1
|
Shi S, Qi W, Zhang J, Liang C, Liu W, Han H, Zhuang W, Chen T, Sun W, Chen Y. Proteo-Transcriptomic Analysis Reveals the Mechanisms Underlying Escherichia coli Phenotypic Shifts Under Blue Light. Biotechnol Bioeng 2025; 122:1258-1271. [PMID: 39876573 DOI: 10.1002/bit.28939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Bacteria can adapt their lifestyles, including microbial growth, metabolism, and biofilm formation, in response to light signaling. However, the molecular pathways through which blue light affects the lifestyle of Escherichia coli (E. coli) remain incomplete and poorly understood. To address this gap, transcriptomic and proteomic approaches were employed to analyze the physiological differences of E. coli under dark and blue light conditions. Our results indicate that, compared to dark conditions, blue light attenuates flagellar assembly, reduces cell motility and communication, and decreases biofilm formation in E. coli. In addition, this study elucidates the signaling pathways involved in the blue light-mediated regulation of E. coli behavior, providing a theoretical framework for understanding how E. coli responds to blue light signaling to modulate biofilm formation for the production of food chemicals.
Collapse
Affiliation(s)
- Shuqi Shi
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenlu Qi
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jinming Zhang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Caice Liang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hui Han
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhuang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Van Engeland C, Haut B, Debaste F. A Closer Look at the Potential Mechanisms of Action of Protective Agents Used in the Drying of Microorganisms: A Review. Microorganisms 2025; 13:435. [PMID: 40005799 PMCID: PMC11858741 DOI: 10.3390/microorganisms13020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Yeast, bacteria and sourdough are widely used in our daily lives, yet their drying and storage remains a significant challenge. A variety of techniques are used to improve the resistance of cells to thermal, dehydration, oxidative and osmotic stresses, which can occur at different stages of the process. The addition of protective agents prior to drying is a commonly used method, but the mechanisms that may lead to a change in viability following the addition of these agents, or more generally, the interaction between a protective agent and the drying process, are not yet fully understood. This review outlines seven main potential mechanisms, as highlighted in the literature, which can lead to internal or external modifications of the cells. The mechanisms in question are change of membrane fluidity, accumulation of compounds for osmoregulation, prior osmotic dehydration, prevention of oxidation, coating or encapsulation, enhancement in thermal resistance and change in drying kinetics. A comprehensive explanation of these mechanisms is provided. This review also highlights the connection between the mechanisms and the influence of the stresses occurring during drying and storage, which depend on the drying technique used and the operating conditions, the strains and the protective agents involved, on the importance of the different protection mechanisms. By gaining a deeper understanding of the mechanisms of action of protective agents, strategies to improve the quality of the microorganisms obtained after drying can be developed. One such strategy would be to combine several agents to achieve a synergistic effect.
Collapse
Affiliation(s)
| | | | - Frédéric Debaste
- Transfers, Interfaces and Processes (TIPs), Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 CP165/67, 1050 Bruxelles, Belgium; (C.V.E.); (B.H.)
| |
Collapse
|
3
|
Liu S, Song D, Liu B, Dong K, Jiang Y, Man C, Yang X, Zhao F. Transcriptomic Analyses to Unravel Cronobacter sakazakii Resistance Pathways. Foods 2024; 13:2786. [PMID: 39272551 PMCID: PMC11394748 DOI: 10.3390/foods13172786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The proliferation of antibiotic usage has precipitated the emergence of drug-resistant variants of bacteria, thereby augmenting their capacity to withstand pharmaceutical interventions. Among these variants, Cronobacter sakazakii (C. sakazakii), prevalent in powdered infant formula (PIF), poses a grave threat to the well-being of infants. Presently, global contamination by C. sakazakii is being observed. Consequently, research endeavors have been initiated to explore the strain's drug resistance capabilities, alterations in virulence levels, and resistance mechanisms. The primary objective of this study is to investigate the resistance mechanisms and virulence levels of C. sakazakii induced by five distinct antibiotics, while concurrently conducting transcriptomic analyses. Compared to the susceptible strains prior to induction, the drug-resistant strains exhibited differential gene expression, resulting in modifications in the activity of relevant enzymes and biofilm secretion. Transcriptomic studies have shown that the expression of glutathione S-transferase and other genes were significantly upregulated after induction, leading to a notable enhancement in biofilm formation ability, alongside the existence of antibiotic resistance mechanisms associated with efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. These alterations significantly influence the strain's resistance profile.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Danliangmin Song
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Biqi Liu
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Kai Dong
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Yujun Jiang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Chaoxin Man
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Xinyan Yang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China
| | - Feng Zhao
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China
| |
Collapse
|
4
|
Sun Y, Su X, Zhao L, Sun T, Liu W. Carbon metabolism of a novel isolate from Lacticaseibacillus rhamnosus Probio-M9 derived through space mutant. J Appl Microbiol 2024; 135:lxae205. [PMID: 39152088 DOI: 10.1093/jambio/lxae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/07/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
AIMS Carbon source is a necessary nutrient for bacterial strain growth. In industrial production, the cost of using different carbon sources varies greatly. Moreover, the complex environment in space may cause metabolic a series of changes in the strain, and this method has been successfully applied in some basic research. To date, space mutagenesis is still limited number of studies, particularly in carbon metabolism of probiotics. METHODS AND RESULTS HG-R7970-41 was isolated from bacterium suspension (Probio-M9) after space flight, which can produce capsular polysaccharide after space mutagenesis. Phenotype Microarray (PM) was used to evaluated the metabolism of HG-R7970-41 in 190 single carbon sources. RNA sequencing and total protein identification of two strains revealed their different carbon metabolism mechanisms. PM results demonstrated the metabolism of 10 carbon sources were different between Probio-M9 and HG-R7970-41. Transcriptomic and proteomic analyses revealed that this change in carbon metabolism of HG-R7970-41 mainly related to changes in phosphorylation and the glycolysis pathway. Based on the metabolic mechanism of different carbon sources and related gene cluster analysis, we found that the final metabolic activities of HG-R7970-41 and Probio-M9 were mainly regulated by PTS-specific membrane embedded permease, carbohydrate kinase and two rate-limiting enzymes (phosphofructokinase and pyruvate kinase) in the glycolysis pathway. The expanded culture test also confirmed that HG-R7970-41 had different metabolic characteristics from original strain. CONCLUSIONS These results suggested that space environment could change carbon metabolism of Probio-M9. The new isolate (HG-R7970-41) showed a different carbon metabolism pattern from the original strain mainly by the regulation of two rate-limiting enzymes.
Collapse
Affiliation(s)
- Yue Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
- College of Food Science and Technology, Wuhan Business University, Wuhan, Hubei province, 430056, China
| | - Xin Su
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Lixia Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Tiansong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Wenjun Liu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| |
Collapse
|
5
|
Zhang T, Yang Y, Zeng X, Wu Z, Pan D, Luo H, Tao M, Guo Y. Protective mechanism of milk fat globule membrane proteins on Lactobacillus acidophilus CICC 6074 under acid stress based on proteomic analysis. Food Chem 2024; 434:137297. [PMID: 37741242 DOI: 10.1016/j.foodchem.2023.137297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/25/2023]
Abstract
The prerequisite for lactic acid bacteria to perform their probiotic function is that they could survive the acid-stressed environment of production and application. In this experiment, the protective mechanism of milk fat globule membrane (MFGM) proteins on lactic acid bacteria under acid stress was investigated. Scanning electron microscopy and fluorescence probe were used to analyze the condition of the acid-treated bacteria, which showed that MFGM proteins could enhance the survival ability of Lactobacillus acidophilus CICC 6074 under acid stress by maintaining cell morphology, elevating intracellular pH and H+-ATPase activity. Furthermore, Tandem Mass Tags (TMT) proteomic analysis revealed that MFGM protein could exert protective effects on L. acidophilus CICC 6074 by regulating amino acid metabolism, ATPase activity, peptidoglycan synthesis, gene repair and heritage, etc. The results will provide a new approach for the protection and development of functional lactic acid bacteria.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Yujie Yang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Haibo Luo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Mingxuan Tao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
6
|
Ding X, Qian F, Mu G, Tuo Y. Optimization of medium composition of Lactobacillus plantarum Y44 using Plackett -Burman and Box-Behnken designs. Prep Biochem Biotechnol 2023; 53:1058-1066. [PMID: 36719814 DOI: 10.1080/10826068.2023.2166957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The biomass of Lactobacillus strains depends on the culture media and culture conditions. The purpose of this study was to optimize the culture medium composition and culture conditions of Lactobacillus plantarum Y44 to improve its biomass. The utilization of different carbon sources and nitrogen sources by L. plantarum Y44 was assessed by single factor experiment to screen out the economical carbon and nitrogen sources for L. plantarum Y44 growth. Through optimization experiments, the optimized culture medium for L. plantarum Y44 growth consists of soybean peptone 44.1 g/L, yeast extract 22.1 g/L, sucrose 35.6 g/L, hydrogen diamine citrate 2 g/L, anhydrous sodium acetate 8.5 g/L, dipotassium hydrogen phosphate 4 g/L, Tween-80 2 mL/L, manganese sulfate 0.25 g/L, and magnesium sulfate 0.58 g/L, and the initial pH 6.7. The concentration of viable bacteria cells of L. plantarum Y44 culturing in the optimized medium at 37 °C for 16 h was up to 3.363 × 1010 CFU/mL, as 6.11 times higher than that in the MRS medium.
Collapse
Affiliation(s)
- Xiang Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, P. R. China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
7
|
Zhang T, Guo Y, Fan X, Liu M, Xu J, Zeng X, Sun Y, Wu Z, Pan D. Protection Mechanism of Metal Ion Pre-Stress on Lactobacillus acidophilus CICC 6074 under Acid Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13304-13315. [PMID: 37639527 DOI: 10.1021/acs.jafc.3c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The prerequisite for the probiotic effect of lactic acid bacteria is that they could survive the acid stress environment of production and application. In this experiment, the mechanism for the effect of different metal ion pre-stress on the acid-tolerant survival of Lactobacillus was investigated. Scanning electron microscopy, Fourier infrared spectroscopy, and flow cytometry were used to analyze the condition of bacteria after acid treatment, which revealed that different metal ion pre-stress could improve the survival ability of Lactobacillus acidophilus CICC 6074 under low acid conditions by improving cell morphology, mitigating cell membrane damage, and regulating surface protein expression. Furthermore, Tandem Mass Tags (TMT) proteomic analysis revealed that Mn2+ pre-stress showed relatively more superior protective effects on acid tolerance in L. acidophilus CICC 6074 through activation of DNA replication, RNA synthesis, S-layer protein secretion, H+-ATPase enzyme activity, etc. This study will provide new ideas and a theoretical basis for the development and application of lactic acid bacteria.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiankang Fan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Mingzhen Liu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Jue Xu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| |
Collapse
|
8
|
Sun Y, Guo S, Yang J, Li Y, Sun Z, Kwok LY, Sun T, Liu W, Liu W. The Space Environment Activates Capsular Polysaccharide Production in Lacticaseibacillus rhamnosus Probio-M9 by Mutating the wze ( ywqD) Gene. Microbiol Spectr 2023; 11:e0467722. [PMID: 36861974 PMCID: PMC10101077 DOI: 10.1128/spectrum.04677-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
The study of microorganisms in outer space has focused mainly on investigating phenotypic changes in microbial pathogens induced by factors encountered in space. This study aimed to investigate the effect of space exposure on a probiotic bacterium, Lacticaseibacillus rhamnosus Probio-M9. Probio-M9 cells were exposed to space in a spaceflight. Interestingly, our results showed that a substantial proportion of space-exposed mutants (35/100) exhibited a ropy phenotype, characterized by their larger colony sizes and an acquired ability to produce capsular polysaccharide (CPS), compared with the original Probio-M9 or the ground control isolates without space exposure. Whole-genome sequencing analyses on both the Illumina and PacBio platforms revealed a skewed distribution of single nucleotide polymorphisms (12/89 [13.5%]) toward the CPS gene cluster, particularly in the wze (ywqD) gene. The wze gene encodes a putative tyrosine-protein kinase that regulates CPS expression through substrate phosphorylation. Transcriptomics analysis of two space-exposed ropy mutants revealed increased expression in the wze gene relative to a ground control isolate. Finally, we showed that the acquired ropy phenotype (CPS-producing ability) and space-induced genomic changes could be stably inherited. Our findings confirmed that the wze gene directly influences the capacity for CPS production in Probio-M9, and space mutagenesis is a potential strategy for inducing stable physiological changes in probiotics. IMPORTANCE This work investigated the effect of space exposure on a probiotic bacterium, Lacticaseibacillus rhamnosus Probio-M9. Interestingly, the space-exposed bacteria became capable of producing capsular polysaccharide (CPS). Some probiotic-derived CPSs have nutraceutical potential and bioactive properties. They also enhance the survival of probiotics through the gastrointestinal transit and ultimately strengthen the probiotic effects. Space mutagenesis seems to be a promising strategy for inducing stable changes in probiotics, and the obtained high-CPS-yielding mutants are valuable resources for future applications.
Collapse
Affiliation(s)
- Yue Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Shuai Guo
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Jingfang Yang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yingmeng Li
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, People’s Republic of China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Tiansong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, People’s Republic of China
| | - Wenjun Liu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
9
|
Yu HY, Rhim DB, Kim SK, Ban OH, Oh SK, Seo J, Hong SK. Growth promotion effect of red ginseng dietary fiber to probiotics and transcriptome analysis of Lactiplantibacillus plantarum. J Ginseng Res 2023; 47:159-165. [PMID: 36644380 PMCID: PMC9834016 DOI: 10.1016/j.jgr.2022.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background Red ginseng marc, the residue of red ginseng left after water extraction, is rich in dietary fiber. Dietary fiber derived from fruits or vegetables can promote the proliferation of probiotics, and it is a key technology in the food industry to increase the productivity of probiotics by adding growth-enhancing substances such as dietary fiber. In this study, the effect of red ginseng dietary fiber (RGDF) on the growth of probiotic bacterial strains was investigated at the phenotypic and genetic levels. Methods We performed transcriptome profiling of Lactiplantibacillus plantarum IDCC3501 in two phases of culture (logarithmic (L)-phase and stationary (S)-phase) in two culture conditions (with or without RGDF) using RNA-seq. Differentially expressed genes (DEGs) were identified and classified according to Gene Ontology terms. Results The growth of L.plantarum IDCC3501 was enhanced in medium supplemented with RGDF up to 2%. As a result of DEG analysis, 29 genes were upregulated and 30 were downregulated in the RGDF-treated group in the L-phase. In the S-phase, 57 genes were upregulated and 126 were downregulated in the RGDF-treated group. Among the upregulated genes, 5 were upregulated only in the L-phase, 10 were upregulated only in the S-phase, and 3 were upregulated in both the L- and S-phases. Conclusions Transcriptome analysis could be a valuable tool for elucidating the molecular mechanisms by which RGDF promotes the proliferation of L.plantarum IDCC3501. This growth-promoting effect of RGDF is important, since RGDF could be used as a prebiotic source without additional chemical or enzymatic processing.
Collapse
Affiliation(s)
- Hye-Young Yu
- Laboratory of Red Ginseng Products, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Dong-Bin Rhim
- Laboratory of Red Ginseng Products, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sang-Kyu Kim
- Laboratory of Red Ginseng Products, Korea Ginseng Corporation, Daejeon, Republic of Korea
- Corresponding author. Sang-Kyu Kim, Laboratory of Red Ginseng Products, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea.
| | - O-Hyun Ban
- Ildong Bioscience, Pyeongteak, Republic of Korea
| | - Sang-Ki Oh
- Ildong Bioscience, Pyeongteak, Republic of Korea
| | - Jiho Seo
- Laboratory of Red Ginseng Products, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Soon-Ki Hong
- Laboratory of Red Ginseng Products, Korea Ginseng Corporation, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Qiaoling Z, Lili M, Jinqi C, Ruoru Z, Jingjing E, Caiqing Y, Ruixue W, Junguo W. Effects of the repair treatment on improving the heat resistance of Lactiplantibacillus plantarum LIP-1. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Lu Y, Xing S, He L, Li C, Wang X, Zeng X, Dai Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022; 11:3063. [PMID: 36230139 PMCID: PMC9563398 DOI: 10.3390/foods11193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacilli have been widely concerned for decades. Bacteria of the genus Lactobacillus have been commonly employed in fermented food to improve the appearance, smell, and taste of food or prolong its shelf-life. They comprise 261 species (by March 2020) that are highly diverse at the phenotypic, ecological, and genotypic levels. Some Lactobacilli strains have been documented to be essential probiotics, which are defined as a group of living microorganisms that are beneficial to the health of the host when ingested in sufficiency. However, the characterization, high-density fermentation, and the production of a directed vat set (DVS) starter of Lactobacilli strains used in the food industry have not been systematically reported. This paper mainly focuses on reviewing Lactobacilli as functional starter cultures in the food industry, including different molecular techniques for identification at the species and strain levels, methods for evaluating Lactobacilli properties, enhancing their performance and improving the cell density of Lactobacilli, and the production techniques of DVS starter of Lactobacilli strains. Moreover, this review further discussed the existing problems and future development prospects of Lactobacilli in the food industry. The viability and stability of Lactobacilli in the food industry and gastrointestinal environment are critical challenges at the industrial scale. The new production equipment and technology of DVS starter of Lactobacilli strains will have the potential for large-scale application, for example, developing low-temperature spray drying, freezing granulation drying, and spray freeze-drying.
Collapse
Affiliation(s)
- Yun Lu
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- Department of Brewing Engineering, Moutai University, Renhuai 564507, China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Antimicrobial activity against Staphylococcus aureus and genome features of Lactiplantibacillus plantarum LR-14 from Sichuan pickles. Arch Microbiol 2022; 204:637. [PMID: 36127470 DOI: 10.1007/s00203-022-03232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
The persistence of Staphylococcus aureus within biofilm can lead to contamination of medical devices and life-threatening infections. Luckily, lactic acid bacteria (LAB) have an inhibitory effect on the growth of these bacteria. This study aims to select LAB strains from fermented vegetables, and analyze their potential inhibition activities against S. aureus. In total, 45 isolates of LAB were successfully isolated from Sichuan pickles, and the CFS of Lactiplantibacillus plantarum LR-14 exerted the strongest inhibitory effect against S. aureus. Moreover, S. aureus cells in planktonic and biofilm states both wrinkled and damaged when treated with the CFS of L. plantarum LR-14. In addition, whole genome sequencing analysis indicates that L. plantarum LR-14 contains various functional genes, including predicted extracellular polysaccharides (EPS) biosynthesis genes, and genes participating in the synthesis and metabolism of fatty acid, implying that L. plantarum LR-14 has the potential to be used as a probiotic with multiple functions.
Collapse
|
13
|
Yiasmin MN, Islam MS, Md Easdani, Yang R, Yanjun T, Hua X. Fermentability of Maitake polysaccharides processed by various hydrothermal conditions and fermented with probiotic (Lactobacillus). Int J Biol Macromol 2022; 209:1075-1087. [PMID: 35447269 DOI: 10.1016/j.ijbiomac.2022.04.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/05/2022]
Abstract
Maitake polysaccharides, after hydrothermal processing, were fermented with Lactobacillus acidophilus CCFM202 (L.A.) and Lactobacillus plantarum CCFM6392 (L.P.). The degradation of molecular weight of polysaccharides by hydrothermal processing under acidic conditions was obviously enhanced, which turned part of the water-insoluble-polysaccharides (WIP) into water-soluble-polysaccharides (WSPs). The pH value of water-soluble-polysaccharides (WSPs) and water-insoluble-polysaccharides (WIPs) were intensely dropped (4- 5) after 24 h fermentation. The optical density (O.D.) was increased (1.4- 2.3) due to bacterial growth, and short-chain fatty acids also followed this trend. LA-WSP predominantly produced acetic acid, 3- 4 folds to lactic acid, while LP-WIP groups produced dominant butyric acid (15- 17 folds). Hydrothermal processing induced the growth of L.A. and L.P., where the highest abundance was 2.5 × 104. From the Venn diagram, WSP-1 produced the most elevated metabolites (874). Therefore, experimental results show a significant impact on making WSPs fragments, whereas temperature and pH influence the WSPs degradation, withstand to higher fermentation efficacy.
Collapse
Affiliation(s)
- Mst Nushrat Yiasmin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, China
| | - Md Serajul Islam
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, China
| | - Md Easdani
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, China; Department of Food Engineering and Technology, State University of Bangladesh, 138, Kalabagan, Mirpur Road, Dhaka 1205, Bangladesh
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, China
| | - Tong Yanjun
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, China.
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China.
| |
Collapse
|
14
|
Functional Characterization and Whole-Genome Analysis of an Aflatoxin-Degrading Rhodococcus pyridinivorans Strain. BIOLOGY 2022; 11:biology11050774. [PMID: 35625502 PMCID: PMC9138218 DOI: 10.3390/biology11050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary The microbiological degradation of AFB1 has been a promising approach to control AFB1 contamination. Here, we characterize a Rhodococcus pyridinivorans strain that can efficiently degrade AFB1. The AFB1-degrading capacity of this bacterial strain was characterized, and the completed genome was sequenced and analyzed. Further proteomic analyses of this strain identified a total of 723 proteins in an extracellular component that showed the strongest capacity to degrade AFB1 (degradation rate 83.7%). Multiple potential AFB1-degrading enzymes, and enzymes that are reported to respond to AFB1 treatment, have been identified accordingly. These findings provide a genomic, proteomic, and experimental approach for characterizing an efficient AFB1-degrading bacterial strain with great potential for use in the remediation of AFB1 contamination. Abstract Aflatoxin B1 (AFB1) is one of the most toxic, naturally occurring carcinogen compounds and is produced by specific strains of fungi. Crop contamination with AFB1 can cause huge economic losses and serious health problems. Many studies have examined the microbiological degradation of AFB1, especially the use of efficient AFB1-degrading microorganisms, to control AFB1 contamination. Here, we reported the identification of a new Rhodococcus pyridinivorans strain (4-4) that can efficiently degrade AFB1 (degradation rate 84.9%). The extracellular component of this strain showed the strongest capacity to degrade AFB1 (degradation rate 83.7%). The effects of proteinase K, SDS, temperature, pH, incubation time, and AFB1 concentration on the AFB1 degradation ability of the extracellular component were investigated. We sequenced the complete genome of this strain, encoding 5246 protein-coding genes and 169 RNA genes on a circular chromosome and two plasmids. Comparative genomic analysis revealed high homology with other Rhodococcus strains with high AFB1-degradation ability. Further proteomic analyses of this strain identified a total of 723 proteins in the extracellular component, including multiple potential AFB1-degrading enzymes, along with enzymes that are reported to response to AFB1 treatment. Overall, the results demonstrate that R. pyridinivorans 4-4 would be an excellent candidate for the biodegradation and detoxification of AFB1 contamination.
Collapse
|
15
|
Wang R, Sun R, Yang Y, E J, Yao C, Zhang Q, Chen Z, Ma R, Li J, Zhang J, Wang J. Effects of salt stress on the freeze-drying survival rate of Lactiplantibacillus plantarum LIP-1. Food Microbiol 2022; 105:104009. [DOI: 10.1016/j.fm.2022.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022]
|
16
|
Chen Z, E J, Ma R, Zhang J, Yao C, Wang R, Zhang Q, Yang Y, Li J, Wang J. The effect of aspartic acid on the freeze-drying survival rate of Lactobacillus plantarum LIP-1 and its inherent mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Cheng Z, Yan X, Wu J, Weng P, Wu Z. Effects of freeze drying in complex lyoprotectants on the survival, and membrane fatty acid composition of Lactobacillus plantarum L1 and Lactobacillus fermentum L2. Cryobiology 2022; 105:1-9. [DOI: 10.1016/j.cryobiol.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
|
18
|
Tie Y, Zhu W, Zhang C, Yin L, Zhang Y, Liu L, Yuan H. Identification of Two Myrosinases from a Leclercia adecarboxylata Strain and Investigation of Its Tolerance Mechanism to Glucosinolate Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14151-14164. [PMID: 34806371 DOI: 10.1021/acs.jafc.1c05285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glucosinolates (GSLs), secondary metabolites synthesized by cruciferous plants, can be hydrolyzed by myrosinase into compounds, such as isothiocyanates (ITCs), with various bioactivities. Thus, myrosinase plays an important role in the utilization of GSLs. We isolated a bacterial strain, which was identified as Leclercia adecarboxylata, from the rhizosphere soil of rape seedlings and identified two myrosinase genes and an ITC hydrolase gene. Both myrosinases are intracellular and have 658 amino acid residues. Via molecular docking and chemical modification assays investigating the active sites of the myrosinases, arginine was found to be essential for their catalytic activity. Transcriptomic analysis of the response to sinigrin revealed significant up-regulation of some genes involved in allyl-ITC detoxification, with metallo-β-lactamase 3836 having the highest fold change. Thus, we discovered two myrosinases from L. adecarboxylata and demonstrated that the mechanism of tolerance of the bacterium to allyl-ITC likely involved metallo-β-lactamase activity.
Collapse
Affiliation(s)
- Yu Tie
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Wenyou Zhu
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Chao Zhang
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Liguo Yin
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Yalin Zhang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Linpei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Huawei Yuan
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| |
Collapse
|
19
|
Wang G, Pu J, Dong C, Zheng X, Guo B, Xia Y, Ai L. Effect of oleic acid on the viability of different freeze-dried Lactiplantibacillus plantarum strains. J Dairy Sci 2021; 104:11457-11465. [PMID: 34419274 DOI: 10.3168/jds.2020-20070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/05/2021] [Indexed: 12/20/2022]
Abstract
Freeze drying is one of the most convenient ways to preserve microorganisms, but in the freeze-drying process, strains will inevitably suffer varying degrees of damage under different conditions. The deterioration of cell membrane integrity is one of the main forms of damage. The type and ratio of fatty acids in the cell membrane affect its characteristics. Therefore, it is worth investigating whether certain fatty acids can increase freeze-drying resistance. In this study, we found that adding a low concentration of oleic acid to a cryoprotectant could increase survival rate of strains of Lactiplantibacillus plantarum following freeze drying, and the optimal concentration of oleic acid was determined to be 0.001%. When 0.001% oleic acid was added to phosphate-buffered saline, the freeze-drying survival rate of L. plantarum increased by up to 6.63 times. Adding 0.001% oleic acid to sorbitol, the survival rate of L. plantarum increased by as much as 3.65 times. The 0.001% oleic acid-sucrose cryoprotectant resulted in a freeze-drying survival rate of L. plantarum of about 90%, a 2.26-fold improvement compared with sucrose alone. Although the effect of oleic acid depends on the cryoprotectants used and the strain treated, addition of oleic acid showed significant improvement overall. Further experiments showed that adding a low concentration of oleic acid to the cryoprotectants improved the freeze-drying survival rate of L. plantarum by maintaining cell membrane integrity and lactate dehydrogenase activity. Our findings provide a new strategy for safeguarding bacterial viability in commonly used cryoprotectants by the addition of a common food ingredient, which may be extensively applied in the food industry.
Collapse
Affiliation(s)
- Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Pu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Dong
- Shanghai Tofflon Science and Technology Co. Ltd., Shanghai 201108, China
| | - Xiaodong Zheng
- Shanghai Tofflon Science and Technology Co. Ltd., Shanghai 201108, China
| | - Baisong Guo
- Shanghai Tofflon Science and Technology Co. Ltd., Shanghai 201108, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
20
|
Jingjing E, Rongze M, Zichao C, Caiqing Y, Ruixue W, Qiaoling Z, Zongbai H, Ruiyin S, Junguo W. Improving the freeze-drying survival rate of Lactobacillus plantarum LIP-1 by increasing biofilm formation based on adjusting the composition of buffer salts in medium. Food Chem 2020; 338:128134. [PMID: 33091996 DOI: 10.1016/j.foodchem.2020.128134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/14/2020] [Accepted: 09/16/2020] [Indexed: 02/01/2023]
Abstract
Lactic acid bacteria can improve their resistance to adverse environments through the formation of biofilm. This study found that adding different buffer salts in culture medium had a great impact on the freeze-drying survival rate of the Lactobacillus plantarum LIP-1, which could be linked to biofilm formation. Transcriptome data showed that potassium ions in buffer salt increased the expression of the luxS gene in the LuxS/autoinducer-2 (AI-2) quorum sensing system and increase synthesis of the quorum sensing signal AI-2. The AI-2 signal molecules up-regulated the cysE gene, which helps to promote biofilm formation. By adding a biofilm inhibitor, d-galactose, and performing a real-time quantitative polymerase chain reaction experiment, we found that d-galactose could down-regulated the luxS and cysE genes, reduced biofilm formation, and decreased the freeze-drying survival rate. The results of this study showed that promoting biofilm formation using appropriate buffer salts may lead to better freeze-drying survival rates.
Collapse
Affiliation(s)
- E Jingjing
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Ma Rongze
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Chen Zichao
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Yao Caiqing
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Wang Ruixue
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhang Qiaoling
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - He Zongbai
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Sun Ruiyin
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Wang Junguo
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China.
| |
Collapse
|