1
|
Prabsangob N, Hangsalad S, Udomrati S. Okra cellulose crystals stabilized Pickering emulsion: A practical tool for soybean oil inclusion to improve nutritive profile of sausages. Food Chem X 2025; 27:102356. [PMID: 40170692 PMCID: PMC11960646 DOI: 10.1016/j.fochx.2025.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Pickering emulsions stabilized by okara cellulose crystals and the cellulose crystals modified with tannic acid were prepared and used to substitute porcine fat for sausage preparation. Both used cellulosic materials could effectively preserve dispersibility and heat stability of the emulsions. There was improved sausage stability when the emulsions stabilized by the cellulosic materials were used to replace pork backfat in the sausage formulation. The sausages added with the cellulosic material-based emulsions, especially the ones stabilized by the okara cellulose grafted with tannic acid, possessed better oxidative stability during storage than the control added with porcine fat. Moreover, lowered lipolysis degree could be found for the sausages added with the cellulosic materials stabilized emulsions as compared to the control formulation. Therefore, incorporation of the emulsions stabilized by the cellulosic materials might be a feasible way to improve nutritive profile by lowering saturated fatty acid content and energy uptake of the sausages.
Collapse
Affiliation(s)
- Nopparat Prabsangob
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sasitorn Hangsalad
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sunsanee Udomrati
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
2
|
Hu H, Wang Y, Zhao DG, Lu X. Oral Delivery of 5-Demethylnobiletin by Media-Milled Black Rice Particle-Stabilized Pickering Emulsion Alleviates Colitis in Mice: Synergistic Effects of Carrier and Loaded Bioactive. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1257-1272. [PMID: 39763118 DOI: 10.1021/acs.jafc.4c08558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Traditional colitis treatment strategies have issues such as side effects and poor lesion targeting. In this study, a milled black rice particle-stabilized Pickering emulsion (BR-5-DMN) has been developed as a delivery vehicle for 5-demethylnobiletin (5-DMN) to treat colitis. The alleviating effects of three 5-DMN delivery systems: BR-5-DMN, Tween 80 emulsion for upper gastrointestinal delivery, and soybean oil with most 5-DMN entering the colon were compared. BR-5-DMN exhibited superior effects, enhancing 5-DMN absorption and metabolic conversion. It also improved intestinal barrier function and microbiome homeostasis, restoring short-chain fatty acid synthesis, especially acetic acid, through releasing dietary fiber, bioactives from black rice, and 5-DMN in the colon. Black rice particles in BR-5-DMN promoted the growth of Bifidobacterium while inhibiting Ruminococcus, and both black rice particles and 5-DMN synergistically increased Akkermansia abundance. This study highlights the potential of milled grain particle-stabilized emulsions as effective vehicles for bioactives to treat colitis by regulating gastrointestinal release and synergistic interactions.
Collapse
Affiliation(s)
- Hong Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Guangzhou 510632, China
| | - Deng-Gao Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Guangzhou 510632, China
| |
Collapse
|
3
|
Qin Z, Ng W, Ede J, Shatkin JA, Feng J, Udo T, Kong F. Nanocellulose and its modified forms in the food industry: Applications, safety, and regulatory perspectives. Compr Rev Food Sci Food Saf 2024; 23:e70049. [PMID: 39495568 DOI: 10.1111/1541-4337.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Nanocellulose (NC), known for its unique properties including high mechanical strength, low density, and extensive surface area, presents significant potential for broad application in the food sector. Through further modification, NC can be enhanced and adapted for various purposes. Applications in the food industry include stabilizing, encapsulating, and packaging material. Additionally, due to its unique characteristics during digestion in the gastrointestinal tract, NC and its derivatives exhibit the potential to be used as health-promotion food ingredients. However, while the safety data on unmodified NC is readily available, the safety of modified forms of NC for use in food remains uncertain. This review offers a comprehensive analysis of recent breakthroughs in NC and its derivatives for innovative food applications. It synthesizes existing research on safety evaluations, with a particular emphasis on the latest findings on toxicity and biocompatibility. Furthermore, the paper outlines the regulatory landscape for NC-based food ingredients and food contact materials in the United States and European Union and provides recommendations to expedite regulatory authorization and commercialization. Ultimately, this work offers valuable insights to promote the sustainable and innovative application of NC compounds in the food sector.
Collapse
Affiliation(s)
- Zijin Qin
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Wei Ng
- Vireo Advisors, LLC, Boston, Massachusetts, USA
| | - James Ede
- Vireo Advisors, LLC, Boston, Massachusetts, USA
| | | | - Jiannan Feng
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| |
Collapse
|
4
|
Naji-Tabasi S, Shakeri MS, Modiri-Dovom A, Shahbazizadeh S. Investigating Baneh ( Pistacia atlantica) gum properties and applying its particles for stabilizing Pickering emulsions. Food Chem X 2024; 21:101111. [PMID: 38298356 PMCID: PMC10828642 DOI: 10.1016/j.fochx.2023.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
The purpose of this research was to investigate Baneh gum (BG) properties and prepare Pickering emulsion stabilized by BG particles at different concentrations (0.1, 0.3, 0.5, and 0.7 % (w/w)). Average size of the particles was 948 nm, and the SEM images confirmed the presence of the particles. Surface and interfacial tension of the BG particles were 48.39 and 15.36 (mN/m), respectively. Contact angle of water- and oil-BG particles was 99° and 42.68°, respectively, which can stabilize oil-in-water emulsions. Increment of the Pickering particles concentration decreased the size of the emulsion droplets and increased the emulsion stability (p ≤ 0.05). The size of emulsion droplets was in the range of 1.65-1.76 μm and the highest zeta potential value was obtained by 0.7 % (w/w) BG particles (-30.02 mV). It can be concluded that increasing BG particles to 0.7 % resulted in creating the most stable emulsion.
Collapse
Affiliation(s)
- Sara Naji-Tabasi
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Monir-sadat Shakeri
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Atena Modiri-Dovom
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Saeedeh Shahbazizadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| |
Collapse
|
5
|
Modiri-Dovom A, Arianfar A, Naji-Tabasi S, Hakimzadeh V. Production and investigation of Pickering emulsion stabilised by casein-Qodume Shirazi ( Alyssum homolocarpum) seed gum complex particles: gastrointestinal digestion. J Microencapsul 2024; 41:79-93. [PMID: 37982588 DOI: 10.1080/02652048.2023.2282987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Recently, there has been growing research interests in designing Pickering emulsions. In this work, Alyssum homolocarpum seed gum (AHSG) and casein protein (CP) nanoparticles (NPs) fabricated as Pickering stabilizers. AHSG (0.0, 0.05, 0.10, and 0.15% (w/w))-CP (2% (w/w)) nanoparticles were fabricated and their properties were investigated (mean diameter, morphology, zeta potential, Fourier transform infra-red, and contact angle). Formation and stability of Pickering emulsion (Pes) stabilized by AHSG-CP NPs were monitored by mean diameter, rheological properties, and in vitro digestion. AHSG-CP Nps exhibited a small size (107.75 ± 0.42-201.52 ± 0.70 nm) and had wettability between 64.94 ± 3.44° and 70.92 ± 7.64°. The stability of PEs was greatly improved by 0.05AHSG-CP NPs, even after 30 days of storage, centrifugation, and in vitro digestion, owing to the reinforcement of particle structure at the oil/water interfaces.This study demonstrates that 0.05% (w/w) AHSG-CP NP showed the highest stability during storage and against gastrointestinal digestion which showed its suitability as a fat reducer emulsion structure.
Collapse
Affiliation(s)
- Atena Modiri-Dovom
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Akram Arianfar
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Sara Naji-Tabasi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Vahid Hakimzadeh
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| |
Collapse
|
6
|
Diao X, Ke W, Li S, Mao X, Shan K, Zhang M, Zhao D, Li C. Effect of wheat aleurone on lard emulsions during in vitro digestion. Food Chem 2024; 435:137530. [PMID: 37757681 DOI: 10.1016/j.foodchem.2023.137530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Dietary wheat aleurone has been shown to affect lipid metabolism and reduce the incidence of obesity. However, the underlying mechanisms are not fully understood. This work aimed to investigate how whole wheat aleurone affects lipolysis during the whole digestion process in vitro. The physicochemical and microstructural changes and the lipolysis kinetics of different lard emulsion mixtures were determined. The results showed that the lipolysis rate and degree are inversely proportional to the amount of wheat aleurone. Wheat aleurone and flour promoted the aggregation and flocculation of lipid droplets by increasing the viscosity. More importantly, the dietary fibers released from aleurone digestion can reduced the binding of lipase to lipid droplets by adsorbing lipid droplets to increase the steric hindrance effect. These results provide a better understanding of how whole grains affect lipid digestibility and will further contribute to the development of functional foods and the improvement of individual health.
Collapse
Affiliation(s)
- Xinyue Diao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixin Ke
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanshan Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinrui Mao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Shan
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Nyström L, Mira I, Benjamins JW, Gopaul S, Granfeldt A, Abrahamsson B, von Corswant C, Abrahmsén-Alami S. In Vitro and In Vivo Performance of Pickering Emulsion-Based Powders of Omega-3 Polyunsaturated Fatty Acids. Mol Pharm 2024; 21:677-687. [PMID: 38133148 DOI: 10.1021/acs.molpharmaceut.3c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA) are essential nutrients for human health and have been linked to a variety of health benefits, including reducing the risk of cardiovascular diseases. In this paper, a spray-dried powder formulation based on Pickering emulsions stabilized with cellulose nanocrystals (CNC) and hydroxypropyl methylcellulose (HPMC) has been developed. The formulation was compared in vitro and in vivo to reference emulsions (conventional Self-Emulsifying Drug Delivery System, SEDDS) to formulate n-3 PUFA pharmaceutical products, specifically in free fatty acid form. The results of in vivo studies performed in fasted dogs showed that Pickering emulsions reconstituted from powders are freely available (fast absorption) with a similar level of bioavailability as reference emulsions. In the studies performed with dogs in the fed state, the higher bioavailability combined with slower absorption observed for the Pickering emulsion, compared to the reference, was proposed to be the result of the protection of the n-3 PUFAs (in free fatty acid form) against oxidation in the stomach by the solid particles stabilizing the emulsion. This observation was supported by promising results from short-term studies of chemical stability of powders with n-3 PUFA loads as high as 0.8 g oil/g powder that easily regain the original emulsion drop sizes upon reconstitution. The present work has shown that Pickering emulsions may offer a promising strategy for improving the bioavailability and stability as well as providing an opportunity to produce environmentally friendly (surfactant free) and patient-acceptable solid oral dosage forms of n-3 PUFA in the free fatty acid form.
Collapse
Affiliation(s)
- Lina Nyström
- Chemical Processes and Pharmaceutical Development, RISE, 114 28 Stockholm, Sweden
| | - Isabel Mira
- Chemical Processes and Pharmaceutical Development, RISE, 114 28 Stockholm, Sweden
| | - Jan-Willem Benjamins
- Chemical Processes and Pharmaceutical Development, RISE, 114 28 Stockholm, Sweden
| | - Sashi Gopaul
- DMPK, Early Cardiovascular and Metabolic Diseases, Biopharmaceutical R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Andreas Granfeldt
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, 431 83 Mölndal, Sweden
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, 431 83 Mölndal, Sweden
| | - Christian von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, 431 83 Mölndal, Sweden
| | - Susanna Abrahmsén-Alami
- Sustainable Innovation & Transformational Excellence, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| |
Collapse
|
8
|
Chevalier RC, Oliveira Júnior FD, Cunha RL. Modulating digestibility and stability of Pickering emulsions based on cellulose nanofibers. Food Res Int 2024; 178:113963. [PMID: 38309879 DOI: 10.1016/j.foodres.2024.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Cellulose nanofibers (CNF) have been widely studied for their biodegradability and for their unique advantages as a stabilizer in Pickering-type emulsions. However, it is challenging to produce cellulose nanofibers from agroindustry waste with good techno-functional properties, without the use of harsh process conditions. Green alternatives (eco-friendly) have been studied to obtain nanofibers, such as enzymatic hydrolysis and/or application of mechanical processes. In this work, we used acid hydrolysis (as a control and example of an efficient method), enzymatic hydrolysis and a mechanical process (ultrasound) to obtain cellulose nanofibers. We also evaluated the effect of the presence of ethyl groups in the cellulosic matrix (ethylcellulose) on the stabilizing mechanism of emulsions. All cellulose nanofibers were able to produce Pickering emulsions at concentrations of 0.01-0.05% (w/w), although showing differences in emulsion stability and digestibility. Morphology of the different cellulose nanofibers affected the viscosity of the aqueous suspensions used as continuous phase. Emulsions with nanofibers obtained from cassava peel (without the presence of ethyl groups) were stabilized only by the Pickering-type mechanism, while ethylcellulose nanofibers also showed surface activity that contributed to the stability of the emulsion. Furthermore, these latter emulsions showed greater release of free fatty acids in in vitro digestion compared to emulsions stabilized by cellulose nanofibers. Despite these differences, in vitro digestion showed the potential of applying cellulose-stabilized emulsions to control the rate of lipid digestion, due to the low amount of free fatty acids released (<20%).
Collapse
Affiliation(s)
- Raquel Costa Chevalier
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas-SP CEP: 13083-862, Brazil
| | - Fernando Divino Oliveira Júnior
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas-SP CEP: 13083-862, Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas-SP CEP: 13083-862, Brazil.
| |
Collapse
|
9
|
Prabsangob N, Hangsalad S, Udomrati S. Surface Modification of Okara Cellulose Crystals with Phenolic Acids to Prepare Multifunction Emulsifier with Antioxidant Capacity and Lipolysis Retardation Effect. Foods 2024; 13:184. [PMID: 38254485 PMCID: PMC10813991 DOI: 10.3390/foods13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Emulsion-based foods are widely consumed, and their characteristics involving colloidal and oxidative stabilities should be considered. The fabrication of the interfaces by selecting the emulsifier may improve stability and trigger lipolysis, thereby reducing energy uptake from the emulsified food. The present work aimed to develop Okara cellulose crystals (OCs) as a multifunction emulsifier to preserve the physical and chemical stability of a Pickering emulsion via surface modification with phenolic acids. The modification of OC was performed by grafting with the selected phenolics to produce OC-gallic acid (OC-G) and OC-tannic acid (OC-T) complexes. There was a higher phenolic loading efficiency when the OC reacted with gallic acid (ca. 70%) than with tannic acid (ca. 50%). This trend was concomitant with better antioxidant activity of the OC-G than OC-T. Surface modification based on grafting with phenolic acids improved capability of the OC to enhance both the colloidal and oxidative stability of the emulsion. In addition, the cellulosic materials had a retardation effect on the in vitro lipolysis compared to a protein-stabilized emulsion. Surface modification by grafting with phenolic acids successfully provided OC as an innovative emulsifier to promote physico-chemical stability and lower lipolysis of the emulsion.
Collapse
Affiliation(s)
- Nopparat Prabsangob
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Sasithorn Hangsalad
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Sunsanee Udomrati
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
10
|
Meng Q, Xu M, Chen L, Xu S, Li J, Li Y, Fan L, Shi G, Ding Z. Emulsion for stabilizing β-carotene and curcumin prepared directly using a continuous phase of polysaccharide-rich Schizophyllum commune fermentation broth. Int J Biol Macromol 2024; 254:127730. [PMID: 38287588 DOI: 10.1016/j.ijbiomac.2023.127730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
In this study, we examined the effect of Schizophyllum commune fermentation broth (SCFB) rich in polysaccharides (SCFP) on the stability and bioaccessibility of β-carotene and curcumin. An SCFB-stabilized oil-in-water (o/w) emulsion (SCFBe) was prepared using SCFB as the continuous phase, and then evaluated for storage stability using an SCFP-based emulsion (SCFPe) as the control. The findings revealed that SCFBe is more stable at 60 °C than SCFPe, and stratification or droplet size varied at differing pH levels (3-9) and concentrations of Na+ (0.1-0.5 M) and Ca2+ (0.01-0.05 M). Since the absolute value of the zeta potential of SCFBe is much lower at 60 °C than that at 4 °C and 25 °C, a higher temperature (60 °C) may enhance the reactivity of polysaccharides and proteins in SCFB to improve the stability of SCFBe. Both the protective impact of SCFB on functional food molecules and their capacity to block lipid oxidation increased as polysaccharide content improved. The bioaccessibility of β-carotene after in vitro simulated gastrointestinal digestion is 11.18 %-12.28 %, whereas that of curcumin is 31.64 %-33.00 %. By fermenting edible and medicinal fungi in liquid, we created a unique and environmentally friendly approach for getting food-grade emulsifiers without extraction.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Chen S, Dima C, Kharazmi MS, Yin L, Liu B, Jafari SM, Li Y. The colloid and interface strategies to inhibit lipid digestion for designing low-calorie food. Adv Colloid Interface Sci 2023; 321:103011. [PMID: 37826977 DOI: 10.1016/j.cis.2023.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.
Collapse
Affiliation(s)
- Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Cristian Dima
- Dunarea de Jos' University of Galati, Faculty of Food Science and Engineering, "Domnească" Str. 111, Building F, Room 107, 800201, Galati, Romania
| | | | - Lijun Yin
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
12
|
Chumchoochart W, Chandet N, Saenjum C, Tinoi J. Important Role and Properties of Granular Nanocellulose Particles in an In Vitro Simulated Gastrointestinal System and in Lipid Digestibility and Permeability. Biomolecules 2023; 13:1479. [PMID: 37892161 PMCID: PMC10604528 DOI: 10.3390/biom13101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
This research evaluated the role and feasibility of the granular nanocellulose particles (GNC) from sugarcane bagasse obtained from enzymatic hydrolysis in reducing lipid digestibility and permeability in an in vitro simulated gastrointestinal (GI) system. GNC concentration (0.02%, w/v) had significantly affected the released free fatty acids (FFA), with a reduction of approximately 20%. Pickering emulsion of a GNC and olive oil simulation mixture revealed higher oil droplet size distribution and stability in the initial stage than the vortexed mixture formation. The difference in particle size distribution and zeta potential of the ingested GNC suspension and GNC-olive oil emulsion were displayed during the in vitro gastrointestinal simulation. GNC particles interacted and distributed surrounding the oil droplet, leading to interfacial emulsion. The GNC concentration (0.01-0.10%, w/v) showed low toxicity on HIEC-6 cells, ranging from 80.0 to 99% of cell viability. The release of FFA containing the ingested GNC suspension and GNC-olive oil emulsion had about a 30% reduction compared to that without the GNC digestion solution. The FFA and triglyceride permeability through the HIEC-6 intestinal epithelium monolayer were deceased in the digesta containing the ingested GNC and emulsion. This work indicated that GNC represented a significantly critical role and properties in the GI tract and reduced lipid digestion and absorption. This GNC could be utilized as an alternative food additive or supplement in fatty food for weight control due to their inhibition of lipid digestibility and assimilation.
Collapse
Affiliation(s)
- Warathorn Chumchoochart
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nopakarn Chandet
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Jidapha Tinoi
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Chen W, Tan D, Yang Z, Tang J, Bai W, Tian L. Fermentation patterns of prebiotics fructooligosaccharides-SCFA esters inoculated with fecal microbiota from ulcerative colitis patients. Food Chem Toxicol 2023; 180:114009. [PMID: 37652126 DOI: 10.1016/j.fct.2023.114009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Ulcerative colitis (UC) is believed to arise from an imbalance between the intestinal microbiota and mucosal immunity, leading to excessive intestinal inflammation. Modulating the gut microbial community through dietary components presents a valuable strategy in aiding the treatment of UC. In this study, esters formed by binding of well-known prebiotics, fructooligosaccharides (FOS), with short chain fatty acids (SCFAs) via both enzymatic and chemical methods were evaluated for their impact on the gut microbiota of UC patients. An in vitro human colonic fermentation model was employed to monitor changes in total carbohydrates and SCFAs production during the fermentation of these esters by microbiota from patients with active and remission UC. The results showed that pronounced abundance of [Ruminococcus]_gnavus_group, Escherichia_Shigella, Lachnoclostridium, Klebsiella and other potential pathogens were detected in the fecal samples from UC patients, with a milder condition observed during the remission phase. Significant higher levels of corresponding SCFA were observed in the groups with addition of FOS-SCFAs esters during fermentation. Butyrylated fructooligosaccharides (B-FOS) and propionylated fructooligosaccharides (P-FOS) by enzymatic synthesis successfully promoted the proliferation of Bifidobacterium and inhibited Clostridium_sensu_stricto_1 and Klebsiella. Overall, B-FOS and P-FOS exhibit promising potential for restoring intestinal homeostasis and alleviating intestinal inflammation in individuals with UC.
Collapse
Affiliation(s)
- Weiwen Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Diming Tan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Zixin Yang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China.
| |
Collapse
|
14
|
Ji C, Wang Y. Nanocellulose-stabilized Pickering emulsions: Fabrication, stabilization, and food applications. Adv Colloid Interface Sci 2023; 318:102970. [PMID: 37523998 DOI: 10.1016/j.cis.2023.102970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Pickering emulsions have been widely studied due to their good stability and potential applications. Nanocellulose including cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial cellulose nanofibrils (BCNFs) has emerged as sustainable stabilizers/emulsifiers in food-related Pickering emulsions due to their favorable properties such as renewability, low toxicity, amphiphilicity, biocompatibility, and high aspect ratio. Nanocellulose can be widely obtained from different sources and extraction methods and can effectively stabilize Pickering emulsions via the irreversible adsorption onto oil-water interface. The synergistic effects of nanocellulose and other substances can further enhance the interfacial networks. The nanocellulose-based Pickering emulsions have potential food-related applications in delivery systems, food packaging materials, and fat substitutes. Nanocellulose-based Pickering emulsions as 3D printing inks exhibit good injectable and gelling properties and are promising to print spatial architectures. In the future, the utilization of biomass waste and the development of "green" and facile extraction methods for nanocellulose production deserve more attention. The stability of nanocellulose-based Pickering emulsions in multi-component food systems and at various conditions is an utmost challenge. Moreover, the case-by-case studies on the potential safety issues of nanocellulose-based Pickering emulsions need to be carried out with the standardized assessment procedures. In this review, we highlight key fundamental work and recent reports on nanocellulose-based Pickering emulsion systems. The sources and extraction of nanocellulose and the fabrication of nanocellulose-based Pickering emulsions are briefly summarized. Furthermore, the synergistic stability and food-related applications of nanocellulose-stabilized Pickering emulsions are spotlighted.
Collapse
Affiliation(s)
- Chuye Ji
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
15
|
Chuesiang P, Kim JT, Shin GH. Observation of curcumin-encapsulated Pickering emulsion stabilized by cellulose nanocrystals-whey protein isolate (CNCs-WPI) complex under in vitro lipid digestion through INFOGEST model. Int J Biol Macromol 2023; 234:123679. [PMID: 36801227 DOI: 10.1016/j.ijbiomac.2023.123679] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Curcumin-encapsulated Pickering emulsion (Cur-PE) was successfully prepared using cellulose nanocrystals (CNCs)-whey protein isolate (WPI) complex as a stabilizer to control the size and stability of the Cur-PE. Firstly, needle-like CNCs were prepared by acid hydrolysis, and the mean particle size, polydispersity index (PDI), zeta potential, and aspect ratio of the CNCs were 100.7 nm, 0.32, -43.6 mV, and 20.8, respectively. The Cur-PE-C0.5W0.1, prepared with 0.5 wt% CNCs and 0.1 wt% WPI at pH 2, had a mean droplet size of 230.0 nm, PDI of 0.275, and zeta potential of +53.5 mV. The Cur-PE-C0.5W0.1 prepared at pH 2 exhibited the highest stability during storage for 14 days. FE-SEM revealed that the droplets of the Cur-PE-C0.5W0.1 prepared at pH 2 were spherical and fully covered by CNCs. The adsorption of CNCs at the oil-water interface increases the encapsulation efficiency (89.4 %) of curcumin in the Cur-PE-C0.5W0.1 and protects curcumin from pepsin digestion in the gastric phase. However, the Cur-PE-C0.5W0.1 was sensitive to release curcumin in the intestine phase. The CNCs-WPI complex developed in this study could serve as a promising stabilizer to make Pickering emulsions stable at pH 2 for the encapsulation and delivery of curcumin to the expected target area.
Collapse
Affiliation(s)
- Piyanan Chuesiang
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea.
| |
Collapse
|
16
|
Wang R, Tu L, Pan D, Gao X, Du L, Cai Z, Wu J, Dang Y. A Comparative Study of Binding Interactions between Proteins and Flavonoids in Angelica Keiskei: Stability, α-Glucosidase Inhibition and Interaction Mechanisms. Int J Mol Sci 2023; 24:ijms24076582. [PMID: 37047555 PMCID: PMC10095106 DOI: 10.3390/ijms24076582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 04/05/2023] Open
Abstract
Flavonoids are easily destroyed and their activity lost during gastrointestinal digestion. Protein-based nanocomplexes, a delivery system that promotes nutrient stability and bioactivity, have received increasing attention in recent years. This study investigated the stability, inhibitory activity against α-glucosidase and interaction mechanisms of protein-based nanocomplexes combining whey protein isolate (WPI), soybean protein isolate (SPI) and bovine serum albumin (BSA) with flavonoids (F) from A. keiskei using spectrophotometry, fluorescence spectra and molecular docking approaches. The results show that the flavonoid content of WPI-F (23.17 ± 0.86 mg/g) was higher than those of SPI-F (19.41 ± 0.56 mg/g) and BSA-F (20.15 ± 0.62 mg/g) after simulated digestion in vitro. Furthermore, the inhibition rate of WPI-F (23.63 ± 0.02%) against α-glucosidase was also better than those of SPI-F (18.56 ± 0.02%) and BSA-F (21.62 ± 0.02%). The inhibition rate of WPI-F increased to nearly double that of F alone (12.43 ± 0.02%) (p < 0.05). Molecular docking results indicated that the protein-flavonoids (P-F) binding occurs primarily through hydrophobic forces, hydrogen bonds and ionic bonds. Thermodynamic analysis (ΔH > 0, ΔS > 0) indicated that the P-F interactions are predominantly hydrophobic forces. In addition, the absolute value of ΔG for WPI-F is greater (−30.22 ± 2.69 kJ mol−1), indicating that WPI-F releases more heat energy when synthesized and is more conducive to combination. This paper serves as a valuable reference for the stability and bioactivity of flavonoids from A. keiskei.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Lanlan Tu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong, Shanghai 200240, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong, Shanghai 200240, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
17
|
Yang D, Feng Y, Yao X, Zhao B, Li D, Liu N, Fang Y, Midgley A, Liu D, Katsuyoshi N. Recent advances in bioactive nanocrystal-stabilized Pickering emulsions: Fabrication, characterization, and biological assessment. Compr Rev Food Sci Food Saf 2023; 22:946-970. [PMID: 36546411 DOI: 10.1111/1541-4337.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Numerous literatures have shown the advantages of Pickering emulsion (PE) for the delivery of bioactive ingredients in the fields of food, medicine, and cosmetics, among others. On this basis, the multi-loading mode of bioactives (internal phase encapsulation and/or loading at the interface) in small molecular bioactives nanocrystal-stabilized PE (BNC-PE) enables them higher loading efficiencies, controlled release, and synergistic or superimposed effects. Therefore, BNC-PE offers an efficacious delivery system. In this review, we briefly summarize BNC-PE fabrication and characterization, with a focus on the processes of possible evolution and absorption of differentially applied BNC-PE when interacting with the body. In addition, methods of monitoring changes and absorption of BNC-PE in vivo, from the nanomaterial perspective, are also introduced. The purpose of this review is to provide an accessible and comprehensive methodology for the characterization and evaluation of BNC-PE after formulation and preparation, especially in relation to biological assessment and detailed mechanisms throughout the absorption process of BNC-PE in vivo.
Collapse
Affiliation(s)
- Dan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yuqi Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Baofu Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Dan Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Adam Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, China
| | - Dechun Liu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Nishinari Katsuyoshi
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
18
|
Liu L, Ode Boni BO, Ullah MW, Qi F, Li X, Shi Z, Yang G. Cellulose: A promising and versatile Pickering emulsifier for healthy foods. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2142940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Li Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Biaou Oscar Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Rekha K, Venkidasamy B, Samynathan R, Nagella P, Rebezov M, Khayrullin M, Ponomarev E, Bouyahya A, Sarkar T, Shariati MA, Thiruvengadam M, Simal-Gandara J. Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Crit Rev Food Sci Nutr 2022; 64:2461-2489. [PMID: 36154353 DOI: 10.1080/10408398.2022.2124231] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fatty acids are good energy sources (9 kcal per gram) that aerobic tissues can use except for the brain (glucose is an alternative source). Apart from the energy source, fatty acids are necessary for cell signaling, learning-related memory, modulating gene expression, and functioning as cytokine precursors. Short-chain fatty acids (SCFAs) are saturated fatty acids arranged as a straight chain consisting minimum of 6 carbon atoms. SCFAs possess various beneficial effects like improving metabolic function, inhibiting insulin resistance, and ameliorating immune dysfunction. In this review, we discussed the biogenesis, absorption, and transport of SCFA. SCFAs can act as signaling molecules by stimulating G protein-coupled receptors (GPCRs) and suppressing histone deacetylases (HDACs). The role of SCFA on glucose metabolism, fatty acid metabolism, and its effect on the immune system is also reviewed with updated details. SCFA possess anticancer, anti-diabetic, and hepatoprotective effects. Additionally, the association of protective effects of SCFA against brain-related diseases, kidney diseases, cardiovascular damage, and inflammatory bowel diseases were also reviewed. Nanotherapy is a branch of nanotechnology that employs nanoparticles at the nanoscale level to treat various ailments with enhanced drug stability, solubility, and minimal side effects. The SCFA functions as drug carriers, and nanoparticles were also discussed. Still, much research was not focused on this area. SCFA functions in host gene expression through inhibition of HDAC inhibition. However, the study has to be focused on the molecular mechanism of SCFA against various diseases that still need to be investigated.
Collapse
Affiliation(s)
- Kaliaperumal Rekha
- Department of Environmental and Herbal Science, Tamil University, Thanjavur, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Mars Khayrullin
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Evgeny Ponomarev
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, South Korea
| | - Jesus Simal-Gandara
- Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
20
|
Dissanayake T, Peng Chang B, Mekonnen TH, Senaka Ranadheera C, Narvaez-Bravo C, Bandara N. Reinforcing canola protein matrix with chemically tailored nanocrystalline cellulose improves the functionality of canola protein-based packaging materials. Food Chem 2022; 383:132618. [PMID: 35255367 DOI: 10.1016/j.foodchem.2022.132618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
Abstract
Canola protein derived from the canola industry byproduct is a potent biopolymer source to develop sustainable food packaging materials, but it has limitations due to its poor mechanical and barrier properties. Nanomaterials such as nanocrystalline cellulose (NCC) have shown promising potential in improving material properties. The current study aimed to enhance the functionality of canola protein-based films using TEMPO ((2,2,6,6-Tetramethylpiperidin-1-yl)oxyl) modified nanocrystalline cellulose (TM-NCC). TEMPO modification was performed using TEMPO/NaClO/NaBr based oxidation. Modified and unmodified nanocrystalline cellulose (U-NCC) were used at different weight ratios to prepare the films. TEMPO-mediated oxidation converted 19.61 ± 3.53 % of primary -OH groups into -COOH groups. The addition of U-NCC and TM-NCC significantly increased the tensile strength reporting the highest value of 8.36 ± 0.85 MPa for 5% TM-NCC, which was only 3.43 ± 0.66 MPa for control films. Interestingly, both U-NCC and TM-NCC enhanced the films' water barrier and thermal properties compared to control.
Collapse
Affiliation(s)
- Thilini Dissanayake
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; Richardson Centre for Food Technology and Research (RCFTR), 196, Innovation Drive, Winnipeg, Manitoba R3T 2N2, Canada
| | - Boon Peng Chang
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tizazu H Mekonnen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chaminda Senaka Ranadheera
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Claudia Narvaez-Bravo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Nandika Bandara
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; Richardson Centre for Food Technology and Research (RCFTR), 196, Innovation Drive, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
21
|
Iqbal S, Zhang P, Wu P, Yin Q, Hidayat K, Chen XD. Modulation of viscosity, microstructure and lipolysis of W/O emulsions by cellulose ethers during in vitro digestion in the dynamic and semi-dynamic gastrointestinal models. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Bile Salt-Induced Competitive Displacement of Cellulose Nanocrystals from Oil Droplet Surfaces. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
24
|
Emulsions undergoing phase transition: Effect of emulsifier type and concentration. J Colloid Interface Sci 2022; 617:214-223. [PMID: 35276522 DOI: 10.1016/j.jcis.2022.02.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
Abstract
Pickering emulsion stabilized by cellulose nanocrystals (CNCs) during the phase transition of the dispersed oil is poorly understood. We investigated the capability of CNC in stabilizing Pickering emulsions during the temperature-induced phase transition. Paraffin wax emulsions stabilized by sodium dodecyl sulfate (SDS) were less stable than CNC stabilized emulsions. The relationship between droplet size and emulsifier content was examined, and a new model describing this relationship is proposed. The droplet size of CNC-based systems was not affected by temperature variation, even at low CNC concentrations. The minimum CNC content required to stabilize the paraffin wax emulsion was lower than SDS. DSC results indicated that higher droplet surface coverage with emulsifiers enhanced the deformation resistance of the crystallized droplets, which enhanced the emulsion stability. Temperature sweep viscosity measurements showed that the stability of CNC-based systems was not significantly impacted by the phase transition of the paraffin wax. Rheological amplitude sweep analysis indicated that emulsions above the melting point of paraffin wax were more stable at all strain levels. However, the SDS-based systems displayed substantial heterogeneity after the liquid-solid transition. Frequency sweep tests revealed that CNC-stabilized emulsions were more stable than SDS-stabilized emulsions.
Collapse
|
25
|
Marze S. Compositional, Structural, and Kinetic Aspects of Lipid Digestion and Bioavailability: In Vitro, In Vivo, and Modeling Approaches. Annu Rev Food Sci Technol 2022; 13:263-286. [DOI: 10.1146/annurev-food-052720-093515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sébastien Marze
- INRAE, Biopolymères Interactions Assemblages, Nantes, France
| |
Collapse
|
26
|
Recent development in food emulsion stabilized by plant-based cellulose nanoparticles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101512] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Ni Y, Gu Q, Li J, Fan L. Modulating in vitro gastrointestinal digestion of nanocellulose-stabilized pickering emulsions by altering cellulose lengths. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Bai L, Huan S, Rojas OJ, McClements DJ. Recent Innovations in Emulsion Science and Technology for Food Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8944-8963. [PMID: 33982568 DOI: 10.1021/acs.jafc.1c01877] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emulsion technology has been used for decades in the food industry to create a diverse range of products, including homogenized milk, creams, dips, dressings, sauces, desserts, and toppings. Recently, however, there have been important advances in emulsion science that are leading to new approaches to improving food quality and functionality. This article provides an overview of a number of these advanced emulsion technologies, including Pickering emulsions, high internal phase emulsions (HIPEs), nanoemulsions, and multiple emulsions. Pickering emulsions are stabilized by particle-based emulsifiers, which may be synthetic or natural, rather than conventional molecular emulsifiers. HIPEs are emulsions where the concentration of the disperse phase exceeds the close packing limit (usually >74%), which leads to novel textural properties and high resistance to gravitational separation. Nanoemulsions contain very small droplets (typically d < 200 nm), which leads to useful functional attributes, such as high optical clarity, resistance to gravitational separation and aggregation, rapid digestion, and high bioavailability. Multiple emulsions contain droplets that have smaller immiscible droplets inside them, which can be used for reduced-calorie, encapsulation, and delivery purposes. This new generation of advanced emulsions may lead to food and beverage products with improved quality, health, and sustainability.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Siqi Huan
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Post Office Box 16300, FI-00076 Aalto, Espoo, Finland
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
29
|
Murray BS, Ettelaie R, Sarkar A, Mackie AR, Dickinson E. The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Assadi F, Afshar Mogaddam MR, Farajzadeh MA, Shayanfar A, Nemati M. Development of derivatization/air‐assisted liquid‐liquid microextraction procedure for analyzing short‐chain fatty acids; assessment of the analytes in fruit juice samples. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202000057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fatemeh Assadi
- Food and Drug Safety Research Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
- Engineering Faculty Near East University North Cyprus Turkey
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Tabriz University of Medical Sciences Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
- Halal Research Center Ministry of Health and Medical Education Tehran Iran
| |
Collapse
|
31
|
Bai L, Huan S, Zhu Y, Chu G, McClements DJ, Rojas OJ. Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses. Annu Rev Food Sci Technol 2020; 12:383-406. [PMID: 33297723 DOI: 10.1146/annurev-food-061920-123242] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this article, the application of nanocelluloses, especially cellulose nanofibrils and cellulose nanocrystals, as functional ingredients in foods is reviewed. These ingredients offer a sustainable and economic source of natural plant-based nanoparticles. Nanocelluloses are particularly suitable for altering the physicochemical, sensory, and nutritional properties of foods because of their ability to create novel structures. For instance, they can adsorb to air-water or oil-water interfaces and stabilize foams or emulsions, self-assemble in aqueous solutions to form gel networks, and act as fillers or fat replacers. The functionality of nanocelluloses can be extended by chemical functionalization of their surfaces or by using them in combination with other natural food ingredients, such as biosurfactants or biopolymers. As a result, it is possible to create stimuli-responsive, tailorable, and/or active functional biomaterials suitable for a range of foodapplications. In this article, we describe the chemistry, structure, and physicochemical properties of cellulose as well as their relevance for the application of nanocelluloses as functional ingredients in foods. Special emphasis is given to their use as particle stabilizers in Pickering emulsions, but we also discuss their potential application for creating innovative biomaterials with novel functional attributes, such as edible films and packaging. Finally, some of the challenges associated with using nanocelluloses in foods are critically evaluated, including their potential safety and consumer acceptance.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China; .,Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Siqi Huan
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China; .,Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ya Zhu
- Bio-Based Colloids and Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Espoo, Finland
| | - Guang Chu
- Bio-Based Colloids and Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Espoo, Finland
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Bio-Based Colloids and Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Espoo, Finland
| |
Collapse
|
32
|
Chu Y, Sun Y, Wu W, Xiao H. Dispersion Properties of Nanocellulose: A Review. Carbohydr Polym 2020; 250:116892. [DOI: 10.1016/j.carbpol.2020.116892] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/28/2022]
|
33
|
Silva SCM, Fuzatto RHS, Botrel DA, Ugucioni JC, Oliveira JE. Development of zein nanofibers for the controlled delivery of essential amino acids for fish nutrition. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03616-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
34
|
Angkuratipakorn T, Chung C, Koo CK, Mundo JLM, McClements DJ, Decker EA, Singkhonrat J. Development of food-grade Pickering oil-in-water emulsions: Tailoring functionality using mixtures of cellulose nanocrystals and lauric arginate. Food Chem 2020; 327:127039. [DOI: 10.1016/j.foodchem.2020.127039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 11/27/2022]
|