1
|
Wang XF, Dong FX, Jiang YS, Wei JF, Zhao QF, Ji W. Exogenous melatonin and salicylic acid enhance postharvest quality and boost antioxidant capacity in Vitis vinifera cv. 'Cuibao seedless' grape berries. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109850. [PMID: 40184905 DOI: 10.1016/j.plaphy.2025.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The quality of table grape is a key factor influencing consumer purchasing decisions and market prices. However, grape is soft, juicy, and prone to rotting and deterioration, making them unsuitable for storage. To ensure grape quality and extend its shelf life, this study applied salicylic acid (SA), melatonin (MT), and SA + MT treatments to postharvest mature grape. The appearance index, antioxidant content, enzyme activity, and gene expression levels of fruits stored at low temperatures for varying durations were measured. The results showed that SA, MT, and SA + MT treatments effectively reduced the browning index(BI), minimized weight loss(WL), and preserved the contents of ascorbic acid (AsA), soluble sugars (SS), and soluble proteins (SP). Compared to the control group, the contents of total phenols (TP), flavonoids (TF), proline (Pro), and the activities of superoxide dismutase (SOD), catalase (CAT), and phenylalanine ammonia lyase (PAL) were higher in each hormone treatment group, while malondialdehyde (MDA) levels and the activities of polyphenol oxidase (PPO) and peroxidase (POD) were lower. Principal component analysis (PCA) revealed that MT treatment was most effective, followed by SA and SA + MT treatments. Correlation analysis indicated a positive correlation between the contents of TP and TF and their associated structural enzymes. Furthermore, the expression levels of genes related to phenolic and flavonoid synthesis (VvPAL, VvCHI, VvF3H2, VvANR) were significantly upregulated in all treatment groups. This study provides a foundation for further exploring the effects of hormones on postharvest grape.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030800, PR China
| | - Feng-Xia Dong
- College of Horticulture, Shanxi Agricultural University, Taigu, 030800, PR China
| | - Yong-Shan Jiang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030800, PR China
| | - Jiu-Feng Wei
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030800, PR China
| | - Qi-Feng Zhao
- Pomology Institute, Shanxi Agricultural University, Taigu, 030800, PR China.
| | - Wei Ji
- College of Horticulture, Shanxi Agricultural University, Taigu, 030800, PR China.
| |
Collapse
|
2
|
Aghdam MS, Arnao MB. Phytomelatonin: From Intracellular Signaling to Global Horticulture Market. J Pineal Res 2024; 76:e12990. [PMID: 39030989 DOI: 10.1111/jpi.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known mammalian hormone, has been having a great relevance in the Plant World in recent years. Many of its physiological actions in plants are leading to possible features of agronomic interest, especially those related to improvements in tolerance to stressors and in the postharvest life of fruits and vegetables. Thus, through the exogenous application of melatonin or by modifying the endogenous biosynthesis of phytomelatonin, some change can be made in the functional levels of melatonin in tissues and their responses. Also, acting in the respective phytomelatonin biosynthesis enzymes, regulating the expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and caffeic acid O-methyltransferase (COMT), and recently the possible action of deacetylases on some intermediates offers promising opportunities for improving fruits and vegetables in postharvest and its marketability. Other regulators/effectors such as different transcription factors, protein kinases, phosphatases, miRNAs, protein-protein interactions, and some gasotransmitters such as nitric oxide or hydrogen sulfide were also considered in an exhaustive vision. Other interesting aspects such as the role of phytomelatonin in autophagic responses, the posttranslational reprogramming by protein-phosphorylation, ubiquitylation, SUMOylation, PARylation, persulfidation, and nitrosylation described in the phytomelatonin-mediated responses were also discussed, including the relationship of phytomelatonin and several plant hormones, for chilling injury and fungal decay alleviating. The current data about the phytomelatonin receptor in plants (CAND2/PMTR1), the effect of UV-B light and cold storage on the postharvest damage are presented and discussed. All this on the focus of a possible new action in the preservation of the quality of fruits and vegetables.
Collapse
Affiliation(s)
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
3
|
Zheng H, Deng W, Yu L, Shi Y, Deng Y, Wang D, Zhong Y. Chitosan coatings with different degrees of deacetylation regulate the postharvest quality of sweet cherry through internal metabolism. Int J Biol Macromol 2024; 254:127419. [PMID: 37848115 DOI: 10.1016/j.ijbiomac.2023.127419] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
In this study, chitosan coatings with different degrees of deacetylation (DD, 88.1 % and 95.2 %) were electrostatically sprayed on sweet cherries to evaluate their impacts on postharvest characteristics and internal metabolism. The results showed that chitosan coating could effectively delay the change of weight, color, firmness, and maintain the content of total phenols, flavonoids and titratable acids, and inhibit the activities of β-galactosidase and polyphenol oxidase during cold storage. The storage qualities and physiological activities of sweet cherry were significantly correlated with the contents of sorbitol, 4-hydroxycinnamic acid, hydrogenated hydroxycinnamic acid, tyrosine, proline, glutamine, phenylalanine, and other metabolites. Chitosan coating may modulate fruit quality by inhibiting the energy metabolism, accelerating the accumulation of carbohydrates, and promoting the metabolism of phenylalanine and flavonoid. Especially, chitosan coating with 88.1 % DD had better wettability on sweet cherry's peel and displayed more obvious preservation effect through stronger metabolic regulation ability.
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanqing Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Li Yu
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuchen Shi
- Shanghai SOLON Information Technology Co., Ltd., 479 Chundong Road, Shanghai, 201108, China
| | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Danfeng Wang
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Zhong
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Yuxiao Z, Guo Y, Xinhua S. Comprehensive insight into an amino acid metabolic network in postharvest horticultural products: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37066732 DOI: 10.1002/jsfa.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Amino acid (AA) metabolism plays a vital role in the central metabolism of plants. In addition to protein biosynthesis, AAs are involved in secondary metabolite biosynthesis, signal transduction, stress response, defense against pathogens, flavor formation, and so on. Besides these functions, AAs can be degraded into precursors or intermediates of the tricarboxylic acid cycle to substitute respiratory substrates and restore energy homeostasis, as well as directly acting as signal molecules or be involved in the regulation of plant signals to delay senescence of postharvest horticultural products (PHPs). AA metabolism and its role in plants growth have been clarified; however, only a few studies about their roles exist concerning the postharvest preservation of fruit and vegetables. This study reviews the potential functions of various AAs by comparing the difference in AA metabolism at the postharvest stage and then discusses the crosstalk of AA metabolism and energy metabolism, the target of rapamycin/sucrose nonfermenting-related kinase 1 signaling and secondary metabolism. Finally, the roles and effect mechanism of several exogenous AAs in the preservation of PHPs are highlighted. This review provides a comprehensive insight into the AA metabolism network in PHPs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhang Yuxiao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zi'bo, China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zi'bo, China
| | - Song Xinhua
- College of Life Science, Shandong University of Technology, Zi'bo, China
| |
Collapse
|
5
|
Zu Z, Wang S, Zhao Y, Fan W, Li T. Integrated enzymes activity and transcriptome reveal the effect of exogenous melatonin on the strain degeneration of Cordyceps militaris. Front Microbiol 2023; 14:1112035. [PMID: 37089574 PMCID: PMC10117847 DOI: 10.3389/fmicb.2023.1112035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/15/2023] [Indexed: 04/09/2023] Open
Abstract
As a valuable medicinal and edible fungus, Cordyceps militaris has been industrialized with broad development prospects. It contains a lot of bioactive compounds that are beneficial to our health. However, during artificial cultivation, strain degeneration is a challenge that inhibits the industrialization utility of C. militaris. Exogenous melatonin (MT) can scavenge for reactive oxygen species (ROS) in fungus and can alleviate strain degeneration. To establish the significance and molecular mechanisms of MT on strain degeneration, we investigated the third-generation strain (W5-3) of C. militaris via morphological, biochemical, and transcriptomic approaches under MT treatment. Morphological analyses revealed that colony angulation of C. militaris was significantly weakened, and the aerial hypha was reduced by 60 μmol L-1 MT treatment. Biochemical analyses showed low levels of ROS and malondialdehyde (MDA), as well as increasing endogenous MT levels as exogenous MT increased. RNA-Seq revealed that compared with the control, several antioxidant enzyme-related genes were up-regulated under 60 μmol L-1 MT treatment. Among them, glutathione s-transferase genes were up-regulated by a factor of 11.04. In addition, genes that are potentially involved in cordycepin, adenosine and active compound biosynthesis for the growth and development of mycelium were up-regulated. Collectively, these findings provide the basis for further elucidation of the molecular mechanisms involved in C. militaris strain degeneration.
Collapse
Affiliation(s)
- Zhichao Zu
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Siqi Wang
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yingming Zhao
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Wenli Fan
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China
- Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Aghdam MS, Mukherjee S, Flores FB, Arnao MB, Luo Z, Corpas FJ. Functions of Melatonin during Postharvest of Horticultural Crops. PLANT & CELL PHYSIOLOGY 2023; 63:1764-1786. [PMID: 34910215 DOI: 10.1093/pcp/pcab175] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India
| | - Francisco Borja Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia 30100, Spain
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
7
|
Li N, Zhai K, Yin Q, Gu Q, Zhang X, Melencion MG, Chen Z. Crosstalk between melatonin and reactive oxygen species in fruits and vegetables post-harvest preservation: An update. Front Nutr 2023; 10:1143511. [PMID: 36937352 PMCID: PMC10020600 DOI: 10.3389/fnut.2023.1143511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Fruits and vegetables contain numerous nutrients, such as vitamins, minerals, phenolic compounds, and dietary fibers. They reduce the incidence of cardiovascular diseases and the risk of certain chronic diseases, and improve the antioxidant and anti-inflammatory capacity. Moreover, melatonin was found in various fruits and vegetables species. Melatonin acts as a multifunctional compound to participate in various physiological processes. In recent years, many advances have been found that melatonin is also appraised as a key modulator on the fruits and vegetables post-harvest preservation. Fruits and vegetables post-harvest usually elicit reactive oxygen species (ROS) generation and accumulation. Excess ROS stimulate cell damage, protein structure destruction, and tissue aging, and thereby reducing their quality. Numerous studies find that exogenous application of melatonin modulates ROS homeostasis by regulating the antioxidant enzymes and non-enzymatic antioxidants systems. Further evidences reveal that melatonin often interacts with hormones and other signaling molecules, such as ROS, nitric oxide (NO), hydrogen sulfide (H2S), and etc. Among these 'new' molecules, crosstalks of melatonin and ROS, especially the H2O2 produced by RBOHs, are provided in fruits and vegetables post-harvest preservation in this review. It will provide reference for complicated integration of both melatonin and ROS as signal molecules in future study.
Collapse
Affiliation(s)
- Na Li
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou, China
| | - Qin Yin
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Quan Gu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Merced G. Melencion
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- *Correspondence: Merced G. Melencion, ; Ziping Chen,
| | - Ziping Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
- *Correspondence: Merced G. Melencion, ; Ziping Chen,
| |
Collapse
|
8
|
Feng BS, Kang DC, Sun J, Leng P, Liu LX, Wang L, Ma C, Liu YG. Research on melatonin in fruits and vegetables and the mechanism of exogenous melatonin on postharvest preservation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Njie A, Zhang W, Dong X, Lu C, Pan X, Liu Q. Effect of Melatonin on Fruit Quality via Decay Inhibition and Enhancement of Antioxidative Enzyme Activities and Genes Expression of Two Mango Cultivars during Cold Storage. Foods 2022; 11:3209. [PMCID: PMC9601749 DOI: 10.3390/foods11203209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The postharvest deterioration of mango fruits is a critical issue limiting mango storage and preservation due to its climacteric nature. This study evaluated the storage behavior of two mango cultivars and their response to exogenous melatonin (MT, 1000 μmol L−1) treatment in attenuating fruit decay and enhancing fruits’ physiological and metabolic processes and gene relative expression subjected to cold storage. MT treatment in both mango cultivars significantly delayed weight loss, firmness, respiration rate, and decay incidence. However, MT did not influence the TSS, TA, and TSS:TA ratio regardless of the cultivar. Moreover, MT inhibited the decrease in total phenol and flavonoid content and AsA content while delaying the increase in the MDA content of mango during storage in both cultivars. In addition, MT dramatically inhibited the enzyme activity of PPO. In contrast, an increase in the activities of antioxidant enzymes (SOD and APX) and PAL and their genes’ relative expression was noticed in MT-treated fruits versus control in both cultivars. However, MT treatment was cultivar dependent in most parameters under study. These results demonstrated that MT treatment could be an essential postharvest treatment in minimizing decay, maintaining fruit quality, and extending mango fruits’ postharvest shelf life by enhancing the physiological and metabolic processes during cold storage.
Collapse
Affiliation(s)
- Alagie Njie
- College of Agriculture, Guizhou University, Guiyang 550025, China
- School of Agriculture and Environmental Sciences, University of The Gambia, Kanifing P.O. Box 3530, The Gambia
| | - Wen’e Zhang
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xiaoqing Dong
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Chengyu Lu
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xuejun Pan
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (X.P.); (Q.L.); Tel.: +86-138-8509-4631 (X.P.); +86-135-9598-4098 (Q.L.)
| | - Qingguo Liu
- Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Fenglindong Road, Xingyi, Guiyang 562400, China
- Correspondence: (X.P.); (Q.L.); Tel.: +86-138-8509-4631 (X.P.); +86-135-9598-4098 (Q.L.)
| |
Collapse
|
10
|
Wang K, Xing Q, Ahammed GJ, Zhou J. Functions and prospects of melatonin in plant growth, yield, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5928-5946. [PMID: 35640564 DOI: 10.1093/jxb/erac233] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indole molecule widely found in animals and plants. It is well known that melatonin improves plant resistance to various biotic and abiotic stresses due to its potent free radical scavenging ability while being able to modulate plant signaling and response pathways through mostly unknown mechanisms. In recent years, an increasing number of studies have shown that melatonin plays a crucial role in improving crop quality and yield by participating in the regulation of various aspects of plant growth and development. Here, we review the effects of melatonin on plant vegetative growth and reproductive development, and systematically summarize its molecular regulatory network. Moreover, the effective concentrations of exogenously applied melatonin in different crops or at different growth stages of the same crop are analysed. In addition, we compare endogenous phytomelatonin concentrations in various crops and different organs, and evaluate a potential function of phytomelatonin in plant circadian rhythms. The prospects of different approaches in regulating crop yield and quality through exogenous application of appropriate concentrations of melatonin, endogenous modification of phytomelatonin metabolism-related genes, and the use of nanomaterials and other technologies to improve melatonin utilization efficiency are also discussed.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qufan Xing
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, China
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
11
|
Arnao MB, Cano A, Hernández-Ruiz J. Phytomelatonin: an unexpected molecule with amazing performances in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5779-5800. [PMID: 35029657 DOI: 10.1093/jxb/erac009] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 05/14/2023]
Abstract
Phytomelatonin, a multifunctional molecule that has been found to be present in all plants examined to date, has an important role in plants as a modulatory agent (a biostimulator) that improves plant tolerance to both biotic and abiotic stress. We present a review of phytomelatonin that considers its roles in plant metabolism and in particular its interactions with plant hormone network. In the primary metabolism of plants, melatonin improves the rate and efficiency of photosynthesis, as well related factors such as stomatal conductance, intercellular CO2, and Rubisco activity. It has also been shown to down-regulate some senescence transcription factors. Melatonin up-regulates many enzyme transcripts related to carbohydrates (including sucrose and starch), amino acids, and lipid metabolism, optimizing N, P, and S uptake. With respect to the secondary metabolism, clear increases in polyphenol, glucosinolate, terpenoid, and alkaloid contents have been described in numerous melatonin-treated plants. Generally, the most important genes of these secondary biosynthesis pathways have been found to be up-regulated by melatonin. The great regulatory capacity of melatonin is a result of its control of the redox and plant hormone networks. Melatonin acts as a plant master regulator, up-/down-regulating different plant hormone levels and signalling, and is a key player in redox homeostasis. It has the capacity to counteract diverse critical situations such as pathogen infections and abiotic stresses, and provide plants with varying degrees of tolerance. We propose possible future applications of melatonin for crop improvement and post-harvest product preservation.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Antonio Cano
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| |
Collapse
|
12
|
Song Z, Yang Q, Dong B, Li N, Wang M, Du T, Liu N, Niu L, Jin H, Meng D, Fu Y. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5992-6008. [PMID: 35727860 DOI: 10.1093/jxb/erac276] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/17/2022] [Indexed: 05/27/2023]
Abstract
Melatonin improves plant resistance to multiple stresses by participating in the biosynthesis of metabolites. Flavonoids are an important family of plant secondary metabolites and are widely recognized to be involved in resistance; however, the crosstalk between melatonin and flavonoid is largely unknown. We found that the resistance of pigeon pea (Cajanus cajan) to salt, drought, and heat stresses were significantly enhanced by pre-treatment with melatonin. Combined transcriptome and LC-ESI-MS/MS metabolomics analyses showed that melatonin significantly induced the enrichment of flavonoids and mediated the reprogramming of biosynthetic pathway genes. The highest fold-increase in expression in response to melatonin treatment was observed for the CcF3´H family, which encodes an enzyme that catalyses the biosynthesis of luteolin, and the transcription factor CcPCL1 directly bonded to the CcF3´H-5 promoter to enhance its expression. In addition, salt stress also induced the expression of CcPCL1 and CcF3´H-5, and their overexpression in transgenic plants greatly enhanced salt tolerance by promoting the biosynthesis of luteolin. Overall, our results indicated that pre-treatment of pigeon pea with melatonin promoted luteolin biosynthesis through the CcPCL1 and CcF3´H-5 pathways, resulting in salt tolerance. Our study shows that melatonin enhances plant tolerance to multiple stresses by mediating flavonoid biosynthesis, providing new avenues for studying the crosstalk between melatonin and flavonoids.
Collapse
Affiliation(s)
- Zhihua Song
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Qing Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Biying Dong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Na Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mengying Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Tingting Du
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Ni Liu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Lili Niu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Haojie Jin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Dong Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yujie Fu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Yin Y, Tian X, He X, Yang J, Yang Z, Fang W. Exogenous melatonin stimulated isoflavone biosynthesis in NaCl-stressed germinating soybean (Glycine max L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:123-131. [PMID: 35671589 DOI: 10.1016/j.plaphy.2022.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Melatonin (MT) has gained increasing attention due to its pleiotropic effects. In this study, the function of exogenous MT on the response to NaCl stress and isoflavone biosynthesis in germinating soybeans was investigated. Results showed the exogenous MT (100 μM) application neutralised the negative effects of NaCl stress (60 mM), induced sprout growth, biomass and fluorescence intensity of intracellular free calcium, decreased malondialdehyde, H2O2 content and fluorescence intensity of O2•-, and enhanced superoxide dismutase, catalase and peroxidas activities of germinating soybeans. Meanwhile, total flavonoids and different forms of isoflavone content were enhanced by MT application, not only companied by the up-regulated relative gene expression of cinnamic acid 4-hydroxylase chalcone reductase, chalcone isomerase 1A, isoflavone reductase and isoflavone synthase 1 that involved in isoflavone biosynthesis, but also increased activities of phenylalanine ammonia lyase and 4-coumarate coenzyme A ligase. Given the evidence from the present study, it's proposed that the exogenous MT could relieve NaCl stress and stimulate isoflavone biosynthesis in germinating soybeans.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xin Tian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
14
|
Magri A, Petriccione M. Melatonin treatment reduces qualitative decay and improves antioxidant system in highbush blueberry fruit during cold storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4229-4237. [PMID: 35023584 DOI: 10.1002/jsfa.11774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Blueberry is considered as a 'functional food' because it contains bioactive compounds such as flavonoids, phenolic acids, tannins and anthocyanins. The blueberry is one of the most consumed berries in the world and is highly appreciated by consumers because of its unique taste and sensory properties. Fresh blueberries decay rapidly because of mould and water loss. To preserve the qualitative and nutraceutical traits of fresh highbush blueberries during storage, the efficacy of 1 mm melatonin treatment was investigated at 5 °C for 3 weeks. RESULTS The results demonstrated that melatonin treatment reduced weight loss and delayed postharvest ripening. Compared to the control, melatonin treatment induced an overproduction of polyphenols, flavonoids, anthocyanins and ascorbic acid, consequently increasing antioxidant activity. The enzymatic antioxidant system was also affected by the treatment. An increase in the activity of catalase, superoxide dismutase and ascorbate peroxidase was observed in treated fruit compared to that in control fruit. Enzymatic browning, controlled by assaying the content of malondialdehyde and hydrogen peroxide, polyphenol oxidase, guaiacol peroxidase and lipoxygenase activities, appeared to slow down under melatonin treatment. CONCLUSION Melatonin coating is a valid tool for delaying the perishability and qualitative decay of highbush blueberry fruit during cold storage. Furthermore, this treatment increases the production of secondary metabolites such as polyphenols, flavonoids, anthocyanins and ascorbic acid, improving the nutraceutical traits of this fruit during storage. Melatonin treatment can be considered as an environmentally sustainable, non-harmful-to-human-health alternative for the postharvest preservation of highbush blueberry fruit. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anna Magri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Milena Petriccione
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| |
Collapse
|
15
|
Arabia A, Munné-Bosch S, Muñoz P. Melatonin triggers tissue-specific changes in anthocyanin and hormonal contents during postharvest decay of Angeleno plums. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111287. [PMID: 35643621 DOI: 10.1016/j.plantsci.2022.111287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Plum is a stone fruit that stands out for having a short shelf-life because of its high susceptibility to rapid deterioration. Part of this deterioration is explained by fruit overripening. Recently, the role of melatonin in delaying postharvest decay has been investigated but its regulatory function during overripening is still under extensive debate. In this study, to understand physiological events taking place in plums overripening and elucidate the role of melatonin on the postharvest quality of these fruits and its relationship to other plant hormones, Angeleno plums were sprayed with 10-4 M of melatonin solution immediately after harvest. We carried out tissue-specific (mesocarp and exocarp) analysis of total phenols and anthocyanin quantification, as well as the evaluation of different phytohormones by LC-MS/MS and fruit quality parameters. Results showed that during postharvest, endogenous melatonin contents decreased both in the mesocarp and the exocarp of Angeleno plums. Likewise, plum firmness also decreased and a strong correlation was found for this parameter with jasmonic acid (JA) and cytokinins. Conversely, after exogenous melatonin application, endogenous melatonin content increased both in mesocarp and exocarp but it had a differential effect depending on the plum tissue. Indeed, total phenol and anthocyanin contents arose by 21% and 58%, respectively, in the mesocarp after melatonin treatment but no variations were found in the exocarp of Angeleno plums. Hormonal analysis of Angeleno mesocarp also revealed an increase in the JA and its precursor, 12-oxo-phytodienoic acid (OPDA), on the fourth day after melatonin application as well as a positive correlation between melatonin and gibberellin 1 (GA1). These results suggest that melatonin may be acting as a signal molecule increasing phenolic compounds contents through direct regulation and by signaling with other phytohormones. Therefore, this research provides valuable information for understanding the regulatory role of melatonin and its relationship with plant hormones during overripening to contribute to improve the postharvest quality of plums.
Collapse
Affiliation(s)
- Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
Duan B, Du H, Zhang W, Wang J, Cai Z, Shen Y, Huang T, Yuan J, Gan Z, Chen J, Zhu L. An Antifungal Role of Hydrogen Sulfide on Botryosphaeria Dothidea and Amino Acid Metabolism Involved in Disease Resistance Induced in Postharvest Kiwifruit. FRONTIERS IN PLANT SCIENCE 2022; 13:888647. [PMID: 35783925 PMCID: PMC9244146 DOI: 10.3389/fpls.2022.888647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Botryosphaeria dothidea is a major pathogen responsible for postharvest kiwifruit soft rot. This study aimed to determine the influence of hydrogen sulfide (H2S) on postharvest resistance to kiwifruit soft rot and the antifungal role of H2S against B. dothidea. The results indicated that H2S (20 μl L-1) restricted the lesion area following inoculation with B. dothidea. H2S enhanced the production of shikimic acid, tyrosine, tryptophan, and phenylalanine while also increasing the total phenols, flavonoids, and lignin. H2S upregulated the expression of AcDHQS, AcSDH, AcSK, AcPAL, AcCAD, and AcCHS. Additionally, sodium hydrosulfide (NaHS)-released H2S inhibited mycelial growth. NaHS concentrations of 20 and 40 mmol L-1 significantly decreased the mycelial weight and malondialdehyde content (MDA) content while increasing cell membrane conductivity and membrane leakage. The results indicate that H2S induces resistance in kiwifruit via a microbicidal role and amino acid metabolism involved in postharvest kiwifruit disease resistance.
Collapse
Affiliation(s)
- Bing Duan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huaying Du
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wei Zhang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jing Wang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhipeng Cai
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yonggen Shen
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tenghuan Huang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jie Yuan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zengyu Gan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Liqin Zhu
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
17
|
Madebo MP, Zheng Y, Jin P. Melatonin-mediated postharvest quality and antioxidant properties of fresh fruits: A comprehensive meta-analysis. Compr Rev Food Sci Food Saf 2022; 21:3205-3226. [PMID: 35621156 DOI: 10.1111/1541-4337.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
At postharvest, fruits have a short shelf life. Recently, there has been much literature on the effects of melatonin on the postharvest quality of horticultural crops. However, reports of various findings comprise mixed claims and product-specific conclusions. Therefore, a meta-analysis systematically dissects the comprehensive effect on several fruits. In this meta-analysis, standard mean difference (SMD) was adopted using a random-effect model. The study used 36 articles and isolated 24 indicator parameters of postharvest quality and antioxidant properties based on the inclusion criteria. As exhibited in the forest plot, melatonin reduced chilling injury, weight loss, respiration rate, and ethylene content (SMD -0.90, 95% CI [-1.14, -0.65]; I2 = 81%; p < .00001). Similarly, the application of melatonin significantly suppressed electrolyte leakage, malondialdehyde (MDA), hydrogen peroxide, superoxide anion, lipoxygenase, and polyphenol oxidase (SMD -0.89, 95% CI [-1.09, -0.69]; I2 = 70%; p < .00001). In addition, exogenous melatonin application induced endogenous melatonin content, phenolic content, and flavonoid and anthocyanin contents (SMD 1.15, 95% CI [0.91, 1.39]; I2 = 71%; p = .01). Moreover, melatonin treatment enhanced antioxidant activities (catalase, superoxide dismutase, peroxidase, ascorbate peroxidase, and phenylalanine ammonia-lyse) (SMD 1.37, 95% CI [1.03, 1.71]; I2 = 86%; p < .00001). Thus, in the whole study, the overall effect was significantly high in treated fruit (p < .0001), and the overall heterogeneity was above (I2 ) > 70%. In addition, the funnel plot showed symmetry in the most selected studies. To sum up, the result gives a further understanding of melatonin's capabilities in reducing postharvest losses and maintaining the quality of fresh fruits.
Collapse
Affiliation(s)
- Miilion Paulos Madebo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China.,College of Agriculture and Natural Resource, Dilla University, Dilla, Ethiopia
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
18
|
Huang GL, Liu TT, Ma JJ, Sun LX, Sui SY, Quan XY, Wang YN. Anti-polyphenol oxidase mechanism of oligomeric procyanidins and its application on browning control of “Baiyu” loquat during storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Gao T, Liu X, Tan K, Zhang D, Zhu B, Ma F, Li C. Introducing melatonin to the horticultural industry: physiological roles, potential applications, and challenges. HORTICULTURE RESEARCH 2022; 9:uhac094. [PMID: 35873728 PMCID: PMC9297156 DOI: 10.1093/hr/uhac094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/05/2022] [Indexed: 06/08/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an emerging biomolecule that influences horticultural crop growth, flowering, fruit ripening, postharvest preservation, and stress protection. It functions as a plant growth regulator, preservative and antimicrobial agent to promote seed germination, regulate root system architecture, influence flowering and pollen germination, promote fruit production, ensure postharvest preservation, and increase resistance to abiotic and biotic stresses. Here, we highlight the potential applications of melatonin in multiple aspects of horticulture, including molecular breeding, vegetative reproduction, production of virus-free plants, food safety, and horticultural crop processing. We also discuss its effects on parthenocarpy, autophagy, and arbuscular mycorrhizal symbiosis. Together, these many features contribute to the promise of melatonin for improving horticultural crop production and food safety. Effective translation of melatonin to the horticultural industry requires an understanding of the challenges associated with its uses, including the development of economically viable sources.
Collapse
Affiliation(s)
- Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kexin Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Danni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bolin Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Chao Li
- Corresponding authors. E-mail: ,
| |
Collapse
|
20
|
Qi M, Luo Z, Wu B, Wang L, Yang M, Zhang X, Lin X, Xu Y, Li X, Li L. Spatial distribution and time-course of polyphenol accumulation in grape berry (Vitis labruscana cv. ‘Kyoho’). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Melatonin Treatment Improves Postharvest Preservation and Resistance of Guava Fruit (Psidium guajava L.). Foods 2022; 11:foods11030262. [PMID: 35159414 PMCID: PMC8834009 DOI: 10.3390/foods11030262] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/26/2022] Open
Abstract
Guava fruit has a short postharvest shelf life at room temperature. Melatonin is widely used for preservation of various postharvest fruit and vegetables. In this study, an optimal melatonin treatment (600 μmol·L−1, 2 h) was identified, which effectively delayed fruit softening and reduced the incidence of anthracnose on guava fruit. Melatonin effectively enhanced the antioxidant capacity and reduced the oxidative damage to the fruit by reducing the contents of superoxide anions, hydrogen peroxide and malondialdehyde; improving the overall antioxidant capacity and enhancing the enzymatic antioxidants and non-enzymatic antioxidants. Melatonin significantly enhanced the activities of catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase. The contents of total flavonoids and ascorbic acid were maintained by melatonin. This treatment also enhanced the defense-related enzymatic activities of chitinase and phenylpropanoid pathway enzymes, including phenylalanine ammonia lyase and 4-coumaric acid-CoA-ligase. The activities of lipase, lipoxygenase and phospholipase D related to lipid metabolism were repressed by melatonin. These results showed that exogenous melatonin can maintain the quality of guava fruit and enhance its resistance to disease by improving the antioxidant and defense systems of the fruit.
Collapse
|
22
|
Yin Y, Xu J, He X, Yang Z, Fang W, Tao J. Role of exogenous melatonin involved in phenolic acid metabolism of germinated hulless barley under NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:14-22. [PMID: 34844114 DOI: 10.1016/j.plaphy.2021.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of exogenous MT on phenolic acids biosynthesis and the response to NaCl stress in germinating barley were investigated to explicate the role and molecular mechanism of MT in the regulation of phenolic acids and biomass under salt stress. Results showed that exogenous MT increased the gene expression and activities of phenylalanine ammonia lyase and cinnamate 4-hydroxylase involved in phenols biosynthesis. As a result, phenolic acids contents significantly increased, and ferulic acid, p-coumaric acid and p-hydroxybenzoic acid were mostly induced by exogenous MT treatment. Meanwhile, exogenous MT application reduced the damage of NaCl stress, including promotion sprout growth, biomass and Ca2+ influs, malonaldehyde and H2O2 content reduction, increases of peroxidase, superoxide dismutase and catalase activities in barley seedlings. These results indicated that exogenous MT was essential for inducing phenolic acids accumulation and alleviated the inhibition of NaCl stress on barley seedlings.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Jinpeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China.
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
23
|
Arnao MB, Hernández-Ruiz J, Cano A, Reiter RJ. Melatonin and Carbohydrate Metabolism in Plant Cells. PLANTS (BASEL, SWITZERLAND) 2021; 10:1917. [PMID: 34579448 PMCID: PMC8472256 DOI: 10.3390/plants10091917] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
Melatonin, a multifunctional molecule that is present in all living organisms studied, is synthesized in plant cells in several intercellular organelles including in the chloroplasts and in mitochondria. In plants, melatonin has a relevant role as a modulatory agent which improves their tolerance response to biotic and abiotic stress. The role of melatonin in stress conditions on the primary metabolism of plant carbohydrates is reviewed in the present work. Thus, the modulatory actions of melatonin on the various biosynthetic and degradation pathways involving simple carbohydrates (mono- and disaccharides), polymers (starch), and derivatives (polyalcohols) in plants are evaluated. The possible applications of the use of melatonin in crop improvement and postharvest products are examined.
Collapse
Affiliation(s)
- Marino B. Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (A.C.)
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (A.C.)
| | - Antonio Cano
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (A.C.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| |
Collapse
|
24
|
Luo T, Yin F, Liao L, Liu Y, Guan B, Wang M, Lai T, Wu Z, Shuai L. Postharvest melatonin treatment inhibited longan ( Dimocarpus longan Lour.) pericarp browning by increasing ROS scavenging ability and protecting cytomembrane integrity. Food Sci Nutr 2021; 9:4963-4973. [PMID: 34532008 PMCID: PMC8441273 DOI: 10.1002/fsn3.2448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
Postharvest melatonin treatments have been reported to improve the quality and storability, especially to inhibit browning in many fruits, but the effect had not been systematically investigated on longan fruit. In this study, the effect of 0.4 mM melatonin (MLT) dipping on the quality and pericarp browning of longan fruits stored at low temperature was investigated. The MLT treatment did not influence the TSS content of longan fruits but lead to increased lightness and h° value while decreased a* value of pericarp. More importantly, the treatment significantly delayed the increase in electrolyte leakage and malonaldehyde accumulation, inhibited the activities of polyphenol oxidase and peroxidase, and thus retarded pericarp browning. In addition, the treatment significantly inhibited the production of O2 •- and H2O2 while promoted the accumulation of glutathione, flavonoids, and phenolics at earlier storage stages in longan pericarp. Interestingly, the activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD) were significantly upregulated but activities of catalase were downregulated in the MLT-treated longan pericarp. MLT treatment effectively enhanced APX and SOD activities, increased flavonoid, phenolics, and glutathione content, protected cytomembrane integrity, inhibited the production of O2 •- and H2O2 and browning-related enzymes, and thus delayed the longan pericarp browning.
Collapse
Affiliation(s)
- Tao Luo
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of EducationGuangzhouChina
| | - Feilong Yin
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Lingyan Liao
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Yunfen Liu
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Boyang Guan
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Min Wang
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Tingting Lai
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of EducationGuangzhouChina
| | - Zhenxian Wu
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of EducationGuangzhouChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research CenterGuangzhouChina
| | - Liang Shuai
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| |
Collapse
|
25
|
Wu Y, Fan X, Zhang Y, Jiang J, Sun L, Rahman FU, Liu C. VvSNAT1 overexpression enhances melatonin production and salt tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:485-494. [PMID: 34166975 DOI: 10.1016/j.plaphy.2021.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 05/23/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in the regulation of development and the response to biotic and abiotic stresses in plants. Serotonin-N-acetyltransferase (SNAT) functions as a key catalytic enzyme involved in melatonin biosynthesis. In this study, the candidate gene VvSNAT1 (SNAT isogene) was isolated from grape (Vitis vinifera L. cv. Merlot). Tissue-specific expression and external treatment revealed that VvSNAT1 is a salt-inducible gene that is highly expressed in leaves. Subcellular localisation results revealed that VvSNAT1 was located in the chloroplasts, which is similar to other plant SNAT proteins. Ectopic overexpression of VvSNAT1 in Arabidopsis resulted in increased melatonin production and salt tolerance. Transgenic Arabidopsis overexpressing VvSNAT1 exhibited enhanced growth and physiological performance, including a lower degree of leaf wilting, higher germination rate, higher fresh weight, and longer root length under salt stress. Moreover, overexpression of VvSNAT1 in Arabidopsis protected cells from oxidative damage by reducing the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2). These results indicate that VvSNAT1 positively responds to salt stress. Our results provide a novel perspective for VvSNAT1 to improve salt tolerance, mediated by melatonin accumulation, plant growth promotion and oxidative damage reduction.
Collapse
Affiliation(s)
- Yandi Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Faiz Ur Rahman
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China.
| |
Collapse
|
26
|
Liu N, Li J, Lv J, Yu J, Xie J, Wu Y, Tang Z. Melatonin alleviates imidacloprid phytotoxicity to cucumber (Cucumis sativus L.) through modulating redox homeostasis in plants and promoting its metabolism by enhancing glutathione dependent detoxification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112248. [PMID: 33901782 DOI: 10.1016/j.ecoenv.2021.112248] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Melatonin (Mel), a powerful antioxidant that has the ability to regulate physiological and biochemical processes in plants under abiotic stresses. However, its roles in pesticide detoxification is poorly understood. Herein, selecting leaf spraying insecticide imidacloprid (IMD) as the model, we demonstrated the detoxification mechanism underlying root pretreatment of Mel on IMD in cucumber. IMD treatment affected the primary light conversion efficiency of photosystem II (Fv/Fm), reduced the quantum yield, and increased hydrogen peroxide and superoxide anions contents as well as the levels of membrane lipid peroxidation, indicating that excessive IMD treatment induces oxidative stress. Nonetheless, by increasing the appropriate levels of exogenous Mel, the photosynthesis of cucumber under IMD treatment reached the control levels, effectively removing reactive oxygen species. Furthermore, the content and ratio of ascorbate (AsA) and glutathione (GSH) were decreased under IMD treatment; Mel treatment enhanced the AsA/DHA and GSH/GSSG ratios, as well as the activities of MDHAR, DHAR and GR, suggesting that Mel could alleviate oxidative stress of cucumber treated with IMD by regulating the ascorbic acid-glutathione cycle. Importantly, IMD degradation rate and glutathione S-transferase (GST) activity increased after Mel treatment. The levels of transcripts encoding antioxidant enzymes GPX and GST (GST1,2 and 3) were also increased, indicating that Mel accelerated IMD degradation. These results suggest that Mel plays an important role in the detoxification of IMD by promoting GST activity and transcription and the AsA-GSH cycle, thus providing an approach for plants to reduce IMD residue through the plant's own detoxification mechanism.
Collapse
Affiliation(s)
- Na Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jinwu Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
27
|
Michailidis M, Tanou G, Sarrou E, Karagiannis E, Ganopoulos I, Martens S, Molassiotis A. Pre- and Post-harvest Melatonin Application Boosted Phenolic Compounds Accumulation and Altered Respiratory Characters in Sweet Cherry Fruit. Front Nutr 2021; 8:695061. [PMID: 34179064 PMCID: PMC8219925 DOI: 10.3389/fnut.2021.695061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate the impact of exogenous melatonin (0. 5 mM) application through pre-harvest foliar spray and postharvest immersion, alone or in combination, on ripening parameters of sweet cherry (cv. Ferrovia) fruit and their relationship with bioactive compounds and gene expression at harvest as well after cold storage (0°C) for 12 days and subsequent room temperature (20°C) exposure for 8 h. Although several ripening traits were not influenced by melatonin, the combining pre- and post-harvest treatments delayed fruit softening at post-cold period. Preharvest spray with melatonin depressed fruit respiration at time of harvest while all applied treatments induced respiratory activity following cold, indicating that this anti-ripening action of melatonin is reversed by cold. Several genes related to the tricarboxylic acid cycle, such as PaFUM, PaOGDH, PaIDH, and PaPDHA1 were upregulated in fruit exposed to melatonin, particularly following combined pre- and post-harvest application. The accumulation of phenolic compounds, such as neochlorogenic acid, chlorogenic acid, epicatechin, procyanidin B1, procyanidin B2+B4, cyanidin-3-O-galactoside, and cyanidin-3-O-rutinoside along with the expression of several genes involved in phenols biosynthesis, such as PaSK, PaPAL, Pa4CL, PaC4H, and PaFNR were at higher levels in melatonin-treated cherries at harvest and after cold exposure, the highest effects being observed in fruits subjected to both pre- and post-harvest treatments. This study provides a comprehensive understanding of melatonin-responsive ripening framework at different melatonin application conditions and sweet cherry stages, thereby helps to understand the action of this molecule in fruit physiology.
Collapse
Affiliation(s)
- Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, Hellenic Agricultural Organisation (HAO-DEMETER), Thessaloniki, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation (HAO-DEMETER), Thessaloniki, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation (HAO-DEMETER), Thessaloniki, Greece
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Trento, Italy
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
28
|
Ze Y, Gao H, Li T, Yang B, Jiang Y. Insights into the roles of melatonin in maintaining quality and extending shelf life of postharvest fruits. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Kumar G, Saad KR, Puthusseri B, Arya M, Shetty NP, Giridhar P. Exogenous Serotonin and Melatonin Regulate Dietary Isoflavones Profoundly through Ethylene Biosynthesis in Soybean [ Glycine max (L.) Merr.]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1888-1899. [PMID: 33529027 DOI: 10.1021/acs.jafc.0c07457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Serotonin and melatonin are important signaling and stress mitigating molecules. However, their role and molecular mechanism in the accumulation of isoflavones are not clearly defined. To elucidate their functions, serotonin and melatonin were applied to in vitro cultures of soybean at different concentrations and analyzed to assess the accumulation of isoflavone content followed by transcript levels of biosynthesis genes at different time intervals. Increased total phenolics, total flavonoids, and different forms of isoflavone content were observed in the treatments. Expression levels of critical genes in isoflavone, ethylene, jasmonic acid, abscisic acid, and melatonin biosynthesis and related transcription factor were quantified. A correlation was observed between the expression of ethylene biosynthesis genes (S-adenosylmethionine synthase and 1-aminocyclopropane-1-carboxylate oxidase) and isoflavone biosynthesis genes (chalcone synthase, chalcone reductase, and isoflavone synthase). We hypothesize that, under serotonin and melatonin treatments, ethylene biosynthesis may play a role in the increase/decrease in isoflavone content in soybean culture.
Collapse
Affiliation(s)
- Gyanendra Kumar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka, India
| | - Kirti R Saad
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka, India
| | - Bijesh Puthusseri
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka, India
| | - Monisha Arya
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka, India
| | - Nandini P Shetty
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka, India
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 Karnataka, India
| |
Collapse
|
30
|
Wang L, Luo Z, Ban Z, Jiang N, Yang M, Li L. Role of exogenous melatonin involved in phenolic metabolism of Zizyphus jujuba fruit. Food Chem 2020; 341:128268. [PMID: 33039742 DOI: 10.1016/j.foodchem.2020.128268] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023]
Abstract
To investigate the effects of exogenous melatonin (MLT) treatment on the quality of postharvest jujubes, fresh 'Lingwuchangzao', and 'Dongzao' jujubes (Zizyphus jujuba Mill) were dipped in MLT solution at the dose of 0, 50,100 and 200 μmol L-1 for 20 min. Results showed the exogenous MLT application significantly delayed the color change and firmness decline, and maintained the content of total soluble solids and titratable acidity of both jujube cultivars, (p < 0.05). It was demonstrated that the endogenous MLT content was increased by exogenous MLT treatment. Furthermore, phenolic compounds level was enhanced by MLT application, companied by the upregulated expression of main genes involved in phenolic biosynthesis, including phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, chalcone synthase, flavonoid 3β-hydroxylase, leucoanthocyanidin reductase, and anthocyanidin synthase. Given the evidence from the present study, it's proposed that the exogenous MLT approach is a promising approach for maintaining quality attributes and delaying the senescence of postharvest jujubes.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Zisheng Luo
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | - Zhaojun Ban
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Nan Jiang
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Mingyi Yang
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Li Li
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
A Combination of Melatonin and Ethanol Treatment Improves Postharvest Quality in Bitter Melon Fruit. Foods 2020; 9:foods9101376. [PMID: 32992660 PMCID: PMC7601680 DOI: 10.3390/foods9101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023] Open
Abstract
Central composite design (CCD), utilized with three independent variables, verified that the optimal treatment conditions in bitter melon fruit were melatonin (MT) concentration of 120 µmol L−1, ethanol concentration of 6%, and immersing time of 10 min. Under optimal conditions, the experimental values of firmness, chilling injury (CI) index, and weight loss were shown as 27.81 N, 65.625%, and 0.815%, respectively. Moreover, the combined effect of MT and ethanol on CI and physiological quality in postharvest bitter melon fruit stored at 4 °C was investigated. It was found that the combined treatment contributed to the reduced CI symptoms and inhibited ion leakage and malondialdehyde (MDA) accumulation. Moreover, higher levels of chlorophyll, total soluble solids (TSSs), soluble sugar, soluble protein, and ascorbic acid (AsA) were observed in comparison with the control group. Furthermore, the synthesis of total phenols and flavonoids in bitter melon was greatly promoted. Therefore, the combination of MT and ethanol could have the potential for alleviating CI and maintaining postharvest quality for the duration of cold storage.
Collapse
|