1
|
Wang Y, Zhang A, Zhao W, Liu J, Yi H. Effect of triple helix polysaccharides from foxtail millet bran on millet starch gel formation. Int J Biol Macromol 2025; 304:140796. [PMID: 39924035 DOI: 10.1016/j.ijbiomac.2025.140796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Polysaccharides as modifiers can solve native starch gel problem of weaker gel strength and lower gelation trend. The key structures of foxtail millet bran polysaccharides (FMBPs) in improving millet starch gel properties were investigated. Results showed that FMBPs were high molecular weight (Mw) heteropolysaccharides and the distribution of total sugar, uronic acid and monosaccharides was non-uniform in four FMBPs. Structural analysis revealed triple helix polysaccharides (THPs) existed in independent triple helix (ITH) and aggregates forms. The redshift degree of Congo red-FMBP complexes illustrated that FMBP-S1 contain the most ITHs, followed by FMBP-S2 and FMBP-S4, and the least in FMBP-S3. The porous structure of FMBPs promoted the adsorption of Congo red, bringing about the increase in weight and volume of the complexes and eventual precipitation. Separation of THPs provided a new method to investigate its role in starch gel. The results showed FMBPs with more ITHs showed higher peak viscosity, breakdown and setback. The presence of ITHs could reduce gel point temperature (ΔT = 6.62-29.86 °C) and water holding capacity (from 50 to 66 ms to 231 ms), but improve the viscoelasticity of gel. The study not only improved the quality of starch-based gel but also achieved high-value utilization of foxtail millet bran.
Collapse
Affiliation(s)
- Yunting Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Rivas MÁ, Benito MJ, Martín A, de Guía Córdoba M, Gizaw Y, Casquete R. Development of supercritical technology to obtain improved functional dietary fiber for the valorization of broccoli by-product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2203-2214. [PMID: 39494503 PMCID: PMC11824917 DOI: 10.1002/jsfa.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND This research aimed to enhance the functional value of dietary fiber from broccoli leaves using supercritical fluid technology. By optimizing pressure, temperature, and time parameters through response surface methodology, the study sought to improve the bioactive properties of the fiber and develop a predictive model for its chemical composition and functional properties. RESULTS Structural analysis indicated that modified samples had a higher concentration of oligosaccharides than control samples did, with significant increases in galacturonic acid and neutral sugars after supercritical fluid technology treatment, highlighting enhanced pectin release due to cell wall degradation. Functional properties, such as water solubility, glucose absorption capacity, and antioxidant activity, improved significantly under optimized conditions (191 bar, 40 °C, 1 h). Multivariate analysis confirmed the effectiveness of supercritical fluid technology in enhancing the dietary fiber properties, achieving a global desirability value of 0.805. CONCLUSION These results underscore the potential of supercritical technology for valorizing broccoli leaf by-products, enhancing their health-promoting characteristics and functional applications in the food industry. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- María Ángeles Rivas
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| | - María J. Benito
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| | - Alberto Martín
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| | - María de Guía Córdoba
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| | - Yesuneh Gizaw
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| | - Rocío Casquete
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| |
Collapse
|
3
|
Shahin Shamsabadi A, Zhang Z, Rumi SS, Chabi S, Lucia LA, Abidi N. High-pressure CO 2 treatment of cellulose, chitin and chitosan: A mini review and perspective. Int J Biol Macromol 2025; 308:142097. [PMID: 40089232 DOI: 10.1016/j.ijbiomac.2025.142097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
High-pressure CO2 (HPCD) technology has emerged as an environmentally sustainable approach for processing natural polymers such as cellulose, chitin, and chitosan. These polymers, valued for their abundance, biodegradability, and renewability compared to petroleum-based materials, provide a promising foundation for green technologies when combined with HPCD. In this mini review, we begin with an overview of the sources and structures of cellulose, chitin, and chitosan, followed by a discussion of the principles of HPCD and its functionality and role in treating these natural polymers. We then review representative examples of HPCD-treated cellulose, chitin, and chitosan, highlighting various applications, including those in biomedical engineering, environmental remediation, and other fields. Finally, we address current challenges, unresolved issues, and offer perspectives on the future opportunities for HPCD-treated cellulose, chitin, chitosan, and their relevant natural resources.
Collapse
Affiliation(s)
| | - Zhen Zhang
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX, USA.
| | - Shaida S Rumi
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Sakineh Chabi
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Lucian A Lucia
- Department of Forest Biomaterials, NC State University, Raleigh, NC, USA
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
4
|
Saelee M, Myo H, Khat-Udomkiri N. Sustainable pectin extraction from Riang husk using ultrasound-assisted extraction with deep eutectic solvents and its potential in antipollution products. ULTRASONICS SONOCHEMISTRY 2025; 114:107256. [PMID: 39923346 PMCID: PMC11849596 DOI: 10.1016/j.ultsonch.2025.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/11/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
With increasing concerns about air pollution and its adverse effects on health, particularly in Thailand, the demand for antipollution products has risen significantly. Parkia timoriana (DC.) Merr., commonly known as Riang, has emerged as a promising source for developing antipollution products due to its characteristics. This study investigates the use of ultrasound-assisted extraction (UAE) combined with deep eutectic solvents (DESs) as a sustainable and efficient method for optimizing pectin extraction from Riang husks through the evaluation of a central composite design (CCD), and the structural, functional, and rheological characteristics of the extracted pectin. The antioxidant activity and protective effects against PM2.5-induced cellular damage of this method were also evaluated. The condition that exhibited the highest yield were found to be a liquid-to-solid ratio of 40 mL/g, 35 % amplitude (ultrasonic power of 28.11 W), and 60 min of extraction time. The extracted pectin was primarily composed of monosaccharides, including galacturonic acid (53.74 %), arabinose (23.97 %), galactose (12.36 %), and rhamnose (6.81 %). The degree of esterification (DE) was 73.41 %, classifying it as high methoxyl pectin. Functionally, the pectin demonstrated a solubility of 53 %, a water holding capacity of 3.88 g water/g pectin, an oil holding capacity of 3.30 g oil/g pectin, and a swelling capacity of 11.77 mL/g. Rheological analysis showed shear-thinning behavior across all pH gel forms. Furthermore, Riang husk pectin exhibited antioxidant activity, measured at 0.26 ± 0.02 mmol Trolox equivalents/g, and demonstrated cytoprotective effects against hydrogen peroxide-induced oxidative stress. It also attenuated damage caused by PM2.5 in HaCaT cells. The current study highlights UAE combined with DESs as a sustainable and effective method for obtaining high-quality pectin, contributing to the development of antipollution products and supporting sustainability goals.
Collapse
Affiliation(s)
- Manee Saelee
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100 Thailand
| | - Hla Myo
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330 Thailand
| | | |
Collapse
|
5
|
Jaffali C, Synytsya A, Khadhri A, Aschi-Smiti S, Bleha R, Jozífek M, Kvasnička F, Klouček P. Structure and strain specificity for polysaccharides from king oyster mushroom (Pleurotus eryngii) fruiting bodies. Int J Biol Macromol 2025; 295:139286. [PMID: 39765292 DOI: 10.1016/j.ijbiomac.2024.139286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
King oyster mushroom Pleurotus eryngii is cultivated worldwide for culinary and to improve human health. However, the potential of some Mediterranean representatives of this species is still not evaluated. This work focuses on the study of polysaccharides from fruiting bodies of two Tunisian strains, P. eryngii var. elaeoselini and P. eryngii var. ferulae, and, for comparison, one deposited P. eryngii originated from Korea. Polysaccharides were successively extracted with hot water using microwave heating and 1 mol L-1 aqueous sodium hydroxide. The crude hot water extracts were purified by treating them with proteolytic enzymes, and the alkaline extracts were purified by re-dissolving with dimethyl sulphoxide. In both cases, a decrease or removal of proteins was detected. Glucans predominated in all these products; the insoluble parts also contained chitin. The purified hot water extracts contained glycogen, β-d-glucans and mannogalactan. Branching (1 → 3)(1 → 6)-β-d-glucan was the major polysaccharide in the alkali-soluble fractions, while (1 → 3)-α-d-glucan was only a minor component. The Tunisian strains demonstrated a higher proportion of water-soluble polysaccharides, compared to the alkaline soluble ones, and more β-d-glucan in the insoluble chitin-glucan complexes. Fruiting body proteins of these strains are more available for solubilisation and enzymatic or alkaline degradation and, thus, may have higher nutritional value than those of the reference strain. As a source of proteins or polysaccharides, the Tunisian endemic P. eryngii strains of this study are promising for the domestication and cultivation of fruiting bodies for gastronomic purposes in the North African region.
Collapse
Affiliation(s)
- Chahrazed Jaffali
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia; Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic.
| | - Ayda Khadhri
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia
| | - Samira Aschi-Smiti
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia
| | - Roman Bleha
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic
| | - Miroslav Jozífek
- Department of Horticulture, Czech University of Life Sciences Prague, Czech Republic
| | - František Kvasnička
- Department of Food Preservation, University of Chemistry and Technology Prague, Czech Republic
| | - Pavel Klouček
- Department of Crop Production, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
6
|
Thakur M, Andola HC, Silva AS. Unveiling techniques and exploring the potential of Myconutraceticals: Analyzing current applications and future prospects. Food Chem 2025; 466:142162. [PMID: 39615350 DOI: 10.1016/j.foodchem.2024.142162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
The escalating demand for natural, nutritionally rich food products underscores the significance of exploring the fungal kingdom, comprising yeast, lichens, molds, and mushrooms, as an abundant reservoir of nutritionalcompounds, secondary metabolites and bioactive components. This paper delves into the nutritional profiles of lichen, yeast, and mushrooms, emphasizing their role as prominent sources of myco-nutraceuticals and functional foods. The growing popularity of eco-friendly extraction techniques for mycochemicals is noted, alongside the exploration of established methods for qualitative and quantitative mycochemical analysis. Notably, studies have affirmed that the incorporation of mushroom and yeast extracts, and their derived compounds, enhances the nutritional profile of meals without compromising desirable dietary attributes. The biological health-promoting properties inherent in extracts and chemicals are also discussed. Anticipated trends the incorporation of myconutrients into functional foods and dietary supplements are highlighted. Finally, challenges hindering the optimal utilization of myconutraceuticals are scrutinized.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida, India.
| | - Harish Chandra Andola
- School of Environment and Natural Resources (SENR), Doon University, Uttrakhand, India
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centre for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
7
|
Ariyanto EF, Farahana AK, Sudirman GSJ, Widiarsih E, Qomarilla N, Rahayu NS, Wikayani TP, Heryaman H, Wira DW, Triatin RD, Bashari MH, Pamela Y, Pratiwi YS, Ghozali M. Oyster Mushroom ( Pleurotus ostreatus) Ethanolic Extract Inhibits Pparg Expression While Maintaining the Methylation of the Pparg Promoter During 3T3-L1 Adipocyte Differentiation. J Exp Pharmacol 2025; 17:27-36. [PMID: 39834594 PMCID: PMC11745172 DOI: 10.2147/jep.s494116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose This study aims to provide new insights into the potential of oyster mushroom (Pleurotus ostreatus) ethanolic extract in preventing obesity through the inhibition of Pparg expression and modulation of methylation level on Pparg promoter during 3T3-L1 adipocyte differentiation. Methods This in vitro quantitative experimental study was conducted by treating the 3T3-L1 cell line differentiated using 0.5 mM methyl-isobutyl-xanthine, 1 μM dexamethasone, and 10 μg/mL insulin-containing medium with oyster mushroom ethanolic extract. The extract was obtained from 80 g of dried oyster mushroom powder extracted three times with 800 mL of ethanol, filtered, evaporated, and reconstituted in dimethyl sulfoxide (DMSO) to final concentrations of 0, 25, 50, and 100 µg/mL, with DMSO limited to 0.5% in all solutions. Pparg mRNA expression was quantified by qRT-PCR analysis and Pparg promoter methylation levels were measured quantitatively by pyrosequencing of bisulfite-treated DNA samples. Results The addition of 25 µg/mL oyster mushroom ethanolic extract significantly suppressed Pparg mRNA expression with no significant change in the Pparg promoter methylation levels. Conclusion Oyster mushroom ethanolic extract inhibited Pparg mRNA expression without altering Pparg promoter methylation, suggesting reduced adipocyte differentiation. This study emphasizes the potential of oyster mushroom in the prevention or treatment of obesity by inhibiting adipocyte differentiation.
Collapse
Affiliation(s)
- Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Research Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Anastasya Kania Farahana
- Undergraduate Program of Medical Doctor, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | | | - Erlina Widiarsih
- Molecular Genetics Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Nurul Qomarilla
- Cell Culture Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Nurul Setia Rahayu
- Molecular Genetics Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Tenny Putri Wikayani
- Cell Culture Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Henhen Heryaman
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Dwi Wahyudha Wira
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Rima Destya Triatin
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Research Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Yunisa Pamela
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Yuni Susanti Pratiwi
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Mohammad Ghozali
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| |
Collapse
|
8
|
Md Yusoff MH, Shafie MH. A review of in vitro antioxidant and antidiabetic polysaccharides: Extraction methods, physicochemical and structure-activity relationships. Int J Biol Macromol 2024; 282:137143. [PMID: 39500430 DOI: 10.1016/j.ijbiomac.2024.137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/09/2024]
Abstract
Nowadays, various plant polysaccharides have been successfully extracted which exhibited strong biological activities and might be useful for diabetes management. However, the effect of extraction methods, physicochemical and the structural-activity relationships of polysaccharides to exhibit antioxidants and antidiabetics were inadequate to explain their mechanism in action. The uses of advance extraction methods might be preferred to obtain higher antioxidants and antidiabetic activities of polysaccharides compared to conventional methods, but the determination of optimal extraction conditions might be crucial to preserve their structure and biological functions. Other than that, the physicochemical and structural properties of polysaccharides were closely related to their biological activities such as antioxidant and antidiabetic activities. Therefore, this review addressed the research gap of the influence of extraction methods, physicochemical and structural relationships of polysaccharides to biological activities, pointing out the challenges and limitations as well as future prospects to the current findings.
Collapse
Affiliation(s)
- Muhammad Hasnun Md Yusoff
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
9
|
Wang Y, Xiao Y, Zhang L, Zhang H, Li C. Study on stability of rose anthocyanin extracts and physicochemical properties of complex with whey protein isolate after spray drying. J Food Sci 2024; 89:7464-7476. [PMID: 39323284 DOI: 10.1111/1750-3841.17348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Pingyin rose is an edible flower rich in anthocyanins. In this study, antioxidant capacity and color were used as the main evaluation indexes to investigate the effects of common physical and chemical factors on the stability of rose anthocyanin extracts (RAEs). In addition, the physicochemical properties of the whey protein isolate (WPI)-RAEs complex after spray drying were studied. Vitamin C, temperature, and some metal ions can cause different degrees of discoloration of RAEs solution. More importantly, heat treatment, as well as most metal ions and sugars, had no significant effect on the antioxidant capacity of RAEs solution (p > 0.05). Moreover, compared to spray-dried pure WPI, the WPI-RAEs powder was delicate and uniform, and had higher particle size, bulk density, moisture activity, and better gel properties. The release rate of all WPI-RAEs sol/gel to RAEs reached about 89% in the intestinal digestion stage, but the WPI-RAEs interaction reduced the digestibility of protein in the intestinal digestion stage. We hope that this study can provide a theoretical basis for the development and utilization of WPI-RAEs as food ingredients.
Collapse
Affiliation(s)
- Yun Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Yuan Xiao
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Zhang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Chunmei Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Chen M, Li D, Zhang T, Sun Y, Liu R, Sun T. A mini-review of isolation, purification, structural characteristics and bioactivities of polysaccharides from Aralia elata (Miq.) Seem. Int J Biol Macromol 2024; 277:134572. [PMID: 39122067 DOI: 10.1016/j.ijbiomac.2024.134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In recent years, the isolation, purification, structural characterization of plant polysaccharides from natural resources have arrested widespread attention. Aralia elata (Miq.) Seem (A. elata) belongs to the Aralia genus of the Araliaceae family, which is one of the most popular edible mountain vegetables in East Asia. A. elata has been widely distributed in China, particularly in Liaoning, Jilin, and Heilongjiang provinces in northeast China, in which it has been used as a traditional herbal medicine for thousands of years to treat various diseases, such as hepatitis and rheumatoid arthritis. A. elata polysaccharides (AEPs) are one of the major active ingredients of A. elata, the monosaccharide composition of which consist primarily of Gal, Glc, Man, Ara, and Rha, with molecular weights ranging from 1.56 × 104 Da to 1.12 × 105 Da. AEPs have attracted worldwide attention owing to their various biological activities, including antioxidant activity, antitumor activity and hepatoprotection. The present review aims to comprehensively summarize the research advances on the polysaccharides isolated from A. elata, including the extraction, separation, physical-chemical properties, structural characteristics, and bioactivities over the past few decades. This review would establish a solid foundation for further development and application in the field of AEPs.
Collapse
Affiliation(s)
- Mengjie Chen
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China
| | - Ting Zhang
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
11
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
12
|
Sun Y, Zhang Y, Sun M, Gao W, He Y, Wang Y, Yang B, Kuang H. Advances in Eucommia ulmoides polysaccharides: extraction, purification, structure, bioactivities and applications. Front Pharmacol 2024; 15:1421662. [PMID: 39221141 PMCID: PMC11361956 DOI: 10.3389/fphar.2024.1421662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Eucommia ulmoides (EU) is a precious tree species native to China originating during the ice age. This species has important economic value and comprehensive development potential, particularly in medicinal applications. The medicinal parts of EU are its bark (Eucommiae cortex) and leaves (Eucommiae folium) which have been successively used as a traditional Chinese medicine to treat diseases since the first century BC. During the last 2 decades, as natural polysaccharides have become of increasing interest in pharmacology, biomedicine, cosmetic and food applications, more and more scholars have begun to study polysaccharides derived from EU as well. EU polysaccharides have been found to have a variety of biological functions both in vivo and in vitro, including immunomodulatory, antioxidant, anti-inflammatory, anticomplementary, antifatigue, and hepatoprotective activities. This review aims to summarize these recent advances in extraction, purification, structural characteristics, pharmacological activities and applications in different fields of EU bark and leaf polysaccharides. It was found that both Eucommiae folium polysaccharides and Eucommiae cortex polysaccharides were suitable for medicinal use. Eucommiae folium may potentially be used to substitute for Eucommiae cortex in terms of immunomodulation and antioxidant activities. This study serves as a valuable reference for improving the comprehensive utilization of EU polysaccharides and further promoting the application of EU polysaccharides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
13
|
Zhang L, Khoo CS, Koyyalamudi SR, Reddy N. Immunomodulatory activities of polysaccharides isolated from Amauroderma rugosum (Blume and T. Nees) Torrend and their structural characterization. Heliyon 2024; 10:e31672. [PMID: 38868030 PMCID: PMC11167292 DOI: 10.1016/j.heliyon.2024.e31672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Amauroderma rugosum (Blume and T. Nees) Torrend is a traditionally well-known mushroom that is used for the treatment of cancer. In order to evaluate the pharmacological activities of A. rugosum polysaccharides, the mushroom powder was subjected to hot water extraction and pure polysaccharides (ARPs) were isolated by gel-filtration method. Three important APRs called ARP-1, ARP-2 and ARP-5 were identified with average molecular weights of 1494, 450, and 7 kDa respectively. Their antioxidant abilities were estimated by examining free radical scavenging potential against 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid radical (ABTS●+), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH●), and hydroxyl radical. Immunomodulatory potentials of these ARPs were determined using murine macrophage cells. These polysaccharides exhibited high antioxidant abilities and stimulated mouse macrophages leading to the generation of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Excellent activities were displayed by ARP-1 and APR-2. Gas chromatography and spectroscopic (FT-IR and NMR) methods were employed in order to carry out their structural characterisation. The two high molecular weight ARPs (ARP-1 and ARP-2) displayed β-(1 → 3)-D-glucan backbone structure with branching of β-(1 → 6)-d-glucopyranosyl. These observations suggest high potential of ARPs for immunotherapeutic applications.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Cheang Soo Khoo
- Wentworth Institute of Higher Education, 302-306 Elizabeth Street, Surry Hills, NSW, 2010, Australia
| | - Sundar Rao Koyyalamudi
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, 2145, Australia
- Discipline of Pediatrics and Child Health, The Children's Hospital at Westmead, University of Sydney, NSW, 2145, Australia
| | - Narsimha Reddy
- School of Science, Parramatta Campus, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
14
|
Medeiros RLD, Andrade GM, Crispim RB, Silva NNDS, Silva SAD, Souza HAND, Zárate-Salazar JR, Medeiros FDD, Dantas CEA, Viera VB, Silva ALE, Tavares JF, Pereira FDO. Nutritional and antioxidant potential of Pleurotus djamor (Rumph. ex Fr.) Boedijn produced on agronomic wastes banana leaves and sugarcane bagasse substrates. Braz J Microbiol 2024; 55:1117-1129. [PMID: 38647869 PMCID: PMC11153431 DOI: 10.1007/s42770-024-01336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Global food production faces challenges concerning access to nutritious and sustainably produced food. Pleurotus djamor, however, is an edible mushroom that can be cultivated on agricultural waste. Considering that nutritional and functional potential of mushrooms can change based on cultivation conditions, we examined the influence of substrates with different compositions of banana leaf and sugarcane bagasse on the nutritional, mycochemical, and antioxidant properties of P. djamor. The mushrooms were grown for 120 days and dried in a circulating air oven at 45 °C for three days. We conducted bromatological analyses and mycochemical characterization (1H-NMR, total phenolics, and flavonoids) of the mushrooms and assayed the antioxidant activity of extracts from the dried mushrooms using an ethanol/water solution (70:30 v/v). In general, the substrates produced mushrooms with high protein (18.77 ± 0.24% to 17.80 ± 0.34%) and dietary fiber content (18.02 ± 0.05% to 19.32 ± 0.39%), and with low lipid (0.28 + 0.08% to 0.4 + 0.6%), and caloric content (maximum value: 258.42 + 8.49), with no significant differences between the groups (p ≥ 0.05). The mushrooms also exhibited high levels of total phenolics and flavonoids. The mushrooms cultivated on sugarcane bagasse substrates presented the highest values (p < 0.05). Analysis of the 1H-NMR spectra indicates an abundant presence of heteropolysaccharides, β-glucans, α-glucans, and oligosaccharides, and all the mushroom extracts exhibited high antioxidant activity. In conclusion, our study demonstrates that agricultural residues permit sustainable production of edible mushrooms while maintaining nutritional and functional properties.
Collapse
Affiliation(s)
- Rossana Lucena de Medeiros
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Giuliane Moura Andrade
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Renata Barros Crispim
- Fungi Research Group, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | | | - Sabrina Alves da Silva
- Grupo de Pesquisa & Produção de Cogumelos Comestíveis, Department of Soils and Rural Engineering, Center of Agricultural Sciences, Federal University of Paraíba, Areia, Brazil
| | - Háimyk Andressa Nóbrega de Souza
- Grupo de Pesquisa & Produção de Cogumelos Comestíveis, Department of Soils and Rural Engineering, Center of Agricultural Sciences, Federal University of Paraíba, Areia, Brazil
| | - Jhonatan Rafael Zárate-Salazar
- Grupo de Pesquisa & Produção de Cogumelos Comestíveis, Department of Soils and Rural Engineering, Center of Agricultural Sciences, Federal University of Paraíba, Areia, Brazil
| | - Francinalva Dantas de Medeiros
- Laboratory of Pharmacognosy, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | - Carlos Eduardo Alves Dantas
- Laboratory of Bromatology, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | - Anauara Lima E Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Fillipe de Oliveira Pereira
- Fungi Research Group, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil.
| |
Collapse
|
15
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
16
|
Chen L, Cui C, Wang Z, Che F, Chen Z, Feng S. Structural Characterization and Antioxidant Activity of β-Glucans from Highland Barley Obtained with Ultrasonic-Microwave-Assisted Extraction. Molecules 2024; 29:684. [PMID: 38338428 PMCID: PMC10856557 DOI: 10.3390/molecules29030684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In order to efficiently extract β-glucan from highland barley (HBG) and study its structural characterization and antioxidant activity, ultrasonic-microwave-assisted extraction (UME) was optimized by the response surface method (RSM). Under the optimal extraction conditions of 25.05 mL/g liquid-solid ratio, 20 min ultrasonic time, and 480 W microwave intensity, the DPPH radical scavenging activity of HBG reached 25.67%. Two polysaccharide fractions were purified from HBG, namely HBG-1 and HBG-2. Structural characterization indicated that HBG-1 and HBG-2 had similar functional groups, glycosidic linkages, and linear and complex chain conformation. HBG-1 was mainly composed of glucose (98.97%), while HBG-2 primarily consisted of arabinose (38.23%), galactose (22.01%), and xylose (31.60%). The molecular weight of HBG-1 was much smaller than that of HBG-2. Both HBG-1 and HBG-2 exhibited concentration-dependent antioxidant activity, and HBG-1 was more active. This study provided insights into the efficient extraction of HBG and further investigated the structure and antioxidant activities of purified components HBG-1 and HBG-2. Meanwhile, the results of this study imply that HBG has the potential to be an antioxidant in foods and cosmetics.
Collapse
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Chunfeng Cui
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Zhiheng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Fuhong Che
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| | - Zhanxiu Chen
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| | - Shengbao Feng
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| |
Collapse
|
17
|
Zhang Z, Sun L, Chen R, Li Q, Lai X, Wen S, Cao J, Lai Z, Li Z, Sun S. Recent insights into the physicochemical properties, bioactivities and their relationship of tea polysaccharides. Food Chem 2024; 432:137223. [PMID: 37669580 DOI: 10.1016/j.foodchem.2023.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Tea polysaccharides (TPS) is receiving global concern in past years due to their therapeutic effects in many diseases such as obesity and diabetes. Many publications imply that the unique physicochemical properties and bioactivities of TPS are prerequisites for its use as a biofilm, drug carrier and emulsifier. Despite numerous healthy benefits, studies on the in-deep structure-activity relationship of TPS still not well explored and explained yet. The main reasons for the research limitation are attributed mainly to the unbreakable advanced structural research technology and the formation of TPS conjugates. The present review also summarizes some similar parameters in primary structure of TPS with better bioactivities, discusses the relationships between their physicochemical properties and bioactivities, and suggests that function-specific TPS would be obtained in the future if the links between preparation methods, physicochemical properties and bioactivities of TPS could be well understood and established.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
18
|
Ryoo R, Lee H, Park Y. Potential Antiviral Effect of Korean Forest Wild Mushrooms against Feline Coronavirus (FCoV). Int J Med Mushrooms 2024; 26:1-8. [PMID: 38523445 DOI: 10.1615/intjmedmushrooms.2024052483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Coronaviruses (CoV) are among the major viruses that cause common cold in humans. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a high-risk human pathogen that derived from bat coronaviruses, although several other animals serve as CoV hosts, contributing to human infection. As the human activity area expanded, viruses previously prevalent only in animals mutated and became threats to humans as well, leading to worldwide epidemics. Therefore, controlling CoV infections in animals is essential to prevent CoV-related human infections. Feline coronavirus (FCoV) could be reportedly used as an alternative model for SARS-CoV-2. Traditionally, mushrooms are not only foods but are also consumed to prevent diseases. Importantly, certain edible and medicinal mushrooms display antibacterial and antiviral effects against respiratory pathogens; therefore, they could be tested as potential coronavirus treatment agents. In this study, we investigated if wild forest mushrooms with various reported physiological activities could exhibit an antiviral activity against CoV, using FCoV as a SARS-CoV-2 model infecting Crandell Rees feline kidney cells. We measured the antiviral activity of 11 wild mushrooms overall and our results demonstrated that Pleurotus ostreatus and Phallus luteus displayed the highest antiviral efficacy of 55.33%, followed by Tricholoma bakamatsutake at 43.77%. Grifola frondosa, Morchella esculenta, and Sarcodon imbricatus exhibited mild efficacy of 29.21%. We also tested Amanita caesareoides, Marasmius siccus, Pachyma hoelen, Phallus rubrovolvata, and Sparassis latifolia but could not detect any antiviral activity in their case. Our study confirms that wild forest mushrooms could be used as potential functional foods or pharmacological materials against coronavirus.
Collapse
Affiliation(s)
- Rhim Ryoo
- National Institute of Forest Science
| | - Hyorim Lee
- Division of Forest Microbiology, National Institute of Forest Science, Suwon, (16631), Republic of Korea
| | - Youngki Park
- Division of Biotechnology, Korea Forest Research Institute, Suwon 441-350, S. Korea
| |
Collapse
|
19
|
Pérez-Bassart Z, Bäuerl C, Fabra MJ, Martínez-Abad A, Collado MC, López-Rubio A. Composition, structural properties and immunomodulatory activity of several aqueous Pleurotus β-glucan-rich extracts. Int J Biol Macromol 2023; 253:127255. [PMID: 37827398 DOI: 10.1016/j.ijbiomac.2023.127255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
In this work, aqueous extracts from six different Pleurotus species were obtained and their yield, gross composition, β-glucan content, monosaccharide profile, thermal stability, molecular weight distribution, and FT-IR were analyzed before and after purification through ethanol precipitation of the carbohydrate-rich fractions. The bioactivity (anti-inflammatory and immunomodulatory activity) of the various fractions obtained was also analyzed in three different cell cultures and compared with a lentinan control. The trend observed after purification of the aqueous fractions was an increase in the concentration of polysaccharides (especially β-glucans), a decrease in ash, glucosamine and protein content and the elimination of low molecular weight (Mw) compounds, thus leaving in the purified samples high Mw populations with increased thermal stability. Interestingly, all these purified fractions displayed immunomodulatory capacity when tested in THP-1 macrophages and most of them also showed significant activity in HEK-hTLR4 cells, highlighting the bioactivity observed for Pleurotus ostreatus (both the extracts obtained from the whole mushroom and from the stipes). This specific species was richer in heteropolysaccharides, having moderate β-glucan content and being enriched upon purification in a high Mw fraction with good thermal stability.
Collapse
Affiliation(s)
- Zaida Pérez-Bassart
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Maria Jose Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
20
|
Yan K, Guo L, Zhang B, Chang M, Meng J, Deng B, Liu J, Hou L. MAC Family Transcription Factors Enhance the Tolerance of Mycelia to Heat Stress and Promote the Primordial Formation Rate of Pleurotus ostreatus. J Fungi (Basel) 2023; 10:13. [PMID: 38248923 PMCID: PMC10816978 DOI: 10.3390/jof10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Pleurotus ostreatus is a typical tetrapolar heterologous edible mushroom, and its growth and development regulatory mechanism has become a research hotspot in recent years. The MAC1 protein is a transcription factor that perceives copper and can regulate the expression of multiple genes, thereby affecting the growth and development of organisms. However, its function in edible mushrooms is still unknown. In this study, two transcription factor genes, PoMCA1a and PoMAC1b, were identified. Afterwards, PoMAC1 overexpression (OE) and RNA interference (RNAi) strains were constructed to further explore gene function. The results showed that the PoMAC1 mutation had no significant effect on the growth rate of mycelia. Further research has shown that OE-PoMAC1a strains and RNAi-PoMAC1b strains exhibit strong tolerance under 32 °C heat stress. However, under 40 °C heat stress, the OE of PoMAC1a and PoMAC1b promoted the recovery of mycelial growth after heat stress. Second, the OE of PoMAC1a can promote the rapid formation of primordia and shorten the cultivation cycle. In summary, this study indicated that there are functional differences between PoMAC1a and PoMAC1b under different heat stresses during the vegetative growth stage, and PoMAC1a has a positive regulatory effect on the formation of primordia during the reproductive growth stage.
Collapse
Affiliation(s)
- Kexing Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
| | - Lifeng Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
| | - Benfeng Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Bing Deng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (K.Y.); (L.G.); (B.Z.); (M.C.); (J.M.); (B.D.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
21
|
Punthi F, Yudhistira B, Gavahian M, Chang CK, Husnayain N, Hou CY, Yu CC, Hsieh CW. Optimization of Plasma Activated Water Extraction of Pleurotus ostreatus Polysaccharides on Its Physiochemical and Biological Activity Using Response Surface Methodology. Foods 2023; 12:4347. [PMID: 38231788 DOI: 10.3390/foods12234347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
This study focused on optimizing the extraction of P. ostreatus polysaccharides (POPs) using plasma-activated water (PAW). A single factor and response surface methodology were employed to optimize and evaluate the polysaccharide yield, physiochemical characteristics, and biological activities of POPs. The observed findings were compared to those obtained by the conventional hot water extraction method (100 °C, 3 h), as the control treatment. The optimal extraction conditions were obtained at 700 W PAW power, 58 s treatment time, 1:19 sample-to-water ratio, and 15 L/min gas flow rate. In these conditions, the PAW-treated samples experienced changes in surface morphology due to plasma etching, leading to a 288% increase in the polysaccharide yield (11.67%) compared to the control sample (3.01%). Furthermore, the PAW-treated sample exhibited superior performance in terms of biological activities, namely phenolic compounds (53.79 mg GAE/100 g), DPPH scavenging activity (72.77%), and OH scavenging activity (65.03%), which were 29%, 18%, and 38% higher than those of control sample, respectively. The results highlighted the importance of process optimization and provided new evidence for PAW as an alternative approach to enhance the extraction efficiency of POPs, a novel source of natural antioxidants which enables diverse applications in the food industry.
Collapse
Affiliation(s)
- Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
- Department of Food Science and Technology, Sebelas Maret University, Surakarta City 57126, Indonesia
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung City 91201, Taiwan
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Naila Husnayain
- International Master Program of Agriculture, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 40402, Taiwan
| |
Collapse
|
22
|
Tepsongkroh B, Thaihuttakij C, Supawong S, Jangchud K. Impact of high pressure pre-treatment and hot water extraction on chemical properties of crude polysaccharide extract obtained from mushroom ( Volvariella volvacea). Food Chem X 2023; 19:100864. [PMID: 37780333 PMCID: PMC10534237 DOI: 10.1016/j.fochx.2023.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 10/03/2023] Open
Abstract
An examination of the process of extracting crude polysaccharides from Volvariella volvacea solely through hot water treatment (HWE) at 60, 80, and 100 °C and through an approach involving high pressure processing (HPP) at 200, 400, and 600 MPa followed by HWE. The physiological properties of the polysaccharides could be explained by the structural analysis performed via FT-IR spectroscopy and NMR spectroscopy, which revealed the extract composition of the protein-bound polysaccharides connected by β-glycosidic bonds. Under the extraction conditions investigated in this current study, the recommended extraction condition was a combination of HPP (600 MPa, 10 min) and HWE (60 °C, 2 h). This condition gave high crude polysaccharide yields (with a 2-12% increase), and β-glucan content (with a 15-20% increase) without disrupting the β-glycosidic bond, as compared to using HWE alone. High pressure extraction could be an alternative technique for reduced extraction temperatures of active compounds from mushrooms.
Collapse
Affiliation(s)
- Benjarat Tepsongkroh
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 12121 Pathumthani, Thailand
- Thammasat University, Center of Excellence in Food Science and Innovation, Thammasat University, 12121 Pathumthani, Thailand
| | - Chuttida Thaihuttakij
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 12121 Pathumthani, Thailand
| | - Supattra Supawong
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 12121 Pathumthani, Thailand
- Thammasat University, Center of Excellence in Food Science and Innovation, Thammasat University, 12121 Pathumthani, Thailand
| | - Kamolwan Jangchud
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, 10900 Bangkok, Thailand
| |
Collapse
|
23
|
Hou L, Yan K, Dong S, Guo L, Liu J, Wang S, Chang M, Meng J. Transcriptome Analysis Revealed That Hydrogen Peroxide-Regulated Oxidative Phosphorylation Plays an Important Role in the Formation of Pleurotus ostreatus Cap Color. J Fungi (Basel) 2023; 9:823. [PMID: 37623594 PMCID: PMC10455351 DOI: 10.3390/jof9080823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Pleurotus ostreatus is widely cultivated in China. H2O2, as a signaling molecule, can regulate the formation of cap color, but its regulatory pathway is still unclear, severely inhibiting the breeding of dark-colored strains. In this study, 614 DEGs specifically regulated by H2O2 were identified by RNA-seq analysis. GO-enrichment analysis shows that DEGs can be significantly enriched in multiple pathways related to ATP synthesis, mainly including proton-transporting ATP synthesis complex, coupling factor F(o), ATP biosynthetic process, nucleoside triphosphate metabolic processes, ATP metabolic process, purine nucleoside triphosphate biosynthetic and metabolic processes, and purine ribonuclease triphosphate biosynthetic metabolic processes. Further KEGG analysis revealed that 23 DEGs were involved in cap color formation through the oxidative phosphorylation pathway. They were enriched in Complexes I, III, IV, and V in the respiratory chain. Further addition of exogenous uncoupling agents and ATP synthase inhibitors clarifies the important role of ATP synthesis in color formation. In summary, H2O2 may upregulate the expression of complex-encoding genes in the respiratory chain and promote ATP synthesis, thereby affecting the formation of cap color. The results of this study lay the foundation for the breeding of dark-colored strains of P. ostreatus and provide a basis for the color-formation mechanism of edible fungi.
Collapse
Affiliation(s)
- Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Kexing Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
| | - Shuai Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
| | - Lifeng Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Shurong Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu 030801, China
| |
Collapse
|
24
|
Suo A, Fan G, Wu C, Li T, Cong K. Green extraction of carotenoids from apricot flesh by ultrasound assisted corn oil extraction: Optimization, identification, and application. Food Chem 2023; 420:136096. [PMID: 37075571 DOI: 10.1016/j.foodchem.2023.136096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
The valorization of waste apricot flesh (WAF) can solve environmental and economic problems, and also meets the demand for natural pigments. Therefore, the aim of this paper was to recover carotenoids from WAF, to determine the type and content of carotenoids in the extracts and to explore the potential of the extracts for food industry applications. The extraction conditions were optimized. The total carotenoids content (TCC) was 42.75 mg/100 g dried weight under the optimized conditions: Time: 60 min, Temperature: 41.53℃, Power: 200 W, Liquid to solid (LS) ratio: 0.10 g/mL. The highest content of carotenoids in the corn oil extracts (COE) was phytoene. Color of COE under high temperature was investigated. Carotenoids in the COE were degraded at high temperatures. The a* of fries fried by COE was 7.31 times higher than that of corn oil. This study provides guidance for the green recovery of carotenoids and valorization of WAF.
Collapse
Affiliation(s)
- Andi Suo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kaiping Cong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
25
|
Hsiao Y, Shao Y, Wu Y, Hsu W, Cheng K, Yu C, Chou C, Hsieh C. Physicochemical properties and protective effects on UVA-induced photoaging in Hs68 cells of Pleurotus ostreatus polysaccharides by fractional precipitation. Int J Biol Macromol 2023; 228:537-547. [PMID: 36584774 DOI: 10.1016/j.ijbiomac.2022.12.254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
The development of natural ingredients protecting skin from UVA-induced photoaging is widely expected. The present study investigated the physicochemical properties, antioxidant, moisturizing, collagenase and elastase inhibitory activities, and protective effect on UVA-induced photoaging in Hs68 cells of Pleurotus ostreatus polysaccharides (POPs). POP-40, POP-60, and POP-80 were extracted by gradient precipitation of 40 %, 60 %, and 80 % ethanol, which could be prepared in large quantities. The results showed that POPs had good DPPH and ABTS radical scavenging abilities, water retention capacity, and collagenase and elastase inhibition effects. POP-80 had the best efficacy. Further determined the anti-inflammatory and antisenescence activities of POPs in Hs68 cells. The results indicated that after UVA irradiation, the contents of ROS, senescent cells, NF-κB activity, and proinflammatory cytokines increased in Hs68 cells. However, cells pretreated with 50 μg/mL POPs significantly decreased the contents of ROS and the number of senescent cells, reduced NF-κB activity, and inhibited IL-6 and TNF-α production. There was no significant difference in reducing the accumulation of ROS and senescent cells between POP-80 and the common anti-inflammatory substance quercetin. The results suggested that POP-80 may be potential cosmeceutical ingredients as it can protect Hs68 cells from photodamage.
Collapse
Affiliation(s)
- Yafang Hsiao
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402202, Taiwan.
| | - Yichia Shao
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402202, Taiwan.
| | - Yunting Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402202, Taiwan.
| | - Wenkuang Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, No. 168, Xuefu Rd., Dacun Township, Changhua County 515006, Taiwan.
| | - Kuanchen Cheng
- Institute of Biotechnology, National Taiwan University, No. 81, Changxing St., Da'an Dist., Taipei City 106038, Taiwan; Institute of Food Science and Technology, National Taiwan University, No. 59, Ln. 144, Sec. 4, Keelung Rd., Da'an Dist., Taipei City 106032, Taiwan; Department of Optometry, Asia University, No.500, Liufeng Rd., Wufeng Dist., Taichung City 413305, Taiwan; Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404327, Taiwan.
| | - Chengchia Yu
- Institute of Oral medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., South Dist., Taichung City 402306, Taiwan.
| | - Chunhsu Chou
- Dr Jou Biotech Co., Ltd., No. 21, Lugong S. 2nd Rd., Lukang Township, Changhua County 505029, Taiwan.
| | - Changwei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402202, Taiwan; Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404327, Taiwan.
| |
Collapse
|
26
|
Guo YX, Yang YR, Qin Y, Guan TK, Yang QZ, Wang YX, Tang S, Zhang GQ, Chen QJ. Nutritional qualities and antioxidant activity of Pleurotus floridanus grown on composted peach sawdust substrate with different composting time. Biotechnol Appl Biochem 2023; 70:210-220. [PMID: 35398919 DOI: 10.1002/bab.2344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 11/10/2022]
Abstract
Recently, composting cultivation method is widely used in oyster mushroom production. In this study, we focused on the effects of composting processes on nutritional qualities and antioxidant activity of Pleurotus floridanus mushroom fruiting bodies. Three treatments of different composting time (2, 4, and 5 days) were performed with an atmospheric sterilization treatment as the control. The results showed that the pH value, total carbon content, and total nitrogen content of substrate were critical parameters which would significantly affect mushroom qualities and bioactivities. Fruiting bodies of the control demonstrated significantly higher crude protein content, total amino acid content, and essential amino acid content than that of composting treatments. Moreover, fruiting bodies of treatment D4 and D5 manifested significantly higher crude polysaccharide contents. Crude polysaccharide of treatment D4 represented the highest scavenging ability toward both radical 3-ethylbenzthiazoline-6-sulfonic acid (ABTS·+ ) and Hydroxyl radical (OH·). It suggests that composting processes is suitable for oyster mushroom cultivation based on nutritional and antioxidant qualities of fruiting bodies.
Collapse
Affiliation(s)
- Yu-Xin Guo
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ya-Ru Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yong Qin
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Ti-Kun Guan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qi-Zhi Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yue-Xing Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Shi Tang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Guo-Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qing-Jun Chen
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
27
|
Xia Y, Wang D, Li J, Chen M, Wang D, Jiang Z, Liu B. Corrigendum: Compounds purified from edible fungi fight against chronic inflammation through oxidative stress regulation. Front Pharmacol 2023; 13:1081523. [PMID: 36686659 PMCID: PMC9849929 DOI: 10.3389/fphar.2022.1081523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fphar.2022.974794.].
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jiaqi Li
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| |
Collapse
|
28
|
Dong Y, Wang T, Zhao J, Gan B, Feng R, Miao R. Polysaccharides Derived from Mushrooms in Immune and Antitumor Activity: A Review. Int J Med Mushrooms 2023; 25:1-17. [PMID: 37560886 DOI: 10.1615/intjmedmushrooms.2023049062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Mushrooms are full of nutrition and have beneficial properties for human health. Polysaccharides are the main component of edible and medicinal mushrooms, especially β-glucans, which have attracted much more attention for their complex structure and diverse biological activities. Among all the diverse medicinal activities of mushroom polysaccharides, antitumor and immune-enhancing activities are two excellent bioactivities that have much more potential and deserve application. Their bioactivities are highly dependent on their structural features, including molecular weight, monosaccharide composition, degree of branching, type and configuration of glycosidic bonds, substituent pattern, and chain conformation. This review summarizes the current method for obtaining polysaccharides from mushrooms, chemical characterizations of the structures and their roles in immune and antitumor activities. In addition, the methods for preparation of the polysaccharide derivatives and the potential medicinal clinical application are also discussed in this review, which may provide new guidance for mushroom polysaccharide development.
Collapse
Affiliation(s)
- Yating Dong
- School of Food and Biological Engineering, Institute of Food Physical Processing, International Joint Research Center for Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| | - Tao Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000 P.R. China
| | - Jin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000 P.R. China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| |
Collapse
|
29
|
Skin Health Promoting Effects of Natural Polysaccharides and Their Potential Application in the Cosmetic Industry. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Skincare is one of the most profitable product categories today. Consumers’ demand for skin-friendly products has stimulated the development of natural-ingredient-based cosmeceutical preparations over synthetic chemicals. Thus, natural polysaccharides have gained much attention since the promising potent efficacy in wound healing, moisturizing, antiaging, and whitening. The challenge is to raise awareness of polysaccharides with excellent bioactivities from natural sources and consequently incorporate them in novel and safer cosmetics. This review highlights the benefits of natural polysaccharides from plants, algae, and fungi on skin health, and points out some obstacles in the application of natural polysaccharides.
Collapse
|
30
|
Flores GA, Girometta CE, Cusumano G, Angelini P, Tirillini B, Ianni F, Blasi F, Cossignani L, Pellegrino RM, Emiliani C, Venanzoni R, Venturella G, Colasuonno P, Cirlincione F, Gargano ML, Zengin G, Acquaviva A, Di Simone SC, Orlando G, Menghini L, Ferrante C. Untargeted Metabolomics Used to Describe the Chemical Composition, Antioxidant and Antimicrobial Effects of Extracts from Pleurotus spp. Mycelium Grown in Different Culture Media. Antibiotics (Basel) 2022; 11:1468. [PMID: 36358124 PMCID: PMC9686522 DOI: 10.3390/antibiotics11111468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 10/06/2023] Open
Abstract
Pleurotus species isolated in vitro were studied to determine the effect of different media on their production of secondary metabolites, antimicrobial, and antioxidant activity. The different metabolites among Pleurotus samples covered a total of 58 pathways. Comparisons were made between the metabolic profiles of Pleurotus spp. mycelia grown in two substrates: Potato-dextrose-agar-PDA, used as control (S1), and PDA enriched with 0.5 % of wheat straw (S2). The main finding was that the metabolic pathways are strongly influenced by the chemical composition of the growth substrate. The antibacterial effects were particularly evident against Escherichia coli, whereas Arthroderma curreyi (CCF 5207) and Trichophyton rubrum (CCF 4933) were the dermatophytes more sensitive to the mushroom extracts. The present study supports more in-depth investigations, aimed at evaluating the influence of growth substrate on Pleurotus spp. antimicrobial and antioxidant properties.
Collapse
Affiliation(s)
| | | | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Bruno Tirillini
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Center for Perinatal and Reproductive Medicine, Santa Maria della Misericordia University Hospital, University of Perugia, 06132 Perugia, Italy
| | | | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Giuseppe Venturella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Pasqualina Colasuonno
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Fortunato Cirlincione
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Maria Letizia Gargano
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Alessandra Acquaviva
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Simonetta Cristina Di Simone
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giustino Orlando
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Luigi Menghini
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Claudio Ferrante
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
31
|
Khatua S, Acharya K. Antioxidation and immune-stimulatory actions of cold alkali extracted polysaccharide fraction from Macrocybe lobayensis, a wild edible mushroom. 3 Biotech 2022; 12:247. [PMID: 36033910 PMCID: PMC9411380 DOI: 10.1007/s13205-022-03317-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022] Open
Abstract
Mushroom β-glucans are presently gaining widespread attention, being one of the promising healthy compounds with excellent antioxidative and immunomodulatory activities. Conventionally, hot water extraction procedure is followed to isolate the polymers where the residue is discarded after filtration. However, the remnants still contain plenty of bioactive components that could provide a unique opportunity for the discovery of novel therapeutic agents. In this backdrop, the present study was aimed to expand utilization of a popularly edible mushroom, Macrocybe lobayensis, by re-cycling left-over material that has passed through traditional aqueous process. For that, the residue was immersed in alkaline solution followed by ethanol precipitation and repeated washing resulting preparation of a water soluble and partially purified polysaccharidic fraction (ML-CAP). Chemical and molecular characterization by FT-IR, HPTLC, GC-MS, GPC and spectroscopy unveiled that ML-CAP was consisted of a homo-polymer with Mw of ~ 122 kDa. The backbone was mainly composed of β-glucan where galactose was identified as the second most abundant unit. Subsequently, the fraction exhibited potent antioxidant activity in terms of radical scavenging, chelating ability and reducing power. Furthermore, strong immune enhancing property was also recorded as the polymer, particularly at the concentration of 100 µg/ml, triggered murine macrophage functionality in terms of cell proliferation, phagocytosis, pseudopods formation and nitric oxide production. The study thus advocates for potential application and further extraction of hot water extracted mushroom residue in drug development and nutraceutical industries, as the example of ML-CAP showed promising biological effects.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Krishnagar Government College, Krishnagar, West Bengal 741101 India
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| |
Collapse
|
32
|
Peng X, Hu X, Zhang Y, Xu H, Tang J, Zhang G, Deng J, Kan H, Zhao P, Liu Y. Extraction, characterization, antioxidant and anti-tumor activities of polysaccharides from Camellia fascicularis leaves. Int J Biol Macromol 2022; 222:373-384. [PMID: 36152704 DOI: 10.1016/j.ijbiomac.2022.09.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
The ultrasonic-assisted extraction of polysaccharides from Camellia fascicularis (PCF) was optimized using response surface methodology. After separation and purification with DEAE-52 cellulose and Sephadex G-200 glucan gel columns, the purified polysaccharide components of PCFa-1 and PCFc-1 were analyzed for their structural characterization, antioxidant and anti-tumor activities in vitro. The results indicated that liquid to material ratio of 42 mL/g, ultrasonic time of 53 min, ultrasonic temperature of 73 °C, and ultrasonic power of 215 W were the optimum extraction conditions for PCF with maximum yields (4.05 %). PCFa-1 and PCFc-1 contained 5.88 % and 9.58 % uronic acid content, with 7.53 and 108.91 kDa of average molecular weights, respectively. The PCFa-1 was mainly constituted of galactose, arabinose, and glucose, while PCFc-1 was primarily composed of arabinose, glucose, galacturonic acid, and rhamnose. Fourier transform infrared spectra revealed that PCFa-1 and PCFc-1 contained typical polysaccharide bands. Scanning electron microscopy showed that the surface of PCFa-1 and PCFc-1 were irregular and clumpy structures. Nuclear magnetic resonance showed that PCFa-1 and PCFc-1 were mainly α-glycosidic bond conformation. Furthermore, the PCFc-1 showed better antioxidant capacities than PCFa-1 against hydroxyl, DPPH, and ABTS radicals and exhibited more potent toxicity on A549 and HepG2 cells. These research results suggested that PCF, especially PCFc-1, possesses great potential as natural antioxidants and anti-tumor drugs.
Collapse
Affiliation(s)
- Xiaowei Peng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xiang Hu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; Institute of Tropical Eco-agriculture, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Han Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Guiliang Zhang
- Hekou Management Sub-bureau of Yunnan Daweishan National Nature Reserve Management Bureau, Hekou 661399, China
| | - Jia Deng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Ping Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
33
|
dos Reis EE, Schenkel PC, Camassola M. Effects of bioactive compounds from Pleurotus mushrooms on COVID-19 risk factors associated with the cardiovascular system. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:385-395. [PMID: 35879221 PMCID: PMC9271422 DOI: 10.1016/j.joim.2022.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/14/2021] [Indexed: 10/27/2022]
|
34
|
Gürgen A, Sevindik M. Application of artificial neural network coupling multi objective‐particle swarm optimization algorithm to optimize
Pleurotus ostreatus
extraction parameters. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ayşenur Gürgen
- Karadeniz Technical University Faculty of Forest, Forest Industrial Engineering Trabzon Turkey
| | - Mustafa Sevindik
- Osmaniye Korkut Ata University Department of Food Processing, Bahçe Vocational School Osmaniye Turkey
| |
Collapse
|
35
|
Liang Z, Yin Z, Liu X, Ma C, Wang J, Zhang Y, Kang W. A glucomannogalactan from Pleurotus geesteranus: Structural characterization, chain conformation and immunological effect. Carbohydr Polym 2022; 287:119346. [DOI: 10.1016/j.carbpol.2022.119346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
|
36
|
Elhusseiny SM, El-Mahdy TS, Elleboudy NS, Yahia IS, Farag MMS, Ismail NSM, Yassien MA, Aboshanab KM. In vitro Anti SARS-CoV-2 Activity and Docking Analysis of Pleurotus ostreatus, Lentinula edodes and Agaricus bisporus Edible Mushrooms. Infect Drug Resist 2022; 15:3459-3475. [PMID: 35813084 PMCID: PMC9259418 DOI: 10.2147/idr.s362823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Shaza M Elhusseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Cairo, 12566, Egypt
| | - Taghrid S El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Nooran S Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ibrahim S Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab, Metallurgical Lab, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Mohamed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Nasser S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Correspondence: Khaled M Aboshanab, Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt, Tel +20 1-0075-82620, Fax +20 224051107, Email
| |
Collapse
|
37
|
Food sustainability trends - How to value the açaí production chain for the development of food inputs from its main bioactive ingredients? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Effects of Pleurotus ostreatus on Physicochemical Properties and Residual Nitrite of the Pork Sausage. COATINGS 2022. [DOI: 10.3390/coatings12040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, a novel sausage incorporated with the Pleurotus ostreatus (PO) puree was successfully developed to reduce the residual nitrite and lipid oxidation during refrigerated storage (4 ± 1 °C) for 20 days. Five recipes with the supplement proportion of 0 wt.%, 10 wt.%, 20 wt.%, 30 wt.%, and 40 wt.% PO were produced and their physicochemical properties, nitrite residue, and sensory characteristics were measured. The results show that the content of moisture and all the essential amino acids (especially lysine and leucine) and the non-essential amino acids (especially aspartic and glutamic), lightness, springiness, and water holding capacity of the sausages were increased. However, the content of protein, fat, ash, pH, redness, hardness, gumminess, and chewiness of the sausages was decreased. For the sensory evaluation, the sausage with 20 wt.% PO had better sensory performance including flavor, aroma, and acceptability compared with other experimental groups and the control group. Moreover, the sausages with PO reduced the residual nitrite and inhibited lipid oxidation during storage. All of these results indicate that adding PO puree into pork sausage is a realizable and effective way to obtain nutritional and healthy pork sausages.
Collapse
|
39
|
Wang Y, Zhang J, Zhang L. An active and pH-responsive film developed by sodium carboxymethyl cellulose/polyvinyl alcohol doped with rose anthocyanin extracts. Food Chem 2022; 373:131367. [PMID: 34731797 DOI: 10.1016/j.foodchem.2021.131367] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022]
Abstract
Many anthocyanins were used in active and pH-responsive packaging. The purpose of the study was to prepare an active and pH-responsive sensitive film based on sodium carboxymethyl cellulose/polyvinyl alcohol (CPVA) by a casting process, which contained rose anthocyanin extracts (RAEs) to monitor the freshness of pork. The concentration of RAEs had an important influence on the physicochemical property of RAEs-CPVA films, especially excellent anti-oxidation and light barrier properties. Importantly, the 160-RAEs-CPVA film had a strong response to pH, showing different color at different pHs. Furthermore, when monitoring the freshness of pork stored at 25 °C, the light green color of the 160-RAEs-CPVA film indicated that the freshness of the pork was higher, while the dark green and orange appearance indicated that the pork was spoiled. Therefore, 160-RAEs-CPVA film can be used as a smart indicator for freshness monitoring of pork.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Zhang
- The Food College of Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Food College of Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
40
|
Guo Q, Liang S, Ge C, Xiao Z. Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2039182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
41
|
Ben Slima S, Ktari N, chouikhi A, Trabelsi I, Hzami A, Taktak MA, Msaddak L, Ben Salah R. Antioxidant activities, functional properties, and application of a novel Lepidium sativum polysaccharide in the formulation of cake. Food Sci Nutr 2022; 10:822-832. [PMID: 35311160 PMCID: PMC8907738 DOI: 10.1002/fsn3.2713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022] Open
Abstract
A novel heteropolysaccharide, named cress water soluble polysaccharide (CWSP), was purified from Lepidium sativum seeds. Antioxidant activities and functional properties were characterized thermally using thermal gravimetric analysis (TGA), and the differential scanning calorimeter (DSC) results of CWSP were evaluated. The total antioxidant capacity and the metal chelating activities of CWSP at 3 mg/ml were equivalent to 116.34 µg ascorbic acid and 62.57%, respectively. As for the CWSP that was used for the production of cakes, it was thermally stable, and it presented high water (WHC) and oil holding (OHC) capacities and good emulsion properties. The samples were prepared with different levels of CWSP (0.1. 0.3, and 0.5%) and analyzed during 15 days of storage at room temperature. The obtained results indicated that the addition of CWSP had a significant effect on the texture profile, leading to the increase in all parameters in terms of hardness, springiness, cohesiveness, adhesiveness, and chewiness. Moreover, the reformulation samples presented higher a* and lower L* and b* than the control sample. The sensory evaluation showed that the formulation of cake with 0.3% of CWSP was the most acceptable. Therefore, CWSP was shown to be a new alternative for improving the quality attributes, indicating potent antioxidant activities on the shelf life during the storage of bakery foods.
Collapse
Affiliation(s)
- Sirine Ben Slima
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | - Naourez Ktari
- Laboratory of Enzyme Engineering and MicrobiologyNational School of Engineering of Sfax (ENIS)SfaxTunisia
- Department of Life SciencesFaculty of Science of GabesGabesTunisia
| | - Aicha chouikhi
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | - Imen Trabelsi
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | - Amina Hzami
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | | | | | - Riadh Ben Salah
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| |
Collapse
|
42
|
Guo R, Chen M, Ding Y, Yang P, Wang M, Zhang H, He Y, Ma H. Polysaccharides as Potential Anti-tumor Biomacromolecules —A Review. Front Nutr 2022; 9:838179. [PMID: 35295918 PMCID: PMC8919066 DOI: 10.3389/fnut.2022.838179] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer, as one of the most life-threatening diseases, has attracted the attention of researchers to develop drugs with minimal side effects. The bioactive macromolecules, such as the polysaccharides, are considered the potential candidates against cancer due to their anti-tumor activities and non-toxic characteristics. The present review provides an overview on polysaccharides' extraction, isolation, purification, mechanisms for their anti-tumor activities, structure-activity relationships, absorption and metabolism of polysaccharides, and the applications of polysaccharides in anti-tumor therapy. Numerous research showed extraction methods of polysaccharides had a significant influence on their activities. Additionally, the anti-tumor activities of the polysaccharides are closely related to their structure, while molecular modification and high bioavailability may enhance the anti-tumor activity. Moreover, most of the polysaccharides exerted an anti-tumor activity mainly through the cell cycle arrest, anti-angiogenesis, apoptosis, and immunomodulation mechanisms. Also, recommendations were made to utilize the polysaccharides against cancer.
Collapse
Affiliation(s)
- Rui Guo
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Min Chen
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Yangyang Ding
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Pengyao Yang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mengjiao Wang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haihui Zhang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuanqing He
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
- *Correspondence: Yuanqing He
| | - Haile Ma
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
43
|
Development of a new scale-up equation to obtain Tucumã-of-Pará (Astrocaryum vulgare Mart.) oil rich in carotenoids using supercritical CO2 as solvent. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Liu M, Shan S, Gao X, Zeng D, Lu W. Structure characterization and lipid-lowering activity of a homogeneous heteropolysaccharide from sweet tea (Rubus Suavissmus S. Lee). Carbohydr Polym 2022; 277:118757. [PMID: 34893212 DOI: 10.1016/j.carbpol.2021.118757] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Sweet tea (Rubus Suavissmus S. Lee) is consumed as herbal tea in southwestern China, which has multiple functions such as relieving cough, alleviating allergic responses, and clearing away heat. Here we report the structure and lipid-lowering activity of a sweet tea polysaccharide (STP-60a). STP-60a is a homogeneous heteropolysaccharide with a molecular weight of 9.16 × 104 Da, and composed of rhamnose, arabinose, glucose, galactose and glucuronic acid. The main backbone of STP-60a consists of β-L-Rhap-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Glcp-UA-(1→, →3,6)-β-D-Galp-(1→, →6)-β-D-Galp-(1→, →3)-4-OAc-β-L-Arap-(1→, →3)-α-L-Araf-(1→ and the side chain are α-L-Araf-(1→ and →3)-α-D-Glcp-(1→. Using Caenorhabditis elegans (C. elegans) in a high-sugar diet as a model, we found that STP-60a significantly reduced the fat accumulation in the intestine of C. elegans, and extensively affected lipolysis, fatty acid synthesis and β-oxidation processes. In addition, sbp-1 and nhr-49 were essential for STP-60a to exert a lipid-lowering effect.
Collapse
Affiliation(s)
- Mengyao Liu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Shan Shan
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xin Gao
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Deyong Zeng
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
45
|
Tang Q, Huang G. Improving method, properties and application of polysaccharide as emulsifier. Food Chem 2021; 376:131937. [PMID: 34968911 DOI: 10.1016/j.foodchem.2021.131937] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
At present, there are still some problems for the emulsification of polysaccharides such as lack of green, efficient and industrialized methods, lack of systematic and in-depth structure-activity relationship, and need of expanding its application scope. The physical, chemical and biological methods for improving the emulsifying of polysaccharides, the emulsifying properties and influencing factors of polysaccharides and application in food were reviewed herein. It was pointed out that the future research should focus on the effect of physical-biological synergistic function on the emulsification of polysaccharides, the effect of processing process on the structure and emulsification mechanism of polysaccharides, and further expanding the application field of polysaccharides with emulsification activity to improve the quality of products.
Collapse
Affiliation(s)
- Qilin Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
46
|
Chun S, Gopal J, Muthu M. Antioxidant Activity of Mushroom Extracts/Polysaccharides-Their Antiviral Properties and Plausible AntiCOVID-19 Properties. Antioxidants (Basel) 2021; 10:1899. [PMID: 34943001 PMCID: PMC8750169 DOI: 10.3390/antiox10121899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have been long accomplished for their medicinal properties and bioactivity. The ancients benefitted from it, even before they knew that there was more to mushrooms than just the culinary aspect. This review addresses the benefits of mushrooms and specifically dwells on the positive attributes of mushroom polysaccharides. Compared to mushroom research, mushroom polysaccharide-based reports were observed to be significantly less frequent. This review highlights the antioxidant properties and mechanisms as well as consolidates the various antioxidant applications of mushroom polysaccharides. The biological activities of mushroom polysaccharides are also briefly discussed. The antiviral properties of mushrooms and their polysaccharides have been reviewed and presented. The lacunae in implementation of the antiviral benefits into antiCOVID-19 pursuits has been highlighted. The need for expansion and extrapolation of the knowns of mushrooms to extend into the unknown is emphasized.
Collapse
Affiliation(s)
| | | | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (J.G.)
| |
Collapse
|
47
|
Hu X, Xu F, Li J, Li J, Mo C, Zhao M, Wang L. Ultrasonic-assisted extraction of polysaccharides from coix seeds: Optimization, purification, and in vitro digestibility. Food Chem 2021; 374:131636. [PMID: 34875432 DOI: 10.1016/j.foodchem.2021.131636] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022]
Abstract
To optimize the extraction of polysaccharides from coix seeds (CSP), an auxiliary method of ultrasound was developed by response surface methodology (RSM). The maximum extraction yield (8.340%) was obtained under 480 W power, 16 min ultrasound extraction (UE) time and 21.00 mL/g water to raw material ratio. Compared to hot water extraction (HE), UE-treated CSP led to a higher extraction efficiency and decreased average CSP molecular weight. FT-IR indicated that CSP extracted by UE and HE were neutral polysaccharides, and linkages between sugar units were mainly in the α-conformation. Furthermore, NMR spectra indicated that UE-treated CSP was a neutral polysaccharide with (1 → 6)-linked α-d-glucopyranose in the main chain. Two polysaccharide components (CSP-A and CSP-B) were purified by anion exchange chromatography, therein, CSP-A was more resistant to the digestion in stomach and intestine. These results suggest that CSP-A has the potential to be a functional agent utilized by gut microbes.
Collapse
Affiliation(s)
- Xintian Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, People's Republic of China
| | - Feiran Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Jinglei Li
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jun Li
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, People's Republic of China
| | - Cheng Mo
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, People's Republic of China
| | - Meng Zhao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, People's Republic of China
| | - Lifeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
48
|
Song S, Liu X, Zhao B, Abubaker MA, Huang Y, Zhang J. Effects of Lactobacillus plantarum Fermentation on the Chemical Structure and Antioxidant Activity of Polysaccharides from Bulbs of Lanzhou Lily. ACS OMEGA 2021; 6:29839-29851. [PMID: 34778657 PMCID: PMC8582043 DOI: 10.1021/acsomega.1c04339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 05/14/2023]
Abstract
Recently, Lanzhou lily has attracted more attention because of its bioactive components specifically polysaccharides. We studied in vitro the effects of Lactobacillus plantarum fermentation on the physicochemical properties, chemical structure, and antioxidant activity of the Lanzhou lily polysaccharide. The results showed that compared with the unfermented Lanzhou lily polysaccharide (LP-W), the molecular weight (M w) of the fermented Lanzhou lily polysaccharide (LPF-W) decreased from 4334 to 1684 kDa, the particle size decreased from 300.8 ± 6.38 to 141.9 ± 4.96 nm, and the solubility increased from 72.33 ± 3.58 to 104.27 ± 2.91 mg/mL. In addition, after fermentation, the monosaccharide composition of LPF-W changed, and the alternation of mannose residues and glucose residues disappeared. The results of the analysis of the antioxidant activity in vitro showed that compared with LP-W, the fermented LPF-W had higher DPPH radical ability, superoxide anion radical scavenging ability, and reducing efficiency, but the hydroxyl radical scavenging ability decreased. These findings provide a reference for the potential application of the lily polysaccharide as a plant-derived antioxidant in functional foods.
Collapse
Affiliation(s)
- Shen Song
- Gansu
Innovation Center of Fruit and Vegetable Storage and Processing, Agricultural Product Storage and Processing Institute,
Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
- New
Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| | - Xiaoyuan Liu
- Gansu
Provincial Maternity and Child-care Hospital, Lanzhou 730050, China
| | - Baotang Zhao
- College
of Food and Science and Engineering, Gansu
Agricultural University, Lanzhou 730070, China
| | - Mohamed Aamer Abubaker
- New
Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
- Department
of Biology, Faculty of Education, University
of Khartoum, Khartoum 11111, Sudan
| | - Yulong Huang
- Gansu
Innovation Center of Fruit and Vegetable Storage and Processing, Agricultural Product Storage and Processing Institute,
Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
- New
Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| | - Ji Zhang
- New
Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
49
|
Rangel-Vargas E, Rodriguez JA, Domínguez R, Lorenzo JM, Sosa ME, Andrés SC, Rosmini M, Pérez-Alvarez JA, Teixeira A, Santos EM. Edible Mushrooms as a Natural Source of Food Ingredient/Additive Replacer. Foods 2021; 10:2687. [PMID: 34828969 PMCID: PMC8624290 DOI: 10.3390/foods10112687] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Although mushrooms have been exploited since ancient times because of their particular taste and therapeutic properties, the interest in edible species as a source of ingredients and bioactive compounds is recent. Their valuable nutritional contents in protein, dietary fiber and bioactive compounds make them ideal candidates for use in foods in efforts to improve their nutritional profiles. This trend is in line with the consumer's growing demand for more plant-based foods. The present review paper explores different studies focused on the use of common edible mushrooms as an ingredient and additive replacer by using them in fresh, dried, or even extract forms, as meat, fat, flour, salt, phosphates, and antioxidant replacers. The replacement of meat, fat, flour, and salt by mushrooms from commercial species has been successful despite sensorial and textural parameters can be affected. Moderate concentrations of mushrooms, especially in powder form, should be considered, particularly in non-familiarized consumers. In the case of antioxidant and antimicrobial properties, results are variable, and more studies are necessary to determine the chemical aspects involved.
Collapse
Affiliation(s)
- Esmeralda Rangel-Vargas
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Ctra. Pachuca-Tulancingo Km 4.5 s/n, Col. Carboneras, Mineral de la Reforma 42183, Hidalgo, Mexico; (E.R.-V.); (J.A.R.)
| | - Jose Antonio Rodriguez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Ctra. Pachuca-Tulancingo Km 4.5 s/n, Col. Carboneras, Mineral de la Reforma 42183, Hidalgo, Mexico; (E.R.-V.); (J.A.R.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Maria Elena Sosa
- Departamento de Alimentos, Campus Irapuato-Salamanca, Universidad de Guanajuato, Ex-Hacienda El Copal, Carretera Irapuato-Silao km 9, Irapuato 36500, Guanajuato, Mexico;
| | - Silvina Cecilia Andrés
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET-CICPBA-UNLP), Facultad de Ciencias Exactas, UNLP, 47 y 116, La Plata 1900, Argentina;
| | - Marcelo Rosmini
- Department of Public Health, Faculty of Veterinary Science, National University of Litoral, Esperanza 3080, Argentina;
| | - José Angel Pérez-Alvarez
- IPOA Research Group, Agro-Food Technology Department, Orihuela Polytechnical High School, Environmental and Agrofood Research Centre for Research and Innovation (CIAGRO), Universidad Miguel Hernández de Elche, 03312 Orihuela, Alicante, Spain;
| | - Alfredo Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Eva María Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Ctra. Pachuca-Tulancingo Km 4.5 s/n, Col. Carboneras, Mineral de la Reforma 42183, Hidalgo, Mexico; (E.R.-V.); (J.A.R.)
| |
Collapse
|
50
|
Supercritical CO2 extraction, structural analysis and bioactivity of polysaccharide from Grifola frondosa. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|