1
|
Li P, Huang Y, Marshall M, Brooks A, Chin M, Li J, Wang Y, No DS, Fang Y, Abbaspourrad A. Co-surfactant roles of amino acids at oil-water interface: Application in low-pH emulsions to regulate physical and oxidative stabilities. Food Chem 2025; 479:143775. [PMID: 40086377 DOI: 10.1016/j.foodchem.2025.143775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/31/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Sucrose monopalmitate (SMP) is an effective surfactant for emulsification, but exhibits poor stability in low pH environments, due to neutralized surface charges. To improve SMP-based emulsions, we used food-grade amino acids as co-surfactants. Lysine, histidine, phenylalanine, and tryptophan lowered the water-oil interfacial tension. Tryptophan was the most effective, providing sufficient electrostatic repulsion to stabilize emulsion droplets by adsorbing onto the oil surface and becoming protonated at pH 3. However, tryptophan was counterproductive to stabilize SMP-based emulsions between pH 4 and 5. A minimum concentration (0.4 w/v%) of tryptophan prevented droplet coalescence and creaming. Incorporating tryptophan with SMP before emulsification resulted in larger droplets compared to post-emulsification addition. Tryptophan-costabilized emulsions induced flocculation with κ-carrageenan via electrostatic adsorption but showed higher compatibility with polysaccharides with weaker charges. Tryptophan enhanced oxidative stability of unsaturated lipids creating a cationic shield to repel transition metals in the aqueous phase and stabilizing cleavage of lipid hydroperoxides.
Collapse
Affiliation(s)
- Peilong Li
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Yinan Huang
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Melanie Marshall
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Anne Brooks
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Megan Chin
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Jieying Li
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Yu Wang
- PepsiCo Global R&D, 50 E Stevens Ave., Valhalla, NY 10595, USA
| | - Da Som No
- PepsiCo Global R&D, 50 E Stevens Ave., Valhalla, NY 10595, USA
| | - Yuan Fang
- PepsiCo Global R&D, 50 E Stevens Ave., Valhalla, NY 10595, USA
| | | |
Collapse
|
2
|
Choi H, Cui L. Impact of NaCl substitution with KCl on the lipid oxidation in oil-in-water emulsions. Food Chem 2025; 466:142154. [PMID: 39591779 DOI: 10.1016/j.foodchem.2024.142154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
This study investigated how substituting NaCl with KCl affects the oxidative stability of O/W emulsions by influencing the critical micelle concentration (CMC) of cetyltrimethylammonium bromide (CTAB) and the distribution of lipid hydroperoxides and antioxidants. Substituting 1 % NaCl with 1 % KCl changed the CMC of CTAB significantly but not with 171 mM KCl (the same molar concentration with 1 % NaCl). Based on weight, substituting NaCl with KCl changed the formation of lipid hydroperoxides in emulsions by decreasing emulsifier micelles in the aqueous phase. TBARS levels were reduced by substituting NaCl with KCl, indicating a reduced prooxidant effect of salt. Emulsions containing antioxidants showed different oxidation trends by KCl substitution, indicating that the type and concentration of both salts and antioxidants are essential for the overall lipid oxidation of O/W emulsions.
Collapse
Affiliation(s)
- Hyuk Choi
- Department of Health, Nutrition and Food Sciences, Florida State University, 120 Convocation Way, Tallahassee, Florida 32306, USA
| | - Leqi Cui
- Department of Health, Nutrition and Food Sciences, Florida State University, 120 Convocation Way, Tallahassee, Florida 32306, USA.
| |
Collapse
|
3
|
Wang X, Chen H, Xu Y, Deng Q. The role of micro-structures in the aqueous phase of emulsion in lipid oxidation process. Food Chem 2025; 464:141760. [PMID: 39471561 DOI: 10.1016/j.foodchem.2024.141760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The instability of emulsions depended on participation of many physical structures in the emulsion. The walnut oil emulsion stabilized by sunflower phospholipid was used to study the potential relationship between the micro-structures in aqueous phase and the overall physicochemical stability of the emulsion. The vesicles and micro- structures (<70 nm, containing trace amounts of triglycerides) was observed by Cryo-TEM in the aqueous phase of emulsions. The content of triglycerides decreased gradually with the instability of the emulsion. The increase of phospholipid concentration inhibited the formation of lipid hydroperoxides (LOOH). However, the degradation of LOOH occurred preferentially in the aqueous micro- structures of high concentrations of phospholipids emulsions. These micro- structures did not affect the distribution of LOOH in the initial emulsion, but affected the distribution of malondialdehyde (MDA). This study provided insights into understanding the oxidative stability of emulsions - highlighting the role of micro- structures in the aqueous phase.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, China.
| | - Yingying Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China.
| |
Collapse
|
4
|
Durand E, Laguerre M, Bourlieu-Lacanal C, Lecomte J, Villeneuve P. Navigating the complexity of lipid oxidation and antioxidation: A review of evaluation methods and emerging approaches. Prog Lipid Res 2025; 97:101317. [PMID: 39694099 DOI: 10.1016/j.plipres.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Lipid oxidative degradation contributes to the deterioration of food quality and poses potential health risks. A promising approach to counteract this is the use of plant-based antioxidants. However, accurately evaluating the antioxidant capacity and effectiveness of these compounds remains a challenge. While many rapid in vitro tests are available, they must be categorized according to their specific responses to avoid overinterpreting results. This review opens with an overview of current knowledge on lipid autoxidation and recent findings that highlight the challenges in measuring antioxidant capacity. We then examine various methods, addressing their limitations in accurately anticipating outcomes in complex compartmentalized lipid systems. The aim is to clarify the gap between predictions and real-world efficacy in final products. Additionally, the review compares the strengths and weaknesses of methods used to evaluate antioxidant capacity and assess oxidation degrees in complex environments, such as those found in food and cosmetics. Finally, new analytical techniques for multiproduct detection are introduced, paving the way for a more 'omic' and spatiotemporally defined approach.
Collapse
Affiliation(s)
- Erwann Durand
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Mickael Laguerre
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | | | - Jérôme Lecomte
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France.
| |
Collapse
|
5
|
Wang X, Chen Y, McClements DJ, Peng D, Chen H, Xu S, Deng Q, Geng F. Regulation of Microlocalization of Antioxidants by Surfactant Micelles in Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25306-25318. [PMID: 39485063 DOI: 10.1021/acs.jafc.4c08855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The mass transport effect of aqueous micelles on antioxidants and oxidation products in emulsions may alter the rate, degree, and pathway of lipid oxidation. In this study, the dynamic mass transport of oxidation products and endogenous tocopherol during storage at different micelle concentrations was monitored by UV-vis spectrophotometry and high-performance liquid chromatography. Furthermore, the microlocalization of tocopherol in micelles was investigated using 1H nuclear magnetic resonance and nuclear Overhauser effect spectroscopy, fluorescence measurements, and molecular dynamics simulation. It was demonstrated that high-concentration micelles enhanced the emulsion stability by promoting the mass transport of hydroperoxides and endogenous antioxidants. The enhancement of micelles was a superposition effect of concentration, interaction sites, and binding force between tocopherols and Tween 20 molecules. Tween 20 concentration-induced favorable changes of microlocalization of tocopherol and dynamic mass transport demonstrated a new integrated perspective to control lipid oxidation.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Shufang Xu
- Clinical Nutrition Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, Hubei 430030, China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Brüls-Gill M, Boerkamp VJ, Hohlbein J, van Duynhoven JP. Spatiotemporal assessment of protein and lipid oxidation in concentrated oil-in-water emulsions stabilized with legume protein isolates. Curr Res Food Sci 2024; 9:100817. [PMID: 39228684 PMCID: PMC11369386 DOI: 10.1016/j.crfs.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
The growing trend of substituting animal-based proteins with plant-based proteins requires more understanding of the functionality and stability of vegan mayonnaises, especially regarding their susceptibility to lipid and protein oxidation. Here, we investigate the spatial and temporal dynamics of lipid and protein oxidation in emulsions stabilized with legume ((hydrolyzed) soy, pea, and faba bean) protein isolates (hSPI, SPI, PPI, FPI). We assessed lipid oxidation globally by NMR and locally by confocal laser scanning microscopy using the oxidation-sensitive fluorescent dye BODIPY 665/676. Further, we assessed local protein oxidation by employing protein autofluorescence and the fluorescently labeled radical spin-trap CAMPO-AFDye 647. Oxidation of oil in droplets was governed by the presence of tocopherols in the oil phase and pro-oxidant transition metals that were introduced via the protein isolates. Non-stripped oil emulsions stabilized with PPI and hSPI displayed higher levels of lipid hydroperoxides as compared to emulsions prepared with SPI and FPI. We attribute this finding to higher availability of catalytically active transition metals in PPI and hSPI. For stripped oil emulsions stabilized with SPI and FPI, lipid hydroperoxide concentrations were negligible in the presence of ascorbic acid, indicating that this agent acted as antioxidant. For the emulsions prepared with PPI and hSPI, lipid hydroperoxide formation was only partly inhibited by ascorbic acid, indicating a role as prooxidant. Interestingly, we observed protein-lipid aggregates in all emulsions. The aggregates underwent fast and extensive co-oxidation, which was also modulated by transition metals and tocopherols originating from the oil phase. Our study demonstrates the potential of spatiotemporal imaging techniques to enhance our understanding of the oxidation processes in emulsions stabilized with plant proteins.
Collapse
Affiliation(s)
- Mariska Brüls-Gill
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Vincent J.P. Boerkamp
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Microspectroscopy Research Facility, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - John P.M. van Duynhoven
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Unilever Global Foods Innovation Centre, Plantage 14, 6708 WJ Wageningen, the Netherlands
| |
Collapse
|
7
|
Yang S, Ten Klooster S, Nguyen KA, Hennebelle M, Berton-Carabin C, Schroën K, van Duynhoven JPM, Hohlbein J. Droplet size dependency and spatial heterogeneity of lipid oxidation in whey protein isolate-stabilized emulsions. Food Res Int 2024; 188:114341. [PMID: 38823851 DOI: 10.1016/j.foodres.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/30/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024]
Abstract
Spatiotemporal assessment of lipid and protein oxidation is key for understanding quality deterioration in emulsified food products containing polyunsaturated fatty acids. In this work, we first mechanistically validated the use of the lipid oxidation-sensitive fluorophore BODIPY 665/676 as a semi-quantitative marker for local peroxyl radical formation. Next, we assessed the impact of microfluidic and colloid mill emulsification (respectively producing mono- and polydisperse droplets) on local protein and lipid oxidation kinetics in whey protein isolate (WPI)-stabilized emulsions. We further used BODIPY 581/591 C11 and CAMPO-AFDye 647 as colocalisation markers for lipid and protein oxidation. The polydisperse emulsions showed an inverse relation between droplet size and lipid oxidation rate. Further, we observed less protein and lipid oxidation occurring in similar sized droplets in monodisperse emulsions. This observation was linked to more heterogeneous protein packing at the droplet surface during colloid mill emulsification, resulting in larger inter-droplet heterogeneity in both protein and lipid oxidation. Our findings indicate the critical roles of emulsification methods and droplet sizes in understanding and managing lipid oxidation.
Collapse
Affiliation(s)
- Suyeon Yang
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Sten Ten Klooster
- Laboratory of Food Process Engineering, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Khoa A Nguyen
- Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Claire Berton-Carabin
- Laboratory of Food Process Engineering, Wageningen University & Research, 6708 WG Wageningen, the Netherlands; INRAE, UR BIA, 44300 Nantes, France
| | - Karin Schroën
- Laboratory of Food Process Engineering, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - John P M van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Unilever Global Foods Innovation Centre, Plantage 14, 6708 WJ Wageningen, the Netherlands.
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Microspectroscopy Research Facility, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
8
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
9
|
Wang X, Chen Y, McClements DJ, Meng C, Zhang M, Chen H, Deng Q. Recent advances in understanding the interfacial activity of antioxidants in association colloids in bulk oil. Adv Colloid Interface Sci 2024; 325:103117. [PMID: 38394718 DOI: 10.1016/j.cis.2024.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The chemical stability of edible oils rich in polyunsaturated fatty acids (PUFAs) is a major challenge within the food and supplement industries, as lipid oxidation reduces oil quality and safety. Despite appearing homogeneous to the human eye, bulk oils are actually multiphase heterogeneous systems at the nanoscale level. Association colloids, such as reverse micelles, are spontaneously formed within bulk oils due to the self-assembly of amphiphilic molecules that are present, like phospholipids, free fatty acids, and/or surfactants. In bulk oil, lipid oxidation often occurs at the oil-water interface of these association colloids because this is where different reactants accumulate, such as PUFAs, hydroperoxides, transition metals, and antioxidants. Consequently, the efficiency of antioxidants in bulk oils is governed by their chemical reactivity, but also by their ability to be located close to the site of oxidation. This review describes the impact of minor constituents in bulk oils on the nature of the association colloids formed. And then the formation of mixed reverse micelles (LOOH, (co)surfactants, or antioxidations) during the peroxidation of bulk oils, as well as changes in their composition and structure over time are also discussed. The critical importance of selecting appropriate antioxidants and surfactants for the changes of interface and colloid, as well as the inhibition of lipid oxidation is emphasized. The knowledge presented in this review article may facilitate the design of bulk oil products with improved resistance to oxidation, thereby reducing food waste and improving food quality and safety.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | | | - Chen Meng
- College of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Mingkai Zhang
- College of Food and Biological Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, China.
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China.
| |
Collapse
|
10
|
Ten Klooster S, Takeuchi M, Schroën K, Tuinier R, Joosten R, Friedrich H, Berton-Carabin C. Tiny, yet impactful: Detection and oxidative stability of very small oil droplets in surfactant-stabilized emulsions. J Colloid Interface Sci 2023; 652:1994-2004. [PMID: 37690307 DOI: 10.1016/j.jcis.2023.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
HYPOTHESIS The shelf life of multiphase systems, e.g. oil-in-water (O/W) emulsions, is severely limited by physical and/or chemical instabilities, which degrade their texture, macroscopic appearance, sensory and (for edible systems) nutritional quality. One prominent chemical instability is lipid oxidation, which is notoriously complex. The complexity arises from the involvement of many physical structures present at several scales (1-10,000 nm), of which the smallest ones are often overlooked during characterization. EXPERIMENTS We used cryogenic transmission electron microscopy (cryo-TEM) to characterize the coexisting colloidal structures at the nanoscale (10-200 nm) in rapeseed oil-based model emulsions stabilized by different concentrations of a nonionic surfactant. We assessed whether the oxidative and physical instabilities of the smallest colloidal structures in such emulsions may be different from those of larger colloidal structures. FINDINGS By deploying cryo-TEM, we analyzed the size of very small oil droplets and of surfactant micelles, which are typically overlooked by dynamic light scattering when larger structures are concomitantly present. Their size and oil content were shown to be stable over incubation, but lipid oxidation products were overrepresented in these very small droplets. These insights highlight the importance of the fraction of "tiny droplets" for the oxidative stability of O/W emulsions.
Collapse
Affiliation(s)
- Sten Ten Klooster
- Laboratory of Food Process engineering, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Machi Takeuchi
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Karin Schroën
- Laboratory of Food Process engineering, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Rick Joosten
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands; Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Claire Berton-Carabin
- Laboratory of Food Process engineering, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; INRAE, BIA, 44000 Nantes, France.
| |
Collapse
|
11
|
Klooster ST, Schroën K, Berton-Carabin C. Lipid oxidation products in model food emulsions: do they stay in or leave droplets, that’s the question. Food Chem 2022; 405:134992. [DOI: 10.1016/j.foodchem.2022.134992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
|
12
|
Chen XW, Hu QH, Li XX, Ma CG. Systematic comparison of structural and lipid oxidation in oil-in-water and water-in-oil biphasic emulgels: effect of emulsion type, oil-phase composition, and oil fraction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4200-4209. [PMID: 35018645 DOI: 10.1002/jsfa.11770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Because many common foods are emulsions (mayonnaise, margarine, salad dressing, etc.), a better understanding of lipid oxidation is crucial for the formulation, production, and storage of the relevant consumer products. We prepared oil-in-water (O/W) and water-in-oil (W/O) emulgels, and their architecture was characterized before monitoring lipid oxidation under thermally accelerated conditions to systematically compare the effect of emulsion type, oil composition, and oil fraction on the structure and lipid oxidation in thee biphasic emulgel systems. RESULTS Higher susceptibility of lipids to oxidation (>2.5 times) was observed in the biphasic O/W and W/O emulgels than in soybean oil owing to an interfacial region. In the heterogeneous emulsion systems, W/O emulgels had oxidation resistance than O/W emulgels did. Compared with the oil-phase composition of high oleic sunflower, soybean, and flaxseed oils, oxidation sensitivity of emulsified lipids was significantly raised as the degree of unsaturation increased from 100.72 to 203.07. Moreover, increasing oil fraction from 75% to 85% led to an obvious increase in total oxidation in O/W emulgels but a decrease in W/O emulgels. In addition to emulsion size and oil unsaturation, viscoelasticity had a remarkable effect on the low-unsaturated oil oxidation (e.g. high oleic sunflower oil). CONCLUSION Physical and structural phenomena played important roles in lipid oxidation based on a mass transport principle. These findings provide novel information for designing the structures of emulsion gels for controlling lipid oxidation through the cooperation of both formulation and architecture principles. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- College of Food Science and Engineering, National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, China
| | - Qi-Hua Hu
- College of Food Science and Engineering, National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, China
| | - Xiao-Xiao Li
- College of Food Science and Engineering, National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, China
| | - Chuan-Guo Ma
- College of Food Science and Engineering, National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
13
|
Effect of polyglycerol polyricinoleate on the inhibitory mechanism of sesamol during bulk oil oxidation. Sci Rep 2022; 12:11946. [PMID: 35831366 PMCID: PMC9279469 DOI: 10.1038/s41598-022-16201-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, effects of sesamol on improving the oxidative stability of sunflower oil and its oil-in-water emulsion was investigated. To investigate the kinetic parameters related to the initiation and propagation stages of oxidation, a sigmoidal-model was used. Sesamol exhibited higher antioxidant activity in sunflower oil-in-water emulsion than that of sunflower oil. In both sunflower oil and sunflower oil-in-water emulsion, the inhibitory effect of sesamol against lipid oxidation continued even after the induction period. To improve the efficiency of sesamol in sunflower oil, polyglycerol polyricinoleate (PGPR) was incorporated into the functional environment of the sesamol. Sesamol exhibited a synergistic effect with PGPR during both initiation (synergistic effect of 68.87%) and propagation (synergistic effect of 36.84%) stages. Comparison of the size of reverse micelles in samples containing PGPR with those without PGPR revealed that PGPR can enhance the efficiency of sesamol by increasing the acceptance capacity of lipid hydroperoxides in reveres micelles structures. This can result in enhancing the effective collisions between sesamol and lipid hydroperoxides in the presence of PGPR. The water produced as a major byproduct of oxidation played a key role on the antioxidant activity of sesamol alone or in combination with PGPR during oxidation process.
Collapse
|
14
|
Tuzen M, Altunay N, Hazer B, Mogaddam MRA. Synthesis of polystyrene-polyricinoleic acid copolymer containing silver nano particles for dispersive solid phase microextraction of molybdenum in water and food samples. Food Chem 2022; 369:130973. [PMID: 34507087 DOI: 10.1016/j.foodchem.2021.130973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023]
Abstract
Polystyrene-polyricinoleic acid copolymer containing silver nano particles (AgPSrici) was synthesized and used in separation of molybdenum from different aqueous and foodstuff samples during a dispersive-µ-solid phase extraction approach. The synthesized nano particles were verified using Fourier transform infraredspectroscopy. An electrothermal atomic absorption spectrometry has been used for measurement of the studied ions. AgPSrici amount pH, sample volume, elution solvent kind, and the time of extraction were the effective parameters that were optimized by one-variable-at-one-time method. Analytical data of the method was calculated and limit of detection, relative standard deviation, limit of quantification were 0.022 µg L-1, 2.9%, 150, and 0.066 µg L-1, respectively. The synthesized adsorption capacity was obtained 170 mg g-1.Accuracy of the method was studied by performing the method on certified reference materials and the presence of different interfering ions was studied. Molybdenum content of different water and foodstuffs was determined by the introduced method.
Collapse
Affiliation(s)
- Mustafa Tuzen
- Tokat Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkey; King Fahd University of Petroleum and Minerals, Research Institute, Center for Environment and Water, Dhahran 31261, Saudi Arabia.
| | - Nail Altunay
- Sivas Cumhuriyet University, Department of Chemistry, TR-58140 Sivas, Turkey
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey; Zonguldak Bülent Ecevit University, Department of Chemistry, 67100 Zonguldak, Turkey
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
15
|
Barouh N, Bourlieu-Lacanal C, Figueroa-Espinoza MC, Durand E, Villeneuve P. Tocopherols as antioxidants in lipid-based systems: The combination of chemical and physicochemical interactions determines their efficiency. Compr Rev Food Sci Food Saf 2021; 21:642-688. [PMID: 34889039 DOI: 10.1111/1541-4337.12867] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/20/2022]
Abstract
Lipid oxidation is a major concern in the food, cosmetic, and pharmaceutical sectors. The degradation of unsaturated lipids affects the nutritional, physicochemical, and organoleptic properties of products and can lead to off-flavors and to the formation of potentially harmful oxidation compounds. To prevent or slow down lipid oxidation, different antioxidant additives are used alone or in combination to achieve the best possible efficiency with the minimum possible quantities. In manufactured products, that is, heterogeneous systems containing lipids as emulsions or bulk phase, the efficiency of an antioxidant is determined not only by its chemical reactivity, but also by its physical properties and its interaction with other compounds present in the products. The antioxidants most widely used on the industrial scale are probably tocopherols, either as natural extracts or pure synthetic molecules. Considerable research has been conducted on their antioxidant activity, but results regarding their efficiency are contradictory. Here, we review the known mechanisms behind the antioxidant activity of tocopherols and discuss the chemical and physical features that determine their efficacy. We first describe their chemical reactivity linked with the main factors that modulate it between efficient antioxidant capacity and potential prooxidant effects. We then describe their chemical interactions with other molecules (phenolic compounds, metals, vitamin C, carotenes, proteins, and phospholipids) that have potential additive, synergistic, or antagonist effects. Finally, we discuss other physical parameters that influence their activity in complex systems including their specific interactions with surfactants in emulsions and their behavior in the presence of association colloids in bulk oils.
Collapse
Affiliation(s)
- Nathalie Barouh
- CIRAD, UMR QUALISUD, Montpellier, France.,Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | | | - Maria Cruz Figueroa-Espinoza
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR QUALISUD, Montpellier, France.,Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Pierre Villeneuve
- CIRAD, UMR QUALISUD, Montpellier, France.,Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| |
Collapse
|
16
|
Villeneuve P, Bourlieu-Lacanal C, Durand E, Lecomte J, McClements DJ, Decker EA. Lipid oxidation in emulsions and bulk oils: a review of the importance of micelles. Crit Rev Food Sci Nutr 2021:1-41. [PMID: 34839769 DOI: 10.1080/10408398.2021.2006138] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lipid oxidation is a major cause of quality deterioration in food products. In these foods, lipids are often present in a bulk or in emulsified forms. In both systems, the rate, extent and pathway of oxidation are highly dependent on the presence of colloidal structures and interfaces because these are the locations where oxidation normally occurs. In bulk oils, reverse micelles (association colloids) are present and are believed to play a crucial role on lipid oxidation. Conversely, in emulsions, surfactant micelles are present that also play a major role in lipid oxidation pathways. After a brief description of lipid oxidation and antioxidants mechanisms, this review discusses the current understanding of the influence of micellar structures on lipid oxidation. In particular, is discussed the major impact of the presence of micelles in emulsions, or reverse micelles (association colloids) in bulk oil on the oxidative stability of both systems. Indeed, both micelles in emulsions and associate colloids in bulk oils are discussed in this review as nanoscale structures that can serve as reservoirs of antioxidants and pro-oxidants and are involved in their transport within the concerned system. Their role as nanoreactors where lipid oxidation reactions occur is also commented.
Collapse
Affiliation(s)
- Pierre Villeneuve
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Claire Bourlieu-Lacanal
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France.,UMR IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | | | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
17
|
Carrera Sánchez C, Rodríguez Patino JM. Contribution of the engineering of tailored interfaces to the formulation of novel food colloids. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Durand E, Beaubier S, Ilic I, fine F, Kapel R, Villeneuve P. Production and antioxidant capacity of bioactive peptides from plant biomass to counteract lipid oxidation. Curr Res Food Sci 2021; 4:365-397. [PMID: 34142097 PMCID: PMC8187438 DOI: 10.1016/j.crfs.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Preventing lipid oxidation, especially with the polyunsaturated fat-based products, is a major concern in sectors as agri-food and cosmetic. Even though the efficiency of synthetic antioxidants has been recognized, both consumers and manufacturers are looking for more innovative, healthy and quality products while rejecting synthetic additives due to their concern about safety, along with their environmental impact issues. In this context, plant biomass, which have shown to be rich in compounds, have raised interest for the isolation of novel naturally occurring antioxidants. Among their myriad of molecules, bioactive peptides, which are biologically active sequence of amino acid residues of proteins, seem to be of a great interest. Therefore, the number of identified amino acids sequences of bioactive peptides from plant biomass with potential antioxidant action is progressively increasing. Thus, this review provides a description of 129 works that have been made to produce bioactive peptides (hydrolysate, fraction and/or isolate peptide) from 55 plant biomass, along with the procedure to examine their antioxidant capacity (until 2019 included). The protein name, the process, and the method to concentrate or isolate antioxidant bioactive peptides, along with their identification and/or specificity were described. Considering the complex, dynamic and multifactorial physico-chemical mechanisms of the lipid oxidation, an appropriate in-vitro methodology should be better performed to efficiently probe the antioxidant potential of bioactive peptides. Therefore, the results were discussed, and perspective for antioxidant applications of bioactive peptides from plant biomass was argued.
Collapse
Affiliation(s)
- Erwann Durand
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Sophie Beaubier
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Isidora Ilic
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Frederic fine
- TERRES INOVIA, Parc Industriel – 11 Rue Monge, 33600 Pessac, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
19
|
Ferreira da Silveira TF, Laguerre M, Bourlieu-Lacanal C, Lecomte J, Durand E, Figueroa-Espinoza MC, Baréa B, Barouh N, Castro IA, Villeneuve P. Impact of surfactant concentration and antioxidant mode of incorporation on the oxidative stability of oil-in-water nanoemulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Zhai H, Gunness P, Gidley MJ. Depletion and bridging flocculation of oil droplets in the presence of β-glucan, arabinoxylan and pectin polymers: Effects on lipolysis. Carbohydr Polym 2021; 255:117491. [PMID: 33436251 DOI: 10.1016/j.carbpol.2020.117491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/23/2020] [Accepted: 12/05/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the influence of food polysaccharides from different sources on microstructural and rheological properties, and in vitro lipolysis of oil-in-water emulsions of canola oil stabilised by whey protein isolate. The polysaccharides used were β-glucan (BG) from oat, arabinoxylan (AX) from wheat, and pectin (PTN) from apple. All polysaccharides added at 1 % w/v increased the viscosity of emulsions and promoted flocculation but with different mechanisms, BG and AX by depletion flocculation and PTN by bridging flocculation. Depletion flocculation was associated with an increase in viscosity of BG or AX-stabilised emulsions compared with BG/AX alone, whereas bridging flocculation with PTN caused a decrease in viscosity. All three polysaccharides reduced lipid digestion rate and extent, but the bridging flocculation induced by PTN had the greatest effect. This study has implications for better understanding the influence of carbohydrate polymers from cereals and fruits on lipid digestibility.
Collapse
Affiliation(s)
- Honglei Zhai
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia; Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Purnima Gunness
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
21
|
Li P, Kierulf A, Abbaspourrad A. Application of granular cold-water-swelling starch as a clean-label oil structurant. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
High-intensity ultrasound together with heat treatment improves the oil-in-water emulsion stability of egg white protein peptides. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106256] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Quantitative Spatiotemporal Mapping of Lipid and Protein Oxidation in Mayonnaise. Antioxidants (Basel) 2020; 9:antiox9121278. [PMID: 33333764 PMCID: PMC7765159 DOI: 10.3390/antiox9121278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/02/2022] Open
Abstract
Lipid oxidation in food emulsions is mediated by emulsifiers in the water phase and at the oil–water interface. To unravel the physico-chemical mechanisms and to obtain local lipid and protein oxidation rates, we used confocal laser scanning microscopy (CLSM), thereby monitoring changes in both the fluorescence emission of a lipophilic dye BODIPY 665/676 and protein auto-fluorescence. Our data show that the removal of lipid-soluble antioxidants from mayonnaises promotes lipid oxidation within oil droplets as well as protein oxidation at the oil–water interface. Furthermore, we demonstrate that ascorbic acid acts as either a lipid antioxidant or pro-oxidant depending on the presence of lipid-soluble antioxidants. The effects of antioxidant formulation on local lipid and protein oxidation rates were all statistically significant (p < 0.0001). The observed protein oxidation at the oil–water interface was spatially heterogeneous, which is in line with the heterogeneous distribution of lipoprotein granules from the egg yolk used for emulsification. The impact of the droplet size on local lipid and protein oxidation rates was significant (p < 0.0001) but minor compared to the effects of ascorbic acid addition and lipid-soluble antioxidant depletion. The presented results demonstrate that CLSM can be applied for unraveling the roles of colloidal structure and transport in mediating lipid oxidation in complex food emulsions.
Collapse
|
24
|
Hazer B, Ashby RD. Synthesis of a novel tannic acid-functionalized polypropylene as antioxidant active-packaging materials. Food Chem 2020; 344:128644. [PMID: 33246682 DOI: 10.1016/j.foodchem.2020.128644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
This work focuses on the synthesis of novel tannin-functionalized polypropylene copolymers that are designed to inhibit the oxidation of vegetable oils for potential use as packaging materials. An empty glass Petri dish (control), a chlorinated polypropylene-coated glass Petri dish (control) and a series of the tannin-functionalized polypropylene coated glass Petri dishes overlaid with linseed oil were exposed to air and additional white light. Oligomerization of the oxidized linseed oil was assessed by measuring the flow properties of the exposed oil using a viscometer. The antioxidant effect of the tannic acid grafted polypropylene copolymers (PP-Tann) retarded oligomerization of the linseed oil. The molar mass of the linoleic acid overlaid onto the PP-Tann films was the lowest among the tested samples after each time period indicating that tannin-grafted polypropylene may be a promising packaging material for vegetable oils.
Collapse
Affiliation(s)
- Baki Hazer
- Kapadokya University, Department of Aircraft Airflame Engine Maintenance, Mustafapaşa, Kasabası 50420, Ürgüp, Turkey; Zonguldak Bülent Ecevit University, Department of Chemistry, 67100 Zonguldak, Turkey.
| | - Richard D Ashby
- USDA ARS, East. Reg. Res. Ctr, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| |
Collapse
|
25
|
Sun R, Xia Q. In vitro digestion behavior of (W1/O/W2) double emulsions incorporated in alginate hydrogel beads: Microstructure, lipolysis, and release. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105950] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Schröder A, Laguerre M, Sprakel J, Schroën K, Berton-Carabin CC. Pickering particles as interfacial reservoirs of antioxidants. J Colloid Interface Sci 2020; 575:489-498. [DOI: 10.1016/j.jcis.2020.04.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
|