1
|
He S, Fan Y, Tao S, Zhang Y, Yin C, Yu X. Application of next-generation sequencing in the detection of transgenic crop. Front Genet 2024; 15:1461115. [PMID: 39669118 PMCID: PMC11634860 DOI: 10.3389/fgene.2024.1461115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
With the rapid development of transgenic technology and the increasing prevalence of genetically modified (GMO) crops, incidents such as illegal importation, environmental contamination, and safety concerns associated with GMOs have risen significantly in recent years. Consequently, there is a growing demand for more advanced methods of GMO crop detection. Traditional molecular detection techniques, which rely on nucleic acids or proteins, are becoming less effective due to the increasing complexity of GMO crop genomes. In contrast, detection technologies based on second- and third-generation high-throughput sequencing offer promising solutions to these challenges. This review provides a comprehensive overview of the latest advancements in GMO crop detection technologies, categorizing and describing various approaches, and comparing their respective strengths and limitations. The article emphasizes the current state, benefits, challenges, and future prospects of high-throughput sequencing in GMO detection, aiming to guide further research and development in this field.
Collapse
Affiliation(s)
| | | | | | | | - Chuanlin Yin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | | |
Collapse
|
2
|
Han X, Lu M, Zhang Y, Liu X, Zhang Q, Bai X, Man S, Zhao L, Ma L. A Thermostable Cas12b-Powered Bioassay Coupled with Loop-Mediated Isothermal Amplification in a Customized "One-Pot" Vessel for Visual, Rapid, Sensitive, and On-Site Detection of Genetically Modified Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11195-11204. [PMID: 38564697 DOI: 10.1021/acs.jafc.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genetically modified crops (GMCs) have been discussed due to unknown safety, and thus, it is imperative to develop an effective detection technology. CRISPR/Cas is deemed a burgeoning technology for nucleic acid detection. Herein, we developed a novel detection method for the first time, which combined thermostable Cas12b with loop-mediated isothermal amplification (LAMP), to detect genetically modified (GM) soybeans in a customized one-pot vessel. In our method, LAMP-specific primers were used to amplify the cauliflower mosaic virus 35S promoter (CaMV35S) of the GM soybean samples. The corresponding amplicons activated the trans-cleavage activity of Cas12b, which resulted in the change of fluorescence intensity. The proposed bioassay was capable of detecting synthetic plasmid DNA samples down to 10 copies/μL, and as few as 0.05% transgenic contents could be detected in less than 40 min. This work presented an original detection method for GMCs, which performed rapid, on-site, and deployable detection.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Minghui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaru Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinru Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiang Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Branch of Tianjin Third Central Hospital, Tianjin 300457, China
| | - Xue Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liangjuan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Wang S, Song H, Wang T, Xue H, Fei Y, Xiong X. Recent advancements with loop-mediated isothermal amplification (LAMP) in assessment of the species authenticity with meat and seafood products. Crit Rev Food Sci Nutr 2024; 65:2214-2235. [PMID: 38494899 DOI: 10.1080/10408398.2024.2329979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Species adulteration or mislabeling with meat and seafood products could negatively affect the fair trade, wildlife conservation, food safety, religion aspect, and even the public health. While PCR-based methods remain the gold standard for assessment of the species authenticity, there is an urgent need for alternative testing platforms that are rapid, accurate, simple, and portable. Owing to its ease of use, low cost, and rapidity, LAMP is becoming increasingly used method in food analysis for detecting species adulteration or mislabeling. In this review, we outline how the features of LAMP have been leveraged for species authentication test with meat and seafood products. Meanwhile, as the trend of LAMP detection is simple, rapid and instrument-free, it is of great necessity to carry out end-point visual detection, and the principles of various end-point colorimetry methods are also reviewed. Moreover, with the aim to enhance the LAMP reaction, different strategies are summarized to either suppress the nonspecific amplification, or to avoid the results of nonspecific amplification. Finally, microfluidic chip is a promising point-of-care method, which has been the subject of a great deal of research directed toward the development of microfluidic platforms-based LAMP systems for the species authenticity with meat and seafood products.
Collapse
Affiliation(s)
- Shihui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hongwei Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tianlong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hanyue Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yanjin Fei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
4
|
Wang H, Su A, Chang J, Liu X, Liang C, Xu S. Sensitive detection of genetically modified maize based on a CRISPR/Cas12a system. Analyst 2024; 149:836-845. [PMID: 38167890 DOI: 10.1039/d3an01788e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
With the vigorous development of biotechnology, genetically modified organisms (GMOs) have become more and more common. In order to effectively supervise and administrate them, the rapid and accurate detection of GMOs is urgently demanded. Here, GMO gene-specific sensing methods based on colorimetry and surface-enhanced Raman scattering (SERS) were proposed based on the lateral branch cleavage function of the CRISPR/Cas12a system. Two transgenes, pCaMV35S and M810 Cry1Ab, were chosen as targets for transgenic crops. By using these methods, we performed transgenic detection on five types of maize leaves and successfully distinguished transgenic from non-transgenic samples. The colorimetric method is rapid, economical and available for field detection. The SERS approach, giving a higher sensitivity to 100 fM, is more suitable for laboratory application scenarios. This study explores practical transgenic detection approaches and will be valuable for the supervision of GMOs.
Collapse
Affiliation(s)
- Huimin Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Ailing Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Jingjing Chang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, P. R. China.
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun, 130021, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
5
|
Liu H, Hu X, Zeng H, He C, Cheng F, Tang X, Wang J. A rapid and high-throughput system for the detection of transgenic products based on LAMP-CRISPR-Cas12a. Curr Res Food Sci 2023; 7:100605. [PMID: 37868002 PMCID: PMC10589767 DOI: 10.1016/j.crfs.2023.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
With the increasing acreage of genetically modified crops worldwide, rapid and efficient detection technologies have become very important for the regulation and screening of GM organisms. We constructed a method based on loop-mediated isothermal amplification (LAMP), CRISPR-Cas12a and lateral flow assay (LAMP-CRISPR-Cas12a-LFA). It is an intuitive, sensitive and specific fluorescence detection and test strip system to detect CP4-EPSPS and Cry1Ab/Ac genes in field screening. The LAMP-CRISPR-Cas12a-LFA method has a limit of detection (LOD) of 100 copies based on lateral flow test strips after optimization of the conditions with screened specific primers, and the entire detection process can be completed within 1 h at 61 °C. The system was used to evaluate field test samples and showed high reproducibility after testing products containing CP4-EPSPS and Cry1Ab/Ac genes, and both were detectable. The LAMP-CRISPR-Cas12a-LFA method established in this paper functions as a rapid field detection method. It requires only one portable thermostatic instrument, which renders it compatible with the rapid detection of field samples and useable at experimental workstations, in law enforcement field work, and in local inspection and quarantine departments.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Xiuwen Hu
- College of Food Sciences and Technology, Shanghai Ocean University, 999 Huancheng Road Shanghai, 200120, China
| | - Haijuan Zeng
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Chuan He
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Fang Cheng
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| |
Collapse
|
6
|
Xing Y, Liang J, Dong F, Wu J, Shi J, Xu J, Wang J. Rapid Visual LAMP Method for Detection of Genetically Modified Organisms. ACS OMEGA 2023; 8:29608-29614. [PMID: 37599972 PMCID: PMC10433496 DOI: 10.1021/acsomega.3c03567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
We developed a novel loop-mediated isothermal amplification (LAMP) method using DNA captured on polyacrylamide microparticles (PAMMPs) as templates (PAMMPs@DNA-LAMP) for rapid qualitative detection of genetically modified organisms (GMOs). Here, DNA was extracted by a fast and cost-effective method using PAMMPs. Four LAMP primers were designed for the PAMMPs@DNA-LAMP method to detect the cauliflower mosaic virus 35S (CaMV35S) promotor in GMOs. We thus developed this method for rapid extraction of DNA (5-10 min) and fast amplification of DNA within ∼30 min at a constant temperature of 63 °C. Moreover, the DNA captured by PAMMPs (PAMMPs@DNA) could be effectively detected by both conventional and quantitative PCR (qPCR) and LAMP. The PAMMPs@DNA-LAMP method was validated with high specificity, sensitivity, and performance for practical sample analysis. This assay detected 0.01% target sequences, which had a high specificity like qPCR and better than the conventional PCR (cPCR). Furthermore, PAMMPs@DNA-LAMP was successfully used to extract and detect DNA from food samples of the major crops (soybean, maize, rice, etc.). In summary, a novel PAMMPs@DNA-LAMP assay has been developed, which has higher sensitivity and spends less time than the cPCR detection using the conventional DNA extracted process. This method offers a novel approach for rapid detection of GMOs in the field.
Collapse
Affiliation(s)
- Yujun Xing
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Key Laboratory for Control/Technology
and Standard for Agro-Product Safety and Quality, Ministry of Agriculture
and Rural Affairs/Collaborative Innovation Center for Modern Grain
Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jie Liang
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, China
| | - Fei Dong
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, China
| | - Jirong Wu
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, China
| | - Jianrong Shi
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, China
| | - Jianhong Xu
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Key Laboratory for Control/Technology
and Standard for Agro-Product Safety and Quality, Ministry of Agriculture
and Rural Affairs/Collaborative Innovation Center for Modern Grain
Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinke Wang
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering, Southeast
University, Nanjing 210096, China
| |
Collapse
|
7
|
Zhai S, Yang Y, Wu Y, Li J, Li Y, Wu G, Liang J, Gao H. A visual CRISPR/dCas9-mediated enzyme-linked immunosorbent assay for nucleic acid detection with single-base specificity. Talanta 2023; 257:124318. [PMID: 36796171 DOI: 10.1016/j.talanta.2023.124318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Specific and economical nucleic acid detection is crucial for molecular diagnoses in resource-limited settings. Various facile readout approaches have been developed for nucleic acid detection, but they have limited specificity. Herein, nuclease-dead Cas9 (dCas9)/sgRNA was used as an excellent DNA recognition probe system to develop a visual clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-mediated enzyme-linked immunosorbent assay (ELISA) for specific and sensitive detection of cauliflwer mosaic virus 35s (CaMV35S) promoter in genetically modified (GM) crops. In this work, the CaMV35S promoter was amplified with biotinylated primers, and then precisely bound with dCas9 in the presence of sgRNA. The formed complex was captured by antibody-coated microplate and bound to a streptavidin-labeled horseradish peroxidase probe for the visual detection. Under the optimal conditions, dCas9-ELISA could detect CaMV35s promoter as low as 12.5 copies μL-1. Moreover, the proposed method was capable to distinguish the target sequence with single-base specificity. Coupled with one-step extraction and recombinase polymerase amplification, dCas9-ELISA can identify actual GM rice seeds within 1.5 h from sampling to results without expensive equipment and technical expertise. Therefore, the proposed method offers a specific, sensitive, rapid and cost-effective detection platform for molecular diagnoses.
Collapse
Affiliation(s)
- Shanshan Zhai
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yao Yang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuhua Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yunjing Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Gang Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100176, China.
| | - Hongfei Gao
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
8
|
Wang H, Wang X, Lai K, Yan J. Stimulus-Responsive DNA Hydrogel Biosensors for Food Safety Detection. BIOSENSORS 2023; 13:320. [PMID: 36979532 PMCID: PMC10046603 DOI: 10.3390/bios13030320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Food safety has always been a major global challenge to human health and the effective detection of harmful substances in food can reduce the risk to human health. However, the food industry has been plagued by a lack of effective and sensitive safety monitoring methods due to the tension between the cost and effectiveness of monitoring. DNA-based hydrogels combine the advantages of biocompatibility, programmability, the molecular recognition of DNA molecules, and the hydrophilicity of hydrogels, making them a hotspot in the research field of new nanomaterials. The stimulus response property greatly broadens the function and application range of DNA hydrogel. In recent years, DNA hydrogels based on stimulus-responsive mechanisms have been widely applied in the field of biosensing for the detection of a variety of target substances, including various food contaminants. In this review, we describe the recent advances in the preparation of stimuli-responsive DNA hydrogels, highlighting the progress of its application in food safety detection. Finally, we also discuss the challenges and future application of stimulus-responsive DNA hydrogels.
Collapse
|
9
|
Wang M, Wang H, Li K, Li X, Wang X, Wang Z. Review of CRISPR/Cas Systems on Detection of Nucleotide Sequences. Foods 2023; 12:foods12030477. [PMID: 36766007 PMCID: PMC9913930 DOI: 10.3390/foods12030477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Nowadays, with the rapid development of biotechnology, the CRISPR/Cas technology in particular has produced many new traits and products. Therefore, rapid and high-resolution detection methods for biotechnology products are urgently needed, which is extremely important for safety regulation. Recently, in addition to being gene editing tools, CRISPR/Cas systems have also been used in detection of various targets. CRISPR/Cas systems can be successfully used to detect nucleic acids, proteins, metal ions and others in combination with a variety of technologies, with great application prospects in the future. However, there are still some challenges need to be addressed. In this review, we will list some detection methods of genetically modified (GM) crops, gene-edited crops and single-nucleotide polymorphisms (SNPs) based on CRISPR/Cas systems, hoping to bring some inspiration or ideas to readers.
Collapse
Affiliation(s)
- Mengyu Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haoqian Wang
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Kai Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoman Li
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xujing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhixing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence:
| |
Collapse
|
10
|
Sun X, Liu Y, Niu B, Chen Q, Fang X. Rapid identification and quantitation of single plant seed allergen using paper-based microfluidics. PLoS One 2022; 17:e0266775. [PMID: 36508443 PMCID: PMC9744315 DOI: 10.1371/journal.pone.0266775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Nucleic acid amplification is a sensitive and powerful tool for allergen detection. However, it is limited due to the relatively cumbersome methods required to extract nucleic acids from single plant seed allergen (e.g. peanut and soybean). In view of this, an approach of extracting nucleic acid with untreated glass-fiber paper (paper-based microfluidics) was applied for nucleic acid capture and purification from plant seed allergen and commercial products. After cut by hollow cylindrical cutter, a certain size the paper chip it used to absorb DNA. And this paper-based microfluidics with DNA was directly applied for amplification by loop-mediated isothermal amplification (LAMP). To evaluate the adsorption performance of paper chip to DNA, CTAB and SDS method were used as comparisons. From amplification results, the established technique has good specificity, high repeatability (C.V. values are 4.41% and 6.17% for peanut and soybean) and favorable sensitivity (7.39 ng/μL or peanut and 6.6 ng/μL for soybean), and successfully used for commercial products (2 kinds of candy and 2 kinds of cakes containing peanut, and 2 kinds of drinks, candy and 2 kinds of biscuits containing soybean). This speed and flexible detection method makes it suit for applications in point-of-care (POC) detection at different scenario, such as custom house and import port.
Collapse
Affiliation(s)
- Xiaodong Sun
- School of Medicine, Shanghai University, Shanghai, P.R. China
| | - Yongxin Liu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, P.R. China
- * E-mail: (QC); (XF)
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China
- * E-mail: (QC); (XF)
| |
Collapse
|
11
|
Chou CC, Lin YT, Kuznetsova I, Wang GJ. Genetically Modified Soybean Detection Using a Biosensor Electrode with a Self-Assembled Monolayer of Gold Nanoparticles. BIOSENSORS 2022; 12:207. [PMID: 35448267 PMCID: PMC9025051 DOI: 10.3390/bios12040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, we proposed a genosensor that can qualitatively and quantitatively detect genetically modified soybeans using a simple electrode with evenly distributed single layer gold nanoparticles. The DNA sensing electrode is made by sputtering a gold film on the substrate, and then sequentially depositing 1,6-hexanedithiol and gold nanoparticles with sulfur groups on the substrate. Then, the complementary to the CaMV 35S promoter (P35S) was used as the capture probe. The target DNA directly extracted from the genetically modified soybeans rather than the synthesized DNA segments was used to construct the detection standard curve. The experimental results showed that our genosensor could directly detect genetically modified genes extracted from soybeans. We obtained two percentage calibration curves. The calibration curve corresponding to the lower percentage range (1-6%) exhibits a sensitivity of 2.36 Ω/% with R2 = 0.9983, while the calibration curve corresponding to the higher percentage range (6-40%) possesses a sensitivity of 0.1 Ω/% with R2 = 0.9928. The limit of detection would be 1%. The recovery rates for the 4% and 5.7% GMS DNA were measured to be 104.1% and 102.49% with RSD at 6.24% and 2.54%. The gold nanoparticle sensing electrode developed in this research is suitable for qualitative and quantitative detection of genetically modified soybeans and can be further applied to the detection of other genetically modified crops in the future.
Collapse
Affiliation(s)
- Cheng-Chi Chou
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Ying-Ting Lin
- Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Iren Kuznetsova
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Science, 125009 Moscow, Russia;
| | - Gou-Jen Wang
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan;
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Zhang F, Gao C, Bai L, Chen Y, Liang S, Lv X, Sun J, Wang S. Dual-color blending based visual LAMP for food allergen detection: A strategy with enlarged color variation range and contrast. Food Chem X 2022; 13:100201. [PMID: 35498982 PMCID: PMC9039889 DOI: 10.1016/j.fochx.2021.100201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
A near contrast color change was obtained by blending HNB and CR colorimetric LAMP detection process. The sensitivity of the dual-color blending method was comparable to the real-time LAMP. The ratio between the two visual dyes in the dual-color blending method is crucial. The reaction is conducted in one tube and no lid-opening was needed.
Food allergy has been a serious public health problem around the world. Its prevention relies heavily on the effective avoidance of any contaminated food, making clear and accurate detection very important. LAMP is one of the most potent methods for allergen rapid detection. However, its current colorimetric readouts usually have low color contrast and narrow color variation range. Thus, here we proposed a strategy based on color evolution to enlarge the variation range as well as the contrast to improve its suitability for naked-eye observation. By simply blending two commonly used color change processes during amplification, a wider color variation window, and a near contrast color change, purple-to-green with a hues difference of 10 were obtained. Three important allergens (walnuts, hazelnuts, and peanuts) were tested with a comparable sensitivity towards fluorescent real-time LAMP. Its feasibility for practical use has also been studied. This simple but effective strategy provides a new idea for the colorimetric detection of LAMP amplicons and can be applied to various fields.
Collapse
Affiliation(s)
- Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chenshan Gao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.,Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Linlin Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yiquan Chen
- Clinical Laboratory, Nanan Hospital, Nanan 362300, China
| | - Shuying Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xucong Lv
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
13
|
Li Q, Cheng Y, Xu W, Cui X, Cao M, Xiong X, Wang L, Xiong X. Rapid identification of Atlantic salmon (Salmo salar) based on loop-mediated isothermal amplification (LAMP) using self-quenching fluorogenic approach. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Jang WS, Lim DH, Choe Y, Jee H, Moon KC, Kim C, Choi M, Park IS, Lim CS. Development of a Multiplex Loop-Mediated Isothermal Amplification Assay for Diagnosis of Plasmodium spp., Plasmodium falciparum and Plasmodium vivax. Diagnostics (Basel) 2021; 11:diagnostics11111950. [PMID: 34829295 PMCID: PMC8624697 DOI: 10.3390/diagnostics11111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Malaria, caused by the parasite Plasmodium and transmitted by mosquitoes, is an epidemic that mainly occurs in tropical and subtropical regions. As treatments differ across species of malarial parasites, there is a need to develop rapid diagnostic methods to differentiate malarial species. Herein, we developed a multiplex malaria Pan/Pf/Pv/actin beta loop-mediated isothermal amplification (LAMP) to diagnose Plasmodium spp., P. falciparum, and P. vivax, as well as the internal control (IC), within 40 min. The detection limits of the multiplex malaria Pan/Pf/Pv/IC LAMP were 1 × 102, 1 × 102, 1 × 102, and 1 × 103 copies/µL for four vectors, including the 18S rRNA gene (Plasmodium spp.), lactate dehydrogenase gene (P. falciparum), 16S rRNA gene (P. vivax), and human actin beta gene (IC), respectively. The performance of the LAMP assay was compared and evaluated by evaluating 208 clinical samples (118 positive and 90 negative samples) with the commercial RealStar® Malaria S&T PCR Kit 1.0. The developed multiplex malaria Pan/Pf/Pv/IC LAMP assay showed comparable sensitivity (100%) and specificity (100%) with the commercial RealStar® Malaria S&T PCR Kit 1.0 (100%). These results suggest that the multiplex malaria Pan/Pf/Pv/IC LAMP could be used as a point-of-care molecular diagnostic test for malaria.
Collapse
Affiliation(s)
- Woong Sik Jang
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (W.S.J.); (K.C.M.)
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (D.H.L.); (Y.C.); (H.J.); (C.K.); (M.C.); (I.S.P.)
| | - Da Hye Lim
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (D.H.L.); (Y.C.); (H.J.); (C.K.); (M.C.); (I.S.P.)
| | - YoungLan Choe
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (D.H.L.); (Y.C.); (H.J.); (C.K.); (M.C.); (I.S.P.)
| | - Hyunseul Jee
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (D.H.L.); (Y.C.); (H.J.); (C.K.); (M.C.); (I.S.P.)
| | - Kyung Chul Moon
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (W.S.J.); (K.C.M.)
| | - Chaewon Kim
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (D.H.L.); (Y.C.); (H.J.); (C.K.); (M.C.); (I.S.P.)
| | - Minkyeong Choi
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (D.H.L.); (Y.C.); (H.J.); (C.K.); (M.C.); (I.S.P.)
| | - In Su Park
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (D.H.L.); (Y.C.); (H.J.); (C.K.); (M.C.); (I.S.P.)
| | - Chae Seung Lim
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (D.H.L.); (Y.C.); (H.J.); (C.K.); (M.C.); (I.S.P.)
- Correspondence: ; Tel.: +82-2-2626-3245
| |
Collapse
|
15
|
Tang W, Qi Y, Li Z. A Portable, Cost-Effective and User-Friendly Instrument for Colorimetric Enzyme-Linked Immunosorbent Assay and Rapid Detection of Aflatoxin B 1. Foods 2021; 10:foods10102483. [PMID: 34681534 PMCID: PMC8535515 DOI: 10.3390/foods10102483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
Food analysis based on the enzyme-linked immunosorbent assay (ELISA) is simple, sensitive and rapid, but requires a costly colorimetric instrument. The aim of this work was to develop a portable, low-cost and user-friendly colorimetric instrument for colorimetric ELISA and aflatoxin B1 (AFB1) detection. The principle of the developed instrument was employing a light-emitting diode to generate the signal light and using a light-dependent resistor to measure the signal light absorbed by the oxidized 3,3′,5,5′-tetramethyl benzidine. The absorption spectra revealed that the solution absorbed signal light more strongly after reaction with H2SO4, and blue light would be favorably absorbed. Evaluations on the stability and accuracy of the instrument and interference from ambient light showed that the fabricated instrument was stable, accurate, capable of quantitative detection and insensitive to ambient light changes. In addition, this instrument is user-friendly since it could calculate and report the final amount of AFB1 to the operator. Measurements of maize and peanuts showed that the instrument provided as accurate results as the professional equipment. With the low fabrication cost (about RMB 129 or USD 20), portability, and user-friendliness, this instrument presents attractive potential in the rapid detection of AFB1.
Collapse
|
16
|
Yu Y, Li R, Ma Z, Han M, Zhang S, Zhang M, Qiu Y. Development and evaluation of a novel loop mediated isothermal amplification coupled with TaqMan probe assay for detection of genetically modified organism with NOS terminator. Food Chem 2021; 356:129684. [PMID: 33812194 DOI: 10.1016/j.foodchem.2021.129684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 01/14/2023]
Abstract
In this study, we aim to develop a novel loop mediated isothermal amplification (LAMP) coupled with TaqMan (LAMP-TaqMan) method for quick qualitative detection of genetically modified organism (GMOs). We designed four LAMP primers and one TaqMan probe for the LAMP-TaqMan detection method to detect the nopaline synthase gene (NOS) terminator in GMOs. This assay enabled the amplification of DNA within ~20 min at a constant temperature of 65 °C. This assay detected as few as five copies of target sequences, which had a high specificity similar to the TaqMan qPCR method. Furthermore, the LAMP-TaqMan detection method was successfully used to amplify and detect DNA from food samples of the major crops (soybean, maize, rice, etc.). In summary, a novel LAMP-TaqMan assay has been developed, which has the similar sensitivity but takes less time than the TaqMan qPCR method. This method offers a novel approach for rapid detection of GMOs in foods.
Collapse
Affiliation(s)
- Yanbo Yu
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Rui Li
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Zonghua Ma
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Meihong Han
- College of Animal Science, Yangtze University, Nanhuan Road 1, Jingzhou 434020, China
| | - Sen Zhang
- College of Animal Science, Yangtze University, Nanhuan Road 1, Jingzhou 434020, China
| | - Minghui Zhang
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China; College of Animal Science, Yangtze University, Nanhuan Road 1, Jingzhou 434020, China.
| | - Youwen Qiu
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China.
| |
Collapse
|
17
|
Golabi M, Flodrops M, Grasland B, Vinayaka AC, Quyen TL, Nguyen T, Bang DD, Wolff A. Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and On-Site Detection of Avian Influenza Virus. Front Cell Infect Microbiol 2021; 11:652048. [PMID: 33954120 PMCID: PMC8092359 DOI: 10.3389/fcimb.2021.652048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Avian influenza virus (AIV) outbreaks occur frequently worldwide, causing a potential public health risk and great economic losses to poultry industries. Considering the high mutation rate and frequent genetic reassortment between segments in the genome of AIVs, emerging new strains are a real threat that may infect and spread through the human population, causing a pandemic. Therefore, rapid AIV diagnostic tests are essential tools for surveillance and assessing virus spreading. Real-time reverse transcription PCR (rRT-PCR), targeting the matrix gene, is the main official standard test for AIV detection, but the method requires well-equipped laboratories. Reverse transcription Loop-Mediated Isothermal Amplification (RT-LAMP) has been reported as a rapid method and an alternative to PCR in pathogen detection. The high mutation rate in the AIV genome increases the risk of false negative in nucleic acid amplification methods for detection, such as PCR and LAMP, due to possible mismatched priming. In this study, we analyzed 800 matrix gene sequences of newly isolated AIV in the EU and designed a highly efficient LAMP primer set that covers all AIV subtypes. The designed LAMP primer set was optimized in real-time RT-LAMP (rRT-LAMP) assay. The rRT-LAMP assay detected AIV samples belonging to nine various subtypes with the specificity and sensitivity comparable to the official standard rRT-PCR assay. Further, a two-color visual detection RT-LAMP assay protocol was adapted with the aim to develop on-site diagnostic tests. The on-site testing successfully detected spiked AIV in birds oropharyngeal and cloacal swabs samples at a concentration as low as 100.8 EID50 per reaction within 30 minutes including sample preparation. The results revealed a potential of this newly developed rRT-LAMP assay to detect AIV in complex samples using a simple heat treatment step without the need for RNA extraction.
Collapse
Affiliation(s)
- Mohsen Golabi
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Marion Flodrops
- Laboratory of Ploufragan-Plouzané-Niort, Unit of Avian and Rabbit Virology, Immunology and Parasitology, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Beatrice Grasland
- Laboratory of Ploufragan-Plouzané-Niort, Unit of Avian and Rabbit Virology, Immunology and Parasitology, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Aaydha C Vinayaka
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Than Linh Quyen
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Trieu Nguyen
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dang Duong Bang
- Laboratory of Ploufragan-Plouzané-Niort, Unit of Avian and Rabbit Virology, Immunology and Parasitology, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Anders Wolff
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|