1
|
Chen L, Li J, Li Q, Sun Q. Hepatotoxicity Induced by Methyl Eugenol: Insights from Toxicokinetics, Metabolomics, and Gut Microbiota. Curr Issues Mol Biol 2024; 46:11314-11325. [PMID: 39451553 PMCID: PMC11506582 DOI: 10.3390/cimb46100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Due to continuous application as a flavoring agent in the pesticide, pharmaceutical, and food industries, methyl eugenol (ME) persists in the environment and causes deleterious impacts including cytotoxicity, genotoxicity, and liver damage. This study utilized a comprehensive approach, integrating toxicokinetics, metabolomics, and gut microbiota analysis, to explore the mechanisms behind ME-induced hepatotoxicity in mice. The study observed significant rises in ALT and AST levels, along with significant weight loss, indicating severe liver damage. Toxicokinetic data showed delayed Tmax and plasma accumulation after 28 days of repeated ME exposure at doses of 20 mg/kg, 40 mg/kg, and 60 mg/kg. The metabolomic analysis pinpointed four critical pathways-TCA cycle; alanine, aspartate, and glutamate metabolism; arginine biosynthesis; and tyrosine metabolism-linked to 20 potential biomarkers. Gut microbiota analysis revealed that extended ME exposure led to microbial imbalance, particularly altering the populations of Akkermansia, Prevotella, and Ruminococcus, which are key to amino acid metabolism and the TCA cycle, thus contributing to hepatotoxicity. However, the causal relationship between changes in gut microbiota and liver metabolite levels still requires further in-depth research. This study underscores the significant role of liver metabolites and gut microbiota in ME-induced liver damage.
Collapse
Affiliation(s)
| | | | | | - Qingwen Sun
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (L.C.); (J.L.); (Q.L.)
| |
Collapse
|
2
|
Rafson JP, Turnipseed SB, Casey C, De Bono A, Madson MR. Analysis and Stability Study of Isoeugenol in Aquaculture Products by Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14411-14418. [PMID: 38875496 DOI: 10.1021/acs.jafc.4c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME-GC-MS) offers an alternative analysis method for isoeugenol (an active ingredient in fish sedatives) that avoids the use of organic solvents, simplifies sample preparation, and can be fully automated. This work focuses on developing and evaluating an HS-SPME-GC-MS method for isoeugenol in aquaculture samples and testing the stability of isoeugenol itself. Because of isoeugenol's relatively low volatility, more polar SPME fiber coatings (polyacrylate and polydimethylsiloxane/divinylbenzene) had better performance and the headspace extractions took over 30 min to reach equilibrium. Additionally, it was found that isoeugenol was relatively unstable compared to a deuterated standard (d3-eugenol) in the presence of water. To address this, after the fish samples were homogenized with water, they were heated at 50 °C for 1 h prior to analysis for equilibration. By using the method developed in this work, isoeugenol's detection limits in multiple aquaculture matrices (shrimp, tilapia, and salmon) were in the low ng/g range (<15 ng/g), well below the target testing level (200 ng/g). Additionally, by adding d3-eugenol as an internal standard, excellent linearity (R2 > 0.98), accuracy (97-99% recoveries), and precision (5-13% RSDs) were all achieved.
Collapse
Affiliation(s)
- Jessica P Rafson
- Animal Drugs Research Center, Denver Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Denver, Colorado 80225, United States
| | - Sherri B Turnipseed
- Animal Drugs Research Center, Denver Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Denver, Colorado 80225, United States
| | - Christine Casey
- Denver Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Denver, Colorado 80225, United States
| | - Amanda De Bono
- Denver Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Denver, Colorado 80225, United States
| | - Mark R Madson
- Denver Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Denver, Colorado 80225, United States
| |
Collapse
|
3
|
Baky MH, Kamal IM, Wessjohann LA, Farag MA. Assessment of metabolome diversity in black and white pepper in response to autoclaving using MS- and NMR-based metabolomics and in relation to its remote and direct antimicrobial effects against food-borne pathogens. RSC Adv 2024; 14:10799-10813. [PMID: 38572341 PMCID: PMC10989240 DOI: 10.1039/d4ra00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Piper nigrum L. (black and white peppercorn) is one of the most common culinary spices used worldwide. The current study aims to dissect pepper metabolome using 1H-NMR targeting of its major primary and secondary metabolites. Eighteen metabolites were identified with piperine detected in black and white pepper at 20.2 and 23.9 μg mg-1, respectively. Aroma profiling using HS-SPME coupled to GC-MS analysis and in the context of autoclave treatment led to the detection of a total of 52 volatiles with an abundance of β-caryophyllene at 82% and 59% in black and white pepper, respectively. Autoclaving of black and white pepper revealed improvement of pepper aroma as manifested by an increase in oxygenated compounds' level. In vitro remote antimicrobial activity against food-borne Gram-positive and Gram-negative bacteria revealed the highest activity against P. aeruginosa (VP-MIC 16.4 and 12.9 mg mL-1) and a direct effect against Enterobacter cloacae at ca. 11.6 mg mL-1 for both white and black pepper.
Collapse
Affiliation(s)
- Mostafa H Baky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University Badr city 11829 Cairo Egypt
| | - Islam M Kamal
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 06120 Halle (Saale) Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University 11562 Cairo Egypt
| |
Collapse
|
4
|
Wang D, Wang Y, Liu B, Ni L, Zhong J, Xie J, Wang Z. Determination of Eugenol Residues in Fish Tissue, Transport, and Temporary Water of Aquatic Product by Gas Chromatography-Tandem Mass Spectrometry with Application of the Electrospun Nanofibrous Membrane. Foods 2024; 13:238. [PMID: 38254539 PMCID: PMC10814870 DOI: 10.3390/foods13020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Using gas chromatography-tandem mass spectrometry and electrospun nanofibrous membrane, we developed and validated a simple, rapid, and sensitive methodology for quantifying eugenol residues in fish tissue and water samples. Fish tissue extract and water samples (315 samples) collected from three southeastern China provinces (Shanghai, Zhejiang, and Fujian), originating from eight provinces of Zhejiang, Jiangsu, Shandong, Guangdong, Fujian, Anhui, Shanghai, and Jiangxi, from April 2021 to April 2023 were filtered with an electrospun nanofiber membrane, extracted with trichloromethane/n-hexane, and directly concentrated to dry after simple purification. An internal standard of p-terphenyl in n-hexane and 5-µL injection volumes of the solutions was used to analyze eugenol via internal calibration with a minimum concentration of 0.5 µg/L in water samples and 0.1 µg/kg in aquatic product samples. The highest amount of eugenol was detected in Fujian province, possibly due to the higher temperature during transportation, while the lowest amount was found in Shanghai, which mainly uses temporary fish-culture devices. This is a fast, inexpensive, and effective method for testing large quantities of fish water and meat samples.
Collapse
Affiliation(s)
- Deqian Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (D.W.); (Y.W.); (B.L.); (L.N.); (J.Z.); (J.X.)
| | - Yunning Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (D.W.); (Y.W.); (B.L.); (L.N.); (J.Z.); (J.X.)
| | - Bolin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (D.W.); (Y.W.); (B.L.); (L.N.); (J.Z.); (J.X.)
| | - Ling Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (D.W.); (Y.W.); (B.L.); (L.N.); (J.Z.); (J.X.)
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Jian Zhong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (D.W.); (Y.W.); (B.L.); (L.N.); (J.Z.); (J.X.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (D.W.); (Y.W.); (B.L.); (L.N.); (J.Z.); (J.X.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Zhengquan Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (D.W.); (Y.W.); (B.L.); (L.N.); (J.Z.); (J.X.)
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| |
Collapse
|
5
|
Wu KY, Wei YT, Luo YS, Shen LC, Chang BS, Chen YY, Huang YC, Huang HF, Chung WS, Chiang SY. Dose-response formation of N7-(3-benzo[1,3]dioxol-5-yl-2-hydroxypropyl)guanine in liver and urine correlates with micronucleated reticulocyte frequencies in mice administered safrole oxide. Food Chem Toxicol 2023; 181:114056. [PMID: 37739051 DOI: 10.1016/j.fct.2023.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Safrole oxide (SAFO), a metabolite of naturally occurring hepatocarcinogen safrole, is implicated in causing DNA adduct formation. Our previous study first detected the most abundant SAFO-induced DNA adduct, N7-(3-benzo[1,3] dioxol-5-yl-2-hydroxypropyl)guanine (N7γ-SAFO-G), in mouse urine using a well-developed isotope-dilution high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (ID-HPLC-ESI-MS/MS) method. This study further elucidated the genotoxic mode of action of SAFO in mice treated with SAFO 30, 60, 90, or 120 mg/kg for 28 days. The ID-HPLC-ESI-MS/MS method detected N7γ-SAFO-G with excellent sensitivity and specificity in mouse liver and urine of SAFO-treated mice. Our data provide the first direct evidence of SAFO-DNA adduct formation in rodent tissues. N7γ-SAFO-G levels in liver were significantly increased by SAFO 120 mg/kg compared with SAFO 30 mg/kg, suggesting rapid spontaneous or enzymatic depurination of N7γ-SAFO-G in tissue DNA. Urinary N7γ-SAFO-G exhibited a sublinear dose response. Moreover, the micronucleated peripheral reticulocyte frequencies increased dose-dependently and significantly correlated with N7γ-SAFO-G levels in liver (r = 0.8647; p < 0.0001) and urine (r = 0.846; p < 0.0001). Our study suggests that safrole-mediated genotoxicity may be caused partly by its metabolic activation to SAFO and that urinary N7γ-SAFO-G may serve as a chemically-specific cancer risk biomarker for safrole exposure.
Collapse
Affiliation(s)
- Kuen-Yuh Wu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Tzu Wei
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Li-Chin Shen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Bao-Suei Chang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ya-Yin Chen
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yan-Chi Huang
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Fen Huang
- School of Post-baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Su-Yin Chiang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Chen X, Wei J, Li J, Jiao T, Wang L, Chen Q. Rapid detection of eugenol in perch utilizing electrochemical method by transition metal substituted polyoxometalates. Food Chem 2023; 426:136584. [PMID: 37329800 DOI: 10.1016/j.foodchem.2023.136584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Food safety concerns caused by the application of spice allergens to fish anaesthesia. In this paper, a chitosan-reduced graphene oxide/polyoxometalates/poly-l-lysine (CS-rGO/P2Mo17Cu/PLL) modified electrode was constructed by electrodeposition and successfully applied to the quantitative analysis of eugenol (EU). The detection limit was 0.4490 μM in the linear range of 2x10-6 M to 1.4x10-5 M. It was applied to the determination of EU residues in kidney, liver and meat tissues of perch with recoveries ranging from 85.43 to 93.60%. Besides, the electrodes demonstrate high stability (2.56% drop in current value after 70 days at room temperature), high reproducibility (RSD of 4.87% for 6 parallel electrodes) and extremely fast response time. This study provided a new material for the electrochemical detection of EU.
Collapse
Affiliation(s)
- Xiaowen Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jiaxin Li
- School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Li Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
7
|
Götz ME, Eisenreich A, Frenzel J, Sachse B, Schäfer B. Occurrence of Alkenylbenzenes in Plants: Flavours and Possibly Toxic Plant Metabolites. PLANTS (BASEL, SWITZERLAND) 2023; 12:2075. [PMID: 37299054 PMCID: PMC10255789 DOI: 10.3390/plants12112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Alkenylbenzenes are naturally occurring secondary plant metabolites. While some of them are proven genotoxic carcinogens, other derivatives need further evaluation to clarify their toxicological properties. Furthermore, data on the occurrence of various alkenylbenzenes in plants, and especially in food products, are still limited. In this review, we tempt to give an overview of the occurrence of potentially toxic alkenylbenzenes in essential oils and extracts from plants used for flavoring purposes of foods. A focus is layed on widely known genotoxic alkenylbenzenes, such as safrole, methyleugenol, and estragole. However, essential oils and extracts that contain other alkenylbenzenes and are also often used for flavoring purposes are considered. This review may re-raise awareness of the need for quantitative occurrence data for alkenylbenzenes in certain plants but especially in final plant food supplements, processed foods, and flavored beverages as the basis for a more reliable exposure assessment of alkenylbenzenes in the future.
Collapse
Affiliation(s)
| | - Andreas Eisenreich
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (M.E.G.); (B.S.); (B.S.)
| | | | | | | |
Collapse
|
8
|
Wu W, Ba M, Zhang W, Zhang H, Zhao N, Liu Y, Wang X, Cai Z, Sun T. The Preparation of Novel Amino Acid Imidazole Ionic Liquids and Their Application as Stationary Phase for Capillary Gas Chromatographic Separations. ChemistrySelect 2023. [DOI: 10.1002/slct.202204289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Weilong Wu
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P.R. China
| | - Wei Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P.R. China
| | - Huike Zhang
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Niu Zhao
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Yiyi Liu
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Xinxin Wang
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P.R. China
| | - Tao Sun
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
- Hebei Key Laboratory of Heterocyclic Compounds Handan University Handan 056005 P.R. China
| |
Collapse
|
9
|
Fukuda T, Iwata H, Kishikawa N, El-Maghrabey MH, Ohyama K, Kawakami S, Wada M, Kuroda N. Selective fluorescence labeling of myristicin using Mizoroki-Heck coupling reaction. Application to nutmeg powder, oil, and human plasma samples. J Chromatogr A 2022; 1681:463465. [DOI: 10.1016/j.chroma.2022.463465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
|
10
|
Maleš I, Pedisić S, Zorić Z, Elez-Garofulić I, Repajić M, You L, Vladimir-Knežević S, Butorac D, Dragović-Uzelac V. The medicinal and aromatic plants as ingredients in functional beverage production. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
11
|
Liu Y, Li N, Li X, Qian W, Liu J, Su Q, Chen Y, Zhang B, Zhu B, Cheng J. A high-resolution Orbitrap Mass spectral library for trace volatile compounds in fruit wines. Sci Data 2022; 9:496. [PMID: 35963960 PMCID: PMC9376066 DOI: 10.1038/s41597-022-01594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
The overall aroma is an important factor of the sensory quality of fruit wines, which attributed to hundreds of volatile compounds. However, the qualitative determination of trace volatile compounds is considered to be very challenging work. GC-Orbitrap-MS with high resolution and high sensitivity provided more possibilities for the determination of volatile compounds, but without the high-resolution mass spectral library. For accuracy of qualitative determination in fruit wines by GC-Orbitrap-MS, a high-resolution mass spectral library, including 76 volatile compounds, was developed in this study. Not only the HRMS spectrum but also the exact ion fragment, relative abundance, retention indices (RI), CAS number, chemical structure diagram, aroma description and aroma threshold (ortho-nasally) were provided and were shown in a database website (Food Flavor Laboratory, http://foodflavorlab.cn/). HRMS library was used to successfully identify the volatile compounds mentioned above in 16 fruit wines (5 blueberry wines, 6 goji berry wines and 5 hawthorn wines). The library was developed as an important basis for further understanding of trace volatile compounds in fruit wines. Measurement(s) | volatile compounds | Technology Type(s) | GC-Orbitrap-MS |
Collapse
Affiliation(s)
- Yaran Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyao Li
- School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Wenchao Qian
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jiani Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qingyu Su
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Chen
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Jinxin Cheng
- China People's Police University, Hebei, 065000, China.
| |
Collapse
|
12
|
Götz ME, Sachse B, Schäfer B, Eisenreich A. Myristicin and Elemicin: Potentially Toxic Alkenylbenzenes in Food. Foods 2022; 11:1988. [PMID: 35804802 PMCID: PMC9265716 DOI: 10.3390/foods11131988] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alkenylbenzenes represent a group of naturally occurring substances that are synthesized as secondary metabolites in various plants, including nutmeg and basil. Many of the alkenylbenzene-containing plants are common spice plants and preparations thereof are used for flavoring purposes. However, many alkenylbenzenes are known toxicants. For example, safrole and methyleugenol were classified as genotoxic carcinogens based on extensive toxicological evidence. In contrast, reliable toxicological data, in particular regarding genotoxicity, carcinogenicity, and reproductive toxicity is missing for several other structurally closely related alkenylbenzenes, such as myristicin and elemicin. Moreover, existing data on the occurrence of these substances in various foods suffer from several limitations. Together, the existing data gaps regarding exposure and toxicity cause difficulty in evaluating health risks for humans. This review gives an overview on available occurrence data of myristicin, elemicin, and other selected alkenylbenzenes in certain foods. Moreover, the current knowledge on the toxicity of myristicin and elemicin in comparison to their structurally related and well-characterized derivatives safrole and methyleugenol, especially with respect to their genotoxic and carcinogenic potential, is discussed. Finally, this article focuses on existing data gaps regarding exposure and toxicity currently impeding the evaluation of adverse health effects potentially caused by myristicin and elemicin.
Collapse
Affiliation(s)
| | | | | | - Andreas Eisenreich
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (M.E.G.); (B.S.); (B.S.)
| |
Collapse
|
13
|
Razola-Díaz MDC, Gómez-Caravaca AM, López de Andrés J, Voltes-Martínez A, Zamora A, Pérez-Molina GM, Castro DJ, Marchal JA, Verardo V. Evaluation of Phenolic Compounds and Pigments Content in Yellow Bell Pepper Wastes. Antioxidants (Basel) 2022; 11:557. [PMID: 35326207 PMCID: PMC8944693 DOI: 10.3390/antiox11030557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022] Open
Abstract
Bell peppers are one of the most important species consumed and cultivated in Spain. Peppers are a source of carotenoids and phenolic compounds widely associated with biological activities such as antimicrobial, antiseptic, anticancer, counterirritant, cardioprotective, appetite stimulator, antioxidant, and immunomodulator. However, undersized and damaged fruits are usually wasted. Thus, in order to evaluate the phenolic content, a Box-Behnken design has been carried out to optimize the extraction from Capsicum annuum yellow pepper by ultrasound-assisted extraction (UAE). The independent factors were time (min), ethanol/water (% v/v) and solvent/sample ratio (v/w). The model was validated by ANOVA and confirmed. Furthermore, the whole pepper and the pepper without peduncles and seeds were extracted using optimal conditions and characterized by HPLC-ESI-TOF-MS. Moreover, their antioxidant activities, measured by three different methods (DPPH, ABTS, and FRAP), carotenoid composition, assessed by HPLC-MS, and chlorophyll content, assessed by a spectrophotometric method, were compared. A total of 38 polar compounds were found of which seven have been identified in pepper fruit extracts for the first time. According to the results, whole pepper (WP) samples presented higher content in phenolic acids; meanwhile, the edible portion (EP) was higher in flavonoids. No differences were found in the antioxidant activity except for the FRAP assay where the WP sample showed higher radical scavenging activity. EP samples showed the highest content of carotenoids and WP ones in chlorophylls.
Collapse
Affiliation(s)
| | - Ana Mª Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, 18071 Granada, Spain;
- Biomedical Research Center, Institute of Nutrition and Food Technology ‘José Mataix’, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Spain
| | - Julia López de Andrés
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (J.L.d.A.); (A.V.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Grana-da-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, 18100 Granada, Spain
| | - Ana Voltes-Martínez
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (J.L.d.A.); (A.V.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Grana-da-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, 18100 Granada, Spain
| | - Alberto Zamora
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital de Blanes, Corporació de Salut del Maresme i la Selva, 17300 Blanes, Spain;
- Grupo de Medicina Traslacional y Ciencias de la Decisión, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Girona, 17004 Girona, Spain
- Grupo Epidemiología Cardiovascular y Genética, CIBER, Enfermedades Cardiovasculares (CIBERCV), 08003 Barcelona, Spain
| | - Gema M. Pérez-Molina
- Department I+D+i Vellsam Materias Bioactivas S.L., 04200 Tabernas, Spain; (G.M.P.-M.); (D.J.C.)
| | - David J. Castro
- Department I+D+i Vellsam Materias Bioactivas S.L., 04200 Tabernas, Spain; (G.M.P.-M.); (D.J.C.)
| | - Juan Antonio Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (J.L.d.A.); (A.V.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Grana-da-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, 18100 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
- Biomedical Research Center, Institute of Nutrition and Food Technology ‘José Mataix’, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Spain
| |
Collapse
|
14
|
Rivera-Pérez A, Romero-González R, Garrido Frenich A. A metabolomics approach based on 1H NMR fingerprinting and chemometrics for quality control and geographical discrimination of black pepper. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Dang HNP, Quirino JP. High Performance Liquid Chromatography versus Stacking-Micellar Electrokinetic Chromatography for the Determination of Potentially Toxic Alkenylbenzenes in Food Flavouring Ingredients. Molecules 2021; 27:13. [PMID: 35011249 PMCID: PMC8746415 DOI: 10.3390/molecules27010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Alkenylbenzenes, including eugenol, methyleugenol, myristicin, safrole, and estragole, are potentially toxic phytochemicals, which are commonly found in foods. Occurrence data in foods depends on the quality of the analytical methodologies available. Here, we developed and compared modern reversed-phase high performance liquid chromatography (HPLC) and stacking-micellar electrokinetic chromatography (MEKC) methods for the determination of the above alkenylbenzenes in food flavouring ingredients. The analytical performance of HPLC was found better than the stacking-MEKC method. Compared to other HPLC methods found in the literature, our method was faster (total run time with conditioning of 15 min) and able to separate more alkenylbenzenes. In addition, the analytical methodology combining an optimized methanol extraction and proposed HPLC was then applied to actual food flavouring ingredients. This methodology should be applicable to actual food samples, and thus will be vital to future studies in the determination of alkenylbenzenes in food.
Collapse
Affiliation(s)
| | - Joselito P. Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences—Chemistry, University of Tasmania, Hobart, TAS 7001, Australia;
| |
Collapse
|
16
|
Sub-Micromolar Inhibition of SARS-CoV-2 3CLpro by Natural Compounds. Pharmaceuticals (Basel) 2021; 14:ph14090892. [PMID: 34577592 PMCID: PMC8465303 DOI: 10.3390/ph14090892] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022] Open
Abstract
Inhibiting the main protease 3CLpro is the most common strategy in the search for antiviral drugs to fight the infection from SARS-CoV-2. We report that the natural compound eugenol is able to hamper in vitro the enzymatic activity of 3CLpro, the SARS-CoV-2 main protease, with an inhibition constant in the sub-micromolar range (Ki = 0.81 μM). Two phenylpropene analogs were also tested: the same effect was observed for estragole with a lower potency (Ki = 4.1 μM), whereas anethole was less active. The binding efficiency index of these compounds is remarkably favorable due also to their small molecular mass (MW < 165 Da). We envision that nanomolar inhibition of 3CLpro is widely accessible within the chemical space of simple natural compounds.
Collapse
|
17
|
Javelle T, Righezza M, Danger G. Identify low mass volatile organic compounds from cometary ice analogs using gas chromatography coupled to an Orbitrap mass spectrometer associated to electron and chemical ionizations. J Chromatogr A 2021; 1652:462343. [PMID: 34174716 DOI: 10.1016/j.chroma.2021.462343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Analysis of organic matter extracted from meteorites showed that solar system objects present an important molecular diversity. To improve our understanding of such organic matter, new analytical technologies must be developed. The present study displays the first experiments using a GC-FT-Orbitrap-MS to decipher the molecular diversity observed in experiments simulating the evolution of cometary ices. The proposed analytical strategy focuses on the analysis of 110 volatile organic compounds (VOC) with mainly 1 to 6 carbon atoms generated in such cometary ice analogs. Electron ionization (EI) and chemical ionization (CI) modes with methane (CH4) or ammonia (NH3) were optimized and compared. Those developments maximized the intensity of molecular, protonated or deprotonated ions, and improved high-resolution molecular formula unambiguous identification: EI mode is too energetic to provides there detection, while it is not the case in CI mode. Particularly, NH3 as a reagent gas improves amine identification in positive mode (PCI), and esters, alcohols, carbonyls, amides, carboxylic acids and nitriles in negative mode (NCI). The combination of both EI and CI mass spectrum analysis improves molecular identification, thanks to the detection of molecular, deprotonated or protonated ion of highest intensity and fragment formula assignments. The EI and NCI NH3 combination allows formula assignments up to 94% of our database with limit of detection up to 7 ppm. This procedure has been validated for untargeted GC-FT-Orbitrap-MS analysis of VOC coming from the processing of cometary ice analogs.
Collapse
Affiliation(s)
- Thomas Javelle
- Aix-Marseille Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, CNRS, Marseille, France
| | - Michel Righezza
- Aix-Marseille Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, CNRS, Marseille, France
| | - Grégoire Danger
- Aix-Marseille Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, CNRS, Marseille, France; Aix Marseille Université, CNRS, CNES, LAM, Marseille, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
18
|
Rivera-Pérez A, Romero-González R, Garrido Frenich A. Determination and Occurrence of Alkenylbenzenes, Pyrrolizidine and Tropane Alkaloids in Spices, Herbs, Teas, and Other Plant-derived Food Products Using Chromatographic Methods: Review from 2010–2020. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Araceli Rivera-Pérez
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (Ceia3), University of Almeria, Almeria, Spain
| | - Roberto Romero-González
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (Ceia3), University of Almeria, Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (Ceia3), University of Almeria, Almeria, Spain
| |
Collapse
|
19
|
Dang HNP, Quirino JP. Analytical Separation of Carcinogenic and Genotoxic Alkenylbenzenes in Foods and Related Products (2010-2020). Toxins (Basel) 2021; 13:toxins13060387. [PMID: 34071244 PMCID: PMC8228529 DOI: 10.3390/toxins13060387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Alkenylbenzenes are potentially toxic (genotoxic and carcinogenic) compounds present in plants such as basil, tarragon, anise star and lemongrass. These plants are found in various edible consumer products, e.g., popularly used to flavour food. Thus, there are concerns about the possible health consequences upon increased exposure to alkenylbenzenes especially due to food intake. It is therefore important to constantly monitor the amounts of alkenylbenzenes in our food chain. A major challenge in the determination of alkenylbenzenes in foods is the complexity of the sample matrices and the typically low amounts of alkenylbenzenes present. This review will therefore discuss the background and importance of analytical separation methods from papers reported from 2010 to 2020 for the determination of alkenylbenzenes in foods and related products. The separation techniques commonly used were gas and liquid chromatography (LC). The sample preparation techniques used in conjunction with the separation techniques were various variants of extraction (solvent extraction, liquid-liquid extraction, liquid-phase microextraction, solid phase extraction) and distillation (steam and hydro-). Detection was by flame ionisation and mass spectrometry (MS) in gas chromatography (GC) while in liquid chromatography was mainly by spectrophotometry.
Collapse
|
20
|
Misra BB. Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2265-2282. [PMID: 33987631 DOI: 10.1039/d1ay00173f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) provides a complementary analytical platform for capturing volatiles, non-polar and (derivatized) polar metabolites and exposures from a diverse array of matrixes. High resolution (HR) GC-MS as a data generation platform can capture data on analytes that are usually not detectable/quantifiable in liquid chromatography mass-spectrometry-based solutions. With the rise of high-resolution accurate mass (HRAM) GC-MS systems such as GC-Orbitrap-MS in the last decade after the time-of-flight (ToF) renaissance, numerous applications have been found in the fields of metabolomics and exposomics. In a short span of time, a multitude of studies have used GC-Orbitrap-MS to generate exciting new high throughput data spanning from diverse basic to applied research areas. The GC-Orbitrap-MS has found application in both targeted and untargeted efforts for capturing metabolomes and exposomes across diverse studies. In this review, I capture and summarize all the reported studies to date, and provide a snapshot of the milieu of commercial and open-source software solutions, spectral libraries, and informatics solutions available to a GC-Orbitrap-MS system instrument user or a data analyst dealing with these datasets. Lastly, but importantly, I provide an account on data sharing and meta-data capturing solutions that are available to make HRAM GC-MS based metabolomics and exposomics studies findable, accessible, interoperable, and reproducible (FAIR). These FAIR practices would allow data generators and users of GC-HRMS instruments to help the community of GC-MS researchers to collaborate and co-develop exciting tools and algorithms in the future.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Independent Researcher, Pine-211, Raintree Park Dwaraka Krishna, Namburu, AP-522508, India.
| |
Collapse
|
21
|
Rivera-Pérez A, Romero-González R, Garrido Frenich A. Feasibility of Applying Untargeted Metabolomics with GC-Orbitrap-HRMS and Chemometrics for Authentication of Black Pepper ( Piper nigrum L.) and Identification of Geographical and Processing Markers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5547-5558. [PMID: 33957048 DOI: 10.1021/acs.jafc.1c01515] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Black pepper is one of the most consumed spices all over the world. Due to its high demand and nutritional value, a metabolomics approach based on GC-Orbitrap-HRMS fingerprinting and chemometrics was applied to assess its geographical traceability and processing authenticity. GC-HRMS-based fingerprints were obtained using a simple ultrasound-assisted extraction method, which may be easily implemented in routine activities of quality control. Unsupervised methods, such as principal component analysis (PCA), were performed for sample overview according to the investigated origins (Brazil, Vietnam, and Sri Lanka) and processing (sterilized vs nonsterilized samples). Further orthogonal partial least squares discriminant analysis (OPLS-DA) models were validated by cross- and external validation, providing satisfactory performance for geographical and processing authentication, as well as excellent predictive ability for further samples. Furthermore, reliable putative identification of 12 key metabolites (markers) was performed, highlighting the feasibility of combining untargeted GC-HRMS analysis with chemometrics for quality control of black pepper.
Collapse
Affiliation(s)
- Araceli Rivera-Pérez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120 Almeria, Spain
| | - Roberto Romero-González
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120 Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120 Almeria, Spain
| |
Collapse
|
22
|
Belarbi S, Vivier M, Zaghouani W, Sloovere AD, Agasse-Peulon V, Cardinael P. Comparison of new approach of GC-HRMS (Q-Orbitrap) to GC-MS/MS (triple-quadrupole) in analyzing the pesticide residues and contaminants in complex food matrices. Food Chem 2021; 359:129932. [PMID: 33945988 DOI: 10.1016/j.foodchem.2021.129932] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022]
Abstract
Performances of multiresidue analysis of one hundred of pesticides and contaminants, using GC-Q-Orbitrap method in full scan mode were compared to those obtained with GC-triple-quadrupole method in multiple reaction monitoring mode. In terms of sensitivity, 86% of molecules exhibited lower limit of detection values using GC-Q-Orbitrap than using GC-triple-quadrupole. For the GC-Q-Orbitrap method, more than 85% of the pesticides and contaminants showed good recovery [70-120%] in wheat samples, with relative standard deviation values < 20%. GC-Q-Orbitrap method appeared the most sensitive for most pesticides studied in wheat with limit of quantification values ranged between 0.1 µg/kg and 4 µg/kg. Moreover, the matrix effect was acceptable in wheat extracts for 84 molecules but strong suppression of the chromatographic signal was observed for 16 molecules for the GC-Q-Orbitrap method. The injection of unpurified wheat extracts spiked at 10 µg/kg proved the potential of the GC-Q-Orbitrap method for use in performing high-throughput pesticide screening.
Collapse
Affiliation(s)
- Saida Belarbi
- Normandie Univ, Laboratoire SMS-EA3233, UNIROUEN, FR3038, Place Emile Blondel, F-76821, Mont-Saint-Aignan Cedex, France; SGS France laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, Saint Etienne du Rouvray F-76801 Cedex, France
| | - Martin Vivier
- SGS France laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, Saint Etienne du Rouvray F-76801 Cedex, France
| | - Wafa Zaghouani
- SGS France laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, Saint Etienne du Rouvray F-76801 Cedex, France
| | - Aude De Sloovere
- SGS France laboratoire de Rouen, Technopôle du Madrillet, 65 Avenue Ettore Bugatti, Saint Etienne du Rouvray F-76801 Cedex, France
| | - Valérie Agasse-Peulon
- Normandie Univ, Laboratoire SMS-EA3233, UNIROUEN, FR3038, Place Emile Blondel, F-76821, Mont-Saint-Aignan Cedex, France
| | - Pascal Cardinael
- Normandie Univ, Laboratoire SMS-EA3233, UNIROUEN, FR3038, Place Emile Blondel, F-76821, Mont-Saint-Aignan Cedex, France.
| |
Collapse
|
23
|
Gavage M, Delahaut P, Gillard N. Suitability of High-Resolution Mass Spectrometry for Routine Analysis of Small Molecules in Food, Feed and Water for Safety and Authenticity Purposes: A Review. Foods 2021; 10:601. [PMID: 33809149 PMCID: PMC7998992 DOI: 10.3390/foods10030601] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/05/2022] Open
Abstract
During the last decade, food, feed and environmental analysis using high-resolution mass spectrometry became increasingly popular. Recent accessibility and technological improvements of this system make it a potential tool for routine laboratory work. However, this kind of instrument is still often considered a research tool. The wide range of potential contaminants and residues that must be monitored, including pesticides, veterinary drugs and natural toxins, is steadily increasing. Thanks to full-scan analysis and the theoretically unlimited number of compounds that can be screened in a single analysis, high-resolution mass spectrometry is particularly well-suited for food, feed and water analysis. This review aims, through a series of relevant selected studies and developed methods dedicated to the different classes of contaminants and residues, to demonstrate that high-resolution mass spectrometry can reach detection levels in compliance with current legislation and is a versatile and appropriate tool for routine testing.
Collapse
Affiliation(s)
| | - Philippe Delahaut
- CER Groupe, Rue du Point du Jour 8, 6900 Marloie, Belgium; (M.G.); (N.G.)
| | | |
Collapse
|
24
|
Shuai X, Cai Z, Zhao X, Chen Y, Zhang Q, Ma Z, Hu J, Sun T, Hu S. A New Stationary Phase for Capillary Gas Chromatography: Calix[4]resorcinarene Functionalized with Imidazolium Cationic Units. Chromatographia 2021. [DOI: 10.1007/s10337-021-04018-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|