1
|
Chaslin M, Maroun G, Durand E, Bonafos B, Assou S, Chaiyut J, Vaysse L, Ferrer V, Liengprayoon S, Brioche T, Pessemesse L, Macart M, Bertrand-Gaday C, Pers YM, Coudray C, Brondello JM, Casas F, Feillet-Coudray C. Furan fatty acids supplementation in obese mice reverses hepatic steatosis and protects against cartilage degradation. Biomed Pharmacother 2025; 187:118072. [PMID: 40253827 DOI: 10.1016/j.biopha.2025.118072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Obesity is a major global health problem associated with numerous metabolic dysfunctions, an increased risk of developing Metabolic Associated Steatotic Liver Disease (MASLD) and osteoarthritis. Recently, we demonstrated that in Diet-induced-Obesity (DIO) mouse model, preventive furan fatty acids (FuFA-F2) supplementation, a natural compounds found in many foods, reduced the onset of metabolic disorders and increased muscle mass. Here, we aimed to determine whether a short FuFA-F2 supplementation is capable of providing beneficial health effects in obese mice, notably by reversing metabolic disorders and limiting cartilage degradation. 6-month-old obese C57Bl/6 J mice were fed for four additional weeks on a high-fat and high-sucrose (HFHS) diet, supplemented or not with FuFA-F2 (40 mg/day/kg of body weight). Liver triglyceride content and histologic analysis revealed that 4 weeks of FuFA-F2 supplementation fully reversed hepatic steatosis in obese mice. Liver RNA-sequencing analysis highlighted that FuFA-F2 partly reversed the gene expression signature induced by the HFHS diet and favorably changed the expression of many genes known to be involved in the development of hepatic steatosis such as Pcsk9, Stard4, Insig1 and Sulf2. We also found that FuFA-F2 supplementation increased skeletal muscle mass and protected against cartilage degradation and synovitis induced by obesity. Our findings demonstrated that FuFA-F2 supplementation for 4 weeks in obese mice was enough to reverse the development of MASLD, promote an increase in skeletal muscle mass and protect against cartilage degradation induced by the HFHS diet. This study highlights that nutritional supplementation with FuFA-F2 could be an effective approach to treat obesity-related disorders.
Collapse
Affiliation(s)
| | - Georges Maroun
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France
| | - Erwann Durand
- Qualisud, Univ Montpellier, CIRAD, Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | | | - Said Assou
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France
| | - Jatuporn Chaiyut
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | - Laurent Vaysse
- CIRAD, UPR BioWooEB, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Vincent Ferrer
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand; CIRAD, UPR BioWooEB, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Siriluck Liengprayoon
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | - Yves-Marie Pers
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France; Montpellier University Hospital, Clinical immunology and osteoarticular diseases therapeutic Unit, Lapeyronie, Montpellier, France
| | | | - Jean-Marc Brondello
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France
| | | | | |
Collapse
|
2
|
Zheng Y, Oellig C, Zhu L, Bauer V, Vetter W, Zhang Y. Revealing the key aroma codes and (furan) fatty acids in fresh red goji berries and the impacts of the hot-air drying process. Food Chem 2025; 484:144336. [PMID: 40273869 DOI: 10.1016/j.foodchem.2025.144336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
The key aroma components and (furan) fatty acids in fresh red goji berries were determined and their variations after hot-air drying were investigated to understand the impacts of drying. 22 of the 46 detected aroma components were found to be the key aroma components in fresh red goji berries, including (E)-β-damascenone, 1-octen-3-one, and trans-4,5-epoxy-(E)-2-decenal, which elicited the cooked apple-like, mushroom-like, and metallic odor impressions. Linoleic acid, oleic acid, and palmitic acid were the predominant fatty acids. Furan fatty acid (FuFA) in fresh red goji berries was measured for the first time and 11-(3,4-dimethyl-5-pentylfuran-2-yl)-undecanoic acid (11D5) was the only FuFA. The subsequent analysis of hot-air-dried red goji berries at 50 °C caused the increment in the contents of fatty acids. A remarkable decrease was found in lipid-derived aroma components and FuFA, especially aldehydes, ketones, and 11D5. In addition, the rare 9-(5-pentylfuran-2-yl)-nonanoic acid (9F5) was detected in red goji berries after drying.
Collapse
Affiliation(s)
- Yan Zheng
- Institute of Food Chemistry (170a), University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany.
| | - Claudia Oellig
- Institute of Food Chemistry (170a), University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany.
| | - Lin Zhu
- Department of Flavor Chemistry (150h), University of Hohenheim, Fruwirthstraße 12, D-70599 Stuttgart, Germany.
| | - Vanessa Bauer
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany.
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany.
| | - Yanyan Zhang
- Department of Flavor Chemistry (150h), University of Hohenheim, Fruwirthstraße 12, D-70599 Stuttgart, Germany.
| |
Collapse
|
3
|
Shi J, Yu Y, Yuan H, Li Y, Xue Y. Mitochondrial dysfunction in AMI: mechanisms and therapeutic perspectives. J Transl Med 2025; 23:418. [PMID: 40211347 PMCID: PMC11987341 DOI: 10.1186/s12967-025-06406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/20/2025] [Indexed: 04/13/2025] Open
Abstract
Acute myocardial infarction (AMI) and the myocardial ischemia-reperfusion injury (MI/RI) that typically ensues represent a significant global health burden, accounting for a considerable number of deaths and disabilities. In the context of AMI, percutaneous coronary intervention (PCI) is the preferred treatment option for reducing acute ischemic damage to the heart. Despite the modernity of PCI therapy, pathological damage to cardiomyocytes due to MI/RI remains an important target for intervention that affects the long-term prognosis of patients. In recent years, mitochondrial dysfunction during AMI has been increasingly recognized as a critical factor in cardiomyocyte death. Damaged mitochondria play an active role in the formation of an inflammatory environment by triggering key signaling pathways, including those mediated by cyclic GMP-AMP synthase, NOD-like receptors and Toll-like receptors. This review emphasizes the dual role of mitochondria as both contributors to and regulators of inflammation. The aim is to explore the complex mechanisms of mitochondrial dysfunction in AMI and its profound impact on immune dysregulation. Specific interventions including mitochondrial-targeted antioxidants, membrane-stabilizing peptides, and mitochondrial transplantation therapies have demonstrated efficacy in preclinical AMI models.
Collapse
Affiliation(s)
- Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Merheb C, Gerbal-Chaloin S, Casas F, Diab-Assaf M, Daujat-Chavanieu M, Feillet-Coudray C. Omega-3 Fatty Acids, Furan Fatty Acids, and Hydroxy Fatty Acid Esters: Dietary Bioactive Lipids with Potential Benefits for MAFLD and Liver Health. Nutrients 2025; 17:1031. [PMID: 40292496 PMCID: PMC11945187 DOI: 10.3390/nu17061031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common form of chronic liver disease, for which only resmetirom has recently received FDA approval. Prevention is crucial, as it can help manage and potentially reverse the progression of MAFLD to more severe stages. Omega-3 fatty acids, which are a type of polyunsaturated fatty acid (PUFA), have numerous beneficial effects in health and disease, including liver disease. Other bioactive lipids, such as furanic fatty acids (FuFA) and hydroxy fatty acid esters (FAHFA), have also demonstrated several benefits on relevant markers of liver dysfunction in animal and cell models. However, the effects of FAHFAs on hepatic steatosis are inconsistent, and studies on the impact of FuFAs in MAFLD are scarce. Further and more extensive research is required to better understand their role in liver health. The aim of this narrative review is to provide a brief overview of the potential effects of omega-3 fatty acids and other bioactive lipids, such as FuFAs and FAHFAs, on liver disease, with a focus on MAFLD.
Collapse
Affiliation(s)
- Camil Merheb
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), F-34000 Montpellier, France; (C.M.); (S.G.-C.)
| | - Sabine Gerbal-Chaloin
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), F-34000 Montpellier, France; (C.M.); (S.G.-C.)
| | - François Casas
- Dynamique du Muscle et Métabolisme (DMEM), University Montpellier, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), F-34295 Montpellier, France; (F.C.); (C.F.-C.)
| | - Mona Diab-Assaf
- Tumorigenesis Molecular and Anticancer Pharmacology, Faculty of Sciences-II, Lebanese University, Beyrouth 1500, Lebanon;
| | - Martine Daujat-Chavanieu
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Montpellier, F-34000 Montpellier, France
| | - Christine Feillet-Coudray
- Dynamique du Muscle et Métabolisme (DMEM), University Montpellier, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), F-34295 Montpellier, France; (F.C.); (C.F.-C.)
| |
Collapse
|
5
|
Müller F, Conrad J, Hammerschick T, Vetter W. Enrichment and structural assignment of geometric isomers of unsaturated furan fatty acids. Anal Bioanal Chem 2023; 415:6333-6343. [PMID: 37599331 PMCID: PMC10558370 DOI: 10.1007/s00216-023-04908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Furan fatty acids (FuFAs) are valuable minor fatty acids, which are known for their excellent radical scavenging properties. Typically, the furan moiety is embedded in an otherwise saturated carboxyalkyl chain. Occasionally, these classic FuFAs are accompanied by low amounts of unsaturated furan fatty acids (uFuFAs), which additionally feature one double bond in conjugation with the furan moiety. A recent study produced evidence for the occurrence of two pairs of E-/Z-uFuFA isomers structurally related to saturated uFuFAs. Here, we present a strategy that allowed such trace compounds to be enriched to a level suited for structure determination by NMR. Given the low amounts and the varied abundance ratio of the four uFuFA isomers, the isolation of individual compounds was not pursued. Instead, the entire isomer mixture was enriched to an amount and purity suitable for structure investigation with contemporary NMR methods. Specifically, lipid extracted from 150 g latex, the richest known source of FuFAs, was subsequently fractionated by countercurrent chromatography (CCC), silver ion, and silica gel column chromatography. Analysis of the resulting mixture of four uFuFAs isomers (2.4 mg in an abundance ratio of 56:23:11:9) by different NMR techniques including PSYCHE verified that the structures of the two most abundant isomers were E-9-(3-methyl-5-pentylfuran-2-yl)non-8-enoic acid and E-9-(3-methyl-5-pent-1-enylfuran-2-yl)nonanoic acid. Additionally, we introduced a computer-based method to generate an averaged chromatogram from freely selectable GC/MS runs of CCC fractions without the necessity of pooling aliquots. This method was found to be suitable to simplify subsequent enrichment steps.
Collapse
Affiliation(s)
- Franziska Müller
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart, 70599, Germany
| | - Jürgen Conrad
- Department of Bioorganic Chemistry (130b), Institute of Chemistry, University of Hohenheim, Garbenstr. 30, Stuttgart, 70599, Germany
| | - Tim Hammerschick
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart, 70599, Germany
| | - Walter Vetter
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart, 70599, Germany.
| |
Collapse
|
6
|
Pelletier F, Durand E, Chaiyut J, Bronstein C, Pessemesse L, Vaysse L, Liengprayoon S, Gaillet S, Brioche T, Bertrand-Gaday C, Coudray C, Sultan A, Feillet-Coudray C, Casas F. Furan fatty acid extracted from Hevea brasiliensis latex increases muscle mass in mice. Biomed Pharmacother 2023; 166:115330. [PMID: 37595430 DOI: 10.1016/j.biopha.2023.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Skeletal muscle is essential for locomotion and plays a crucial role in energy homeostasis. It is regulated by nutrition, genetic factors, physical activity and hormones. Furan fatty acids (FuFAs) are minor fatty acids present in small quantities in food from plants and animals origin. Recently, we showed that a preventive nutritional supplementation with furan fatty acid in a DIO mouse model reduces metabolic disorders. The present study was designed to determine the influence of FuFA-F2 extracted from Hevea brasiliensis latex on skeletal muscle phenotype. In C2C12 myotubes we found that FuFA-F2 whatever the concentration used increased protein content. We revealed that in C2C12 myotubes FuFA-F2 (10 µM) increases protein synthesis as shown by the stimulation of mTOR phosphorylation. Next, to confirm in vivo our results C57Bl6 mice were supplemented by oral gavage with vehicle or FuFA-F2 (20 mg/kg) for 3 and a half weeks. We found that mice supplemented with FuFA-F2 had a greater lean mass than the control mice. In line with this observation, we revealed that FuFA-F2 increased muscle mass and promoted more oxidative muscle metabolism in mice as attested by cytochrome c oxidase activity. In conclusion, we demonstrated that FuFA-F2 stimulates muscle anabolism in mice in vitro and in vivo, mimicking in part physical activity. This study highlights that in vivo FuFA-F2 may have health benefits by increasing muscle mass and oxidative metabolism.
Collapse
Affiliation(s)
| | - Erwann Durand
- CIRAD, UMR Qualisud, 34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jatuporn Chaiyut
- Kasetsart Agricultural and Agro-industrial Product Improvement Institute, Kasetsart University, Bangkok, Thaïland
| | | | | | - Laurent Vaysse
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Siriluck Liengprayoon
- Kasetsart Agricultural and Agro-industrial Product Improvement Institute, Kasetsart University, Bangkok, Thaïland
| | | | | | | | | | - Ariane Sultan
- Département d'Endocrinologie, Diabète, Nutrition Inserm 1411, CHU de Montpellier, Univ Montpellier, Montpellier, France
| | | | | |
Collapse
|
7
|
Dore L, Durand E, Bonafos B, Chaiyut J, Vaysse L, Liengprayoon S, Gaillet S, Pessemesse L, Lambert K, Bertrand-Gaday C, Coudray C, Sultan A, Casas F, Feillet-Coudray C. Preventive nutritional supplementation with furan fatty acid in a DIO mouse model increases muscle mass and reduces metabolic disorders. Biomed Pharmacother 2023; 164:114945. [PMID: 37263166 DOI: 10.1016/j.biopha.2023.114945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The increase in obesity has become a major global health problem and is associated with numerous metabolic dysfunctions. Furan fatty acids (FuFAs) are minor lipids present in our diet. Recently we showed that FuFA-F2 extracted from Hevea brasiliensis latex stimulates muscle anabolism in mice in vitro and in vivo, mimicking in part physical activity. While skeletal muscle is essential for energy metabolism and is the predominant site of insulin-mediated glucose uptake in the post prandial state, our results suggested that FuFA-F2 could have favorable effects against obesity. The aim of this work was therefore to study whether a preventive nutritional supplementation with FuFA-F2 (40 mg or 110 mg/day/kg of body weight) in a diet-induced obesity (DIO) mouse model may have beneficial effects against obesity and liver and skeletal muscle metabolic dysfunction. We showed that 12 weeks of FuFA-F2 supplementation in DIO mice decreased fat mass, increased lean mass and restored normal energy expenditure. In addition, we found that FuFA-F2 improved insulin sensitivity. We revealed that FuFA-F2 increased muscle mass but had no effect on mitochondrial function and oxidative stress in skeletal muscle. Furthermore, we observed that FuFA-F2 supplementation reduced liver steatosis without impact on mitochondrial function and oxidative stress in liver. Our findings demonstrated for the first time that a preventive nutritional supplementation with a furan fatty acid in DIO mice reduced metabolic disorders and was able to mimic partly the positive effects of physical activity. This study highlights that nutritional FuFA-F2 supplementation could be an effective approach to treat obesity and metabolic syndrome.
Collapse
Affiliation(s)
| | - Erwann Durand
- CIRAD, UMR Qualisud, 34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | | | - Jatuporn Chaiyut
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | - Laurent Vaysse
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Siriluck Liengprayoon
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | | | - Ariane Sultan
- Service Diabète-Nutrition, Université Montpellier, PHYMEDEXP, Montpellier, France
| | | | | |
Collapse
|
8
|
Müller F, Hammerschick T, Vetter W. Geometrical and positional isomers of unsaturated furan fatty acids in food. Lipids 2023; 58:69-79. [PMID: 36408796 DOI: 10.1002/lipd.12364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Furan fatty acids (FuFA) are important antioxidants found in low concentrations in many types of food. In addition to conventional FuFA which normally feature saturated carboxyalkyl and alkyl chains, a few previous studies indicated the FuFA co-occurrence of low shares of unsaturated furan fatty acids (uFuFA). For their detailed analysis, the potential uFuFA were enriched by centrifugal partition chromatography (CPC) or countercurrent chromatography (CCC) followed by silver ion chromatography from a 4,7,10,13,16,19-docosahexaenoic acid ethyl ester oil, a 5,8,11,14,17-eicosapentaenoic acid ethyl ester oil and a latex glove extract. Subsequent gas chromatography with mass spectrometry (GC/MS) analysis enabled the detection of 16 individual uFuFA isomers with a double bond in conjugation with the central furan moiety. In either case, four instead of two uFuFA isomers previously reported in food, respectively, were detected by GC/MS. These isomers showed characteristic elution and abundance patterns in GC/MS chromatograms which indicated the presence of two pairs of cis/trans-isomers (geometrical isomers).
Collapse
Affiliation(s)
- Franziska Müller
- Institute of Food Chemistry (170b), University of Hohenheim, Stuttgart, Germany
| | - Tim Hammerschick
- Institute of Food Chemistry (170b), University of Hohenheim, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
9
|
Wiedmaier-Czerny N, Vetter W. LC-Orbitrap-HRMS method for analysis of traces of triacylglycerols featuring furan fatty acids. Anal Bioanal Chem 2023; 415:875-885. [PMID: 36538086 PMCID: PMC9883336 DOI: 10.1007/s00216-022-04480-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Furan fatty acids (FuFAs) are valuable antioxidants that are highly relevant for the protection of polyunsaturated fatty acids (PUFAs) in biological systems and food. Despite their low contributions to the total fatty acids, their widespread occurrence has been documented in food and biological samples. Like other fatty acids, FuFAs are also stored esterified, e.g., in triacylglycerols. However, FuFA-containing triacylglycerols had not been detected in lipidomics analyses. Here, we present a screening method that allows for the identification of traces of FuFA-containing triacylglycerols (TAGs) utilizing LC-Orbitrap-HRMS. Initially developed with the help of purposefully synthesized FuFA-containing TAGs, the screening method was successfully applied to the analysis of two fish oil samples and one mushroom extract sample. Several FuFA-containing TAGs could be identified by direct analysis using the method and database developed in this study.
Collapse
Affiliation(s)
- Nina Wiedmaier-Czerny
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70593, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
10
|
Yuan X, Li L, Kang H, Wang M, Zeng J, Lei Y, Li N, Yu P, Li X, Liu Z. Biomarkers for isolated congenital heart disease based on maternal amniotic fluid metabolomics analysis. BMC Cardiovasc Disord 2022; 22:495. [PMID: 36404327 PMCID: PMC9677635 DOI: 10.1186/s12872-022-02912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Congenital heart disease (CHD) is one of the most prevalent birth defects in the world. The pathogenesis of CHD is complex and unclear. With the development of metabolomics technology, variations in metabolites may provide new clues about the causes of CHD and may serve as a biomarker during pregnancy. METHODS Sixty-five amniotic fluid samples (28 cases and 37 controls) during the second and third trimesters were utilized in this study. The metabolomics of CHD and normal fetuses were analyzed by untargeted metabolomics technology. Differential comparison and randomForest were used to screen metabolic biomarkers. RESULTS A total of 2472 metabolites were detected, and they were distributed differentially between the cases and controls. Setting the selection criteria of fold change (FC) ≥ 2, P value < 0.01 and variable importance for the projection (VIP) ≥ 1.5, we screened 118 differential metabolites. Within the prediction model by random forest, PE(MonoMe(11,5)/MonoMe(13,5)), N-feruloylserotonin and 2,6-di-tert-butylbenzoquinone showed good prediction effects. Differential metabolites were mainly concentrated in aldosterone synthesis and secretion, drug metabolism, nicotinate and nicotinamide metabolism pathways, which may be related to the occurrence and development of CHD. CONCLUSION This study provides a new database of CHD metabolic biomarkers and mechanistic research. These results need to be further verified in larger samples.
Collapse
Affiliation(s)
- Xuelian Yuan
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
| | - Lu Li
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
| | - Hong Kang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
| | - Jing Zeng
- Department of Obstetrics & Gynecology, Longchang Maternal and Child Healthcare Hospital, Neijiang, Sichuan, China
| | - Yanfang Lei
- Department of Obstetrics, Zhaotong Second People's Hospital, Zhaotong, Yunnan, China
| | - Nana Li
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
| | - Ping Yu
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.
| | - Zhen Liu
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Müller F, Hermann-Ene V, Schmidpeter I, Hammerschick T, Vetter W. Furan Fatty Acids in Some 20 Fungi Species: Unique Profiles and Quantities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12620-12628. [PMID: 36154124 DOI: 10.1021/acs.jafc.2c05100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Furan fatty acids (FuFAs) are a group of excellent antioxidants in food. Since data in fungi were scarce, 37 commercial or collected edible and meadow fungi were analyzed on FuFA patterns and contents. FuFA amounts in fresh fungi ranged from not detectable (n = 2) to 40 mg/100 g fungi dry weight. Fresh samples of the popular edible fungi genera Agaricus and Pleurotus showed comparable FuFA contents of 9.0-33 mg/100 g fungi dry weight. The unique FuFA profile of the fungi was dominated by 9-(3,4-dimethyl-5-pentylfuran-2-yl)-nonanoic acid (9D5). In addition, the uncommon 9-(3,4-dimethyl-5-butylfuran-2-yl)-nonanoic acid (9D4) was present in 30% of the samples with contents of up to 0.2 mg/100 g fungi dry weight. Countercurrent separation techniques were used to isolate the main FuFA 9D5, to verify the presence of 9D4, and to determine ultra-traces of 11-(3,4-dimethyl-5-pentylfuran-2-yl)-undecanoic acid (11D5), which may have been assimilated by the fungi from the substrate.
Collapse
Affiliation(s)
- Franziska Müller
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart 70593, Germany
| | - Vanessa Hermann-Ene
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart 70593, Germany
| | - Isabell Schmidpeter
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart 70593, Germany
| | - Tim Hammerschick
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart 70593, Germany
| | - Walter Vetter
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart 70593, Germany
| |
Collapse
|
12
|
Comparative analysis of muscle nutrient in two types of hybrid bream and native bream. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Evaluation of the infrared frying on the physicochemical properties of fried apple slices and the deterioration of oil. Food Chem 2022; 379:132110. [DOI: 10.1016/j.foodchem.2022.132110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022]
|
14
|
Integration of miRNA-mRNA co-expression network reveals potential regulation of miRNAs in hypothalamus from sterile triploid crucian carp. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
15
|
Alvarado K, Durand E, Vaysse L, Liengprayoon S, Gaillet S, Coudray C, Casas F, Feillet-Coudray C. Effets bénéfiques potentiels des acides gras furaniques, des lipides alimentaires bioactifs. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2021. [DOI: 10.1016/j.cnd.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Xue M, Zhu G. Variation in fatty acids of Antarctic krill (
Euphausia superba
) preserved under constant dry conditions: Does storage time and ontogeny matter? J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mei Xue
- College of Marine Sciences Shanghai Ocean University Shanghai China
- Center for Polar Research Shanghai Ocean University Shanghai China
| | - Guoping Zhu
- College of Marine Sciences Shanghai Ocean University Shanghai China
- Center for Polar Research Shanghai Ocean University Shanghai China
- National Engineering Research Center for Oceanic Fisheries Shanghai China
- Polar Marine Ecosystem Group The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources Shanghai Ocean University, Ministry of Education Shanghai China
| |
Collapse
|
17
|
Cantele C, Bertolino M, Bakro F, Giordano M, Jędryczka M, Cardenia V. Antioxidant Effects of Hemp ( Cannabis sativa L.) Inflorescence Extract in Stripped Linseed Oil. Antioxidants (Basel) 2020; 9:E1131. [PMID: 33202647 PMCID: PMC7697792 DOI: 10.3390/antiox9111131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of hemp (Cannabis sativa L.) inflorescence extract to counteract lipid oxidation was studied in stripped linseed oil. The ethanolic extract was characterized in terms of terpenes (6.00 mg/mL), cannabidiol (4.99% w/w), phenolic compounds (1.80 mg gallic acid equivalents (GAE)/mL), antiradical, and metal ion-chelating activities (50% effective concentration (EC50) of 2.47 mg/mL and 0.39 mg/mL, respectively). The stripped linseed oil, used as control (CO), was mixed with hemp extract (HO) or α-tocopherol (EO) at a ratio of 0.6% (w/w) and stored for 7 days in darkness at 40 °C. Hemp extract reduced the oxidation and lipolysis processes. At the end of the storage, HO showed a significantly higher level of α-linolenic acid (ALA; 26.64 g/100 g), lower peroxide value (PV) (21.19 meq O2/kg oil), and lower hexanal content (7.67 mmol/kg oil) than those found in the control. In contrast, EO showed a marked lipolysis (the free fatty acids increased by 42.57%) and a noticeable oxidation, since the ALA content decreased by 2.10% and a PV of 50 meq O2/kg oil was observed. This study demonstrates that hemp inflorescences can be used as a source of natural antioxidants in vegetable oils and lipid products to retard their oxidation, especially those characterized by a high degree of unsaturation.
Collapse
Affiliation(s)
- Carolina Cantele
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| | - Marta Bertolino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| | - Fatema Bakro
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, 60-479 Poznan, Poland; (F.B.); (M.J.)
| | - Manuela Giordano
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| | - Małgorzata Jędryczka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, 60-479 Poznan, Poland; (F.B.); (M.J.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| |
Collapse
|