1
|
Ruiz-Aracama A, Alberdi-Cedeño J, Nieva-Echevarria B, Martinez-Yusta A, Goicoechea-Oses E. Effect of rosemary extract on sunflower oil degradation studied by 1H NMR: Differences under frying conditions and accelerated storage. Food Chem 2025; 474:143146. [PMID: 39904088 DOI: 10.1016/j.foodchem.2025.143146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
The antioxidant capacity of rosemary extract (RE) has been widely studied using classical methodologies, which offer limited information. Instead, Proton Nuclear Magnetic Resonance (1H NMR) informs about the degradation rate of oil components and the nature and evolution of the products formed. This study aims to investigate the effect of RE-addition (containing 0.005 % and 0.02 % of carnosol+carnosic acid) to sunflower oil on its degradation under frying conditions without food (170 ± 5 ºC) and accelerated storage (70 °C) by 1H NMR. In the former, changes in oil viscosity and colour were also studied. During frying, the commercial RE added did not protect the oil, being the degradation of linoleic very similar to control. In contrast, under storage, RE behaved as an antioxidant, mainly at the highest RE-concentration, delaying the degradation of oil components and the formation of oxidation products. Thus, the effect of RE-enrichment on oil degradation depends on the conditions the oil is subjected to.
Collapse
Affiliation(s)
- Ainhoa Ruiz-Aracama
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Jon Alberdi-Cedeño
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Barbara Nieva-Echevarria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Andrea Martinez-Yusta
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Encarnacion Goicoechea-Oses
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
| |
Collapse
|
2
|
Alberdi-Cedeño J, Martinez-Yusta A, Ruiz-Aracama A, Goicoechea-Oses E, Nieva-Echevarria B. Different effects of tocopherol natural extract on sunflower oil stability under frying and accelerated storage conditions: A comprehensive study on the fate of major and minor components of oil, and added tocopherols. Food Chem 2025; 472:142871. [PMID: 39824085 DOI: 10.1016/j.foodchem.2025.142871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
The effect of adding a tocopherol-rich natural extract (TNE) at 0.1 % and 0.5 % on sunflower oil stability under frying and accelerated storage conditions was studied using 1H NMR and DI-SPME-GC/MS. The impact was more pronounced at the higher enrichment level under both conditions. During frying conditions, oil stability significantly decreased due to accelerated degradation of linoleate and minor components (tocopherols, squalene and sterols), along with a marked increase in oil viscosity. Additionally, the selective generation of aldehydes occurred, with the formation of alkanals, E-2-alkenals and toxic oxygenated α,β-unsaturated aldehydes being lagged. Under storage, TNE initially promoted linoleate degradation and the formation of monohydroperoxy-octadecadienoates but delayed their transformation into secondary or further compounds. Similarly, the degradation of oil minor components occurred more slowly. Tocopherol-derived metabolites varied depending on processing conditions. Pristane was the most abundant during frying, while 4,8,12,16-tetramethylheptadecan-4-olide predominated under storage conditions. Formyl derivatives were identified for the first time.
Collapse
Affiliation(s)
- Jon Alberdi-Cedeño
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU). Paseo de la Universidad n° 7, 01006 Vitoria-Gasteiz, Spain
| | - Andrea Martinez-Yusta
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU). Paseo de la Universidad n° 7, 01006 Vitoria-Gasteiz, Spain
| | - Ainhoa Ruiz-Aracama
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU). Paseo de la Universidad n° 7, 01006 Vitoria-Gasteiz, Spain
| | - Encarnacion Goicoechea-Oses
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU). Paseo de la Universidad n° 7, 01006 Vitoria-Gasteiz, Spain
| | - Barbara Nieva-Echevarria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU). Paseo de la Universidad n° 7, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
3
|
Márquez-Ruiz G, Ruiz-Méndez MV, Holgado F. Depolymerization and Oxidation Events in Used Frying Oils Under Conditions Simulating Gastric Digestion. Foods 2025; 14:925. [PMID: 40231947 PMCID: PMC11941471 DOI: 10.3390/foods14060925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/16/2025] Open
Abstract
The chemical modifications occurring to the multitude of compounds formed in oils during frying after ingestion and prior to absorption are still unknown. The objective of this work was to explore the depolymerization and oxidation events which may occur under simulated gastric conditions and obtain quantitative data of the compounds formed. Samples of used frying sunflower oil with increasing alteration degree were selected for in vitro digestion. The methodology applied to determine changes in triacylglycerols (TAG), oxidized TAG monomers (oxTAGM), TAG dimers (TAGD) and higher oligomers (TAGO) consisted of a combination of adsorption and size exclusion chromatographies while changes in epoxy, hydroxy and keto fatty acyls were evaluated after oil transesterification by combination of adsorption and gas-liquid chromatographies. Among the results obtained, the large extent of depolymerization after digestion at pH 1.2, reaching levels as high as 70%, stood out. The release of unoxidized TAG from polymeric molecules was reflected in their significant increase after digestion. Hydroxy fatty acid methyl esters significantly increased in all samples after digestion. These results demonstrated that relevant structural modifications may occur to the compounds found in frying oils during gastric digestion. Further investigation is crucial to assess the potential health implications of the compounds formed.
Collapse
Affiliation(s)
- Gloria Márquez-Ruiz
- Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais, 10, 28040 Madrid, Spain;
| | - María Victoria Ruiz-Méndez
- Instituto de la Grasa (IG), Consejo Superior de Investigaciones Científicas (CSIC), Campus/Bd 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain;
| | - Francisca Holgado
- Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais, 10, 28040 Madrid, Spain;
| |
Collapse
|
4
|
Chen J, Zhang L, Guo X, Qiang J, Cao Y, Zhang S, Yu X. Influence of triacylglycerol structure on the formation of lipid oxidation products in different vegetable oils during frying process. Food Chem 2025; 464:141783. [PMID: 39481150 DOI: 10.1016/j.foodchem.2024.141783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The deterioration of frying oil significantly affects the quality of fried foods, leading to the formation of harmful oxidation products. This study examined how triacylglycerol (TAG) degradation influences both non-volatile and volatile oxidation products in frying oils. The sn-1/3 position of unsaturated fatty acyl chains was key to TAG degradation during frying. After 32 h, soybean oil showed higher levels of polymerized TAG products, 2,4-decadienal, (E)-2-heptenal, (E,E)-conjugated dienes, 4-oxo-alkanals, and epoxides compared to other oils. Rapeseed oil, however, had higher levels of glycerol core aldehydes, (E,E)-2,4-alkadienals, and n-alkanals. Correlation analysis suggested that thermal oxidation was more pronounced in the unsaturated TAGs of soybean and rapeseed oils, likely due to their abundant free radicals and low short-chain fatty acid content. The polar compound composition of TAG heating systems further supported the above conclusions. These results provide a better understanding of oxidative degradation in frying oils, focusing on TAG profiles.
Collapse
Affiliation(s)
- Jia Chen
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China; Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Lingyan Zhang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China; Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xingfeng Guo
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China
| | - Jie Qiang
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Yongsheng Cao
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Siyu Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
5
|
Pakaweerachat P, Chysirichote T. Effects of Broth pH and Chilling Storage on the Changes in Volatile Profiles of Boiled Chicken Flesh. Food Sci Anim Resour 2024; 44:1096-1107. [PMID: 39246546 PMCID: PMC11377206 DOI: 10.5851/kosfa.2024.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 09/10/2024] Open
Abstract
This study investigated the changes in volatile compounds in chicken flesh after boiling at various pHs (6.0-9.0) and after chilling storage (4.0±1.0°C) for 7 d. The volatile compounds were assessed qualitatively and quantitatively by using a headspace gas chromatography-mass spectrometry analysis. Twenty-one volatile compounds were discovered and categorized as amine, aldehyde, alcohol, ketone, acid, and furan. One type of amine, (2-aziridinylethyl) amine, was the most prevalent volatile component, followed by aldehyde, ketone, aldehyde, acid, ester, and furan. The results showed that the quantity and quality of the volatile compounds were influenced by a pH of the boiling medium. Additionally, the types and volatile profiles of the chicken were altered during chilling. In particular, in the chicken that was boiled at a pH of 8.0, the hexanal (an aldehyde) content increased the most after 7 d of chilling. Moreover, various alcohols formed after the 7 d of chilling of the chicken that was boiled at pHs of 8.0 and 9.0. Because of the oxidation and degradation of fat and proteins, the most altering volatile compounds were the reducing amines and the increasing aldehydes.
Collapse
Affiliation(s)
- Pattarabhorn Pakaweerachat
- Department of Food and Nutrition, Faculty of Home Economics Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
| | - Teerin Chysirichote
- Department of Food Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
6
|
Zhou W, Peng Y, Wu Z, Zhang W, Cong Y. Study on the Frying Performance Evaluation of Refined Soybean Oil after PLC Enzymatic Degumming. Foods 2024; 13:275. [PMID: 38254576 PMCID: PMC10815329 DOI: 10.3390/foods13020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
It is known that phospholipase C (PLC) enzymatic degumming can hydrolyze phospholipids into diacylglycerol (DAG), which improves the efficiency of oil processing. However, it is unclear whether the presence of DAG and the use of enzymes affect the performance of the oil. This paper evaluated the frying performance of PLC-degummed refined soybean oil. Following the chicken wings and potato chips frying trials, results revealed that after 30 cycles of frying, free fatty acid (FFA) levels were 0.22% and 0.21%, with total polar compounds (TPC) at 23.75% and 24.00%, and peroxide value (PV) levels were 5.90 meq/kg and 6.45 meq/kg, respectively. Overall, PLC-degummed refined soybean oil showed almost the same frying properties as traditional water-degummed refined oil in terms of FFA, PV, TPC, polymer content, viscosity, color, foaming of frying oils, and appearance of foods. Moreover, FFA, TPC, polymer content, foaming, and color showed significant positive correlations with each other (p < 0.05) in soybean oil intermittent frying processing.
Collapse
Affiliation(s)
- Wenting Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Z.); (Y.P.); (Z.W.); (W.Z.)
| | - Yuxin Peng
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Z.); (Y.P.); (Z.W.); (W.Z.)
| | - Zongyuan Wu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Z.); (Y.P.); (Z.W.); (W.Z.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Weinong Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Z.); (Y.P.); (Z.W.); (W.Z.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanxia Cong
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Z.); (Y.P.); (Z.W.); (W.Z.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
7
|
Mahmud N, Islam J, Oyom W, Adrah K, Adegoke SC, Tahergorabi R. A review of different frying oils and oleogels as alternative frying media for fat-uptake reduction in deep-fat fried foods. Heliyon 2023; 9:e21500. [PMID: 38027829 PMCID: PMC10660127 DOI: 10.1016/j.heliyon.2023.e21500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This review aims to examine the potential of oleogels as a frying medium to decrease oil absorption during deep-frying and enhance the nutritional and energy content of foods. By investigating the factors influencing oil incorporation during deep-frying and examining the application of oleogels in this process, we seek to provide insights into using oleogels as an alternative to traditional cooking oils. Scope Deep-frying, a widely used cooking method, leads to the retention of large amounts of oil in fried food, which has been associated with health concerns. To address this issue, researchers have investigated various methods to minimize oil absorption during frying. One promising approach is the use of oleogels, which are thermo-reversible, three-dimensional gel networks formed by entrapment of bulk oil with a low concentration (<10% of weight) of solid lipid materials known as oleogelators. This review will focus on the following aspects: a) an overview of deep-fried foods, b) factors influencing oil uptake and underlying mechanisms for oil absorption during deep-frying, c) the characterization and application of different frying oils and their oleogels in deep-fried foods, d) components of the oleogel system for deep-frying, and e) the health impact, oxidative stability, and sensory acceptability of using oleogels in deep-frying. Key findings The review highlights the potential of oleogels as a promising alternative frying medium to reduce fat absorption in deep-fried foods. Considering the factors influencing oil uptake during deep-frying, as well as exploring the properties and applications of different frying oils and their oleogels, can result in improved product qualities and heightened consumer acceptance. Moreover, oleogels offer the advantage of lower fat content in fried products, addressing health concerns associated with traditional deep-frying methods. The capacity to enhance the nutritional and energy profile of foods while preserving sensory qualities and oxidative stability positions oleogels as a promising choice for upcoming food processing applications.
Collapse
Affiliation(s)
- Niaz Mahmud
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| | - Joinul Islam
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
- Department of Food Science and Technology, University of Georgia, Athens, GA, 30602, USA
| | - William Oyom
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| | - Kelvin Adrah
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd, Greensboro, NC, 27401, USA
| | | | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| |
Collapse
|
8
|
Jiang H, Duan W, Zhao Y, Liu X, Wen G, Zeng F, Liu G. Development of a Flavor Fingerprint Using HS-GC-IMS for Volatile Compounds from Steamed Potatoes of Different Varieties. Foods 2023; 12:foods12112252. [PMID: 37297496 DOI: 10.3390/foods12112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The variations in flavor substances across different varieties of steamed potatoes were determined by headspace-gas chromatography ion mobility spectrometry (HS-GC-IMS) combined with sensory evaluation. Results showed that 63 representative compounds, including 27 aldehydes, 14 alcohols, 12 ketones, 4 esters, 2 furans, 1 acid and others, together acted as contributors to the flavors in steamed potatoes. Analysis found that species and concentrations of aldehydes, alcohols and ketones in six varieties were the most abundant. In addition, esters, furans and acid were also responsible for flavor. PCA results showed that volatile compounds in Atlantic, Longshu No. 23, Longshu No. 7 and Longshu No. 14 were similar, while Russet Burbank and Longshu No. 16 had distinct characteristic volatiles, which was consistent with sensory evaluation. The combination of sensory evaluation and HS-GC-IMS provided useful knowledge for charactering volatile compounds of steamed potatoes from different varieties, and also demonstrated the promising application of HS-GC-IMS in the detection of potato flavor with various cooking methods.
Collapse
Affiliation(s)
- Hong Jiang
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Wensheng Duan
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yuci Zhao
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Xiaofeng Liu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guohong Wen
- Potato Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Fankui Zeng
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Gang Liu
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| |
Collapse
|
9
|
Research on flavor characteristics of beef cooked in tomato sour soup by gas chromatography-ion mobility spectrometry and electronic nose. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
10
|
Hu B, Wu R, Sun J, Shi H, Jia C, Liu R, Rong J. Monitoring the oxidation process of soybean oil during deep-frying of fish cakes with 1H nuclear magnetic resonance. Food Chem X 2023; 17:100587. [PMID: 36845470 PMCID: PMC9944498 DOI: 10.1016/j.fochx.2023.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
The oxidation process of soybean oil (SBO) during frying fish cakes was investigated. The TOTOX value of before frying (BF) and after frying (AF) was significantly higher than control (CK). However, the total polar compound (TPC) content of AF reached 27.67% in frying oil continuously frying at 180℃ for 18 h, and 26.17% for CK. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) loss in isooctane and methanol significantly decreased with the extension of frying time and then tended to be stable. The decrease of DPPH loss was related to the increase of TPC content. Antioxidant and prooxidant balance (APB) value below 0.5 was obtained after 12 h for heated oil. (E)-2-alkenals, (E, E)-2,4-alkadienals, and n-alkanals were dominant ingredients among the secondary oxidation products. Traces of monoglycerides (MAG) and diglycerides (DAG) were also detected. These results may improve our understanding of the oxidation deterioration in SBO during frying.
Collapse
|
11
|
Li X, Wang Z, Xing C, Chen Z, Sun W, Xie D, Xu G, Wang X. Investigation of oxidized triglyceride monomer (oxTGM) produced in deteriorated soybean oil at frying temperatures: a kinetic study. Food Res Int 2022; 162:112121. [DOI: 10.1016/j.foodres.2022.112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/26/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
|
12
|
Oil Penetration of Batter-Breaded Fish Nuggets during Deep-Fat Frying: Effect of Frying Oils. Foods 2022; 11:foods11213369. [PMID: 36359982 PMCID: PMC9655036 DOI: 10.3390/foods11213369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 12/05/2022] Open
Abstract
Four frying oils (rapeseed, soybean, rice bran, and palm oils) were employed either as received (fresh) or after preheating at 180 °C for 10 h, and measured for their fatty acid composition, viscosity, and dielectric constant. Batter-breaded fish nuggets (BBFNs) were fried at 180 °C (60 s), and the effect of the oils’ quality on the oil penetration of fried BBFNs were investigated via the analysis of the absorption and the distribution of fat. Preheating increased the viscosity and dielectric constant of the oils. The total fat content using fresh oils was the greatest for palm oil (14.2%), followed by rice bran oil (12.2%), rapeseed oil (12.1%), and soybean oil (11.3%), a trend that was nearly consistent with the penetrated surface oil, except that the penetrated oil for soybean oil (6.8%) was higher than rapeseed oil (6.3%). The BBFNs which were fried using fresh oils possessed a more compact crust and smaller pores for the core and underwent a lower oil penetration compared to the preheated oils. The results suggested that the oils’ quality significantly affected the oil penetration of fried BBFNs.
Collapse
|
13
|
Lignocellulosic Biomasses from Agricultural Wastes Improved the Quality and Physicochemical Properties of Frying Oils. Foods 2022; 11:foods11193149. [PMID: 36230225 PMCID: PMC9564338 DOI: 10.3390/foods11193149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
In this work, the effects of using natural lignocellulosic-based adsorbents from sugarcane bagasse (SC), cornstalk piths (CP), and corn cob (CC) on the physicochemical properties and quality of fried oils were studied. The properties of lignocellulosic biomasses were examined using X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). Moreover, the changes in the physicochemical properties of fresh, fried oils (for 4, 8, 12, 16 and 20 h) and adsorbents-treated oils were examined. The XRD results revealed that SC and CP biomasses have more amorphous regions than CC biomass, which had the highest crystallinity percentage. The results also showed that lignocellulosic biomasses enhanced the quality of the used oils. SC was the most effective biomass to enhance the properties of the used sunflower oil. For instance, the acid value of oil samples fried for 20 h reduced from 0.63 ± 0.02 to 0.51 ± 0.02 mg KOH/g oil after SC biomass treatment. For the peroxide value, the SC biomass treatment reduced it from 9.45 ± 0.56 (fried oil for 20 h) to 6.91 ± 0.12 meq O2/kg. Similarly, SC biomass adsorbent reduced the p-Anisidine Value (p-AV) of the used oil (20 h) from 98.45 ± 6.31 to 77.92 ± 3.65. Moreover, SC adsorbents slightly improved the lightness of the used oils (20 h). In conclusion, natural lignocellulosic biomasses, particularly SC, could be utilized as natural adsorbents to improve the oil quality. The results obtained from this study could help in developing sustainable methods to regenerate used oils using natural and cheap adsorbents.
Collapse
|
14
|
Chen J, Zhang L, Sagymbek A, Li Q, Gao Y, Yu X. Formation of oxidation products in polar compounds of different vegetable oils during French fries deep‐frying. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia Chen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Lingyan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Altayuly Sagymbek
- Department of Food Science Saken Seifullin Kazakh Agrotechnical University 62 Zhenis Avenue, Nur‐Sultan 010011, R Kazakhstan
| | - Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Yuan Gao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| |
Collapse
|
15
|
Liu A, Yan X, Shang H, Ji C, Zhang S, Liang H, Chen Y, Lin X. Screening of Lactiplantibacillus plantarum with High Stress Tolerance and High Esterase Activity and Their Effect on Promoting Protein Metabolism and Flavor Formation in Suanzhayu, a Chinese Fermented Fish. Foods 2022; 11:foods11131932. [PMID: 35804748 PMCID: PMC9265898 DOI: 10.3390/foods11131932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 01/31/2023] Open
Abstract
In this study, three Lactiplantibacillus plantarum, namely 3-14-LJ, M22, and MB1, with high acetate esterase activity, acid, salt, and high-temperature tolerance were selected from 708 strains isolated from fermented food. Then, L. plantarum strains MB1, M22, and 3-14-LJ were inoculated at 107 CFU/mL in the model and 107 CFU/g in actual Suanzhayu systems, and the effects during fermentation on the physicochemical properties, amino acid, and volatile substance were investigated. The results showed that the inoculated group had a faster pH decrease, lower protein content, higher TCA-soluble peptides, and total amino acid contents than the control group in both systems (p < 0.05). Inoculation was also found to increase the production of volatile compounds, particularly esters, improve the sour taste, and decrease the bitterness of the product (p < 0.05). L. plantarum M22 was more effective than the other two strains in stimulating the production of isoamyl acetate, ethyl hexanoate, and ethyl octanoate. However, differences were discovered between the strains as well as between the model and the actual systems. Overall, the isolated strains, particularly L. plantarum M22, have good fermentation characteristics and have the potential to become excellent Suanzhayu fermenters in the future.
Collapse
Affiliation(s)
- Aoxue Liu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Xu Yan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Hao Shang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
- Department of Agricultural, Forest, and Food Science, University of Turin, Grugliasco, 10095 Turin, Italy
- Correspondence: ; Tel.: +86-0411-86318675; Fax: +86-0411-86318655
| |
Collapse
|
16
|
Chen J, Zhang L, Zhao P, Wang J, Li Q, Yu X. Comparison of non‐volatile degradation products formed from different vegetable oils during deep frying of French fries. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia Chen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| | - Lingyan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| | - Peng Zhao
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi China
| | - Jiayun Wang
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi China
| | - Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| |
Collapse
|
17
|
Sâmia RR, Lorenzo ND, Lessa Barbosa BV, Ferreira Fonseca AL, Nunes CA, Bastos SC. Lipid quality of fried and scrambled eggs prepared in different frying medium. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Cao X, Li X, Shu N, Tan CP, Xu YJ, Liu Y. The Characteristics and Analysis of Polar Compounds in Deep-Frying Oil: a Mini Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Shen M, Liu X, Xu X, Wu Y, Zhang J, Liang L, Wen C, He X, Xu X, Liu G. Migration and Distribution of PAH4 in Oil to French Fries Traced Using a Stable Isotope during Frying. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5879-5886. [PMID: 35507768 DOI: 10.1021/acs.jafc.2c00500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isotope-labeled four polycyclic aromatic hydrocarbons (PAH4-d12) were applied to study the migration and distribution of PAH4 in oil to French fries during frying. The results showed that the mobilities of PAH4-d12 showed a downtrend within 0-6 h and then an uptrend, and PAH4-d12 were mainly distributed in the crust of the French fries, especially five-ring PAHs-d12. The correlation analysis showed that PAH4-d12 migration was mainly caused by oil absorption of French fries. The low fluidity of the oil slowed down the PAH4-d12 migration, which was accelerated as the total polar component increased (higher than 15-20%). Additionally, higher frying temperature enhanced the crust ratio and porous structure of French fries, which explained the abundant five-ring PAHs-d12 distributed in the crust. This study provided references for optimizing the frying parameters: the exposure of PAH4 in French fries to humans can be reduced by controlling the oil quality and weakening the crust of the French fries.
Collapse
Affiliation(s)
- Mengyu Shen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiangxin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yinyin Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou 225009, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
20
|
Multiple Technologies Combined to Analyze the Changes of Odor and Taste in Daokou Braised Chicken during Processing. Foods 2022; 11:foods11070963. [PMID: 35407050 PMCID: PMC8998006 DOI: 10.3390/foods11070963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/25/2022] Open
Abstract
This study analyzed the changes of odor and taste in Daokou braised chicken during processing by GC-MS, GC-IMS, e-nose and e-tongue. The 75 and 55 volatile compounds identified in Daokou braised chicken by GC-MS and GC-IMS, respectively, included hydrocarbons, aldehydes, alcohols, terpenes, ketones, heterocyclics, esters, acids and phenols; among them, aldehydes, alcohols and ketones were the most abundant. The number and proportion of volatile compounds in Daokou braised chicken changed significantly (p < 0.05) in the process. The proportion of volatile compounds with animal fatty odor, such as aldehydes and alcohols, decreased, while that of esters, ketones and terpenes from spices with fruity fragrance increased, especially in the braising stage. An e-nose showed that the odor intensities of sulfur-containing and nitrogen oxide compounds were higher (p < 0.05) after the braising stage, but weakened after 2 h braising. An e-tongue showed that saltiness and richness increased significantly (p < 0.05) after braising. The results of these four techniques showed that braising promoted the release of flavor compounds, and was beneficial to salt penetration and umami release. However, long braising could lead to weakened flavor intensity and the introduction of bitterness and astringency. This study also found that GC-IMS and e-nose were more sensitive to trace compounds such as sulfur-containing and nitrogen oxide compounds, esters, acids and phenolics in Daokou braised chicken than GC-MS. The use of multiple technologies could provide more comprehensive flavor profiles for Daokou braised chicken during processing. This study provides insights into the control of flavor of Daokou braised chicken, and may be of practical relevance for the poultry industry.
Collapse
|
21
|
Wang L, Chen W, Tian Y, Duan X, Yuan Y, Wang N, Xu C, Liu X, Liu Z. Preventive Effects of Sesamol on Deep‐frying Oil‐induced Liver Metabolism Disorders by Altering Gut Microbiota and Protecting Gut Barrier Integrity. Mol Nutr Food Res 2022; 66:e2101122. [DOI: 10.1002/mnfr.202101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/07/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Weixuan Chen
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Yujie Tian
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Xiaorong Duan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Yi Yuan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Na Wang
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- Zhengzhou Key Laboratory of Nutrition and Health Food Zhengzhou 450002 China
| | - Chao Xu
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- Zhengzhou Key Laboratory of Nutrition and Health Food Zhengzhou 450002 China
| | - Xuebo Liu
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Zhigang Liu
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Department of Food Science Cornell University Ithaca New York 14853 United States
| |
Collapse
|
22
|
Liu Y, Ma X, Li J, Fan L, Huang S. Study on the antioxidative mechanism of tocopherol loaded ethyl cellulose particles in thermal-oxidized soybean oil. Carbohydr Polym 2022; 276:118734. [PMID: 34823770 DOI: 10.1016/j.carbpol.2021.118734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/07/2021] [Accepted: 10/02/2021] [Indexed: 12/15/2022]
Abstract
Our previous study proposed preparation method of tocopherol (Toc) loaded ethyl cellulose (EC) particles as antioxidant due to instability of Toc under high temperature. The present study aimed to explore the antioxidant mechanism of loaded particles. Results showed that loaded particles prepared by EC of different viscosities (EC9, EC70, EC200) had antioxidative effect, and the antioxidant activity increased with EC viscosity. Fourier transform infrared analysis demonstrated that the interaction between EC and tocopherol was mainly hydrogen bond. Loaded particles retained effectively the thermal degradation of Toc and thus enhanced the antioxidant activity. Further investigation into thermal oxidation of EC inferred the possible antioxidative mechanism included two aspects. One was that Toc was fixed in the network structure of loaded particles formed by EC to provide a barrier for avoiding degradation. Another was that EC and Toc acted on different stages of lipid oxidation, playing the antioxidative effect together.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xin Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Shengquan Huang
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou, Guangdong Province, 510931, China.
| |
Collapse
|
23
|
Analysis of flavor formation during production of Dezhou braised chicken using headspace-gas chromatography-ion mobility spec-trometry (HS-GC-IMS). Food Chem 2021; 370:130989. [PMID: 34509944 DOI: 10.1016/j.foodchem.2021.130989] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
In order to help the poultry industry to generate higher quality products, the headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) technique was used to identify volatile substances formed during the processing of Dezhou braised chicken (DBC). A total of 37 volatile substances including aldehydes, alcohols, ketones, esters, terpenoids, furans and pyrazines were identified during DBC processing across seven sampling stages. The analyses identified 2-ethylhexanol as a key flavor chemical within the chicken carcasses, and found that ethyl acetate, 1-hexanol, 4-methyl-2-pentanone and 1-pentanol were mainly produced during the deep-frying stage of processing. Stewing with herbs and spices was found to be an important stage in the flavor impartation process. 2-Butanone, n-nonanal, heptanal and ethanol were positively related to processing stage 3, whereas processing stage 4 was characterized by ethyl propanoate, benzaldehyde, butyl acetate, 2-pentyl furan and 2-heptanone. The processing stages 5, 6 and 7 were not significantly different (P > 0.05) from each other.
Collapse
|
24
|
Wang C, Liu Y, Wang H, Gao F, Guan X, Shi B. Maternal Exposure to Oxidized Soybean Oil Impairs Placental Development by Modulating Nutrient Transporters in a Rat Model. Mol Nutr Food Res 2021; 65:e2100301. [PMID: 34289236 DOI: 10.1002/mnfr.202100301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/13/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION As an exogenous food contaminant, dietary oxidized lipid impairs growth and development, and triggers chronic diseases in humans or animals. This study explores the effects of soybean oil with different oxidative degree on the placental injury of gestational rats. METHODS AND RESULTS Thirty-two female adult rats are randomly assigned to four groups. The control group is fed the purified diet with fresh soybean oil (FSO), and the treatment groups are fed purified diets with lipid content replaced by oxidized soybean oil (OSO) at 200, 400, and 800 mEqO2 kg-1 from conception until delivery. On day 20 of gestation, OSO decreased placental and embryonic weights as the oxidative degree increased linearly and quadratically. The expression of Bax showed a linear increase, and Bcl-2 decreased as the oxidative degree increased. The expression of Fosl1 and Esx1 is linearly and quadratically decreased in OSO-treated groups than FSO group. OSO decreased the level of IL-10 but increased expression of IL-1β in placenta and plasma. OSO remarkably upregulates levels of Fatp1 and Glut1 and decreases expression of Snat2 and Glut3. CONCLUSION OSO aggravates placental injury by modulating nutrient transporters and apoptosis-related genes, impedes placental growth and development, and ultimately leads to the decrease of fetal weight.
Collapse
Affiliation(s)
- Chuanqi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huiting Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Feng Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xin Guan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
25
|
Gertz C, Matthäus B, Willenberg I. Detection of Soft‐Deodorized Olive Oil and Refined Vegetable Oils in Virgin Olive Oil Using Near Infrared Spectroscopy and Traditional Analytical Parameters. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Bertrand Matthäus
- Max Rubner‐Institut (MRI)Department of Safety and Quality of CerealsWorking Group for Lipid Research Detmold 32756 Germany
| | - Ina Willenberg
- Max Rubner‐Institut (MRI)Department of Safety and Quality of CerealsWorking Group for Lipid Research Detmold 32756 Germany
| |
Collapse
|