1
|
Huang T, Bi W, Song Y, Yu X, Wang L, Sun J, Jiang C. DMC-LIBSAS: A Laser-Induced Breakdown Spectroscopy Analysis System with Double-Multi Convolutional Neural Network for Accurate Traceability of Chinese Medicinal Materials. SENSORS (BASEL, SWITZERLAND) 2025; 25:2104. [PMID: 40218616 PMCID: PMC11991263 DOI: 10.3390/s25072104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Against the background of globalization, the circulation range of traditional Chinese medicinal materials is constantly expanding, and the phenomena of mixed origins and counterfeiting are becoming increasingly serious. Tracing the origin of traditional Chinese medicinal materials is of great significance for ensuring their quality, safety, and effectiveness. Laser-induced breakdown spectroscopy (LIBS), as a rapid and non-destructive element analysis technique, can be used for the origin tracing of traditional Chinese medicinal materials. Deep learning can not only handle non-linear relationships but also automatically extract features from high-dimensional data. In this paper, LIBS is combined with deep learning, and a Double-Multi Convolutional Neural Network LIBS Analysis System (DMC-LIBSAS) is proposed for the origin tracing of the traditional Chinese medicinal material Angelica dahurica. The system consists of a LIBS signal generation module, a spectral preprocessing module, and an algorithm analysis module-Double-Multi Convolutional Neural Network (DMCNN)-achieving a direct mapping from input data to output results. And the ability of DMCNN to extract characteristic peaks is demonstrated by the 1D Gradient-weighted Class Activation Mapping (1D-Grad-CAM) method. The tracing accuracy of DMC-LIBSAS for Angelica dahurica reaches 95.25%. To further verify the effectiveness of the system, it is compared with six classic methods including LeNet, AlexNet, Resnet18, K-nearest neighbors (KNN), Random Forest (RF), and Decision Tree (DT) (with accuracies of 68%, 75%, 72.5%, 79.7%, 86.7%, and 75.5%, respectively), and the tracing effects are all much lower than that of DMC-LIBSAS. The results show that DMC-LIBSAS can effectively and accurately trace the origin of Angelica dahurica, providing a new technical support for the quality supervision of traditional Chinese medicinal materials.
Collapse
Affiliation(s)
- Tianhe Huang
- School of Medical Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (T.H.)
| | - Wenhao Bi
- School of Medical Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (T.H.)
| | - Yuxiao Song
- Jinan Guoke Medical Technology Development Co., Ltd., Jinan 250001, China
| | - Xiaolin Yu
- Jinan Science and Technology Innovation Promotion Center, Jinan 250014, China
| | - Le Wang
- Physical Education Department, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Sun
- Jinan Guoke Medical Technology Development Co., Ltd., Jinan 250001, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chenyu Jiang
- School of Medical Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (T.H.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
2
|
Su H, Li Z, Yu W, Liu T, Luo L. Integrating mineral elements and metabolite features to distinguish Lotus seeds from different geographic origins. Food Chem 2025; 463:141486. [PMID: 39368199 DOI: 10.1016/j.foodchem.2024.141486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
The characteristics of lotus seeds (LS) are influenced by variety and environment. However, it remains unknown the difference of metabolites and elements of LS from different origins. In this study, an accurate quantification method (97-107 %) for 20 mineral elements in LS was developed, and a metabolomic method was established to identify a total of 323 metabolites in LS. Mineral composition analysis revealed significant variations in the mineral element contents among LS samples from seven geographical regions. LS were rich in potassium (14,710 mg/kg), manganese (67.19 mg/kg), with a low level of sodium (210 mg/kg). A total of 10 mineral elements and 117 metabolites (p < 0.05 and VIP > 1) were identified as the potential geographical markers of LS by integration analysis. The linear discriminant analysis model showed high prediction accuracy. This study provides strong experimental evidence to maintain the authenticity and quality of LS in the food industry.
Collapse
Affiliation(s)
- Haoran Su
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
3
|
Temerdashev Z, Abakumov A, Khalafyan A, Bolshov M, Lukyanov A, Vasilyev A, Gipich E. The Influence of the Soil Profile on the Formation of the Elemental Image of Grapes and Wine of the Cabernet Sauvignon Variety. Molecules 2024; 29:2251. [PMID: 38792113 PMCID: PMC11124139 DOI: 10.3390/molecules29102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
The features for assessing the authenticity of wines by region of origin are studied, based on the relationship between the mineral composition of the wine, the grapes, and the soil profile (0 to 160 cm) from the place of growth of Cabernet Sauvignon grapes. Soil, grape, and wine samples were taken from the territories of six vineyards in the Anapa district of Krasnodar Territory, Russia. Using the methods of ICP-OES, thermal, and X-ray phase analysis, the soils were differentiated into three groups, differing in mineralogical and mineral compositions. The soil samples of the first group contained up to 31% quartz, the second group up to 25% quartz and 19% mixed calcite, and the third group up to 32% calcite and 15% quartz. The formation of the elemental image of the grapes was studied, taking into account the total content and mobile forms of metals in the soil. The territorial proximity of the vineyards did not affect the extraction of elements from the soil into the grape berry, and the migration of metals for each territory was selective. According to the values of the biological absorption coefficient, the degree of transition of metals from the soil to a berry was estimated. For K, Ti, Zn, Rb, Cu, and Fe in all berries, the coefficient was higher than 1.00, which means that the berry extracts contained not only mobile-form, but also difficult-to-dissolve metal compounds. The migration of macro-components from the soil to the berry was low, and amounted to 6-7% for Ca, 0.8-3.0% for Na, and 25-70% for Mg of the concentration of their mobile forms. For all territories, the maximum correlation between metal concentrations in grapes and soil was observed for samples from a depth of 0-40 cm. The discriminant model based on concentrations of Rb, Al, K, Sr, Co, Na, Pb, Ca, and Ni showed the formation of clusters in the territories of vineyard cultivation. The developed model allow the problems of identifying wines by region to be solved with high accuracy, using their elemental image.
Collapse
Affiliation(s)
- Zaual Temerdashev
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar 350040, Russia; (Z.T.); (A.K.); (E.G.)
| | - Aleksey Abakumov
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar 350040, Russia; (Z.T.); (A.K.); (E.G.)
| | - Alexan Khalafyan
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar 350040, Russia; (Z.T.); (A.K.); (E.G.)
| | - Mikhail Bolshov
- Institute for Spectroscopy Russian Academy of Sciences, Troitsk, Moscow 108840, Russia;
| | - Aleksey Lukyanov
- North Caucasian Federal Research Center of Horticulture, Viticulture, Wine–Making, Krasnodar 350072, Russia;
| | - Alexander Vasilyev
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar 350040, Russia; (Z.T.); (A.K.); (E.G.)
| | - Evgeniy Gipich
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar 350040, Russia; (Z.T.); (A.K.); (E.G.)
| |
Collapse
|
4
|
Temerdashev Z, Khalafyan A, Abakumov A, Bolshov M, Akin'shina V, Kaunova A. Authentication of selected white wines by geographical origin using ICP spectrometric and chemometric analysis. Heliyon 2024; 10:e29607. [PMID: 38681543 PMCID: PMC11046125 DOI: 10.1016/j.heliyon.2024.e29607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
An important aspect of assessing the authenticity of wines is its geographical origin. The aim of the work is to authenticate by geographical origin according to the data of the ICP-spectrometric and chemometric analysis of elemental "images" of wines produced from white grape varieties Chardonnay, Riesling and Muscat grown in four regions of the Krasnodar Territory, Russia. The difference in the contents of Al, Ba, Ca and Rb in wines was found depending on the variety, and Al, Ba, Rb, Fe, Li, Sr - depending on the region of grape growth. Different models of the experimental data processing were used for attribution of the produced varieties of wine to the area of the grape's growth. The criterion for the quality of the constructed models was the accuracy of the attribution of a wine variety to the area of the grape's growth (%). Analysis of the elemental analysis data of 153 wine samples showed that in terms of attribution accuracy, automated neural networks (100 %) are preferred among machine learning methods, followed by support vector machines (98.69 %) and general discriminant analysis (94.77 %). The applied mathematical models enabled the revealing of the cluster structure of the analyzed wine varieties and their attribution to the area of a grape growth with high accuracy. Sr, Li and Fe concentrations in wines were found as the dominating predictors in the constructed models for definition of the geographical origin of wines. The combination of ICP-spectrometric analysis data with the capabilities of statistical modeling of machine learning methods focused on large-dimensional data made it possible to successfully solve small-dimensional problems of the definition of the geographical origin of wines by their elemental composition and variety.
Collapse
Affiliation(s)
- Zaual Temerdashev
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar, 350040, Russian Federation
| | - Alexan Khalafyan
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar, 350040, Russian Federation
| | - Aleksey Abakumov
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar, 350040, Russian Federation
| | - Mikhail Bolshov
- Institute of Spectroscopy Russian Academy of Sciences, Moscow, Troitsk, 108840, Russian Federation
| | - Vera Akin'shina
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar, 350040, Russian Federation
| | - Anastasia Kaunova
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar, 350040, Russian Federation
| |
Collapse
|
5
|
Sim KS, Kim H, Hur SH, Na TW, Lee JH, Kim HJ. Geographical origin discriminatory analysis of onions: Chemometrics methods applied to ICP-OES and ICP-MS analysis. Food Res Int 2024; 175:113676. [PMID: 38129025 DOI: 10.1016/j.foodres.2023.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Geographical origin is an important determinant of agricultural product quality and safety. Herein, inductively coupled plasma (ICP) analysis was applied to determine the inorganic elemental content of onions and identify their geographical origin (Korean or Chinese). Chemometric, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least square discriminant analysis (OPLS-DA) were applied to the ICP results. OPLS-DA distinguished each group, and 17 elements with variable importance in projection (VIP) values of ≥ 1 were selected. The receiver operating characteristic (ROC) curve had an area under the curve (AUC) of 1, indicating excellent discriminatory power. Differences in elemental content between groups were visually observed in a heatmap, and the country of origin was determined with 100% accuracy using canonical discriminant analysis (CDA). This method accurately distinguishes between Korean and Chinese onions and is expected to be beneficial for identifying agricultural products.
Collapse
Affiliation(s)
- Kyu Sang Sim
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Hyoyoung Kim
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Suel Hye Hur
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Tae Woong Na
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Ji Hye Lee
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Ho Jin Kim
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea.
| |
Collapse
|
6
|
Temerdashev Z, Bolshov M, Abakumov A, Khalafyan A, Kaunova A, Vasilyev A, Sheludko O, Ramazanov A. Can Rare Earth Elements Be Considered as Markers of the Varietal and Geographical Origin of Wines? Molecules 2023; 28:molecules28114319. [PMID: 37298795 DOI: 10.3390/molecules28114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The possibility of establishing the varietal and territorial affiliation of wines by the content of rare earth elements (REE) in them was studied. ICP-OES and ICP-MS with subsequent chemometric processing of the results were applied to determine the elemental image of soils containing negligible REE amounts, grapes grown on these soils, and wine materials of Cabernet Sauvignon, Merlot, and Moldova varieties produced from these grapes. To stabilize and clarify wine materials, the traditional processing of wine materials with various types of bentonite clays (BT) was used, which turned out to be a source of REE in the wine material. Discriminant analysis revealed that the processed wine materials were homogeneous within one denomination and that those of different denominations were heterogeneous with respect to the content of REE. It was found that REE in wine materials were transferred from BT during the processing, and thus they can poorly characterize the geographical origin and varietal affiliation of wines. Analysis of these wine materials according to the intrinsic concentrations of macro- and microelements showed that they formed clusters according to their varietal affiliation. In terms of their influence on the varietal image of wine materials, REE are significantly inferior to macro- and microelements, but they enhance their influence to a certain extent when used together.
Collapse
Affiliation(s)
- Zaual Temerdashev
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar 350040, Russia
| | - Mikhail Bolshov
- Institute for Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow 108840, Russia
| | - Aleksey Abakumov
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar 350040, Russia
| | - Alexan Khalafyan
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar 350040, Russia
| | - Anastasia Kaunova
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar 350040, Russia
| | - Alexander Vasilyev
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar 350040, Russia
| | - Olga Sheludko
- North Caucasian Federal Research Center of Horticulture, Viticulture, Wine-Making, Krasnodar 350072, Russia
| | - Arsen Ramazanov
- Institute for Geothermal Problems and Renewable Energy, Branch of the Joint Institute of High Temperatures of the Russian Academy of Sciences, Makhachkala 367030, Russia
| |
Collapse
|
7
|
Nechita C, Iordache AM, Voica C, Costinel D, Botoran OR, Popescu DI, Șuvar NS. Evaluating the Chemical Hazards in Wine Production Associated with Climate Change. Foods 2023; 12:foods12071526. [PMID: 37048347 PMCID: PMC10094511 DOI: 10.3390/foods12071526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
The climate warming trend challenges the chemical risk associated with wine production worldwide. The present study investigated the possible difference between chemical wine profile during the drought year 2012 compared to the post-drought year 2013. Toxic metals (Cd and Pb), microelements (Mn, Ni, Zn, Al, Ba, and Cu), macroelements (Na, Mg, K, Ca, and P), isotopic ratios (87Sr/86Sr and 206Pb/207Pb), stable isotopes (δ18O, δ13C, (D/H)I, and (D/H)II), and climatic data were analyzed. The multivariate technique, correlation analysis, factor analysis, partial least squares–discriminant analysis, and hierarchical cluster analysis were used for data interpretation. The maximum temperature had a maximum difference when comparing data year apart. Indeed, extreme droughts were noted in only the spring and early summer of 2012 and in 2013, which increased the mean value of ground frost days. The microelements, macroelements, and Pb presented extreme effects in 2012, emphasizing more variability in terms of the type of wine. Extremely high Cd values were found in the wine samples analyzed, at up to 10.1 µg/L. The relationship between precipitation and δ18O from wine was complex, indicating grape formation under the systematic influence of the current year precipitation, and differences between years were noted. δ13C had disentangled values, with no differentiation between years, and when coupled with the deuterium–hydrogen ratio, it could sustain the hypothesis of possible adulteration. In the current analysis, the 87Sr/86Sr showed higher values than in other Romanian studies. The temperature had a strong positive correlation with Pb, while the ground frost day frequency correlated with both Pb and Cd toxic elements in the wine. Other significant relationships were disclosed between the chemical properties of wine and climate data. The multivariate statistical analysis indicated that heat stress had significant importance in the chemical profile of the wine, and the ground frost exceeded the influence of water stress, especially in Transylvania.
Collapse
Affiliation(s)
- Constantin Nechita
- National Research and Development Institute for Forestry “Marin Drăcea”—INCDS, 128 Boulvard Eroilor, 077190 Voluntari, Romania
| | - Andreea Maria Iordache
- National Research and Development Institute of Cryogenics and Isotopic Technologies, ICSI, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Diana Costinel
- National Research and Development Institute of Cryogenics and Isotopic Technologies, ICSI, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Oana Romina Botoran
- National Research and Development Institute of Cryogenics and Isotopic Technologies, ICSI, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Diana Ionela Popescu
- National Research and Development Institute of Cryogenics and Isotopic Technologies, ICSI, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| |
Collapse
|
8
|
Varga T, Molnár M, Molnár A, Jull AT, Palcsu L, László E. Radiocarbon dating of microliter sized Hungarian Tokaj wine samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
9
|
Region, vintage, and grape maturity co-shaped the ionomic signatures of the Cabernet Sauvignon wines. Food Res Int 2023; 163:112165. [PMID: 36596113 DOI: 10.1016/j.foodres.2022.112165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The ionic elements in wine and in vineyards are gaining attention due to characterization of the wine traits, wine origin tracing, and vine nutrient judging. In this experiment, 19 elements were detected by inductively coupled plasma mass spectrometry (ICP-MS) in 69 wine samples from 4 regions, 3 vintages, and 3 grape maturity levels. Furthermore, the elements related to vine development, such as N, P, K, Ca, Mg, Cu, Fe, Zn and Cu in the vineyard soil and petioles were determined. Two orthogonal partial least squares discriminant analysis (O2PLS-DA) showed that K, Mn, Co, Sr, B, Si, Pb, Ni, Cu, and Zn were important elements in distinguishing the regions. High-temperature vintages can bring wines with high levels of Sr in wine. Na, Ca, K, Mg, Rb, Al, Rb, Pb and Fe can be used as signature elements to distinguish wines made from 2 grape maturities. And Cu, Zn, and Mn were the key elements used to differentiate the petioles in the 4 regions. Partial square regression (PLSR) analysis showed that soil pH was positively correlated with Al, B, Ba, K, Pb, Mn, Sr and Rb in wine, and K in wine was significantly positively correlated with element K in the soil. In conclusion, the elemental contents in wine are shaped by the combination of origin, vintage and grape maturity, while some key elements can be used as indicators of origin traceability.
Collapse
|
10
|
Mazarakioti EC, Zotos A, Thomatou AA, Kontogeorgos A, Patakas A, Ladavos A. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), a Useful Tool in Authenticity of Agricultural Products' and Foods' Origin. Foods 2022; 11:foods11223705. [PMID: 36429296 PMCID: PMC9689705 DOI: 10.3390/foods11223705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Fraudulent practices are the first and foremost concern of food industry, with significant consequences in economy and human's health. The increasing demand for food has led to food fraud by replacing, mixing, blending, and mislabeling products attempting to increase the profits of producers and companies. Consequently, there was the rise of a multidisciplinary field which encompasses a large number of analytical techniques aiming to trace and authenticate the origins of agricultural products, food and beverages. Among the analytical strategies have been developed for the authentication of geographical origin of foodstuff, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) increasingly dominates the field as a robust, accurate, and highly sensitive technique for determining the inorganic elements in food substances. Inorganic elements are well known for evaluating the nutritional composition of food products while it has been shown that they are considered as possible tracers for authenticating the geographical origin. This is based on the fact that the inorganic component of identical food type originating from different territories varies due to the diversity of matrix composition. The present systematic literature review focusing on gathering the research has been done up-to-date on authenticating the geographical origin of agricultural products and foods by utilizing the ICP-MS technique. The first part of the article is a tutorial about food safety/control and the fundaments of ICP-MS technique, while in the second part the total research review is discussed.
Collapse
Affiliation(s)
- Eleni C. Mazarakioti
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
- Correspondence: (E.C.M.); (A.L.); Tel.: +30-26410-74126 (A.L.)
| | - Anastasios Zotos
- Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Anna-Akrivi Thomatou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Achilleas Kontogeorgos
- Department of Agriculture, International Hellenic University, 57001 Thessaloniki, Greece
| | - Angelos Patakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Athanasios Ladavos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
- Correspondence: (E.C.M.); (A.L.); Tel.: +30-26410-74126 (A.L.)
| |
Collapse
|
11
|
Zhao L, Zhang H, Huang F, Liu H, Wang T, Zhang C. Authenticating Tibetan pork in China by tracing the species and geographical features based on stable isotopic and multi-elemental fingerprints. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Bui MQ, Quan TC, Nguyen QT, Tran-Lam TT, Dao YH. Geographical origin traceability of Sengcu rice using elemental markers and multivariate analysis. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:177-190. [PMID: 35722667 DOI: 10.1080/19393210.2022.2070932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Multi-element analysis combined with chemometric method has been used to investigate the distinguish between Sengcu rice and other types of rice origins in Vietnam. In Sengcu rice, As, Ba Sr, Pb, Ca, Se were confirmed as the key elements for geographical traceability among three fields of Lao Cai, whereas Al, Ca, Fe, Mg, Ag, As were major factors to distinguish between Sengcu and other types of rice. Based on linear discriminant analysis and partial least squares-discriminant analysis model, overall correct identification rates distinguishing between Sengcu and other types of rice were approximately 100% in both training and validation test. Moreover, to distinguish geographical origin of Sengcu rice samples, these rates vary from 80% to 99%. These results suggest the presence of food adulteration illustrated in the latter.
Collapse
Affiliation(s)
- Minh Quang Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Thuy Cam Quan
- Department of Analytical Chemistry, Faculty of Chemistry, Viet Tri University of Industry, Phu Tho, Vietnam
| | - Quang Trung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Thanh-Thien Tran-Lam
- Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| |
Collapse
|
13
|
Study on influence factors and sources of mineral elements in peanut kernels for authenticity. Food Chem 2022; 382:132385. [DOI: 10.1016/j.foodchem.2022.132385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/17/2022] [Accepted: 02/05/2022] [Indexed: 11/19/2022]
|
14
|
Temerdashev Z, Abakumov A, Bolshov M, Khalafyan A, Ageeva N, Vasilyev A, Ramazanov A. Instrumental assessment of the formation of the elemental composition of wines with various bentonite clays. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Zaldarriaga Heredia J, Wagner M, Jofré FC, Savio M, Azcarate SM, Camiña JM. An overview on multi-elemental profile integrated with chemometrics for food quality assessment: toward new challenges. Crit Rev Food Sci Nutr 2022; 63:8173-8193. [PMID: 35319312 DOI: 10.1080/10408398.2022.2055527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food products, especially those with high value-added, are commonly subjected to strict quality controls, which are of paramount importance, especially for attesting to some peculiar features related, for instance, to their geographical origin and/or the know-how of their producers. However, the sophistication of fraudulent practices requires a continuous update of analytical platforms. Different analytical techniques have become extremely appealing since the instrumental analysis tools evolution has substantially improved the capability to reveal and understand the complexity of food. In light of this, multi-elemental composition has been successful implemented solving a plethora of food authentication and traceability issues. In the last decades, it has existed an ever-increasing trend in analysis based on spectrometry analytical platforms in order to obtain a multi-elemental profile that combined with chemometrics have been noteworthy analytical methodologies able to solve these problems. This review provides an overview of published reports in the last decade (from 2011 to 2021) on food authentication and quality control from their multi-element composition in order to evaluate the state-of-the-art of this field and to identify the main characteristics of applied analytical techniques and chemometric data treatments that have permit achieve accurate discrimination/classification models, highlighting the strengths and the weaknesses of these methodologies.
Collapse
Affiliation(s)
- Jorgelina Zaldarriaga Heredia
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Marcelo Wagner
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
| | - Florencia Cora Jofré
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Marianela Savio
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Silvana Mariela Azcarate
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - José Manuel Camiña
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| |
Collapse
|
16
|
Birse N, McCarron P, Quinn B, Fox K, Chevallier O, Hong Y, Ch R, Elliott C. Authentication of organically grown vegetables by the application of ambient mass spectrometry and inductively coupled plasma (ICP) mass spectrometry; The leek case study. Food Chem 2022; 370:130851. [PMID: 34530348 DOI: 10.1016/j.foodchem.2021.130851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 11/04/2022]
Abstract
Health conscious and environmentally aware consumers are purchasing more organically produced foods. They prefer organic fruits and leafy vegetables as these are much less likely to have been exposed to contaminants such as pesticides. The detection of fraudulent activity in this area is difficult to undertake, because many chemical plant protection treatments degrade very quickly or can be washed off to remove evidence of their existence. It was found that when combining DART-MS with a compact, inexpensive and robust single quadrupole mass spectrometer, it was possible to differentiate organic from conventional leeks with 93.8% to 100% accuracy. ICP-MS results showed similar performance, with an ability to differentiate conventional from organic leeks with 92.5% to 98.1% accuracy. This study has paved the way for the certification of vegetables as being organically produced. The next step is to create data libraries to support the roll out of the methodologies described.
Collapse
Affiliation(s)
- Nicholas Birse
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK.
| | - Philip McCarron
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Brian Quinn
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Kimberly Fox
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Olivier Chevallier
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK; Avignon Universite, Maison de la Recherchem, Pole Structure et Infrastructure de Recherche Partagée, Campus Jean-Henri Fabre, Bâtiment A - Bureau A104, 301 rue Baruch de Spinoza BP 21239, 84911 Avignon cedex 9, France
| | - Yunhe Hong
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Ratnasekhar Ch
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK; Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226015, Utter Pradesh, India
| | - Christopher Elliott
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
17
|
Gao F, Hao X, Zeng G, Guan L, Wu H, Zhang L, Wei R, Wang H, Li H. Identification of the geographical origin of Ecolly (Vitis vinifera L.) grapes and wines from different Chinese regions by ICP-MS coupled with chemometrics. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Li X, Kong W, Liu X, Zhang X, Wang W, Chen R, Sun Y, Liu F. Application of Laser-Induced Breakdown Spectroscopy Coupled With Spectral Matrix and Convolutional Neural Network for Identifying Geographical Origins of Gentiana rigescens Franch. Front Artif Intell 2021; 4:735533. [PMID: 34957390 PMCID: PMC8703168 DOI: 10.3389/frai.2021.735533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate geographical origin identification is of great significance to ensure the quality of traditional Chinese medicine (TCM). Laser-induced breakdown spectroscopy (LIBS) was applied to achieve the fast geographical origin identification of wild Gentiana rigescens Franch (G. rigescens Franch). However, LIBS spectra with too many variables could increase the training time of models and reduce the discrimination accuracy. In order to solve the problems, we proposed two methods. One was reducing the number of variables through two consecutive variable selections. The other was transforming the spectrum into spectral matrix by spectrum segmentation and recombination. Combined with convolutional neural network (CNN), both methods could improve the accuracy of discrimination. For the underground parts of G. rigescens Franch, the optimal accuracy in the prediction set for the two methods was 92.19 and 94.01%, respectively. For the aerial parts, the two corresponding accuracies were the same with the value of 94.01%. Saliency map was used to explain the rationality of discriminant analysis by CNN combined with spectral matrix. The first method could provide some support for LIBS portable instrument development. The second method could offer some reference for the discriminant analysis of LIBS spectra with too many variables by the end-to-end learning of CNN. The present results demonstrated that LIBS combined with CNN was an effective tool to quickly identify the geographical origin of G. rigescens Franch.
Collapse
Affiliation(s)
- Xiaolong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wenwen Kong
- College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China
| | - Xiaoli Liu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China.,Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
| | - Xi Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Wei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yongqi Sun
- Hangzhou Landa Science and Technology Co., Ltd, Hangzhou, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
19
|
Xu S, Zhao C, Deng X, Zhang R, Qu L, Wang M, Ren S, Wu H, Yue Z, Niu B. Multivariate analysis for organic milk authentication. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:123029. [PMID: 34798418 DOI: 10.1016/j.jchromb.2021.123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/12/2021] [Accepted: 11/06/2021] [Indexed: 11/15/2022]
Abstract
To differentiate organic milk (OM) from conventional milk (CM), an orthogonal projection to latent structure-discriminant analysis (OPLS-DA) model was constructed using δ13C, δ15N, δ18O, 51 elements and 35 fatty acids (FAs) as the variables. So far, most reported studies barely use three or more types of variables, but more variables could avoid one-sidedness and get stabler models. Our multivariate model combines geographical and nutritional parameters and displays better explanatory and predictive abilities (R2X = 0.647, R2Y = 0.962 and Q2 = 0.821) than models based on fewer variables for differentiating OM and CM. In particular, δ15N, Se, δ13C, Eu, K and α-Linolenic acid (ALA) are found to be critical parameters for the discrimination of OM. These results show that the multivariate model based on stable isotopes, elements and FAs can be used to identify OM, and can potentially expand the global databases for quality and authenticity of milk.
Collapse
Affiliation(s)
- Siyan Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Chaomin Zhao
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China.
| | - Xiaojun Deng
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Runhe Zhang
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Li Qu
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Min Wang
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Shuo Ren
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Hao Wu
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518000, China
| | - Zhenfeng Yue
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518000, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
20
|
Kim YH, Ra WJ, Cho S, Choi S, Soh B, Joo Y, Lee KW. Method Validation for Determination of Thallium by Inductively Coupled Plasma Mass Spectrometry and Monitoring of Various Foods in South Korea. Molecules 2021; 26:6729. [PMID: 34771138 PMCID: PMC8588170 DOI: 10.3390/molecules26216729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
Thallium (Tl) is a rare element and one of the most harmful metals. This study validated an analytical method for determining Tl in foods by inductively coupled plasma mass spectrometry (ICP-MS) based on food matrices and calories. For six representative foods, the method's correlation coefficient (R2) was above 0.999, and the method limit of detection (MLOD) was 0.0070-0.0498 μg kg-1, with accuracy ranging from 82.06% to 119.81% and precision within 10%. We investigated 304 various foods in the South Korean market, including agricultural, fishery, livestock, and processed foods. Tl above the MLOD level was detected in 148 samples and was less than 10 μg kg-1 in 98% of the samples. Comparing the Tl concentrations among food groups revealed that fisheries and animal products had higher Tl contents than cereals and vegetables. Tl exposure via food intake did not exceed the health guidance level.
Collapse
Affiliation(s)
- Yeon-Hee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Wook-Jin Ra
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Solyi Cho
- Advanced Food Safety Research Group, School of Food Science and Technology, Chung-Ang University, Anseong-si 17546, Korea
| | | | - Bokyung Soh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Yongsung Joo
- Department of Statistics, Dongguk University-Seoul, Seoul 04620, Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
21
|
Zhang J, Yang R, Li YC, Ni X. The Role of Soil Mineral Multi-elements in Improving the Geographical Origin Discrimination of Tea (Camellia sinensis). Biol Trace Elem Res 2021; 199:4330-4341. [PMID: 33409909 DOI: 10.1007/s12011-020-02527-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
The combination of mineral multi-elements with chemometrics can effectively trace the geographical origin of tea (Camellia sinensis). However, the role of soil mineral multi-elements in discriminating the origin of tea was unknown. This study aimed to further validate whether the geographical origin of tea can be authenticated based on mineral multi-elements, the concentrations of which in tea leaves were significantly correlated with those in soil. Eighty-seven tea leaves samples and paired soils from Meitan and Fenggang (MTFG), Anshun, and Leishan in China were sampled, and 24 mineral elements were measured. The data were processed using one-way analysis of variance (ANOVA), Pearson correlation analysis, principal component analysis (PCA), and stepwise linear discriminant analysis (SLDA). Results indicated that tea and soil samples from different origins differed significantly (p < 0.05) in terms of most mineral multi-elemental concentrations. Conversely, the intra-regional differences of different cultivars of the same origin were relatively minor. Seventeen mineral elements in tea leaves were significantly correlated with those in soils. The SLDA model, based on the 17 aforementioned elements, produced a 98.85% accurate classification rate. In addition, the origin was also identified satisfactorily with 94.25% accuracy when considering the cultivar effect. In conclusion, the tea plant cultivars unaffected the accuracy of the discrimination rate. The geographical origin of tea could be authenticated based on the mineral multi-elements with significant correlation between tea leaves and soils. Soil mineral multi-elements played an important role in identifying the geographical origin of tea.
Collapse
Affiliation(s)
- Jian Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Ruidong Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
| | - Yuncong C Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL, 33031, USA
| | - Xinran Ni
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
22
|
Yang X, Yan C, Sun Y, Liu Y, Yang S, Deng Q, Wen X. Micro-spectrophotometric determination of nickel in Gentiana rigescens after switchable hydrophilicity solvent-based ultrasound-assisted liquid phase microextraction. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Zhao H, Tang J, Yang Q. Effects of geographical origin, variety, harvest season, and their interactions on multi-elements in cereal, tuber, and legume crops for authenticity. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Metals and metal-binding ligands in wine: Analytical challenges in identification. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Wang Z, Erasmus SW, van Ruth SM. Preliminary Study on Tracing the Origin and Exploring the Relations between Growing Conditions and Isotopic and Elemental Fingerprints of Organic and Conventional Cavendish Bananas ( Musa spp.). Foods 2021; 10:foods10051021. [PMID: 34066664 PMCID: PMC8151364 DOI: 10.3390/foods10051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/09/2022] Open
Abstract
The stable isotopic ratios and elemental compositions of 120 banana samples, Musa spp. (AAA Group, Cavendish Subgroup) cultivar Williams, collected from six countries (Colombia, Costa Rica, Dominica Republic, Ecuador, Panama, Peru), were determined by isotope ratio mass spectrometry and inductively coupled plasma mass spectrometry. Growing conditions like altitude, temperature, rainfall and production system (organic or conventional cultivation) were obtained from the sampling farms. Principal component analysis (PCA) revealed separation of the farms based on geographical origin and production system. The results showed a significant difference in the stable isotopic ratios (δ13C, δ15N, δ18O) and elemental compositions (Al, Ba, Cu, Fe, Mn, Mo, Ni, Rb) of the pulp and peel samples. Furthermore, δ15N was found to be a good marker for organically produced bananas. A correlation analysis was conducted to show the linkage of growing conditions and compositional attributes. The δ13C of pulp and peel were mainly negatively correlated with the rainfall, while δ18O was moderately positively (R values ~0.5) correlated with altitude and temperature. A moderate correlation was also found between temperature and elements such as Ba, Fe, Mn, Ni and Sr in the pulp and peel samples. The PCA results and correlation analysis suggested that the differences of banana compositions were combined effects of geographical factors and production systems. Ultimately, the findings contribute towards understanding the compositional differences of bananas due to different growing conditions and production systems linked to a defined origin; thereby offering a tool to support the traceability of commercial fruits.
Collapse
Affiliation(s)
- Zhijun Wang
- Food Quality & Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (Z.W.); (S.W.E.)
| | - Sara W. Erasmus
- Food Quality & Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (Z.W.); (S.W.E.)
| | - Saskia M. van Ruth
- Food Quality & Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (Z.W.); (S.W.E.)
- Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
- Correspondence: ; Tel.: +31-(0)317480250
| |
Collapse
|
26
|
Sun X, Zhang F, Gutiérrez-Gamboa G, Ge Q, Xu P, Zhang Q, Fang Y, Ma T. Real wine or not? Protecting wine with traceability and authenticity for consumers: chemical and technical basis, technique applications, challenge, and perspectives. Crit Rev Food Sci Nutr 2021; 62:6783-6808. [PMID: 33825545 DOI: 10.1080/10408398.2021.1906624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wine is a high-value alcoholic beverage welcomed by consumers because of its flavor and nutritional value. The key information on wine bottle label is the basis of consumers' choice, which also becomes a target for manufacturers to adulterate, including geographical origin, grape variety and vintage. With the improvement of wine adulteration technology, modern technological means are needed to solve the above mentioned problems. The chemical basis of wine determines the type of technique used. Detection technology can be subdivided into four groups: mass spectrometry techniques, spectroscopic techniques, chromatography techniques, and other techniques. Multivariate statistical analysis of the data was performed by means of chemometrics methods. This paper outlines a series of procedures for wine classification and identification, and classified the analytical techniques and data processing methods used in recent years with listing their principles, advantages and disadvantages to help wine researchers choose appropriate methods to meet the challenge and ensure wine traceability and authenticity.
Collapse
Affiliation(s)
- Xiangyu Sun
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A and F University, Yangling, China
| | - Fan Zhang
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A and F University, Yangling, China
| | | | - Qian Ge
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A and F University, Yangling, China.,Quality Standards and Testing Institute of Agricultural Technology, Yinchuan, China
| | - Pingkang Xu
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi, USA
| | - Qianwen Zhang
- Department of Chemistry, College of Science, Food Science and Technology Programme, National University of Singapore, Singapore
| | - Yulin Fang
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A and F University, Yangling, China
| | - Tingting Ma
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A and F University, Yangling, China
| |
Collapse
|
27
|
Fermo P, Comite V, Sredojević M, Ćirić I, Gašić U, Mutić J, Baošić R, Tešić Ž. Elemental Analysis and Phenolic Profiles of Selected Italian Wines. Foods 2021; 10:158. [PMID: 33451091 PMCID: PMC7828534 DOI: 10.3390/foods10010158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the chemical composition of wines is nowadays a topic of great interest because of the importance of this market, especially in Italy, and also considering the numerous cases of falsification of famous and very expensive wines. The present paper focused on the analysis of metals and polyphenols in Italian wines belonging to different provenance and types. At this purpose 20 elements were quantified by inductively coupled plasma optical emission spectrometry (ICP-OES) and ICP mass spectrometry (ICP-MS). Regarding polyphenols, a total of 32 were quantified, among 6 were anthocyanins. Furthermore, in 4 samples (1 rosè and 3 red wines) 42 anthocyanins and related compounds were identified by ultra-high performance liquid chromatography (UHPLC)-Orbitrap MS technique (among these, 6 were also quantified). Non-anthocyanins were determined using UHPLC coupled with a diode array detector and triple-quadrupole mass spectrometer (UHPLC-DAD-QqQ-MS). Total phenolic content (TPC) and radical scavenging activity (RSA) were measured using spectrophotometric methods. The results obtained by elemental techniques were submitted to principal components analysis (PCA) allowing to get information on both geographical and botanical origin of the examined wine samples. Some polyphenols have been detected in higher concentrations only in a certain type of wine, as for example in the case of Grechetto wine. Most of the identified anthocyanin derivatives (pyranoanthocyanins) are formed during the aging of wine by reaction with the other wine components.
Collapse
Affiliation(s)
- Paola Fermo
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Valeria Comite
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Milica Sredojević
- Innovation Center of the Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11158 Belgrade, Serbia; (M.S.); (I.Ć.)
| | - Ivanka Ćirić
- Innovation Center of the Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11158 Belgrade, Serbia; (M.S.); (I.Ć.)
| | - Uroš Gašić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Jelena Mutić
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11158 Belgrade, Serbia; (J.M.); (R.B.); (Ž.T.)
| | - Rada Baošić
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11158 Belgrade, Serbia; (J.M.); (R.B.); (Ž.T.)
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11158 Belgrade, Serbia; (J.M.); (R.B.); (Ž.T.)
| |
Collapse
|
28
|
Progress in Rapid Detection Techniques Using Paper-Based Platforms for Food Safety. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60064-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Authentication and Traceability Study on Barbera d’Asti and Nizza DOCG Wines: The Role of Trace- and Ultra-Trace Elements. BEVERAGES 2020. [DOI: 10.3390/beverages6040063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Barbera d’Asti—including Barbera d’Asti superiore—and Nizza are two DOCG (Denominazione di Origine Controllata e Garantita) wines produced in Piemonte (Italy) from the Barbera grape variety. Differences among them arise in the production specifications in terms of purity, ageing, and zone of production, in particular with concern to Nizza, which follows the most stringent rules, sells at three times the average price, and is considered to have the highest market value. To guarantee producers and consumers, authentication methods must be developed in order to distinguish among the different wines. As the production zones totally overlap, it is important to verify whether the distinction is possible or not according to metals content, or whether chemical markers more linked to winemaking are needed. In this work, Inductively Coupled Plasma (ICP) elemental analysis and multivariate data analysis are used to study the authentication and traceability of samples from the three designations of 2015 vintage. The results show that, as far as elemental distribution in wine is concerned, work in the cellar, rather than geographic provenance, is crucial for the possibility of distinction.
Collapse
|
30
|
Creydt M, Fischer M. Food authentication in real life: How to link nontargeted approaches with routine analytics? Electrophoresis 2020; 41:1665-1679. [PMID: 32249434 DOI: 10.1002/elps.202000030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
In times of increasing globalization and the resulting complexity of trade flows, securing food quality is an increasing challenge. The development of analytical methods for checking the integrity and, thus, the safety of food is one of the central questions for actors from science, politics, and industry. Targeted methods, for the detection of a few selected analytes, still play the most important role in routine analysis. In the past 5 years, nontargeted methods that do not aim at individual analytes but on analyte profiles that are as comprehensive as possible have increasingly come into focus. Instead of investigating individual chemical structures, data patterns are collected, evaluated and, depending on the problem, fed into databases that can be used for further nontargeted approaches. Alternatively, individual markers can be extracted and transferred to targeted methods. Such an approach requires (i) the availability of authentic reference material, (ii) the corresponding high-resolution laboratory infrastructure, and (iii) extensive expertise in processing and storing very large amounts of data. Probably due to the requirements mentioned above, only a few methods have really established themselves in routine analysis. This review article focuses on the establishment of nontargeted methods in routine laboratories. Challenges are summarized and possible solutions are presented.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
31
|
Guguchkina T, Antonenko M, Yakimenko Y. New grape varieties for production of high-quality wines, and assessment methodology for varietal characteristics of the product. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202502016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, Russian and international breeders have produced a great many of new varieties of Vitis vinifera grapes as well as interspecies hybrids, distinguished by a high quality of fruit and other useful economic and biological features. Having a big reserve of technologically important substances and hygienic factors of grapevine, the resistant varieties may prove especially efficient for the production of premium-class wines. The appearance of high-end Russian wines with protected geographical indication (PGI) and protected appellation of origin (PAO), first of all, fits in with the requirements of international markets. It is a necessary criterion for product quality and safety assurance at the highly competitive global market, and development of universally recognized brands. It also helps resolve a number of socio-economic issues, such as formation of winemaking culture, and production of wines of guaranteed quality from own grapes. This study is devoted to substantiating the necessity for development of methods of formation of single information databases on characteristic features of PGI and PAO wines, including their distinctive organoleptic, physical and chemical properties (extract components – the cation-anion composition, organic acids, total phenolic and anthocyanin content; unique colour characteristics), as well as the application of the system of organoleptic assessment of wines with the use of descriptive analysis of wine colour, flavour and taste. It is well-timed and relevant to determine the regularities of realization of the varietal potential of a grapevine plant in terms of climatic conditions of growing and geographical origin based on the study of the endogenous and exogenous components of wines with the use of the methods of high-performance capillary electrophoresis, spectral photometry, organoleptic analysis, and statistical techniques. This research generalizes and puts forth a contemporary view of varietal and geographical identification of wines. It is shown that the proposed research guideline is highly sought-after, and it is of fundamental and practical importance for the development of regional and national selection, genetic, viticultural and winemaking industries.
Collapse
|