforms based on different biorecognition ligands, such as antibodies, DNA, aptamers, and cells, for food allergen quantification. Traditional analytical methods are generally unsuitable for food manufacturers to accomplish the real-time identification of food allergens in food products. Therefore, it is important to develop simple, rapid, inexpensive, accurate, and sensitive methods to improve user accessibility. A fluorescence-based quantitative platform provides an excellent detection platform for food allergens because of its high sensitivity. This review summarizes the traditional antibody-based fluorescent techniques for food allergen detection, such as the time-resolved fluoroimmunoassay , immunofluorescence imaging, fluorescence enzyme-linked immune sorbent assay, flow injection fluoroimmunoassay, and fluorescence immunosensors. However, these methods suffer from disadvantages such as the significant rate of false-positive and false-negative results due to antibody cross-reactivity with nontarget food components in the complex food matrix and epitope degradation during food processing. Hence, different types of fluorescence-based immunoassays are suitable for standardization and quantification of allergens in fresh foods. In addition, we summarize new fluorescence-based quantitative platforms, including fluorescence genosensors, fluorescence cell sensors, and fluorescence aptamer sensors. With the advantages of high sensitivity and simple operation, fluorescence biosensors will have great potential in the future and could provide portable methods for multiallergen real-time detection in complex food systems.
Collapse
Affiliation(s)
- Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Yifan Qian
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Lei Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| |
Collapse
|
48
|
Qiao L, Wang H, He J, Yang S, Chen A. Truncated affinity-improved aptamers for 17β-estradiol determination by AuNPs-based colorimetric aptasensor. Food Chem 2020; 340:128181. [PMID: 33032145 DOI: 10.1016/j.foodchem.2020.128181] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
17β-estradiol (E2) residues could enrich in organisms via food chain and lead to harmful biological effects for human body. To ascertain the binding domain of original E2 aptamer (E00) with long-sequence (76-mer), we developed novel truncated aptamers from E00, through rationally designed truncation by intercepting a single ring or a combination of rings (containing hairpin loop, interior loop or multiloop) at different sites and retaining appropriate double helix regions. Through comparison, 15-mer E09 presented improved affinity and higher specificity, indicating the hairpin loop near to 3' end of E00 served on the binding domain to E2. E09 was used for gold nanoparticles (AuNPs)-based colorimetric determination of E2, achieved the detection limit of 0.02 μg/mL. The truncated aptamer (only 15-mer) first proposed in this study has great application potential in E2 determination, and this work provides proof-of-concept study for truncation of other long-sequence aptamers.
Collapse
Affiliation(s)
- Lu Qiao
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian, Beijing 100081, China
| | - He Wang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian, Beijing 100097, China
| | - Junlin He
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Academy of Military Medical Sciences, Taiping Road No. 27, Haidian, Beijing 100850, China.
| | - Shuming Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian, Beijing 100081, China
| | - Ailiang Chen
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian, Beijing 100081, China.
| |
Collapse
|
49
|
Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int J Mol Sci 2020; 21:ijms21124522. [PMID: 32630547 PMCID: PMC7350236 DOI: 10.3390/ijms21124522] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aptamers are short single stranded DNA or RNA oligonucleotides that can recognize analytes with extraordinary target selectivity and affinity. Despite their promising properties and diagnostic potential, the number of commercial applications remains scarce. In order to endow them with novel recognition motifs and enhanced properties, chemical modification of aptamers has been pursued. This review focuses on chemical modifications, aimed at increasing the binding affinity for the aptamer's target either in a non-covalent or covalent fashion, hereby improving their application potential in a diagnostic context. An overview of current methodologies will be given, thereby distinguishing between pre- and post-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) modifications.
Collapse
|
50
|
Chinnappan R, AlZabn R, Fataftah AK, Alhoshani A, Zourob M. Probing high-affinity aptamer binding region and development of aptasensor platform for the detection of cylindrospermopsin. Anal Bioanal Chem 2020; 412:4691-4701. [PMID: 32500257 DOI: 10.1007/s00216-020-02723-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023]
Abstract
Cylindrospermopsin (CYN) is one of the most concerning cyanotoxins due to its potential toxicity and spreading to various environments including drinking water. CYN has potential interferences with human and animal metabolic pathways, which influence the functions of organs including liver, kidneys, lungs, etc. CYN is involved in the inhibition of protein synthesis and detachment of ribosomes from the endoplasmic reticulum membrane. It also interacts with soluble proteins, which are associated with protein translations. It is believed that cytochrome 450 is responsible for the rapid toxicity of CYN. Researchers are urged to develop a high-throughput screening method for the detection of CYN in water. Construction of low cost, rapid, and sensitive analytical methods for the detection of CYN is challenging. Here, we used graphene oxide (GO) as the fluorescence sensing platform for probing the high affinity of the short aptamer derived from the wild-type long aptamer-CYN sensing. The biosensor construction involved two steps: first, quenching the fluorescence of fluorescent-labelled truncated aptamer using GO as a quencher and, second, fluorescence recovery in the presence of CYN by competitive binding between the target and GO. One of the truncate aptamers has a 12-fold higher affinity and enhances sensitivity compared to the long aptamer sequence. The limit of detection of the high affinity truncated aptamer is 17 pM which is 6-fold lower than the long aptamer (100 pM). The sensor specifically detects CYN in the presence of other potential interfering toxins. The performance of the sensor was validated using CYN spiked tap water with very good recovery percentage. A rapid and highly sensitive detection of CYN from water resources has been achieved using this method.
Collapse
Affiliation(s)
- Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Razan AlZabn
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Amjad K Fataftah
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia. .,King Faisal Specialist Hospital and Research Center, Al Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia.
| |
Collapse
|