1
|
Zhang X, Zhou Y, Yang H, Wei W, Zhao J. Ratiometric absorbance and fluorescence dual model immunoassay for detecting ochratoxin a based on porphyrin metalation. Food Chem 2025; 464:141608. [PMID: 39406144 DOI: 10.1016/j.foodchem.2024.141608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
In this work, a porphyrin metalation-based ratiometric absorbance and fluorescence dual model immunoassay was proposed to detect ochratoxin A (OTA). 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin (TMPyP) was pink and had a strong fluorescence, upon coordination with Hg(II), its fluorescence was quenched and the color became green. The alkaline phosphatase can catalyze the dephosphorylation of ascorbic acid 2-phosphate to produce ascorbic acid, which can reduce the coordinated Hg(II) to Hg(0) and then dissociated from TMPyP, its fluorescence was recovered. Meanwhile, the color changed from green to light pink, which can be identified by naked eye for semi-quantitative detection. The linear ranges of ratiometric absorbance and fluorescence model were 0-6.0 ng/mL and 0.1-6.0 ng/mL, respectively. The absorbance and fluorescence signals produced by porphyrin metalation can mutually verify to improve the accuracy of detection results. Besides, the ultra-sensitivity and high selectivity demonstrated this method was a powerful tool for trace OTA detection.
Collapse
Affiliation(s)
- Xingping Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China; School of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Yu Zhou
- School of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Hualin Yang
- School of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China.
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing, China.
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Huang H, Ouyang W, Feng K, Camarada MB, Liao T, Tang X, Liu R, Hou D, Liao X. Rational design of molecularly imprinted electrochemical sensor based on Nb 2C-MWCNTs heterostructures for highly sensitive and selective detection of Ochratoxin a. Food Chem 2024; 456:140007. [PMID: 38861864 DOI: 10.1016/j.foodchem.2024.140007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Developing an efficient method for screening Ochratoxin A (OTA) in agriculture products is vital to ensure food safety and human health. However, the complex food matrix seriously affects the sensitivity and accuracy. To address this issue, we designed a novel molecularly imprinted polymer (MIP) electrochemical sensor based on multiwalled carbon nanotube-modified niobium carbide (Nb2C-MWCNTs) with the aid of the density functional theory (DFT). In this design, a glassy carbon electrode (GCE) was first modified by Nb2C-MWCNTs heterostructure. Afterward, the MIP layer was prepared, with ortho-toluidine as a functional monomer selected via DFT and OTA acting as a template on the surface of Nb2C-MWCNTs/GCE using in-situ electropolymerization. Electrochemical tests and physical characterization revealed that Nb2C-MWCNTs improved the sensor's active surface area and electron transmission capacity. Nb2C-MWCNTs had a good synergistic effect on MIP, endowing the sensor with high sensitivity and specific recognition of OTA in complex food matrix systems. The MIP sensor showed a wide linear range from 0.04 to 10.0 μM with a limit of detection (LOD) of 3.6 nM. Moreover, it presented good repeatability and stability for its highly antifouling effect on OTA. In real sample analysis, the recoveries, ranging from 89.77% to 103.70%, agreed well with the results obtained by HPLC methods, suggesting the sensor has good accuracy and high potential in practical applications.
Collapse
Affiliation(s)
- Hao Huang
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Weiwei Ouyang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China
| | - Kehuai Feng
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - María Belén Camarada
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Tao Liao
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xinjie Tang
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Rumeng Liu
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Dan Hou
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang 330045, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, PR China.
| | - Xiaoning Liao
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
3
|
Zhang D, Luo T, Cai X, Zhao NN, Zhang CY. Recent advances in nucleic acid signal amplification-based aptasensors for sensing mycotoxins. Chem Commun (Camb) 2024; 60:4745-4764. [PMID: 38647208 DOI: 10.1039/d4cc00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Mycotoxin contamination in food products may cause serious health hazards and economic losses. The effective control and accurate detection of mycotoxins have become a global concern. Even though a variety of methods have been developed for mycotoxin detection, most conventional methods suffer from complicated operation procedures, low sensitivity, high cost, and long assay time. Therefore, the development of simple and sensitive methods for mycotoxin assay is highly needed. The introduction of nucleic acid signal amplification technology (NASAT) into aptasensors significantly improves the sensitivity and facilitates the detection of mycotoxins. Herein, we give a comprehensive review of the recent advances in NASAT-based aptasensors for assaying mycotoxins and summarize the principles, features, and applications of NASAT-based aptasensors. Moreover, we highlight the challenges and prospects in the field, including the simultaneous detection of multiple mycotoxins and the development of portable devices for field detection.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ting Luo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiangyue Cai
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Pan M, Zhao Y, Qiao J, Meng X. Electrochemical biosensors for pathogenic microorganisms detection based on recognition elements. Folia Microbiol (Praha) 2024; 69:283-304. [PMID: 38367165 DOI: 10.1007/s12223-024-01144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
The worldwide spread of pathogenic microorganisms poses a significant risk to human health. Electrochemical biosensors have emerged as dependable analytical tools for the point-of-care detection of pathogens and can effectively compensate for the limitations of conventional techniques. Real-time analysis, high throughput, portability, and rapidity make them pioneering tools for on-site detection of pathogens. Herein, this work comprehensively reviews the recent advances in electrochemical biosensors for pathogen detection, focusing on those based on the classification of recognition elements, and summarizes their principles, current challenges, and prospects. This review was conducted by a systematic search of PubMed and Web of Science databases to obtain relevant literature and construct a basic framework. A total of 171 publications were included after online screening and data extraction to obtain information of the research advances in electrochemical biosensors for pathogen detection. According to the findings, the research of electrochemical biosensors in pathogen detection has been increasing yearly in the past 3 years, which has a broad development prospect, but most of the biosensors have performance or economic limitations and are still in the primary stage. Therefore, significant research and funding are required to fuel the rapid development of electrochemical biosensors. The overview comprehensively evaluates the recent advances in different types of electrochemical biosensors utilized in pathogen detection, with a view to providing insights into future research directions in biosensors.
Collapse
Affiliation(s)
- Mengting Pan
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yurui Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jinjuan Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
5
|
Hou S, Ma J, Cheng Y, Wang Z, Yan Y. Overview-gold nanoparticles-based sensitive nanosensors in mycotoxins detection. Crit Rev Food Sci Nutr 2023; 63:11734-11749. [PMID: 35916760 DOI: 10.1080/10408398.2022.2095973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food-borne mycotoxins is one of the food safety concerns in the world. At present, nanosensors are widely used in the detection and analysis of mycotoxins due to their high specificity and sensitivity. In nanosensor-based mycotoxindetections, the sensitivity is mainly improved from two aspects. On the one hand, based on the principle of immune response, antigens and antibodies can be modified and developed. Such as single-domain heavy chain antibodies, aptamers, peptides, and antigen mimotopes. On the other hand, improvements and innovations have been made on signal amplification materials, including gold nanoparticles (AuNPs), quantum dots, and graphene, etc. Among them, gold nanoparticles can not only be used as a signal amplification material, but also can be used as carriers for identification elements, which can be used for signal amplification in detection. In this article, we systematically summarized the emerging strategies for enhancing the detection sensitivity of traditional gold nanoparticles-based nanosensors, in terms of recognition elements and signal amplification. Representative examples were selected to illustrate the potential mechanism of each strategy in enhancing the colorimetric signal intensity of AuNP and its potential application in biosensing. Finally, our review suggested the challenges and future prospects of gold particles in detection of mycotoxins.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Rizzotto F, Khalife M, Hou Y, Chaix C, Lagarde F, Scaramozzino N, Vidic J. Recent Advances in Electrochemical Biosensors for Food Control. MICROMACHINES 2023; 14:1412. [PMID: 37512723 PMCID: PMC10384134 DOI: 10.3390/mi14071412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The rapid and sensitive detection of food contaminants is becoming increasingly important for timely prevention and treatment of foodborne disease. In this review, we discuss recent developments of electrochemical biosensors as facile, rapid, sensitive, and user-friendly analytical devices and their applications in food safety analysis, owing to the analytical characteristics of electrochemical detection and to advances in the design and production of bioreceptors (antibodies, DNA, aptamers, peptides, molecular imprinted polymers, enzymes, bacteriophages, etc.). They can offer a low limit of detection required for food contaminants such as allergens, pesticides, antibiotic traces, toxins, bacteria, etc. We provide an overview of a broad range of electrochemical biosensing designs and consider future opportunities for this technology in food control.
Collapse
Affiliation(s)
- Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Yanxia Hou
- University Grenoble Alpes, CEA, CNRS, IRIG-SYMMES, 38000 Grenoble, France
| | - Carole Chaix
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Florence Lagarde
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | | | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| |
Collapse
|
7
|
Zhao Y, Shao J, Jin Z, Zheng W, Yao J, Ma W. Plasmon-enhanced electroreduction activity of Au-AgPd Janus nanoparticles for ochratoxin a detection. Food Chem 2023; 412:135526. [PMID: 36731235 DOI: 10.1016/j.foodchem.2023.135526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Ochratoxin A (OTA) was a dangerous biological toxin, and would easily contaminate food and induced food safety problems. The development of electrochemical aptasensors by designing strong and anti-interfere electroactive labels could improve the sensitivity and accuracy of OTA detection. In this contribution, novel electroactive Au-AgPd Janus NPs were firstly synthesized and exhibited electroreduction signal at -0.4 V, owing to the reduction process of Pd2+. The electroreduction signal was amplified 1.5 times under local surface plasmon resonance (LSPR) excitation, which could improve the sensitivity of OTA detection. Plasmon-enhanced electroreduction principle of Au-AgPd Janus NPs was verified, which endowed electrochemical aptasensor with high accuracy and anti-interference ability for OTA detection. Au-AgPd Janus NPs served as electrochemical beacon achieved sensitive and accurate OTA detection with the limit of detection (LOD) of 0.98 pM. This work opens up new directions for the construction of electroactive heterostructures for the sensitive and accurate biotoxins electroanalytical applications.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Juanjuan Shao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, Hebei 061100, China
| | - Zhao Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wangwang Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Ma
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Hou Y, Xu Q, Li Y, Long N, Li P, Wang J, Zhou L, Sheng P, Kong W. Ultrasensitive electrochemical aptasensor with Nafion-stabilized f-MWCNTs as signal enhancers for OTA detection. Bioelectrochemistry 2023; 151:108399. [PMID: 36805204 DOI: 10.1016/j.bioelechem.2023.108399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
In this study, an ultrasensitive electrochemical (EC) aptasensor with Nafion-stabilized functionalized multi-walled carbon nanotubes (f-MWCNTs) as signal enhancers was established for ochratoxin A (OTA) determination. Herein, f-MWCNTs were prepared through functionalization with nitric acid. The incorporation of Nafion promoted a good dispersion of f-MWCNTs and prevented their leaching on the electrode, making a robust stability of the aptasensor. The Nafion-f-MWCNTs composites were used as the sensing substrates to largely enhance the electroactive surface area and the conductivity of the electrode, realizing a significant signal amplification. Carboxyl groups on the surface of f-MWCNTs readily exposed from Nafion membrane to couple with streptavidin, facilitating the immobilization of biotinylated aptamers to achieve selective recognition towards OTA. When OTA existed, aptamers preferentially combined with it, causing a noticeable decline in the current response. Under optimum conditions, a good linear relationship between the current changes and the logarithm of OTA concentration was observed from 0.005 ng/mL to 10 ng/mL, with a limit of detection low to 1 pg/mL for OTA. The specific, sensitive, and reproducible aptasensor succeeded in application in malt samples, confirming a great promise for more contaminants and providing a universal platform in complex matrices by simply replacing the corresponding aptamers.
Collapse
Affiliation(s)
- Yujiao Hou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, China
| | - Qingbin Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Nan Long
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ping Sheng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, China
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Development of a Nafion-MWCNTs and in-situ generated Au nanopopcorns dual-amplification electrochemical aptasensor for ultrasensitive detection of OTA. Food Chem 2023; 403:134375. [DOI: 10.1016/j.foodchem.2022.134375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
10
|
Tian C, Wei M, Wang X, Hua Q, Tang F, Zhao L, Zhuang X, Luan F. Electrochemiluminescence Aptasensor Based on Gd(OH) 3 Nanocrystalline for Ochratoxin A Detection in Food Samples. BIOSENSORS 2022; 12:1141. [PMID: 36551108 PMCID: PMC9775045 DOI: 10.3390/bios12121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In the present study, the electrochemiluminescence (ECL) properties of Gd(OH)3 nanocrystals with K2S2O8 as the cathode coreactant were studied for the first time. Based on the prominent ECL behavior of this material and the excellent specificity of the aptamer technique, an ECL aptasensor for the detection of ochratoxin A (OTA) was formulated successfully. Over an OTA concentration range of 0.01 pg mL-1 to 10 ng mL-1, the change in the ECL signal was highly linear with the OTA concentration, and the limit of detection (LOD) was 0.0027 pg mL-1. Finally, the ECL aptasensor was further used to detect OTA in real samples (grapes and corn) and satisfactory results were obtained, which indicated that the built method is expected to be applied in food detection.
Collapse
|
11
|
Feng B, Suo Z, Wei M, Liu Y, Jin H. A novel electrochemical aptasensor based on rolling circle amplification-driven Ag+-DNAzyme amplification for ochratoxin A detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Xiao Y, Zhang X, Ma L, Fang H, Yang H, Zhou Y. Fluorescence and absorbance dual-mode immunoassay for detecting Ochratoxin A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121440. [PMID: 35660151 DOI: 10.1016/j.saa.2022.121440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In this work, a simple dual-mode immunoassay for detecting Ochratoxin A (OTA) was developed by mixing G-quadruplex/N-methylmesoporphyrin IX (G4/NMM) and 3,3',5,5'-tetramethylbenzidine (TMB). The fluorescence of G4/NMM can be quenched by oxidized TMB (oxTMB) because the absorbance of oxTMB overlapped with the fluorescence emission of G4/NMM. In the absence of OTA, large amounts of oxTMB were formed with blue color and the fluorescence of G4/NMM was quenched. In the presence of OTA, the concentration of oxTMB was decreased, therefore the fluorescence of G4/NMM increased. The linear range of fluorescence immunoassay was 0.195-25 ng/mL, and the linear range of the absorbance immunoassay was 0.049-1.563 ng/mL. Thus, the linear range of this dual-mode immunoassay can be expanded to 0.049-25 ng/mL. Meanwhile, the new method showed good selectivity for OTA. Besides, the satisfactory recovery rates implied the new method had a potential value for practical sample detection.
Collapse
Affiliation(s)
- Yao Xiao
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Xingping Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Liyuan Ma
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Huajuan Fang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; College of Animal Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| |
Collapse
|
13
|
Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection. Food Chem 2022; 390:133105. [DOI: 10.1016/j.foodchem.2022.133105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
|
14
|
Dkhar DS, Kumari R, Mahapatra S, Divya, Kumar R, Tripathi T, Chandra P. Antibody-receptor bioengineering and its implications in designing bioelectronic devices. Int J Biol Macromol 2022; 218:225-242. [PMID: 35870626 DOI: 10.1016/j.ijbiomac.2022.07.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Antibodies play a crucial role in the defense mechanism countering pathogens or foreign antigens in eukaryotes. Its potential as an analytical and diagnostic tool has been exploited for over a century. It forms immunocomplexes with a specific antigen, which is the basis of immunoassays and aids in developing potent biosensors. Antibody-based sensors allow for the quick and accurate detection of various analytes. Though classical antibodies have prolonged been used as bioreceptors in biosensors fabrication due to their increased fragility, they have been engineered into more stable fragments with increased exposure of their antigen-binding sites in the recent era. In biosensing, the formats constructed by antibody engineering can enhance the signal since the resistance offered by a conventional antibody is much more than these fragments. Hence, signal amplification can be observed when antibody fragments are utilized as bioreceptors instead of full-length antibodies. We present the first systematic review on engineered antibodies as bioreceptors with the description of their engineering methods. The detection of various target analytes, including small molecules, macromolecules, and cells using antibody-based biosensors, has been discussed. A comparison of the classical polyclonal, monoclonal, and engineered antibodies as bioreceptors to construct highly accurate, sensitive, and specific sensors is also discussed.
Collapse
Affiliation(s)
- Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rahul Kumar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India.
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
15
|
Luo YS, Chen Z, Hsieh NH, Lin TE. Chemical and biological assessments of environmental mixtures: A review of current trends, advances, and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128658. [PMID: 35290896 DOI: 10.1016/j.jhazmat.2022.128658] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
Considering the chemical complexity and toxicity data gaps of environmental mixtures, most studies evaluate the chemical risk individually. However, humans are usually exposed to a cocktail of chemicals in real life. Mixture health assessment remains to be a research area having significant knowledge gaps. Characterization of chemical composition and bioactivity/toxicity are the two critical aspects of mixture health assessments. This review seeks to introduce the recent progress and tools for the chemical and biological characterization of environmental mixtures. The state-of-the-art techniques include the sampling, extraction, rapid detection methods, and the in vitro, in vivo, and in silico approaches to generate the toxicity data of an environmental mixture. Application of these novel methods, or new approach methodologies (NAMs), has increased the throughput of generating chemical and toxicity data for mixtures and thus refined the mixture health assessment. Combined with computational methods, the chemical and biological information would shed light on identifying the bioactive/toxic components in an environmental mixture.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nan-Hung Hsieh
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
16
|
A label-free electrochemical immunosensor based on AuNPs/GO-PEI-Ag-Nf for olaquindox detection in feedstuffs. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Chen R, Mao Z, Lu R, Wang Z, Hou Y, Zhu W, Li S, Ren S, Han D, Liang J, Gao Z. Simple and programmed three-dimensional DNA tweezer for simultaneous one-step detection of ochratoxin A and zearalenone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120991. [PMID: 35182923 DOI: 10.1016/j.saa.2022.120991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional (TD) deoxyribonucleic acid (DNA) tweezers were programmed for one-step identification and detection of ochratoxin A (OTA) and zearalenone (ZEN). The unfolding of the TD-DNA tweezers by aptamers specific to these two mycotoxins "turned" the fluorescent signals "on." The bonding of the aptamers to their corresponding targets in OTA and ZEN "turned" the fluorescent signals and the DNA tweezers "off." The detection limit of the TD-DNA tweezers for OTA and ZEN was 0.032 and 0.037 ng mL-1, respectively. The feasibility of this method was tested using two samples. Detection via this method increased the recovery of OTA and ZEN from 95.8% to 110.2%. Spike recovery and certified food products were used to detect applicability in actual situations. Analyte detection in complex samples using TD-DNA tweezers is rapid, as the process involves a single operational step. This proposed design has considerable potential for application in mycotoxin detection.
Collapse
Affiliation(s)
- Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zefeng Mao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ran Lu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhiguang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Hou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenyan Zhu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
18
|
Hou Y, Long N, Jia B, Liao X, Yang M, Fu L, Zhou L, Sheng P, Kong W. Development of a label-free electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Hao W, Ge Y, Qu M, Wen Y, Liang H, Li M, Chen C, Xu L. A simple rapid portable immunoassay of trace zearalenone in feed ingredients and agricultural food. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Villalonga A, Sánchez A, Mayol B, Reviejo J, Villalonga R. Electrochemical biosensors for food bioprocess monitoring. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Jia M, Jia B, Liao X, Shi L, Zhang Z, Liu M, Zhou L, Li D, Kong W. A CdSe@CdS quantum dots based electrochemiluminescence aptasensor for sensitive detection of ochratoxin A. CHEMOSPHERE 2022; 287:131994. [PMID: 34478969 DOI: 10.1016/j.chemosphere.2021.131994] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/22/2021] [Accepted: 08/22/2021] [Indexed: 05/12/2023]
Abstract
In this work, a CdSe@CdS quantum dots (QDs) based label-free electrochemiluminescence (ECL) aptasensor was developed for the specific and sensitive detection of ochratoxin A (OTA). Chitosan (CHI) could immobilize abundant QDs on the surface of an Au electrode as the luminescent nanomaterials. Glutaraldehyde was used as the crosslinking agent for coupling a large number of OTA aptamers. Thanks to the excellent stability, good biocompatibility, and strong ECL intensity of CdSe@CdS QDs, as well as the quick reactions of the generated SO4•- in the electrolyte, strong ECL signals were measured. Because of the specific recognition of aptamer toward OTA, the reduced ECL signals caused by OTA in the samples were recorded for quantify the content of OTA. After optimizing a series of crucial conditions, the ECL aptasensor displayed superior sensitivity for OTA with a detection limit of 0.89 ng/mL and a wide linear concentration range of 1-100 ng/mL. The practicability and viability were verified through the rapid and facile analysis of OTA in real Lily and Rhubarb samples with recovery rates (n = 3) of 98.1-105.6% and 97.3-101.5%, respectively. The newly-developed QDs-based ECL aptasensor provided a new universal analytical tool for more mycotoxins in safety assessment of foods and feeds, environmental monitoring, and clinical diagnostics.
Collapse
Affiliation(s)
- Mingxuan Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou, 121001, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Miao Liu
- Pharmacy College, Jinzhou Medical University, Jinzhou, 121001, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Donghui Li
- Pharmacy College, Jinzhou Medical University, Jinzhou, 121001, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
22
|
Sánchez-Bodón J, Andrade del Olmo J, Alonso JM, Moreno-Benítez I, Vilas-Vilela JL, Pérez-Álvarez L. Bioactive Coatings on Titanium: A Review on Hydroxylation, Self-Assembled Monolayers (SAMs) and Surface Modification Strategies. Polymers (Basel) 2021; 14:165. [PMID: 35012187 PMCID: PMC8747097 DOI: 10.3390/polym14010165] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Titanium (Ti) and its alloys have been demonstrated over the last decades to play an important role as inert materials in the field of orthopedic and dental implants. Nevertheless, with the widespread use of Ti, implant-associated rejection issues have arisen. To overcome these problems, antibacterial properties, fast and adequate osseointegration and long-term stability are essential features. Indeed, surface modification is currently presented as a versatile strategy for developing Ti coatings with all these challenging requirements and achieve a successful performance of the implant. Numerous approaches have been investigated to obtain stable and well-organized Ti coatings that promote the tailoring of surface chemical functionalization regardless of the geometry and shape of the implant. However, among all the approaches available in the literature to functionalize the Ti surface, a promising strategy is the combination of surface pre-activation treatments typically followed by the development of intermediate anchoring layers (self-assembled monolayers, SAMs) that serve as the supporting linkage of a final active layer. Therefore, this paper aims to review the latest approaches in the biomedical area to obtain bioactive coatings onto Ti surfaces with a special focus on (i) the most employed methods for Ti surface hydroxylation, (ii) SAMs-mediated active coatings development, and (iii) the latest advances in active agent immobilization and polymeric coatings for controlled release on Ti surfaces.
Collapse
Affiliation(s)
- Julia Sánchez-Bodón
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
| | - Jon Andrade del Olmo
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- i+Med S. Coop, Parque Tecnológico de Alava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain;
| | - Jose María Alonso
- i+Med S. Coop, Parque Tecnológico de Alava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain;
| | - Isabel Moreno-Benítez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leyre Pérez-Álvarez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
23
|
Wang Y, Ma D, Zhang G, Wang X, Zhou J, Chen Y, You X, Liang C, Qi Y, Li Y, Wang A. An Electrochemical Immunosensor Based on SPA and rGO-PEI-Ag-Nf for the Detection of Arsanilic Acid. Molecules 2021; 27:molecules27010172. [PMID: 35011402 PMCID: PMC8746453 DOI: 10.3390/molecules27010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
A sensitive electrochemical immunosensor was prepared for rapid detection of ASA based on arsanilic acid (ASA) monoclonal antibody with high affinity. In the preparation of nanomaterials, polyethyleneimine (PEI) improved the stability of the solution and acted as a reducing agent to generate reduced graphene oxide (rGO) with relatively strong conductivity, thereby promoting the transfer of electrons. The dual conductivity of rGO and silver nanoparticles (AgNPs) improved the sensitivity of the sensor. The synthesis of nanomaterials were confirmed by UV-Vis spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy. In the optimal experiment conditions, the sensor could achieve the detection range of 0.50–500 ng mL−1 and the limit of detection (LOD) of 0.38 ng mL−1 (S/N = 3). Moreover, the sensor exhibited excellent specificity and acceptable stability, suggesting that the proposed sensor possessed a good potential in ASA detection. Thus, the as-prepared biosensor may be a potential way for detecting other antibiotics in meat and animal-derived foods.
Collapse
Affiliation(s)
- Yanwei Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Dongdong Ma
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Gaiping Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Xuannian Wang
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang 453003, China;
| | - Jingming Zhou
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yumei Chen
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Xiaojuan You
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Chao Liang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yanhua Qi
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yuya Li
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Aiping Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
- Correspondence:
| |
Collapse
|
24
|
Feng K, Li T, Ye C, Gao X, Yang T, Liang X, Yue X, Ding S, Dong Q, Yang M, Xiong C, Huang G, Zhang J. A label-free electrochemical immunosensor for rapid detection of salmonella in milk by using CoFe-MOFs-graphene modified electrode. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Li L, Liu X, He S, Cao H, Su B, Huang T, Chen Q, Liu M, Yang DP. Electrochemiluminescence Immunosensor Based on Nanobody and Au/CaCO 3 Synthesized Using Waste Eggshells for Ultrasensitive Detection of Ochratoxin A. ACS OMEGA 2021; 6:30148-30156. [PMID: 34778686 PMCID: PMC8582264 DOI: 10.1021/acsomega.1c05213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
A novel ultrasensitive electrochemiluminescence (ECL) immunoassay based on Au/CaCO3 was proposed for detecting ochratoxin A (OTA) in coffee. Au/CaCO3 nanocomposites synthesized using waste eggshells as the template with a large surface area and excellent electrochemical properties were applied for immobilizing a large amount of Ru(bpy)3 2+ and conjugating a high-affinity nanobody (prepared by the phage display technique). Coupling of the Au/CaCO3 nanocomposites and nanobody technologies provided an ultrasensitive and highly selective ECL immunosensor for OTA detection in the range of 10 pg/mL-100 ng/mL with a low detection limit of 5.7 pg/mL. Moreover, the as-prepared ECL immunosensor showed excellent performance and high stability. Finally, the proposed ECL sensor was applied to analyze OTA in coffee samples, confirming the desirable accuracy and practical applicability potential. Overall, this work presents a new nanomaterial for fabricating the sensing interface of immunosensors by harnessing natural waste as the source and a method for detecting toxic OTA in foods.
Collapse
Affiliation(s)
- Linzhi Li
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Xing Liu
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Saijun He
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Hongmei Cao
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Benchao Su
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Tianzeng Huang
- College
of Chemistry and Engineering Technology, Hainan University, 58
Renmin Avenue, Haikou 570228, China
| | - Qi Chen
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Minghuan Liu
- College
of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian Province 362000, China
| | - Da-Peng Yang
- College
of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian Province 362000, China
- School
of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| |
Collapse
|
26
|
Hou Y, Jia B, Sheng P, Liao X, Shi L, Fang L, Zhou L, Kong W. Aptasensors for mycotoxins in foods: Recent advances and future trends. Compr Rev Food Sci Food Saf 2021; 21:2032-2073. [PMID: 34729895 DOI: 10.1111/1541-4337.12858] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/19/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023]
Abstract
Mycotoxin contamination in foods has posed serious threat to public health and raised worldwide concern. The development of simple, rapid, facile, and cost-effective methods for mycotoxin detection is of urgent need. Aptamer-based sensors, abbreviated as aptasensors, with excellent recognition capacity to a wide variety of mycotoxins have attracted ever-increasing interest of researchers because of their simple fabrication, rapid response, high sensitivity, low cost, and easy adaptability for in situ measurement. The past few decades have witnessed the rapid advances of aptasensors for mycotoxin detection in foods. Therefore, this review first summarizes the reported aptamer sequences specific for mycotoxins. Then, the recent 5-year advancements in various newly developed aptasensors, which, according to the signal output mode, are divided into electrochemical, optical and photoelectrochemical categories, for mycotoxin detection are comprehensively discussed. A special attention is taken on their strengths and limitations in real-world application. Finally, the current challenges and future perspectives for developing novel highly reliable aptasensors for mycotoxin detection are highlighted, which is expected to provide powerful references for their thorough research and extended applications. Owing to their unique advantages, aptasensors display a fascinating prospect in food field for safety inspection and risk assessment.
Collapse
Affiliation(s)
- Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.,Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Sheng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Fang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Pal A, Biswas S, O Kare SP, Biswas P, Jana SK, Das S, Chaudhury K. Development of an impedimetric immunosensor for machine learning-based detection of endometriosis: A proof of concept. SENSORS AND ACTUATORS B: CHEMICAL 2021; 346:130460. [DOI: 10.1016/j.snb.2021.130460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
28
|
Li R, Wen Y, Wang F, He P. Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. J Anim Sci Biotechnol 2021; 12:108. [PMID: 34629116 PMCID: PMC8504128 DOI: 10.1186/s40104-021-00629-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Many mycotoxin species are highly toxic and are frequently found in cereals and feedstuffs. So, powerful detection methods are vital and effective ways to prevent feed contamination. Traditional detection methods can no longer meet the needs of massive, real-time, simple, and fast mycotoxin monitoring. Rapid detection methods based on advanced material and sensor technology are the future trend. In this review, we highlight recent progress of mycotoxin rapid detection strategies in feedstuffs and foods, especially for simultaneous multiplex mycotoxin determination. Immunoassays, biosensors, and the prominent roles of nanomaterials are introduced. The principles of different types of recognition and signal transduction are explained, and the merits and pitfalls of these methods are compared. Furthermore, limitations and challenges of existing rapid sensing strategies and perspectives of future research are discussed.
Collapse
Affiliation(s)
- Runxian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
29
|
Huang H, Wang D, Zhou Y, Wu D, Liao X, Xiong W, Du J, Hong Y. Multiwalled carbon nanotubes modified two dimensional MXene with high antifouling property for sensitive detection of ochratoxin A. NANOTECHNOLOGY 2021; 32:455501. [PMID: 34343976 DOI: 10.1088/1361-6528/ac1a42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/03/2021] [Indexed: 05/27/2023]
Abstract
Electrochemical sensor has great potential in the detection of small molecules by virtues of low cost, fast response, and easy to miniaturization. However, electrochemical sensing of ochratoxin A (OTA) was seriously hindered by the heavy electrode-fouling effect and poor electrochemical activity inherent from OTA molecular. Herein, two-dimensional titanium carbide (2D Ti3C2) MXene incorporated with carboxylic multiwalled carbon nanotubes (cMWCNTs) was developed as a glassy carbon electrode modifier for rapid and sensitive detection of OTA. Physical characterizations combined with electrochemical techniques revealed that cMWCNTs can not only prevent the restacking of 2D Ti3C2nanosheets but also facile its electron transfer, leading to a nanohybrid with a high specific surface and good electrocatalytic activity to OTA. Under optimal conditions, the electrochemical sensor showed a good linear response to OTA in a concentration range from 0.09 to 10μmol·l-1and a low detection limit (LOD) of 0.028μmol·l-1. The proposed sensor was impelled successive times to detect OTA, a good repeatability was obtained, indicating the constructed sensor possessed good anti-fouling property. Moreover, satisfactory recoveries between 91.8% and 103.2% were obtained in the real sample analysis of grape and beer, showing that the developed sensing technique is reliable for the screening of trace OTA in food resources.
Collapse
Affiliation(s)
- Hao Huang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
- Research Center of Mycotoxin in Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Dan Wang
- Research Center of Mycotoxin in Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Ying Zhou
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
- Research Center of Mycotoxin in Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Dongping Wu
- Research Center of Mycotoxin in Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Xiaoning Liao
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
- Research Center of Mycotoxin in Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Wanming Xiong
- Research Center of Mycotoxin in Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Juan Du
- Research Center of Mycotoxin in Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Yanping Hong
- Research Center of Mycotoxin in Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| |
Collapse
|
30
|
Wang H, Wang L, Xiu Y, Zhang S, Wang S, Niu X. Penicillin biosensor based on rhombus-shaped porous carbon/hematoxylin/penicillinase. J Food Sci 2021; 86:3505-3516. [PMID: 34287896 DOI: 10.1111/1750-3841.15841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
In this experiment, we designed an electrochemical sensor using penicillinase (Pen X)-rhombus porous carbon (RPC) as the detection element and hematoxylin as the indicator to detect low concentrations of penicillin sodium (Pen G). A differential pulse voltammetry (DPV) method was used to detect Pen G in the concentration range of 10-8 -10-5 mg·mL-1 under optimal experimental conditions. The results showed that the peak current value and the logarithm of Pen G concentration showed a good linear relationship (R2 = 0.9915), and the LOD was 2.68 × 10-7 mg·mL-1 (S/N = 3). The actual milk samples were detected by the addition method and compared with the high-performance liquid phase method; no significant difference was found in the detection results. The working electrode prepared by cross-linking method not only extends the service life of the sensor, but also improves the sensitivity and reproducibility of the sensor. It can also be used to detect the Pen G residue in the actual milk samples repeatedly. PRACTICAL APPLICATION: In this study, an electrochemical sensor for the rapid detection of penicillin sodium in milk was prepared, which has good sensitivity and fast detection speed.
Collapse
Affiliation(s)
- Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Li Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Yi Xiu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Shaoqi Zhang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People's Republic of China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
31
|
You X, Zhang G, Chen Y, Liu D, Ma D, Zhou J, Liu Y, Liu H, Qi Y, Liang C, Ding P, Zhu X, Zhang C, Wang A. A novel electrochemical immunosensor for the sensitive detection of tiamulin based on staphylococcal protein A and silver nanoparticle-graphene oxide nanocomposites. Bioelectrochemistry 2021; 141:107877. [PMID: 34171508 DOI: 10.1016/j.bioelechem.2021.107877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Tiamulin (TML) is a pleuromutilin antibiotic and mainly used to treat pulmonary and gastrointestinal infections. However, excessive use of TML can bring health threats to consumers. In this work, a label-free electrochemical immunosensor was proposed for sensitive detection of TML in pork and pork liver. Silver nanoparticles (AgNPs) were synthesized in situ on graphene oxide (GO), in which GO acted as a carrier for loading more AgNPs and AgNPs exhibited both strong conductivity and good redox property. In addition, staphylococcal protein A (SPA) was applied to oriented immobilization of fragment crystallizable (Fc) region of the TML monoclonal antibody. Under the optimal condition, the developed electrochemical immunosensor exhibited a good linear response with a concentration of TML ranging from 0.05 ng mL-1 to 100 ng mL-1 and the limit of detection (LOD) was 0.04 ng mL-1. Furthermore, the designed immunosensor was applied to detect TML in real samples with a good accuracy. Therefore, the label-free electrochemical immunosensor could be used as a potential method to detect TML and other antibiotic residues in animal derived foods.
Collapse
Affiliation(s)
- Xiaojuan You
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Dan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongdong Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China.
| |
Collapse
|
32
|
Wei M, Yue S, Liu Y. An amplified electrochemical aptasensor for ochratoxin A based on DNAzyme-mediated DNA walker. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Curulli A. Electrochemical Biosensors in Food Safety: Challenges and Perspectives. Molecules 2021; 26:2940. [PMID: 34063344 PMCID: PMC8156954 DOI: 10.3390/molecules26102940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
34
|
|
35
|
Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food Chem Toxicol 2021; 149:112030. [DOI: 10.1016/j.fct.2021.112030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/22/2022]
|
36
|
Tittlemier S, Brunkhorst J, Cramer B, DeRosa M, Lattanzio V, Malone R, Maragos C, Stranska M, Sumarah M. Developments in mycotoxin analysis: an update for 2019-2020. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises developments on the analysis of various matrices for mycotoxins published in the period from mid-2019 to mid-2020. Notable developments in all aspects of mycotoxin analysis, from sampling and quality assurance/quality control of analytical results, to the various detection and quantitation technologies ranging from single mycotoxin biosensors to comprehensive instrumental methods are presented and discussed. Aside from sampling and quality control, discussion of this past year’s developments is organised by detection and quantitation technology and covers chromatography with targeted or non-targeted high resolution mass spectrometry, tandem mass spectrometry, detection other than mass spectrometry, biosensors, as well as assays that use alternatives to antibodies. This critical review aims to briefly present the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg, MB, R3C 3G8, Canada
| | - J. Brunkhorst
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - B. Cramer
- University of Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - M.C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - R. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- United States Department of Agriculture, ARS National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - M. Stranska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - M.W. Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| |
Collapse
|
37
|
Jia XX, Li S, Han DP, Chen RP, Yao ZY, Ning BA, Gao ZX, Fan ZC. Development and perspectives of rapid detection technology in food and environment. Crit Rev Food Sci Nutr 2021; 62:4706-4725. [PMID: 33523717 DOI: 10.1080/10408398.2021.1878101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Food safety become a hot issue currently with globalization of food trade and food supply chains. Chemical pollution, microbial contamination and adulteration in food have attracted more attention worldwide. Contamination with antibiotics, estrogens and heavy metals in water environment and soil environment have also turn into an enormous threat to food safety. Traditional small-scale, long-term detection technologies have been unable to meet the current needs. In the monitoring process, rapid, convenient, accurate analysis and detection technologies have become the future development trend. We critically synthesizing the current knowledge of various rapid detection technology, and briefly touched upon the problem which still exist in research process. The review showed that the application of novel materials promotes the development of rapid detection technology, high-throughput and portability would be popular study directions in the future. Of course, the ultimate aim of the research is how to industrialization these technologies and apply to the market.
Collapse
Affiliation(s)
- Xue-Xia Jia
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China.,State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Shuang Li
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Dian-Peng Han
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Rui-Peng Chen
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Bao-An Ning
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| |
Collapse
|
38
|
Zhao L. Horseradish Peroxidase Labelled-Sandwich Electrochemical Sensor Based on Ionic Liquid-Gold Nanoparticles for Lactobacillus brevis. MICROMACHINES 2021; 12:75. [PMID: 33445448 PMCID: PMC7827081 DOI: 10.3390/mi12010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Lactobacillus brevis is the most common bacteria that causes beer spoilage. In this work, a novel electrochemical immunosensor was fabricated for ultra-sensitive determination of L. brevis. Gold nanoparticles (AuNPs) were firstly electro-deposited on the electrode surface for enhancing the electro-conductivity and specific surface area. Ionic liquid was used for improving the immobilization performance of the immunosensor. After optimization, a linear regression equation can be observed between the ∆current and concentration of L. brevis from 104 CFU/mL to 109 CFU/mL. The limit of detection can be estimated to be 103 CFU/mL.
Collapse
Affiliation(s)
- Le Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
39
|
Broad-spectrum electrochemical immunosensor based on one-step electrodeposition of AuNP-Abs and Prussian blue nanocomposite for organophosphorus pesticide detection. Bioprocess Biosyst Eng 2020; 44:585-594. [PMID: 33161490 DOI: 10.1007/s00449-020-02472-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022]
Abstract
Broad-spectrum antibodies can effectively recognize substances with similar structures and have broad application prospects in field rapid detection. In this study, broad-spectrum antibodies (Abs) against organophosphorus pesticides (OPs) were used as sensitive recognition elements, which could effectively recognize most OPs. Gold nanoparticles (AuNPs) have good biocompatibility. It combined with Abs to form a gold-labeled probe (AuNPs-Abs), which enhances the effective binding of antibodies to nanomaterials. Prussian blue (PB) was added to electrodeposition solution to enhance the conductivity, resulting in superior electrochemical performance. The AuNP-Abs-PB composite film was prepared by electrodeposition on the electrode surface to improve the anti-interference ability and stability of the immunosensor. Under the optimal experimental conditions, the immunosensor had a wide detection range (IC20-IC80: 1.82 × 10-3-3.29 × 104 ng/mL) and high sensitivity. Most importantly, it was simple to be prepared and could be used to detect multiple OPs.
Collapse
|
40
|
Hitabatuma A, Pang YH, Yu LH, Shen XF. A competitive fluorescence assay based on free-complementary DNA for ochratoxin A detection. Food Chem 2020; 342:128303. [PMID: 33158674 DOI: 10.1016/j.foodchem.2020.128303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 01/16/2023]
Abstract
An ultrasensitive, rapid, and specific method for Ochratoxin A (OTA) detection was designed using complementary sequence to aptamer as a target of molecular beacon (MB). The designed loop structure of the MB has the same sequence as the aptamer with a complementary DNA (cDNA) which translates the level of the target into a measurable response. The presence of the target holds aptamer at the corresponding amount and the additional cDNAs are consumed by unbound aptamers which avails free cDNAs that resulting in fluorescence rising due to unfolding of MBs. Under the optimized conditions, the fluorescence intensity increased linearly with OTA concentration over the range of 10 pg mL-1-1 µg mL-1 with the detection limit of 0.247 pg mL-1. The application of this assay in wheat sample in comparison with HPLC-MS/MS method, demonstrated that the new assay could be a potential sensing platform for OTA detection.
Collapse
Affiliation(s)
- Aloys Hitabatuma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Li-Hong Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; International Joint Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
41
|
Abstract
In recent years, advances in immunosensor device fabrication have significantly expanded the use of this technology in a broad range of applications including clinical diagnosis, food analysis, quality control, environmental studies and industrial monitoring. The most important aspect in fabrication is to obtain a design that provides a low detection limit. The utilization of nanomaterials as a label, catalyst and biosensing transducer is, perhaps, the most popular approach in ultrasensitive devices. This chapter reviews recent advances in immunosensor fabrication and summarizes the most recent studies. Strategies employed to significantly improve sensitivity and specificity of immunosensor technology and the advantages and limitations thereof are explored.
Collapse
Affiliation(s)
- Muhammet Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
42
|
Fang L, Liao X, Jia B, Shi L, Kang L, Zhou L, Kong W. Recent progress in immunosensors for pesticides. Biosens Bioelectron 2020; 164:112255. [DOI: 10.1016/j.bios.2020.112255] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
|
43
|
Liao X, Jia B, Sun C, Shi L, Liu X, Zhou L, Kong W. Reuse of regenerated immunoaffinity column for excellent clean-up and low-cost detection of trace aflatoxins in malt. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Qiu W, Gao F, Yano N, Kataoka Y, Handa M, Yang W, Tanaka H, Wang Q. Specific Coordination between Zr-MOF and Phosphate-Terminated DNA Coupled with Strand Displacement for the Construction of Reusable and Ultrasensitive Aptasensor. Anal Chem 2020; 92:11332-11340. [PMID: 32678980 DOI: 10.1021/acs.analchem.0c02018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electrochemical aptasensors involved in chemical labeling are often single-use and sensitivity-limited because the probes are commonly single-point labeled and irreversible. In this work, the specific coordination between Zr4+ and phosphate group (-PO43-) was employed to construct a new aptasensor that is highly sensitive and reusable, using Ochratoxin A (OTA) as the test model. The OTA binding aptamer (OBA) was hybridized with the thiolated supporting sequence (TSS) immobilized on the surface of a gold electrode. The UiO-66 with a formula of [Zr6O4(OH)4(BDC)6], one of the class of Zr metal-organic frameworks (MOFs), was then particularly grafted on the terminal of OBA through the specific coordination between Zr4+ and 5'-PO43-, i.e., the Zr-O-P coordination bond. Similarly, as much as the 5'-PO43- and 3'-methylene blue dual-labeled sequences (DLS) were further assembled on UiO-66 due to the large surface area of MOF and rich active sites of Zr4+. Owing to the specific coordination for signal amplification, the developed aptasensor shows greatly enhanced sensitivity. A wide detection range from 0.1 fM to 2.0 μM and an ultralow detection limit of 0.079 fM (S/N = 3) for OTA were obtained. Additionally, the TSS can rehybridize with a new OBA to regenerate the aptasensor but without complicated pretreatments, enabling a aptasensor that is readily reusable for OTA detection. The aptasensor was successfully applied for OTA detection in the red wine samples, demonstrating a promising prospect for food safety monitoring.
Collapse
Affiliation(s)
- Weiwei Qiu
- Department of Chemistry and Environment Science, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.,Department of Chemistry, Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Feng Gao
- Department of Chemistry and Environment Science, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Natsumi Yano
- Department of Chemistry, Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Yusuke Kataoka
- Department of Chemistry, Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Makoto Handa
- Department of Chemistry, Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Weiqiang Yang
- Department of Chemistry and Environment Science, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Hidekazu Tanaka
- Department of Chemistry, Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Qingxiang Wang
- Department of Chemistry and Environment Science, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
45
|
Development of a ZnCdS@ZnS quantum dots–based label-free electrochemiluminescence immunosensor for sensitive determination of aflatoxin B1 in lotus seed. Mikrochim Acta 2020; 187:236. [DOI: 10.1007/s00604-020-4179-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/24/2020] [Indexed: 01/20/2023]
|