1
|
Wang Y, Xiao R, Liu S, Wang P, Zhu Y, Niu T, Chen H. The Impact of Thermal Treatment Intensity on Proteins, Fatty Acids, Macro/Micro-Nutrients, Flavor, and Heating Markers of Milk-A Comprehensive Review. Int J Mol Sci 2024; 25:8670. [PMID: 39201356 PMCID: PMC11354856 DOI: 10.3390/ijms25168670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Milk thermal treatment, such as pasteurization, high-temperature short-time processing, and the emerging ultra-short-time processing (<0.5 s), are crucial for ensuring milk safety and extending its shelf life. Milk is a nutritive food matrix with various macro/micro-nutrients and other constituents that are possibly affected by thermal treatment for reasons associated with processing strength. Therefore, understanding the relationship between heating strength and milk quality is vital for the dairy industry. This review summarizes the impact of thermal treatment strength on milk's nutritional and sensory properties, the synthesizing of the structural integrity and bioavailability of milk proteins, the profile and stability of fatty acids, the retention of macro/micro-nutrients, as well as the overall flavor profile. Additionally, it examines the formation of heat-induced markers, such as Maillard reaction products, lactulose, furosine, and alkaline phosphatase activity, which serve as indicators of heating intensity. Flavor and heating markers are commonly used to assess the quality of pasteurized milk. By examining former studies, we conclude that ultra-short-time-processing-treated milk is comparable to pasteurized milk in terms of specific parameters (such as whey protein behavior, furosine, and ALP contents). This review aims to better summarize how thermal treatments influence the milk matrix, guiding the dairy industry's development and balancing milk products' safety and nutritional value.
Collapse
Affiliation(s)
- Yi Wang
- Food Laboratory of Zhongyuan, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Ran Xiao
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Shiqi Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Yinhua Zhu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Tianjiao Niu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Han Chen
- Food Laboratory of Zhongyuan, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| |
Collapse
|
2
|
Silva Barbosa Correia B, Drud-Heydary Nielsen S, Jorkowski J, Arildsen Jakobsen LM, Zacherl C, Bertram HC. Maillard reaction products and metabolite profile of plant-based meat burgers compared with traditional meat burgers and cooking-induced alterations. Food Chem 2024; 445:138705. [PMID: 38359568 DOI: 10.1016/j.foodchem.2024.138705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
We are undergoing a food transformation with the introduction of plant-based meat analogues, but little is known about their chemical characteristics. This study aimed to elucidate the Maillard reactions in plant-based meat burger alternatives (PBMBA). For this purpose, NMR-based metabolomics and targeted MS analysis of Maillard and dehydroalanine pathway markers were conducted on six PBMBA prototypes with different proportions of high-moisture protein extrudates, low-moisture extrudates and pea protein on a commercial PBMBA and on a meat burger before and after cooking. Results revealed that higher levels of Maillard reaction markers were present in PBMBAs in the uncooked state, with lower levels formed during cooking compared with conventional meat. The metabolite profile disclosed that the distinct pattern of the Maillard reaction could be attributed to different substrate availability, but data also revealed that pre-processing of the plant protein affects the presence of Maillard reaction products in PBMBAs.
Collapse
Affiliation(s)
| | | | - Johanna Jorkowski
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, 85354 Freising, Germany
| | | | - Christian Zacherl
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, 85354 Freising, Germany
| | | |
Collapse
|
3
|
Yang L, Cai X, Li R. Ferroptosis Induced by Pollutants: An Emerging Mechanism in Environmental Toxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2166-2184. [PMID: 38275135 DOI: 10.1021/acs.est.3c06127] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Environmental pollutants have been recognized for their ability to induce various adverse outcomes in both the environment and human health, including inflammation, apoptosis, necrosis, pyroptosis, and autophagy. Understanding these biological mechanisms has played a crucial role in risk assessment and management efforts. However, the recent identification of ferroptosis as a form of programmed cell death has emerged as a critical mechanism underlying pollutant-induced toxicity. Numerous studies have demonstrated that fine particulates, heavy metals, and organic substances can trigger ferroptosis, which is closely intertwined with lipid, iron, and amino acid metabolism. Given the growing evidence linking ferroptosis to severe diseases such as heart failure, chronic obstructive pulmonary disease, liver injury, Parkinson's disease, Alzheimer's disease, and cancer, it is imperative to investigate the role of pollutant-induced ferroptosis. In this review, we comprehensively analyze various pollutant-induced ferroptosis pathways and intricate signaling molecules and elucidate their integration into the driving and braking axes. Furthermore, we discuss the potential hazards associated with pollutant-induced ferroptosis in various organs and four representative animal models. Finally, we provide an outlook on future research directions and strategies aimed at preventing pollutant-induced ferroptosis. By enhancing our understanding of this novel form of cell death and developing effective preventive measures, we can mitigate the adverse effects of environmental pollutants and safeguard human and environmental health.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
The potential meat flavoring generated from Maillard reaction products of wheat gluten protein hydrolysates-xylose: Impacts of different thermal treatment temperatures on flavor. Food Res Int 2023; 165:112512. [PMID: 36869515 DOI: 10.1016/j.foodres.2023.112512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Wheat gluten protein hydrolysates were prepared by Flavourzyme, followed by xylose-induced Maillard reaction at different temperatures (80 °C, 100 °C and 120 °C). The MRPs were subjected to analysis of physicochemical characteristics, taste profile and volatile compounds. The results demonstrated that UV absorption and fluorescence intensity of MRPs significantly increased at 120 °C, suggesting formation of a large amount of Maillard reaction intermediates. Thermal degradation and cross-linking simultaneously occurred during Maillard reaction, while thermal degradation of MRPs played a more predominant role at 120 °C. MRPs exhibited high umami and low bitter taste at 120 °C, accompanied by the high content of umami amino acids and low content of bitter amino acids. Furans and furanthiols with pronounced meaty flavor served as the main volatile compounds in MRPs at 120 °C. Overall, high temperature-induced Maillard reaction of wheat gluten protein hydrolysates and xylose is a promising strategy for the generation of potential plant-based meat flavoring.
Collapse
|
5
|
Li H, Li C, Zhang B, Jiang H. Lactoferrin suppresses the progression of colon cancer under hyperglycemia by targeting WTAP/m 6A/NT5DC3/HKDC1 axis. J Transl Med 2023; 21:156. [PMID: 36855062 PMCID: PMC9972781 DOI: 10.1186/s12967-023-03983-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Although the relationship between type 2 diabetes (T2D) and the increased risk of colorectal carcinogenesis is widely defined in clinical studies, the therapeutic methods and molecular mechanism of T2D-induced colon cancer and how does hyperglycemia affect the progression is still unknown. Here, we studied the function of lactoferrin (LF) in suppressing the progression of colon cancer in T2D mice, and uncovered the related molecular mechanisms in DNA 5mC and RNA m6A levels. METHODS We examined the effects of LF (50% iron saturation) on the migration and invasion of colon tumor cells under high concentration of glucose. Then, transcriptomics and DNA methylation profilings of colon tumor cells was co-analyzed to screen out the special gene (NT5DC3), and the expression level of NT5DC3 in 75 clinical blood samples was detected by q-PCR and western blot, to investigate whether NT5DC3 was a biomarker to distinguish T2D patients and T2D-induced colon cancer patients from healthy volunteers. Futhermore, in T2D mouse with xenografted colon tumor models, the inhibitory effects of LF and NT5DC3 protein on colon tumors were investigated. In addition, epigenetic alterations were measured to examine the 5mC/m6A modification sites of NT5DC3 regulated by LF. Utilizing siRNA fragments of eight m6A-related genes, the special gene (WTAP) regulating m6A of NT5DC was proved, and the effect of LF on WTAP/NT5DC3/HKDC1 axis was finally evaluated. RESULTS A special gene NT5DC3 was screened out through co-analysis of transcriptomics and DNA methylation profiling, and HKDC1 might be a downstream sensor of NT5DC3. Mechanistically, LF-dependent cellular DNA 5mC and RNA m6A profiling remodeling transcriptionally regulate NT5DC3 expression. WTAP plays a key role in regulating NT5DC3 m6A modification and subsequently controls NT5DC3 downstream target HKDC1 expression. Moreover, co-treatment of lactoferrin and NT5DC3 protein restrains the growth of colon tumors by altering the aberrant epigenetic markers. Strikingly, clinical blood samples analysis demonstrates NT5DC3 protein expression is required to direct the distinction of T2D or T2D-induced colon cancer with healthy humans. CONCLUSIONS Together, this study reveals that lactoferrin acts as a major factor to repress the progression of colon cancer under hyperglycemia, thus, significantly expanding the landscape of natural dietary mediated tumor suppression.
Collapse
Affiliation(s)
- Huiying Li
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Chaonan Li
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Boyang Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Hongpeng Jiang
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| |
Collapse
|
6
|
Yan H, Yu Z, Liu L. Lactose crystallization and Maillard reaction in simulated milk powder based on the change in water activity. J Food Sci 2022; 87:4956-4966. [PMID: 36163688 DOI: 10.1111/1750-3841.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022]
Abstract
Maillard reaction (MR) and lactose crystallization (LC) are important reactions in the storage of milk powder. In this study, three models with different proteins based on skimmed milk powder were established to investigate the relationship between MR and LC at different water activities (aw ). Moisture sorption isotherm, glass transition temperature (Tg ), and glycation products were evaluated, and the protein structure and lactose crystallinity were determined. The results indicated that MR product content, browning, and LC subsequently enhanced with the increase in aw . The Tg value dropped lower than 0 at aw 0.43 in whey protein isolate-lactose (WP-Lac) model and at aw 0.54 in casein-whey protein isolate-lactose (CN-WP-Lac) model and casein-lactose (CN-Lac) model. The crystallinity of α-lactose monohydrate and anhydrous β-lactose in WP-Lac model was more significant than CN-WP-Lac and CN-Lac models (p < 0.05). The molecular band of whey protein gradually blurred in the Sodium dodecyl-sulfate polyacrylamide gel electrophoresis image, and the content of α-helix of WP-Lac model increased by 45.15% from aw 0.33 to 0.53 (p < 0.05), while that of CN-WP-Lac model increased by only 3.95% (p < 0.05). With the increase in aw , WP-Lac model formed more browning and crystallization products than CN-WP-Lac model, indicating that the presence of micelle macromolecules and the interaction between casein and whey proteins limited the browning and crystallization in CN-WP-Lac model. Practical Application Maillard reaction and lactose crystallization are important reactions in the storage of milk powder, and the result will provide theoretical guidance for the development of milk powder in the food industry.
Collapse
Affiliation(s)
- Haixia Yan
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ziyin Yu
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Fraxinellone Induces Hepatotoxicity in Zebrafish through Oxidative Stress and the Transporters Pathway. Molecules 2022; 27:molecules27092647. [PMID: 35566003 PMCID: PMC9103149 DOI: 10.3390/molecules27092647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Fraxinellone (FRA), a major active component from Cortex Dictamni, produces hepatotoxicity via the metabolization of furan rings by CYP450. However, the mechanism underlying the hepatotoxicity of FRA remains unclear. Therefore, zebrafish larvae at 72 h post fertilization were used to evaluate the metabolic hepatotoxicity of FRA and to explore the underlying molecular mechanisms. The results showed that FRA (10-30 μM) induced liver injury and obvious alterations in the metabolomics of zebrafish larvae. FRA induces apoptosis by increasing the level of ROS and activating the JNK/P53 pathway. In addition, FRA can induce cholestasis by down-regulating bile acid transporters P-gp, Bsep, and Ntcp. The addition of the CYP3A inhibitor ketoconazole (1 μM) significantly reduced the hepatotoxicity of FRA (30 μM), which indicated that FRA induced hepatotoxicity through CYP3A metabolism. Targeted metabolomics analysis indicates the changes in amino acid levels can be combined with molecular biology to clarify the mechanism of hepatotoxicity induced by FRA, and amino acid metabolism monitoring may provide a new method for the prevention and treatment of DILI from FRA.
Collapse
|
8
|
Steenbeke M, Speeckaert R, Desmedt S, Glorieux G, Delanghe JR, Speeckaert MM. The Role of Advanced Glycation End Products and Its Soluble Receptor in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23073439. [PMID: 35408796 PMCID: PMC8998875 DOI: 10.3390/ijms23073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are more prone to oxidative stress and chronic inflammation, which may lead to an increase in the synthesis of advanced glycation end products (AGEs). Because AGEs are mostly removed by healthy kidneys, AGE accumulation is a result of both increased production and decreased kidney clearance. On the other hand, AGEs may potentially hasten decreasing kidney function in CKD patients, and are independently related to all-cause mortality. They are one of the non-traditional risk factors that play a significant role in the underlying processes that lead to excessive cardiovascular disease in CKD patients. When AGEs interact with their cell-bound receptor (RAGE), cell dysfunction is initiated by activating nuclear factor kappa-B (NF-κB), increasing the production and release of inflammatory cytokines. Alterations in the AGE-RAGE system have been related to the development of several chronic kidney diseases. Soluble RAGE (sRAGE) is a decoy receptor that suppresses membrane-bound RAGE activation and AGE-RAGE-related toxicity. sRAGE, and more specifically, the AGE/sRAGE ratio, may be promising tools for predicting the prognosis of kidney diseases. In the present review, we discuss the potential role of AGEs and sRAGE as biomarkers in different kidney pathologies.
Collapse
Affiliation(s)
- Mieke Steenbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation Flanders, 1000 Brussels, Belgium
| | - Stéphanie Desmedt
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Joris R. Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Marijn M. Speeckaert
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
- Research Foundation Flanders, 1000 Brussels, Belgium
- Correspondence:
| |
Collapse
|
9
|
Juul L, Danielsen M, Nebel C, Steinhagen S, Bruhn A, Jensen S, Undeland I, Dalsgaard T. Ulva fenestrata protein – Comparison of three extraction methods with respect to protein yield and protein quality. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Baskal S, Post A, Kremer D, Bollenbach A, Bakker SJL, Tsikas D. Urinary excretion of amino acids and their advanced glycation end-products (AGEs) in adult kidney transplant recipients with emphasis on lysine: furosine excretion is associated with cardiovascular and all-cause mortality. Amino Acids 2021; 53:1679-1693. [PMID: 34693489 PMCID: PMC8592953 DOI: 10.1007/s00726-021-03091-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Arginine (Arg) and lysine (Lys) moieties of proteins undergo various post-translational modifications (PTM) including enzymatic NG- and Nε-methylation and non-enzymatic NG- and Nε-glycation. In a large cohort of stable kidney transplant recipients (KTR, n = 686), high plasma and low urinary concentrations of asymmetric dimethylarginine (ADMA), an abundant PTM metabolite of Arg, were associated with cardiovascular and all-cause mortality. Thus, the prediction of the same biomarker regarding mortality may depend on the biological sample. In another large cohort of stable KTR (n = 555), higher plasma concentrations of Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL), two advanced glycation end-products (AGEs) of Lys, were associated with higher cardiovascular mortality. Yet, the associations of urinary AGEs with mortality are unknown. In the present study, we measured 24 h urinary excretion of Lys, CML, and furosine in 630 KTR and 41 healthy kidney donors before and after donation. Our result indicate that lower urinary CML and lower furosine excretion rates are associated with higher mortality in KTR, thus resembling the associations of ADMA. Lower furosine excretion rates were also associated with higher cardiovascular mortality. The 24 h urinary excretion rate of amino acids and their metabolites decreased post-donation (varying as little as − 24% for CEL, and as much as − 62% for ADMA). For most amino acids, the excretion rate was lower in KTR than in donors pre-donation [except for S-(1-carboxyethyl)-l-cysteine (CEC) and NG-carboxyethylarginine (CEA)]. Simultaneous GC–MS measurement of free amino acids, their PTM metabolites and AGEs in urine is a non-invasive approach in kidney transplantation.
Collapse
Affiliation(s)
- Svetlana Baskal
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Adrian Post
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Alexander Bollenbach
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
11
|
Lactose Glycation of the Maillard-Type Impairs the Benefits of Caseinate Digest to the Weaned Rats for Intestinal Morphology and Serum Biochemistry. Foods 2021; 10:foods10092104. [PMID: 34574217 PMCID: PMC8468520 DOI: 10.3390/foods10092104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The Maillard reaction between the lactose and milk proteins unavoidably occurs during the thermal treatment of milk. Although the impact of this reaction on protein nutrition and safety has been well-studied, whether a lactose glycation of milk proteins of the Maillard-type might affect the rats in their growth and intestinal morphology needs an investigation. In this study, caseinate and lactose-glycated caseinate were digested using pepsin and trypsin. Afterward, the resultant caseinate digest and glycated caseinate digest (lactose content of 13.5 g/kg of protein) at 100, 200, and 400 mg/kg body weight (BW)/d were assessed for their effects on the female weaned Wistar rats in terms of daily body weight gain, intestinal morphology, digestive and brush-border enzyme activities, as well as serum chemical indices. The results showed that glycated caseinate digest always showed a weaker effect on rat than caseinate digest either at the 0-7 or 0-28 d feeding stage, and more importantly, at the highest dose of 400 mg/kg BW/d, it caused obvious adverse effect on the rats, reflected by lower values of these indices. Compared with caseinate digest, glycated caseinate digest in the rats caused 0.9-15.4% and 10.6-49.7% decreases in average daily gain of BW and small intestinal length, 1.1-21.5% and 2.3-33.3% decreases in villus height and the ratio of villus height to crypt depth of the small intestine, or 0.3-57.6% and 0.2-55.7% decreases in digestive and critical brush-border enzyme activities, respectively. In addition, when the rats were fed with glycated caseinate digest, some serum indices related to oxidative stress status were enhanced dose-dependently. Lactose glycation of the Maillard-type is thus considered as a negative event of the Maillard reaction on milk proteins because this reaction might impair protein benefits to the body.
Collapse
|
12
|
Ajoolabady A, Aslkhodapasandhokmabad H, Libby P, Tuomilehto J, Lip GYH, Penninger JM, Richardson DR, Tang D, Zhou H, Wang S, Klionsky DJ, Kroemer G, Ren J. Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol Metab 2021; 32:444-462. [PMID: 34006412 DOI: 10.1016/j.tem.2021.04.010] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland; Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gregory Y H Lip
- University of Liverpool Institute of Ageing and Chronic Disease, Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hao Zhou
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Shuyi Wang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; School of Medicine Shanghai University, Shanghai 200444, China.
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Wang H, Cheng Y, Mao C, Liu S, Xiao D, Huang J, Tao Y. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther 2021; 29:2185-2208. [PMID: 33794363 DOI: 10.1016/j.ymthe.2021.03.022] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Ferroptosis is an iron- and lipid reactive oxygen species (ROS)-dependent form of programmed cell death that is distinct from other forms of regulatory cell death at the morphological, biological, and genetic levels. Emerging evidence suggests critical roles for ferroptosis in cell metabolism, the redox status, and various diseases, such as cancers, nervous system diseases, and ischemia-reperfusion injury, with ferroptosis-related proteins. Ferroptosis is inhibited in diverse cancer types and functions as a dynamic tumor suppressor in cancer development, indicating that the regulation of ferroptosis can be utilized as an interventional target for tumor treatment. Small molecules and nanomaterials that reprogram cancer cells to undergo ferroptosis are considered effective drugs for cancer therapy. Here, we systematically summarize the molecular basis of ferroptosis, the suppressive effect of ferroptosis on tumors, the effect of ferroptosis on cellular metabolism and the tumor microenvironment (TME), and ferroptosis-inducing agents for tumor therapeutics. An understanding of the latest progress in ferroptosis could provide references for proposing new potential targets for the treatment of cancers.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
14
|
Li Y, Quan W, Jia X, He Z, Wang Z, Zeng M, Chen J. Profiles of initial, intermediate, and advanced stages of harmful Maillard reaction products in whole-milk powders pre-treated with different heat loads during 18 months of storage. Food Chem 2021; 351:129361. [PMID: 33662905 DOI: 10.1016/j.foodchem.2021.129361] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/02/2023]
Abstract
This study evaluated the chemical changes in five types of whole-milk powders (WMP) with different heating loads during storage. The WMP was preheated using low-heat [low-temperature long-time (LTLT), high-temperature short-time pasteurization (HTST)] and high-heat process [ultra-pasteurization (ESL), ultra-high-temperature (UHT) treatments, and in-bottle sterilization (BS)]. Furosine increased by 2.5-3.0 times in high-heat WMP and 5.7-8.4 times in low-heat WMP during storage. 5-(hydroxymethyl)furfural (HMF) content in high-heat WMP was on average 1.4- to 2.4-fold higher than in low-heat WMP during storage. The increases in the amount of Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) in high-heat WMP were more than that in low-heat WMP (CML, 3.4-4.9 vs 3.1-3.4 times; CEL, 3.4-4.2 vs 2.7-3.0 times). Pyrraline in high-heat WMP increased by 1.8- to 2.1-fold. 2-Furaldehyde, CML, and CEL increased slowly with 12 months of storage and then accelerated. Storage time significantly contributed to more furosine, HMF, CML, and CEL contents in high-heat WMP.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaodi Jia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, Zhang J, Liu S, Li R. Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. NANOSCALE 2021; 13:2266-2285. [PMID: 33480938 DOI: 10.1039/d0nr08478f] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although ferroptosis is an iron-dependent cell death mechanism involved in the development of some severe diseases (e.g., Parkinsonian syndrome, stroke and tumours), the combination of nanotechnology with ferroptosis for the treatment of these diseases has attracted substantial research interest. However, it is challenging to differentiate nanoparticle-induced ferroptosis from other types of cell deaths (e.g., apoptosis, pyroptosis, and necrosis), elucidate the detailed mechanisms and identify the key property of nanoparticles responsible for ferroptotic cell deaths. Therefore, a summary of these aspects from current research on nano-ferroptosis is important and timely. In this review, we endeavour to summarize some convincing techniques that can be employed to specifically examine ferroptotic cell deaths. Then, we discuss the molecular initiating events of nanosized ferroptosis inducers and the cascade signals in cells, and therefore elaborate the ferroptosis mechanisms. Besides, the key physicochemical properties of nano-inducers are also discussed to acquire a fundamental understanding of nano-structure-activity relationships (nano-SARs) involved in ferroptosis, which may facilitate the design of nanomaterials to deliberately tune ferroptosis. Finally, future perspectives on the fundamental understanding of nanoparticle-induced ferroptosis and its applications are provided.
Collapse
Affiliation(s)
- Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Xiaoming Cai
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
16
|
Abstract
The Maillard reaction is of great significance in food, herb medicines, and life processes. It is usually occurring during the process of food and herb medicines processing and storage. The formed Maillard reaction productions (MRPs) in food and herb medicines not only generate a large number of efficacy components but also generate a small amount of harmful substance that cannot be ignored. Some of the MRPs, especially the advanced glycation end products (AGEs) are concerning humans, based on the possibility to induce cancer and mutations in laboratory animals. Numerous studies have been reported on the formation, analysis, and control of the potentially harmful MRPs (PHMRPs). Therefore, the investigation into the formation, analysis, and control of PHMRPs in food and herb medicines is very important for improving the quality and safety of food and herb medicines. This article provides a brief review of the formation, analysis (major content), and control of PHMRPs in food and herb medicines, which will provide a base and reference for safe processing and storage of food and herb medicines. Practical Applications. The formed Maillard reaction productions in food and herb medicines not only generate a large number of functional components but also generate a small amount of harmful substance that cannot be ignored. This contribution provides a brief review on the formation (including the correlative studies between MRs and the PHMRPs, mechanisms, and the main pathways); analysis (major content, pretreatment for analysis, qualitative and quantitative analysis, and structural identification analysis); and control (strategies and mechanisms) of PHMRPs in food and herb medicines, which will provide a solid theoretical foundation and a valuable reference for safe processing and storage for food and herb medicines.
Collapse
|
17
|
Shi J, Fu Y, Zhao XH, Lametsch R. Glycation sites and bioactivity of lactose-glycated caseinate hydrolysate in lipopolysaccharide-injured IEC-6 cells. J Dairy Sci 2020; 104:1351-1363. [PMID: 33309364 DOI: 10.3168/jds.2020-19018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/25/2020] [Indexed: 01/13/2023]
Abstract
During the thermal processing of milk, Maillard reactions occur between proteins and lactose to generate glycated proteins. In this study, a lactose-glycated caseinate was hydrolyzed by trypsin. The obtained glycated caseinate (GCN) hydrolysate had a lactose content of 10.8 g/kg of protein. We identified its glycation sites and then assessed it for its protective effect against lipopolysaccharide-induced barrier injury using a rat intestinal epithelial cell line (IEC-6 cells) as a cell model and unglycated caseinate (CN) hydrolysate as a reference. Results from our liquid chromatography-mass spectrometry analysis of the GCN hydrolysate verified that lactose glycation occurred at the Lys residues in 3 casein components (αS1-casein, β-casein, and κ-casein), and this resulted in the formation of 5 peptides with the following amino acid sequences: EMPFPKYPKYPVEPF, HIQKEDVPSE, GSENSEKTTMPL, NQDKTEIPT, and EGIHAQQKEPM. The results from cell experiments showed that the 2 hydrolysates could promote cell growth and decrease lactate dehydrogenase release in the lipopolysaccharide-injured cells; more importantly, they could partially protect the damaged barrier function of the cells by increasing trans-epithelial electrical resistance, decreasing epithelial permeability, and upregulating the expression of the 3 tight junction proteins zonula occludens-1, occludin, and claudin-1. However, compared with CN hydrolysate, GCN hydrolysate showed lower efficacy in protecting against cellular barrier dysfunction. We propose that the different chemical characteristics of the CN hydrolysate and the GCN hydrolysate (i.e., amino acid loss and lactose conjugation) contributed to the lower barrier-protective efficacy of the GCN hydrolysate. During dairy processing, protein glycation of the Maillard type might have a non-negligible, unfavorable effect on dairy proteins, in view of the resulting protein glycation we found and the critical function of proteins for maintaining the integrity of the intestinal barrier.
Collapse
Affiliation(s)
- J Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030 Harbin, China
| | - Y Fu
- College of Food Science, Southwest University, 400715 Chongqing, China
| | - X H Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030 Harbin, China; School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China.
| | - R Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
18
|
Elmassry MM, Zayed A, Farag MA. Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health. Crit Rev Food Sci Nutr 2020; 62:738-763. [DOI: 10.1080/10408398.2020.1828263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed A. Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|