1
|
Hu Q, Qiu L, Zhu Y, Huang Y, Liu L, Han T, Song Y, Zhu X. Impact of freeze-thaw cycles on the structural and quality characteristics of soy protein gels with different 11S/7S protein ratios. Food Chem 2025; 475:143329. [PMID: 39956064 DOI: 10.1016/j.foodchem.2025.143329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/31/2024] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Freeze-thaw (F-T) is the key factor affecting the quality changes of frozen soybean products. Therefore, this study investigated the effects of F-T on the structure and quality of soybean protein gels with different 11S/7S ratios. It was revealed that recrystallisation of ice crystals during the F-T treatment induced protein structural reorganization. This resulted in a reduction of the gels' water-holding capacity (WHC). F-T decreased the amount of soluble protein by encouraging protein buildup through disulfide bonds and hydrophobic contacts. 5 F-T results were the most significant. When the 11S/7S ratio exceeded 1:1.5, the F-T exerted a more disruptive effect on the protein gel, leading to an increase in β-sheet and random coil content. When 11S/7S was less than 1:1.5, F-T had less impact, and the decrease in WHC was reduced. This study provides theoretical support for regulating soybean protein components to improve the F-T stability of soybean protein gels.
Collapse
Affiliation(s)
- Qinlin Hu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Lidan Qiu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Ying Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Linlin Liu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Tianlu Han
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - YiHan Song
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| |
Collapse
|
2
|
Cao Z, Xie C, Yang C, Liu X, Meng X. Effects of ohmic heating thawing under an appropriate electric field on the quality and structure of duck breast meat. J Food Sci 2025; 90:e70098. [PMID: 40205875 DOI: 10.1111/1750-3841.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 04/11/2025]
Abstract
Ohmic heating thawing (OHT), as a novel thawing technique, possesses distinct advantages and is currently garnering attention from researchers. We have investigated the effects of OHT on the structure and protein quality of duck breast meat. Compared to conventional thawing (CT) methods (water thawing [WT], 20 ± 0.5°C; air thawing [AT], 20 ± 0.5°C), OHT (10, 15, and 20 V/cm) has been shown to enhance thawing efficiency, reducing thawing time by 28%-86% (p < 0.05), lowering thawing loss rates by 2.55% (p < 0.05), and resulting in milder protein oxidation with better preservation of protein secondary structures. Microscopically, OHT resulted in minimal damage to myofibrils in the duck breast meat. In this experiment, the optimal thawing electric field strength for duck breast was 15 V/cm. Moreover, the efficacy of OHT also relies on variations in voltage, with the most suitable thawing voltage determined by the specific characteristics of the material. These findings reveal the potential of OHT for thawing meat products. PRACTICAL APPLICATION: Ohmic heating thawing (OHT) shortens thawing time and enhances thawing efficiency while reducing thawing loss rates. It has a minimal impact on proteins and a minor effect on muscle fiber structure.
Collapse
Affiliation(s)
- Zhongwen Cao
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Chengcheng Xie
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Cheng Yang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xingyu Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Xiangren Meng
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| |
Collapse
|
3
|
Atci S, Bilbao-Sainz C, McGraw VS, Wood D, McHugh T, Rubinsky B. Investigating the effects of freezing temperature and oil content on the physiochemical characteristics and stability of oil-in-water emulsions under isochoric freezing conditions. Food Res Int 2025; 204:115906. [PMID: 39986762 DOI: 10.1016/j.foodres.2025.115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/06/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Oil-in-water emulsions are inherently unstable systems and sensitive to environmental factors such as temperature changes. This study evaluated the effects of isochoric freezing (IF) on the stability and physicochemical properties of emulsions containing 10% and 20% oil, comparing IF at -5 °C/59 MPa and -20 °C/170 MPa to conventional freezing (CF) at the same temperatures under atmospheric pressure (0.1 MPa). Emulsions were kept in IF chamber and conventional freezer at -5 °C and -20 °C for 3 days. This study analyzed microbial count, microstructure, globule size, zeta potential, viscosity, color, and stability of emulsion samples after 3 days of CF/IF. Our findings indicate that after subjecting the emulsions to IF (-20 °C/170 MPa), the counts of total aerobic microorganisms, yeast, and mold were below the detection limit. However, CF did not lead to a significant reduction in the microbial count in the emulsions. The globule size of CF 10% and 20% emulsions increased, with slower freezing rates leading to more significant increases in globule size. In contrast, we observed no significant change and a slight increase in the globule size of IF 10% and 20% emulsions, respectively. The viscosity of CF emulsions was significantly higher than that of control and IF emulsions. CF samples at -5 °C exhibited the yellowest color among samples. Our results indicate that CF emulsions were not stable to the freeze-thaw process, evidenced by a significant increase in mean globule diameter, degree of flocculation, coalescence, apparent viscosity, and yellowness. Overall, these findings suggest that IF (-20 °C/170 MPa) could effectively improve the physical stability and microbiological aspects of oil-in-water emulsions.
Collapse
Affiliation(s)
- Sumeyye Atci
- U.S. Department of Agriculture, Western Regional Research Center, 800 Buchanan St., Albany, CA 94710, USA.
| | - Cristina Bilbao-Sainz
- U.S. Department of Agriculture, Western Regional Research Center, 800 Buchanan St., Albany, CA 94710, USA
| | - Valerie S McGraw
- U.S. Department of Agriculture, Western Regional Research Center, 800 Buchanan St., Albany, CA 94710, USA; Department of Mechanical Engineering, University of California, 6141 Etcheverry Hall, Berkeley, CA 94720, USA
| | - Delilah Wood
- U.S. Department of Agriculture, Western Regional Research Center, 800 Buchanan St., Albany, CA 94710, USA
| | - Tara McHugh
- U.S. Department of Agriculture, Western Regional Research Center, 800 Buchanan St., Albany, CA 94710, USA
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, 6141 Etcheverry Hall, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Rivera ÁER, Ulloa JA, Silvas JEU, Ramírez JCR, Vazquez JAR. Physicochemical, techno-functional, biochemical and structural characterization of a protein isolate from groundnut (Arachis hypogaea L.) paste treated with high-intensity ultrasound. Food Chem 2025; 464:141848. [PMID: 39509893 DOI: 10.1016/j.foodchem.2024.141848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
The objective of this research was to evaluate the effect of ultrasound (HISound) (200, 400 and 600 W; 15-30 min) on the physicochemical, biochemical and structural techno-functional properties of a groundnut paste protein isolate (GPPI). HISound increased the contents of free sulfhydryls (552.22 %), total sulfhydryls (124.68 %) and α-helix (389.75 %), as well as molecular flexibility (50.91 %), hydrophobic surface (38.99 %), and particle size (171.45 %) of GPPI, which improved protein solubility by 8.05 %, oil holding capacity by 73.54 %, emulsifying stability index by 226.25 % and foaming capacity by 216.00 %, compared with non-sonicated GPPI. Also, the microstructure analysis revealed smooth structures, with molecular weights in the range of 13.88-67.07 kDa. Pearson analysis determined some highly significant correlations (r ≥ 0.90, p < 0.01) between some GPPI protein properties. The improvement of GPPI properties by HISound could contribute to its use as an ingredient for human consumption.
Collapse
Affiliation(s)
- Ángel Efraín Rodríguez Rivera
- Doctorado en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela Km 9, 63780 Xalisco, Nayarit, Mexico
| | - José Armando Ulloa
- Doctorado en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela Km 9, 63780 Xalisco, Nayarit, Mexico; Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, 63155 Tepic, Nayarit, Mexico.
| | - Judith Esmeralda Urías Silvas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero, 1227 Zapopan, Jalisco, Mexico
| | - José Carmen Ramírez Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Carretera a Chapalilla Km 3.5, 63700 Compostela, Nayarit, Mexico
| | - Juan Alberto Resendiz Vazquez
- Escuela de Ingeniería y Ciencia, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
| |
Collapse
|
5
|
Zhao L, Zheng J, Yan W, Qian J, Zhang J, Wang J, Sheng X, Raghavan V, Yang X, Han Y, Cao T, Chen Y. Combined high voltage atmospheric cold plasma and ultraviolet-cold plasma inhibited Aspergillus flavus growth and improved physicochemical properties of protein in peanuts. Food Chem 2025; 464:141607. [PMID: 39413599 DOI: 10.1016/j.foodchem.2024.141607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
To improve the application value of peanuts, the fungicidal effect and physicochemical properties of the protein in peanuts were investigated by combining high voltage atmospheric cold plasma (HVCP) and ultraviolet-cold plasma (UVCP) in this study. Compared to the single HVCP or UVCP treatment, the combined treatments exhibited a higher fungicidal efficiency of A. flavus spores in peanuts, decreasing by 0.79-2.97 log10 cfu/g after 8-min treatment. The A. flavus growth and aflatoxin production in peanuts during storage were also lower than the single plasma groups. Moreover, cold plasma treatments could modify the molecular structures of protein in peanuts by changing secondary and tertiary structures, decreasing particle size and increasing zeta potential, which contributed to improve the solubility and emulsification of protein. Overall, this research provides a unique strategy for the combined application of cold plasma in grain decontamination and protein modification.
Collapse
Affiliation(s)
- Luling Zhao
- Sanya Institute of Nanjing Agricultural University, Sanya 572000, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiarong Zheng
- Sanya Institute of Nanjing Agricultural University, Sanya 572000, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Yan
- Sanya Institute of Nanjing Agricultural University, Sanya 572000, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Qian
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jianhao Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya 572000, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Xiaowei Sheng
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, H9X3V9, QC, Canada
| | - Xiaohan Yang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuxuan Han
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Taotao Cao
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yating Chen
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Liu X, Zhu X, Han Z, Liu H. Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review. Foods 2025; 14:105. [PMID: 39796395 PMCID: PMC11720141 DOI: 10.3390/foods14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage. Key issues such as fat separation, lipid oxidation, and rancidity can significantly compromise its texture, flavor, and aroma, while also reducing its shelf life. Understanding the underlying mechanisms that drive these processes is essential for developing effective preservation strategies. This understanding not only aids food scientists and industry professionals in improving product quality but also enables health-conscious consumers to make informed decisions regarding the selection and storage of peanut butter. Recent research has focused on elucidating the mechanisms responsible for the quality deterioration of peanut butter, with particular attention to the intermolecular interactions among its key components. Current regulatory techniques aimed at improving peanut butter quality encompass raw material selection, advancements in processing technologies, and the incorporation of food additives. Among these innovations, plant protein nanoparticles have garnered significant attention as a promising class of green emulsifiers. These nanoparticles have demonstrated potential for stabilizing peanut butter emulsions, thereby mitigating fat separation and oxidation while aligning with the growing demand for environmentally friendly food production. Despite these advances, challenges remain in optimizing the stability and emulsifying efficiency of plant protein nanoparticles to ensure the long-term quality and stability of peanut butter. Future research should focus on improving the structural properties and functional performance of these nanoparticles to enhance their practical application as emulsifiers. Such efforts could provide valuable theoretical and practical insights into the development of stable, high-quality peanut butter, ultimately advancing the field of food science and technology.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100080, China; (X.L.); (X.Z.); (Z.H.)
| |
Collapse
|
7
|
Yang Y, Zhang C, Ma CM, Bian X, Zou L, Fu Y, Shi YG, Wu Y, Zhang N. Characterization of structural and functional properties of soybean 11S globulin during renaturation after denaturation induced by changes in pH. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6778-6786. [PMID: 38567792 DOI: 10.1002/jsfa.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 03/03/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND This study explored the denaturation of 11S globulin, a protein known for its diverse functional properties in soy protein applications, at pH 3.0 and pH 10.0, followed by a gradual return to pH 7.0 to facilitate renaturation. It investigated the structural and functional changes during renaturation induced by a change in pH, revealing the stabilization mechanism of 11S globulin. RESULTS The findings revealed that during pH adjustment to neutral, the denatured soybean 11S globulin - resulting from alkaline (pH 10.0) or acidic (pH 3.0) treatments - experienced a refolding of its extended tertiary structure to varying extents. The particle size and the proportions of α-helix and β-sheet in the secondary structure aligned progressively with those of the natural-state protein. However, for the alkali-denatured 11S, the β-sheet content decreased upon adjustment to neutral, whereas an increase was observed for the acid-denatured 11S. In terms of functional properties, after alkaline denaturation, the foaming capacity (FC) and emulsifying activity index (EAI) of 11S increased by 1.4 and 1.2 times, respectively, in comparison with its native state. The solubility, foamability, and emulsifiability of the alkali-denatured 11S gradually diminished during renaturation but remained superior to those of the native state. Conversely, these properties showed an initial decline, followed by an increase during renaturation triggered by pH neutralization. CONCLUSIONS This research contributes to the enhancement of protein functionality, offering a theoretical foundation for the development of functional soy protein products and expanding their potential applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Can Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Ling Zou
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Yan-Guo Shi
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yan Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
8
|
Liu Z, Ma X, Ge Y, Hei X, Zhang X, Hu H, Zhu J, Adhari B, Wang Q, Shi A. Preparation and Regulation of Natural Amphiphilic Zein Nanoparticles by Microfluidic Technology. Foods 2024; 13:1730. [PMID: 38890958 PMCID: PMC11171580 DOI: 10.3390/foods13111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Microfluidic technology, as a continuous and mass preparation method of nanoparticles, has attracted much attention in recent years. In this study, zein nanoparticles (ZNPs) were continuously fabricated in a highly controlled manner by combining a microfluidics platform with the antisolvent method. The impact of ethanol content (60~95%, v/v) and flow rates of inner and outer phases in the microfluidics platform on particle properties were examined. Among all ZNPS, 90%-ZNPs have the highest solubility (32.83%) and the lowest hydrophobicity (90.43), which is the reverse point of the hydrophobicity of ZNPs. Moreover, when the inner phase flow rate was 1.5 mL/h, the particle size decreased significantly from 182.81 nm to 133.13 nm as the outer phase flow rate increased from 10 mL/h to 50 mL/h. The results revealed that ethanol content had significant impacts on hydrophilic-hydrophobic properties of ZNPs. The flow rates of ethanol-water solutions and deionized water (solvent and antisolvent) in the microfluidics platform significantly affected the particle size of ZNPs. These findings demonstrated that the combined application of a microfluidics platform and an antisolvent method could be an effective pathway for precisely controlling the fabrication process of protein nanoparticles and modulating their physicochemical properties.
Collapse
Affiliation(s)
- Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Yanzheng Ge
- Food Laboratory of Zhongyuan, Luohe 462300, China;
| | - Xue Hei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Xinyu Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
| | - Benu Adhari
- College of Science, RMIT University, Melbourne, VIC 3083, Australia;
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
- School of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210093, China
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (Z.L.); (X.M.); (X.H.); (X.Z.); (H.H.); (J.Z.)
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Ürümqi 830052, China
| |
Collapse
|
9
|
Fan L, Zhu X, Zhang D, Li D, Zhang C. In vitro digestion properties of Laiyang pear residue polysaccharides and it counteracts DSS-induced gut injury in mice via modulating gut inflammation, gut microbiota and intestinal barrier. Int J Biol Macromol 2024; 267:131482. [PMID: 38599423 DOI: 10.1016/j.ijbiomac.2024.131482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
The aim of this study was to explore the dynamic changes in the physicochemical properties of Laiyang pear residue polysaccharide (LPP) during in vitro digestion, as well as its protective effect on the intestines. Monosaccharide composition and molecular weight analysis showed that there was no significant change in LPP during the oral digestion stage. However, during the gastric and intestinal digestion stages, the glycosidic bonds of LPP were broken, leading to the dissociation of large molecular aggregates and a significant increase in reducing sugar content (CR) accompanied by a decrease in molecular weight. In addition, LPP exerted the intestinal protective ability via inhibiting gut inflammation, improving intestinal barrier, and regulating intestinal flora in DSS-induced mice. Specifically, LPP mitigated DSS-induced intestinal pathological damage of mice via enhancing intestinal barrier integrity and upregulating expressions of TJ proteins, and suppressed inflammation by inhibiting NF-κB signaling axis. Furthermore, LPP decreased the ratio of Firmicutes/Bacteroidetes, increased the relative abundance of Lactobacillus, and altered the diversity and the composition of gut microbiota in DSS-induced mice. Therefore, LPP had the potential to be a functional food that improved gut microbiota environment to enhance health and prevent diseases, such as a prebiotic.
Collapse
Affiliation(s)
- Liqing Fan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Xiangyang Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Dexi Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| | - Chen Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|
10
|
Hu H, Feng Y, Zheng K, Shi K, Yang Y, Yang C, Wang J. The effect of subzero temperatures on the properties and structure of soy protein isolate emulsions. Food Chem 2024; 433:136829. [PMID: 37742511 DOI: 10.1016/j.foodchem.2023.136829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 09/26/2023]
Abstract
Different freezing temperatures (-5, -20, -40 and -80 ℃) could change soy protein isolate (SPI) structure and emulsion properties. After freezing at -5 ℃ and -20 ℃, the structure of the SPI loosened, the fluorescence intensity was red shifted, and the proportion of Phe, Tyr and Trp exposed increased. With decreasing temperature, the surface hydrophobicity (H0 × 100), the number of sulfhydryl groups and the number of disulfide bonds all rose, then fell (-40 ℃), and rose again (-80 ℃). The β-sheet content in the protein secondary structure increased from 32.71% (control) to 50.66% (-40 ℃) and then decreased to 37.05% (-80 ℃), while the β-turn and random coil contents showed the opposite pattern, which also confirmed aggregation. The emulsification performance of SPI after freezing treatment was decreased. The results of this study provide theoretical support for future production of frozen foods with added SPI.
Collapse
Affiliation(s)
- Haiyue Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yongli Feng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kaiwen Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kexin Shi
- Tangshan Food and Drug Comprehensive Inspection and Test Center, China
| | - Yutong Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jianming Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
11
|
Phuangjit U, Klinkesorn U, Tan CP, Katekhong W. Enhancing silkworm protein yield, extraction efficiency, structure, functionality, and antioxidant activity using ultrasound-, microwave-, and freeze-thaw-assisted methods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:383-390. [PMID: 37595024 DOI: 10.1002/jsfa.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Silkworm protein applications are limited in the food industry because of their low emulsifying and foaming properties. This study investigated the effect of ultrasound-assisted extraction (UAE) for 15 and 30 min, microwave-assisted extraction (MAE) for 1 and 2 min, and freeze-thaw-assisted extraction (FTAE) for one and three cycles on the yield, extraction efficiency, functional properties, and antioxidant activities of proteins from silkworm pupae. Relationships of protein structure and functionality were also examined. RESULTS UAE for 15 and 30 min and MAE for 1 and 2 min significantly increased protein yield and extraction efficiency compared to the control. Both UAE and MAE processes, especially MAE for 2 min, greatly improved the emulsifying and foaming properties of extracted proteins. FTAE one and three cycles did not increase the protein yield and extraction efficiency but showed enhanced functional properties, especially foaming. All samples showed changes in protein structure, such as increased exposed sulfhydryl (SH) contents, denaturation temperatures, and enthalpy. Only MAE samples had low-molecular-weight proteins based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. UAE and FTAE samples had significantly higher antioxidant activities, while the MAE process showed the opposite. CONCLUSION UAE and MAE processes improved the yield and functionality of extracted silkworm proteins, while MAE negatively impacted protein antioxidant activities. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Uraiwun Phuangjit
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
- Research Unit on Innovative Technologies for Production and Delivery of Functional Biomolecules, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok, Thailand
| | - Utai Klinkesorn
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
- Research Unit on Innovative Technologies for Production and Delivery of Functional Biomolecules, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok, Thailand
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wattinee Katekhong
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
- Research Unit on Innovative Technologies for Production and Delivery of Functional Biomolecules, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok, Thailand
| |
Collapse
|
12
|
Feng X, Cen K, Yu X, Huang C, Yang W, Yang Y, Tang X. Quinoa protein Pickering emulsion improves the freeze-thaw stability of myofibrillar protein gel: Maintaining protein composition, structure, conformation and digestibility and slowing down protein oxidation. Int J Biol Macromol 2023; 253:126682. [PMID: 37666398 DOI: 10.1016/j.ijbiomac.2023.126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
In this work, the effects of quinoa protein Pickering emulsion (QPPE) on protein oxidation, structure and gastrointestinal digestion property of myofibrillar protein gels (MPGs) after freeze-thaw (F-T) cycles are revealed. SDS-PAGE results indicated that 5.0 %-10.0 % QPPE addition slowed down the protein degradation. Meanwhile, 5.0 %-7.5 % QPPE maintained the stability of the protein secondary and tertiary structure of MPGs after F-T cycles. The sulfhydryl group, disulfide bond and dityrosine content increased with QPPE supplementation. The conformations of disulfide bond changed from g-g-t and t-g-t to g-g-g after F-T cycles, and 5.0 %-7.5 % QPPE stabilized the changes of t-g-t conformation. Furthermore, the increase of dityrosine content after F-T cycles was significantly reduced with 7.5 % QPPE addition, indicating its effect to slow down protein oxidation of MPGs. In addition, MPGs with 5.0 % and 7.5 % QPPE showed noticeably higher zeta potential values than other groups, indicating the enhanced electrostatic repulsion and weakened aggregation caused by F-T damage. This work showed that 7.5 % QPPE improved the F-T stability of MPGs and reduced the protein denaturation and oxidation caused by F-T treatments, exerting no side effect on the digestion property of MPGs. QPPE can be used as a green and effective antifreeze in meat industry.
Collapse
Affiliation(s)
- Xiao Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Kaiyue Cen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Yang
- Quality and Technology Center, Hainan Xiangtai Fishery Co., Ltd., Chengmai 571924, China
| | - Yuling Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
13
|
Xiao S, Zhang P, Zhang G, Li W, Lin H, Hu X. Inhibition of toll-like receptor 4 activation by apigenin and chrysin via competition for sites and conformational changes. Int J Biol Macromol 2023; 252:126415. [PMID: 37598817 DOI: 10.1016/j.ijbiomac.2023.126415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The activation of toll-like receptor 4 (TLR4) signaling is crucial for initiating and coordinating the immune response against infections, and is proved as a vital target for inflammatory diseases. Herein, TLR4 with sufficient amount and functional activity was generated by heterologous expression and used to investigate the mechanism of apigenin (Api)/chrysin (Chr) inhibition of TLR4 activation. The results demonstrated that Api/Chr exhibited a strong fluorescence quenching effect through a static quenching and a high binding affinity (Ka > 105 L·mol-1) with TLR4, indicating the potential of Api/Chr as a TLR4 inhibitor. Additionally, the binding of Api/Chr induced a loose and unstable conformation of TLR4 with evidence like the decreased hydrophobicity of the tryptophan microenvironment, decreased α-helix content and increased free sulfhydryl content, resulting in reduced stability of the TLR4. The computer simulations revealed that Api/Chr occupied the myeloid differentiation factor 2 (MD-2) binding region, preventing MD-2 from binding to TLR4. Furthermore, the accuracy of the binding site between Api/Chr and TLR4 was confirmed through genetic mutations. Overall, the mechanism by which Api/Chr inhibited TLR4 activation was elucidated at the macroscopic and molecular levels, providing the worthful information concerning the future therapeutic application of Api/Chr as a natural TLR4 inhibitor.
Collapse
Affiliation(s)
- Shuang Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Peng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenwen Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Haowen Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Xu L, Wang X, Xu Y, Meng J, Feng C, Geng X, Cheng Y, Chang M. Effects of Freeze-Thaw Cycles on the Structures and Functional Properties of Clitocybe squamulosa Protein Isolates. Foods 2023; 12:2948. [PMID: 37569217 PMCID: PMC10418645 DOI: 10.3390/foods12152948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Changes in the functional properties and structures of Clitocybe squamulosa protein isolate (CSPI) in the process of freeze-thaw (F-T) cycles were explored. Remarkable alterations and the reduced content of protein ordered structure were revealed through structural analysis of CSPI after F-T treatments. The surface hydrophobicity and free sulfhydryl content of CSPI first increased and then decreased. However, after the F-T treatments, the carbonyl content of CSPI continued to increase. Similarly, the water holding capacity (WHC), oil holding capacity (OHC), and solubility of CSPI all declined as the number of F-T cycles increased. The foaming properties and emulsifying properties of CSPI were significantly improved and reached maximum values after three F-T cycles. CSPI undergoing two F-T cycles showed the highest digestibility, maximum polypeptide content, and highest DPPH and ·OH-radical-scavenging activities. The ·OH-radical-scavenging activities and reducing power of the gastrointestinally digested CSPI had the highest value after one F-T cycle. Therefore, it has been demonstrated that F-T treatments could be a residue-free and cost-effective tool for improving mushroom protein functional properties.
Collapse
Affiliation(s)
- Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Xin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yaping Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Mingchang Chang
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| |
Collapse
|
15
|
Li W, Chen Q, Wang X, Chen Z. Effect of Freezing on Soybean Protein Solution. Foods 2023; 12:2650. [PMID: 37509741 PMCID: PMC10379167 DOI: 10.3390/foods12142650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
To investigate the impact of frozen storage conditions on the physicochemical properties of soybean protein and explore the underlying mechanisms, this study focused on soybean isolate (SPI), ß-soybean companion globulin (7S), and soybean globulin (11S). The protein solutions were prepared at a concentration of 2% and subjected to freezing for 1 and 5 days. Subsequently, the protein content, physicochemical properties, secondary structure, sulfhydryl content, and chemical interaction forces were assessed and analyzed using UV spectrophotometry, Zeta potential measurements, SDS-PAGE, Fourier infrared spectroscopy, and endogenous fluorescence photoemission spectroscopy. The obtained results revealed that the solubility and total sulfhydryl content of SPI, 7S, and 11S exhibited a decreasing trend with prolonged freezing time. Among them, 11S demonstrated the largest decrease in solubility and total sulfhydryl content, followed by SPI, and 7S the least. During freezing, the aromatic amino acids of SPI, 7S, and 11S molecules were exposed, leading to increased hydrophobicity, protein aggregation, and particle size enlargement, and the structure of the protein changed from disordered structure to ordered structure. After freezing, the polarity of the microenvironment of SPI, 7S, and 11S increased, and their maximum fluorescence emission wavelengths were red-shifted. Notably, the largest red shift of SPI was from 332 nm to 335 nm. As freezing time increased, the contribution of hydrogen bonding increased, while the contribution of hydrophobic interactions decreased. This indicates that freezing affects the hydrophobic interactions, hydrogen bonding, and other chemical forces of the protein. The growth of ice crystals leads to the unfolding of protein molecular chains, exposure of internal hydrophobic groups, enhancement of hydrophobicity, and alters the secondary structure of the protein.
Collapse
Affiliation(s)
- Wenhui Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qiongling Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
16
|
Wang T, Yi K, Li Y, Wang H, Fan Z, Jin H, Xu J. Esterified Soy Proteins with Enhanced Antibacterial Properties for the Stabilization of Nano-Emulsions under Acidic Conditions. Molecules 2023; 28:molecules28073078. [PMID: 37049843 PMCID: PMC10095910 DOI: 10.3390/molecules28073078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Soy protein isolate (SPI), including β-conglycinin (7S) and glycinin (11S), generally have low solubility under weakly acidic conditions due to the pH closed to their isoelectric points (pIs), which has limited their application in acidic emulsions. Changing protein pI through modification by esterification could be a feasible way to solve this problem. This study aimed to obtain stable nano-emulsion with antibacterial properties under weakly acidic conditions by changing the pI of soy protein emulsifiers. Herein, the esterified soy protein isolate (MSPI), esterified β-conglycinin (M7S), and esterified glycinin (M11S) proteins were prepared. Then, pI, turbidimetric titration, Fourier transform infrared (FTIR) spectra, intrinsic fluorescence spectra, and emulsifying capacity of esterified protein were discussed. The droplet size, the ζ-potential, the stability, and the antibacterial properties of the esterified protein nano-emulsion were analyzed. The results revealed that the esterified proteins MSPI, M7S, and M11S had pIs, which were measured by ζ-potentials, as pH 10.4, 10.3, and 9.0, respectively, as compared to native proteins. All esterified-protein nano-emulsion samples showed a small mean particle size and good stability under weakly acidic conditions (pH 5.0), which was near the original pI of the soy protein. Moreover, the antibacterial experiments showed that the esterified protein-based nano-emulsion had an inhibitory effect on bacteria at pH 5.0.
Collapse
Affiliation(s)
- Tingyu Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China;
| | - Kehan Yi
- National Research Center of Soybean Engineering and Technology, Harbin 150028, China; (K.Y.)
| | - Yang Li
- National Research Center of Soybean Engineering and Technology, Harbin 150028, China; (K.Y.)
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Zhijun Fan
- Heilongjiang Beidahuang Green and Healthy Food Co., Ltd., Jiamusi 154007, China;
| | - Hua Jin
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China;
- Correspondence: (H.J.); (J.X.)
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China;
- Correspondence: (H.J.); (J.X.)
| |
Collapse
|
17
|
Yang C, Wu G, Li Y, Zhang C, Liu C, Li X. Effect of Low-Voltage Electrostatic Field on Oxidative Denaturation of Myofibrillar Protein from Lamb-Subjected Freeze–Thaw Cycles. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
18
|
Zhang L, Li Y, Sun X, Lai S, Chen F. The droplet breakup model and characteristics of pH-shifted peanut protein isolate-high methoxyl pectin stabilised emulsions under ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 94:106340. [PMID: 36842215 PMCID: PMC9984890 DOI: 10.1016/j.ultsonch.2023.106340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/17/2023] [Indexed: 05/27/2023]
Abstract
The effect of pH on the occurrence states of peanut protein isolate (PPI) and high methoxyl pectin (HMP), and droplet breakup model of the emulsions under ultrasound were studied. Particle size distribution and scanning electron microscopy results showed that PPI-HMP existed a soluble complex at pH 5.0, had no interaction at pH 7.0, and was co-soluble at pH 9.0. Droplet breakup model results revealed that the characteristics of emulsion stabilised by PPI-HMP treated at pH 5.0 was different from that at pH 7.0 and 9.0. The average diameter of the droplet well satisfied the model. According to rheological properties, interface tension, and microstructure, the formation mechanism and characteristics of emulsion stabilised by PPI-HMP treated at pH 5.0 was different from that at pH 7.0 and pH 9.0. The research provided a reference for constructing emulsions using pH-shifted PPI-HMP under ultrasound.
Collapse
Affiliation(s)
- Lifen Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yingxi Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Xiaoyang Sun
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China
| | - Shaojuan Lai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China.
| |
Collapse
|
19
|
Geng X, Guo D, Bau T, Lei J, Xu L, Cheng Y, Feng C, Meng J, Chang M. Effects of in vitro digestion and fecal fermentation on physico-chemical properties and metabolic behavior of polysaccharides from Clitocybe squamulosa. Food Chem X 2023; 18:100644. [PMID: 37032744 PMCID: PMC10074541 DOI: 10.1016/j.fochx.2023.100644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The aim of this study was to establish a human digestion model in vitro to explore the degradation characteristics of a novel high-purity polysaccharide from Clitocybe squamulosa (CSFP2). The results showed that the content of reducing sugars (CR ) of CSFP2 increased from 0.13 to 0.23 mg/mL, the molecular weight (Mw) of CSFP2 decreased significantly during the saliva-gastrointestinal digestion. The constituent monosaccharides of CSFP2, including galactose, glucose, and mannose, were stable during in vitro digestion, but their molar ratios were changed from 0.023: 0.737: 0.234 to 0.496: 0.478: 0.027. The surface of CSFP2 changes from a rough flaky structure to a scattered flocculent or rod-shaped structure after the gastrointestinal digestion. However, the apparent viscosity of CSFP2 was overall stable during in vitro digestion. Moreover, CSFP2 still maintains its strong antioxidant capacity after saliva-gastrointestinal digestion. The results showed that CSFP2 can be partially decomposed during digestion. Meanwhile, some physico-chemical properties of the fermentation broth containing CSFP2 changed significantly after gut microbiota fermentation. For example, the pH value (from 8.46 to 4.72) decreased significantly (p < 0.05) after 48 h of fermentation. the OD 600 value increased first and then decreased (from 2.00 to 2.68 to 1.32) during 48-h fermentation. In addition, CSFP2 could also increase the amounts of short-chain fatty acids (SCFAs) (from 5.5 to 37.15 mmol/L) during fermentation (in particular, acetic acid, propionic acid, and butyric acid). Furthermore, the relative abundances of Bacteriodes, Bifidobacterium, Catenibacterium, Lachnospiraceae_NK4A136_group, Megasphaera, Prevotella, Megamonas, and Lactobacillus at genus level were markedly increased with the intervention of CSFP2. These results provided a theoretical basis for the further development of functional foods related to CSFP2.
Collapse
|
20
|
Changes in structural and functional properties of whey protein cross-linked by polyphenol oxidase. Food Res Int 2023; 164:112377. [PMID: 36737962 DOI: 10.1016/j.foodres.2022.112377] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
The natural whey protein is unstable, to achieve more efficient utilization, the functional properties of whey protein were modified by changing its structure, and enzymatic cross-linking is one of the common methods in dairy products to change the functional characterization. This study was conducted with objective to evaluate the structural and functional of whey protein which was cross-linked by polyphenol oxidase from Agaricus bisporus. Whey protein was cross-linked by polyphenol oxidase, and the polymers and dimers were revealed by SDS-PAGE and LC-MS/MS, the structural alterations of the polymers were analyzed by UV-vis, fluorescence spectroscopy and SEM, and the effects of functional properties of whey protein after cross-linked were also explored. Results showed that dimer and high polymer of β-lactoglobulin were formed, the secondary structure of whey protein was exhibited a significant variation, and the microstructure changed obviously. Moreover, the foaming and antioxidant activity of whey protein was enhanced although the emulsifying was reduced after cross-linked. These findings emphasize the feasible application of enzymatic cross-linking in improving the functional properties of whey protein, and provide a new direction for changing the traditional processing technology of whey protein and developing high-quality products.
Collapse
|
21
|
Na Z, Bi H, Wang Y, Guo Y, Ma Y. Effect of Steam Flash-Explosion on Physicochemical Properties and Structure of High-Temperature Denatured Defatted Rice Bran Protein Isolate. Molecules 2023; 28:643. [PMID: 36677701 PMCID: PMC9867354 DOI: 10.3390/molecules28020643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The effects of Steam Flash-Explosion (SFE) on the physicochemical properties and molecular structure of high-temperature denatured defatted rice bran protein isolate (RBPI) were investigated. The mechanism of SFE treatment on high-temperature denatured defatted RBPI was revealed. The analysis of the physical and chemical properties of RBPI showed that the surface hydrophobicity, characteristic viscosity, and thermal stability of rice bran protein isolate were significantly affected by the pressure of saturated steam and pressure holding time. Under the conditions of 2.1 MPa and 210 s, the surface hydrophobicity index decreased significantly from 137.5 to 17.5, and the characteristic viscosity increased significantly. The peak temperature of denaturation decreases from 114.2 to 106.7 °C, and the enthalpy of denaturation decreases from 356.3 to 231.4 J/g. The higher structure (circular dichroic spectrum and endogenous fluorescence spectrum) of rice bran protein isolate was analyzed by volume rejection chromatography (SEC). The results showed that steam flash treatment could depolymerize and aggregate RBPI, and the relative molecular weight distribution changed greatly. The decrease in small molecules with poor solubility was accompanied by the increase in macromolecules (>550 kDa) soluble aggregates, which were the products of a Maillard reaction. The contents of free sulfhydryl and disulfide bonds in high-temperature rice bran meal protein isolate were significantly increased, which resulted in the increase in soluble aggregates containing disulfide bonds. Circular dichroism (CD) analysis showed that the α-helix content of the isolated protein was significantly decreased, the random curl content was increased, and the secondary structure of the isolated protein changed from order to disorder. The results of endogenous fluorescence spectroscopy showed that the high-temperature rice bran meal protein isolate was more extended, tryptophan was in a more hydrophilic microenvironment, the fluorescence intensity was reduced, and the tertiary structure was changed. In addition, the mean particle size and net surface charge of protein isolate increased in the aqueous solution, which was conducive to the development of the functional properties of the protein.
Collapse
Affiliation(s)
- Zhiguo Na
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Haixin Bi
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- College of Food Engineering, East University of Heilongjiang, Harbin 150060, China
| | - Yingbin Wang
- College of Food Engineering, East University of Heilongjiang, Harbin 150060, China
| | - Yujuan Guo
- College of Food Engineering, East University of Heilongjiang, Harbin 150060, China
| | - Yongqiang Ma
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
22
|
Robust stability and antimicrobial activity of d-limonene nanoemulsion by sodium caseinate and high pressure homogenization. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Li G, Xu J, Wang H, Jiang L, Wang H, Zhang Y, Jin H, Fan Z, Xu J, Zhao Q. Physicochemical Antioxidative and Emulsifying Properties of Soybean Protein Hydrolysates Obtained with Dissimilar Hybrid Nanoflowers. Foods 2022; 11:foods11213409. [PMID: 36360021 PMCID: PMC9653765 DOI: 10.3390/foods11213409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the changes in the structure and properties of soybean protein after hydrolysis using two types of hybrid nanoflowers (alcalase@Cu3(PO4)2•3H2O (ACHNs) and dispase@Cu3(PO4)2•3H2O (DCHNs)) and examined the basic properties and oxidative stability of hydrolyzed soybean protein emulsions. The formations of the two hybrid nanoflowers were first determined using a scanning electron microscope, transmission electron microscope, and Fourier infrared spectroscopy. The structure and functional properties of soybean protein treated with hybrid nanoflowers were then characterized. The results indicated that the degree of hydrolysis (DH) of the ACHNs hydrolysates was higher than that of the DCHNs for an identical reaction time. Soybean protein hydrolysates treated with two hybrid nanoflowers showed different fluorescence and circular dichroism spectra. The solubility of the hydrolysates was significantly higher (p < 0.05) than that of the soybean protein (SPI) at all pH values tested (2.0−10.0)*: at the same pH value, the maximum solubility of ACHNs hydrolysates and DCHNs hydrolysates was increased by 46.2% and 42.2%, respectively. In addition, the ACHNs hydrolysates showed the highest antioxidant activity (DPPH IC50 = 0.553 ± 0.009 mg/mL, ABTS IC50 = 0.219 ± 0.019 mg/mL, and Fe2+ chelating activity IC50 = 40.947 ± 3.685 μg/mL). The emulsifying activity index of ACHNs and DCHNs hydrolysates reached its maximum after hydrolysis for 120 min at 61.38 ± 0.025 m2/g and 54.73 ± 0.75 m2/g, respectively. It was concluded that the two hydrolysates have better solubility and antioxidant properties, which provides a theoretical basis for SPI product development. More importantly, the basic properties and oxidative stability of the soybean-protein-hydrolysates oil-in-water emulsions were improved. These results show the importance of proteins hydrolyzed by hybrid nanoflowers as emulsifiers and antioxidants in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Geng Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huiwen Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Coastal Research and Extension Center, Mississippi State University, Starkville, MS 39762, USA
| | - Hua Jin
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhijun Fan
- Heilongjiang Beidahuang Green and Healthy Food Co., Ltd., Jiamusi 154007, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (J.X.); (Q.Z.); Tel.: +86-13796652155 (J.X.); +86-13796653133 (Q.Z.)
| | - Qingshan Zhao
- Experimental Practice and Demonstration Center, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (J.X.); (Q.Z.); Tel.: +86-13796652155 (J.X.); +86-13796653133 (Q.Z.)
| |
Collapse
|
24
|
Changes in Quality and Collagen Properties of Cattle Rumen Smooth Muscle Subjected to Repeated Freeze-Thaw Cycles. Foods 2022; 11:foods11213338. [PMID: 36359951 PMCID: PMC9657863 DOI: 10.3390/foods11213338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/28/2022] Open
Abstract
This study revealed changes in the quality, structural and functional collagen properties of cattle rumen smooth muscle (CSM) during F-T cycles. The results showed that thawing loss, pressing loss, β-galactosidase, β-glucuronidase activity, β-sheet content, emulsifying activity index (EAI), emulsion stability index (ESI), surface hydrophobicity, and turbidity of samples were significantly (p < 0.05) increased by 108.12%, 78.33%, 66.57%, 76.60%, 118.63%, 119.57%, 57.37%, 99.14%, and 82.35%, respectively, with increasing F-T cycles. Meanwhile, the shear force, pH, collagen content, α-helix content, thermal denaturation temperature (Tmax), and enthalpy value were significantly (p < 0.05) decreased by 30.88%, 3.19%, 33.23%, 35.92%, 10.34% and 46.51%, respectively. Scanning electron microscopy (SEM) and SDS-PAGE results indicated that F-T cycles induced an increase in disruption of CSM muscle microstructure and degradation of collagen. Thus, repeated F-T cycles promoted collagen degradation and structural disorder in CSM, while reducing the quality of CSM, but improving the functional collagen properties of CSM. These findings provide new data support for the development, processing, and quality control of CSM.
Collapse
|
25
|
Liu ZW, Zhou YX, Tan YC, Cheng JH, Bekhit AED, Mousavi Khaneghah A, Aadil RM. Influence of mild oxidation induced through DBD-plasma treatment on the structure and gelling properties of glycinin. Int J Biol Macromol 2022; 220:1454-1463. [PMID: 36122773 DOI: 10.1016/j.ijbiomac.2022.09.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The effects of dielectric-barrier discharge (DBD) plasma treatment (20 s to 120 s treatment time with 40 kV, 12 kHz) induced mild oxidation on the gelling properties, and related structural changes of glycinin were investigated. The gelling ability of glycinin was improved by the mild oxidation induced by the plasma treatment. Treated glycinin gels exhibited a continuous and uniform network microstructure. Samples treated for 120 s had a 2.07-, 3.99- and 2.03-fold increase in hardness, chewiness, and resilience compared to the 20 s treated samples. Structural analyses showed that primary and secondary structures of glycinin were unaffected. The tertiary structure was shifted, accompanied by a decrease in free sulfhydryl (-SH) content. At the same time, carbonyl content and average particle diameter were increased by DBD treatment. The DBD treatment facilitated the generation/exchange of intermolecular disulfide bonds and enhanced gelling properties of glycinin. It is concluded that controlled plasma-induced protein oxidation can improve protein functionality.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying-Xue Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yi-Cheng Tan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Alaa El-Din Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka St., 02-532 Warsaw, Poland.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
26
|
Structural, Physicochemical and Functional Properties of Protein Extracted from De-Oiled Field Muskmelon ( Cucumis melo L. var. agrestis Naud.) Seed Cake. Foods 2022; 11:foods11121684. [PMID: 35741881 PMCID: PMC9222928 DOI: 10.3390/foods11121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
For oil plants, the oil extraction method is a crucial factor in influencing the functional characteristics of the protein. However, reports of protein functionality as affected by the oil extraction process are scarce. In this study, field muskmelon seed (FMS) protein was extracted by Soxhlet extraction method (SE), organic solvent extraction method (OSE), aqueous extraction method (AE), and pressing extraction method (PE), and its structure, amino acid profile, physicochemical properties, and functionality were determined. Molecular weight distribution was similar for all FMS proteins, whereas protein aggregates contents were most excellent for SE and OSE. FMS protein comprised predominantly glutamic acid, leucine, aspartic acid, arginine, and proline. Total amino acids content was highest for SE. Differences in functionality between four FMS proteins for different oil extraction methods were vast. PE had the highest value of solubility, and AE exhibited the lowest. AE had the greatest water and oil holding capacity. PE presented better foaming and emulsion capacities than other samples. This study demonstrated that the extraction oil method could impact the protein’s physicochemical and associated functional characteristics. High-quality plant oil and protein could be simultaneously obtained by modulating the oil extraction method in future research.
Collapse
|
27
|
Zhang L, Song C, Chang J, Wang Z, Meng X. Optimization of protein hydrolysates production from defatted peanut meal based on physicochemical characteristics and sensory analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Xu J, Teng F, Wang B, Ruan X, Ma Y, Zhang D, Zhang Y, Fan Z, Jin H. Gel Property of Soy Protein Emulsion Gel: Impact of Combined Microwave Pretreatment and Covalent Binding of Polyphenols by Alkaline Method. Molecules 2022; 27:molecules27113458. [PMID: 35684395 PMCID: PMC9182430 DOI: 10.3390/molecules27113458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of microwave modification, alkali polyphenol (ferulic acid) covalently combined modification, and microwave-alkali polyphenol covalently combined modification on the gel properties of soy protein emulsions. The results showed that the properties of soy protein emulsions were improved significantly by the three modification methods. After three kinds of modification, the viscoelasticity of soy protein emulsion gel increased, and a gel system with stronger elasticity was formed. The texture, water-holding, and hydration properties of the emulsion gel increased significantly. The SEM and ClSM results showed that the modified soy protein emulsion gel had a more compact and uniform porous structure, and the oil droplets could be better embedded in the network structure of the gel. Among the three modification methods, the microwave-alkali method polyphenol covalently combining the compound modification effect was best, and the microwave modification effect was least effective compared to the other two methods. Our obtained results suggested that for gel property modification of soy protein emulsion gels, microwave pretreatment combined with the covalent binding of polyphenols by an alkaline method is an effective method.
Collapse
Affiliation(s)
- Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.X.); (F.T.); (B.W.); (X.R.); (Y.M.); (D.Z.)
| | - Fei Teng
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.X.); (F.T.); (B.W.); (X.R.); (Y.M.); (D.Z.)
| | - Baiqi Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.X.); (F.T.); (B.W.); (X.R.); (Y.M.); (D.Z.)
| | - Xinxuan Ruan
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.X.); (F.T.); (B.W.); (X.R.); (Y.M.); (D.Z.)
| | - Yifan Ma
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.X.); (F.T.); (B.W.); (X.R.); (Y.M.); (D.Z.)
| | - Dingyuan Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.X.); (F.T.); (B.W.); (X.R.); (Y.M.); (D.Z.)
| | - Yan Zhang
- Coastal Research and Extension Center, Mississippi State University, Starkville, MS 39762, USA;
| | - Zhijun Fan
- Heilongjiang Beidahuang Green and Healthy Food Co., Ltd., Jiamusi 154007, China;
| | - Hua Jin
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.X.); (F.T.); (B.W.); (X.R.); (Y.M.); (D.Z.)
- Correspondence:
| |
Collapse
|
29
|
Fan L, Ruan D, Shen J, Hu Z, Liu C, Chen X, Xia W, Xu Y. The role of water and oil migration in juiciness loss of stuffed fish ball with the fillings of pig fat/meat as affected by freeze-thaw cycles and cooking process. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Guo D, Lei J, He C, Peng Z, Liu R, Pan X, Meng J, Feng C, Xu L, Cheng Y, Chang M, Geng X. In vitro digestion and fermentation by human fecal microbiota of polysaccharides from Clitocybe squamulose. Int J Biol Macromol 2022; 208:343-355. [PMID: 35337916 DOI: 10.1016/j.ijbiomac.2022.03.126] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
The present study aimed to evaluate the effects of in vitro simulated saliva-gastrointestinal digestion and fecal fermentation behavior on the chemical composition, structure and bioactivity of polysaccharides from Clitocybe squamulosa (CSFP). Results showed that gastric digestion significantly changed the chemical composition and structural properties of CSFP, such as total uronic acid, reducing sugar, molecular weight, rheological properties, particle size, and microscopic morphology. In particular, the molecular weight decreased from 19,480 Da to 10,945 Da, while the reducing-sugar content increased from 0.149 mg/mL to 0.293 mg/mL. Gastric digestion also affected the biological activity of CSFP. Although after gastric digestion, CSFP retained its vigorous antioxidant activity, ability to inhibit α-amylase activity, and the binding ability to bile acid, fat, and free cholesterol in vitro. However, there was an apparent weakening trend. After in vitro fermentation of gut microbiota, the content of total sugar was significantly decreased from 11.6 mg/mL to 2.4 mg/mL, and the pH value in the fecal culture significantly decreased to 5.20, indicating that CSFP could be broken down and utilized by gut microbiota. Compared to the blank, the concentrations of total short-chain fatty acids (SCFAs) including acetic, propionic and n-butyric significantly increased. Simultaneously, CSFP could remarkably reduce the proportions of Firmicutes and Bacteroides (F/B) and promote the growth of some beneficial intestinal microbiota. Therefore, CSFP can potentially be a new functional food as prebiotics to promote human gut health.
Collapse
Affiliation(s)
- Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Chang He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Zhijie Peng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Xu Pan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China.
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China.
| |
Collapse
|
31
|
An optimized approach to recovering O/W interfacial myofibrillar protein: Emphasizing on interface-induced structural changes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Adelnia H, Ensandoost R, Shebbrin Moonshi S, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Zhang G, Zhu C, Walayat N, Nawaz A, Ding Y, Liu J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit Rev Food Sci Nutr 2022; 63:5874-5889. [PMID: 34996325 DOI: 10.1080/10408398.2022.2025534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Chunyan Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, P.R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| |
Collapse
|
34
|
Pan N, Wan W, Du X, Kong B, Liu Q, Lv H, Xia X, Li F. Mechanisms of Change in Emulsifying Capacity Induced by Protein Denaturation and Aggregation in Quick-Frozen Pork Patties with Different Fat Levels and Freeze-Thaw Cycles. Foods 2021; 11:44. [PMID: 35010168 PMCID: PMC8750440 DOI: 10.3390/foods11010044] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 01/16/2023] Open
Abstract
Herein, we discuss changes in the emulsifying properties of myofibrillar protein (MP) because of protein denaturation and aggregation from quick-frozen pork patties with multiple fat levels and freeze-thaw (F-T) cycles. Protein denaturation and aggregation were confirmed by the significantly increased surface hydrophobicity, turbidity, and particle size, as well as the significantly decreased solubility and absolute zeta potential, of MPs with increases in fat levels and F-T cycles (p < 0.05). After multiple F-T cycles, the emulsifying activity and emulsion stability indices of all samples were significantly reduced (p < 0.05). The emulsion droplets of MP increased in size, and their distributions were dense and irregular. The results demonstrated that protein denaturation and aggregation due to multiple F-T cycles and fat levels changed the distribution of surface chemical groups and particle sizes of protein, thus affecting the emulsifying properties.
Collapse
Affiliation(s)
- Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Wei Wan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Hong Lv
- Department of Food and Pharmaceuticals, Harbin Light Industry School, Harbin 150076, China;
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Fangfei Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
35
|
Zhang Z, Xiong Z, Walayat N, Lorenzo JM, Liu J, Nawaz A, Xiong H. Influence of the Mixture of Carrageenan Oligosaccharides and Egg White Protein on the Gelation Properties of Culter alburnus Myofibrillar Protein under Repeated Freezing-Thawing Cycles. Antioxidants (Basel) 2021; 11:32. [PMID: 35052537 PMCID: PMC8772764 DOI: 10.3390/antiox11010032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
This study aims to investigate the influence of the mixture (CGO/EWP) of carrageenan oligosaccharide (CGO) and egg white protein (EWP) (CGO/EWP, CGO: EWP = 1:1, m/m) on the functional, structural, and gelling properties of Culter alburnus myofibrillar protein (MP) during repeated freezing-thawing cycles by treating MP samples separately with EWP, CGO, or CGO/EWP based on the wet weight (1%, m/m), using samples without any cryoprotectant as the blank group. After the second repeated freezing-thawing cycle, the sulfhydryl group content was found to be significantly (p < 0.05) higher in the CGO/EWP (30.57 nmol/mg) and CGO (36.14 nmol/mg) groups than in the EWP group (23.80 nmol/mg), indicating that CGO/EWP and CGO can more effectively delay the oxidative deterioration of functional groups. Additionally, the surface hydrophobicity was shown to be significantly lower in the CGO (25.74) and CGO/EWP (27.46) groups than in the EWP (34.66) and blank (39.32) groups. Moreover, the α-helix content was higher in the CGO (35.2%) and CGO/EWP (32.3%) groups than in the EWP (29.2%) and blank (25.0%) groups. These data indicated that CGO and CGO/EWP could more effectively increase the structural stability, thereby inhibiting the exposure of hydrophobic groups and curbing the decline of α-helix content. During the heat-induced gel-forming process, EWP and CGO/EWP could enhance the gel viscoelasticity and strength. After the second freezing-thawing cycle, when compared with the blank group, the CGO/EWP group showed significantly (p < 0.05) higher water-holding capacity (66.30% versus 53.93%) and shorter T22 relaxation time (413.56 versus 474.99 ms). The integrated results indicated that CGO/EWP could more effectively delay the decrease of protein-water molecular interaction forces in the MP gel. This study shed light on the mechanism of CGO/EWP as a cryoprotective mixture in improving the deterioration of MP gelation properties during repeated freezing-thawing cycles.
Collapse
Affiliation(s)
- Zhongli Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zhouyi Xiong
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (N.W.); (J.L.)
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (N.W.); (J.L.)
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| | - Hanguo Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
36
|
Boukid F. Peanut protein – an underutilised by‐product with great potential: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fatma Boukid
- Food safety and Functionality Programme Food Industries Institute of Agriculture and Food Research and Technology (IRTA) Finca Camps i Armet S/N Monells 17121 Spain
| |
Collapse
|
37
|
Characterization of core-shell nanofibers electrospun from bilayer gelatin/gum Arabic O/W emulsions crosslinked by genipin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Hou Y, Xu X, Hu W, Pei H, Chen H, Tong P, Gao J. Effect of L-calcium lactate, zinc lactate, and ferric sodium EDTA on the physicochemical and functional properties of liquid whole egg. J Food Sci 2021; 86:3839-3854. [PMID: 34337745 DOI: 10.1111/1750-3841.15851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/19/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022]
Abstract
The study aimed to evaluate the physicochemical and functional properties of liquid whole egg (LWE) with L-calcium lactate (L-Ca), zinc lactate (L-Zn), and sodium ferric EDTA (NaFeEDTA), and to compare with NaCl addition to determine the application potential of these mineral supplements. Results showed that salts addition significantly influenced the foaming, emulsifying, and gelling properties of LWE, which was possible through affecting the pH, particle size, surface hydrophobicity, apparent viscosity, and solubility. The addition of all the four salts reduced pH but increased the d4,3 diameter of LWE. Additionally, the addition of 200 mM L-Ca and 6 mM L-Zn significantly improved the emulsifying capacity by 41.73% and 13.6%, the foaming capacity by 26.57% and 10%, and the protein solubility by 13.89% and 12.70%, respectively. In the meantime, mineral supplements tend to produce lower hardness gel, especially with 25 mM L-Ca and 8 mM L-Zn, and the hardness was decreased from 2401.13 to 1138.29 and 1175.59 g, respectively. A relative decrease in hardness was desirable in gelled egg products. Moreover, the addition of NaCl and L-Ca showed a higher redness and yellowness, but the addition of NaFeEDTA showed an undesirable color in dark brown, which may be not accepted by the public. In summary, L-Ca and L-Zn had great potential for application in LWE, which was more appropriate than adding NaCl. This study provides a basis for improving the functional properties of LWE products in the future. PRACTICAL APPLICATION: The addition of L-Ca and L-Zn to liquid whole egg (LWE) could improve the foaming and emulsifying capacity of LWE as well as produce a lower hardness gel, which may be more conducive to the production of cake, custards, and meat products. Meantime, it is more in line with people's pursuit of a healthy diet.
Collapse
Affiliation(s)
- Yuliang Hou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
| | - Xiaoqian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
| | - Wei Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
| | - Haibing Pei
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
39
|
Zhang X, Lei Y, Luo X, Wang Y, Li Y, Li B, Liu S. Impact of pH on the interaction between soybean protein isolate and oxidized bacterial cellulose at oil-water interface: Dilatational rheological and emulsifying properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106609] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Zhu M, Zhang J, Peng Z, Kang Z, Ma H, Zhao S, He H, Xu B. Fluctuated low temperature combined with high-humidity thawing to retain the physicochemical properties and structure of myofibrillar proteins from porcine longissimus dorsi. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Chen C, Du Y, Chen F. Effect of urea concentration on properties of peanut protein isolate, arachin and conarachin-based adhesives during urea-epichlorohydrin modification. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202227. [PMID: 33959369 PMCID: PMC8074907 DOI: 10.1098/rsos.202227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
To lay a theoretical basis for the preparation of peanut protein-based adhesives and promote the sustainable development of the adhesive industry, properties of peanut protein isolate (PPI), arachin and conarachin-based adhesives modified by urea and epichlorohydrin (ECH) were investigated under different urea concentrations. When the urea concentration was 2 mol l-1, the wet shear strength of the PPI-based adhesive was 1.24 MPa with the best water resistance. With the increase of urea concentration from 0 to 4 mol l-1, the apparent viscosity of the PPI-based adhesive increased from 3.87 to 136.80 Pa s and the solid content increased from 18.11% to 31.11%. Compared with conarachin-based adhesive, the properties of arachin-based adhesive were improved more obviously during the combined modification. Scanning electron microscopy images illustrated that when the urea concentration was 2 mol l-1, the surface of the PPI-based adhesive was more compact and smoother, which was beneficial to the improvement of water resistance and related to the structure changes of arachin and conarachin components. Fourier-transform infrared spectroscopy results indicated that different urea concentrations caused the change of ester and ether bonds in the PPI-based adhesive, which was mainly related to arachin component. Thermogravimetry results suggested that when the urea concentration was 2 mol l-1, the decomposition temperature of protein skeleton in the PPI-based adhesive reached a maximum of 314°C exhibiting the highest thermal stability. The improvement of the thermal stability of conarachin was greater than that of arachin during the combined modification.
Collapse
Affiliation(s)
- Chen Chen
- College of Food Science and Engineering, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou 450001, Henan, People's Republic of China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Yan Du
- College of Food Science and Engineering, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou 450001, Henan, People's Republic of China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou 450001, Henan, People's Republic of China
| |
Collapse
|
42
|
Pan N, Hu Y, Li Y, Ren Y, Kong B, Xia X. Changes in the thermal stability and structure of myofibrillar protein from quick-frozen pork patties with different fat addition under freeze-thaw cycles. Meat Sci 2021; 175:108420. [PMID: 33476995 DOI: 10.1016/j.meatsci.2020.108420] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 11/28/2022]
Abstract
Changes in thermal stability and structure of myofibrillar protein from pork patties with different fat addition (0%, 5%, 10%, 15% and 20%) under freeze-thaw (F-T) cycles were discussed. The results showed that the total sulfhydryl, reactive sulfhydryl, free amino group, α-helix and β-sheet contents, fluorescence intensity (FI), and protein thermal stability (Tmax, ∆Htotal) of samples with the same fat content were significantly decreased, while the β-turn and random-coil content and the maximum fluorescence emission wavelength (λmax) were significantly increased with increasing F-T cycles (P < 0.05). These changes in samples with 20% fat at the 5th F-T cycle were obvious and were verified by the decreases in ∆Htotal (26.1%), reactive sulfhydryl (16.1%), and FI (16.8%) compared with the patties without fat. Therefore, repeated F-T cycles could decline the thermal stability of protein, destroy the protein structure of patty, and the changes were positively correlated with fat content of patty.
Collapse
Affiliation(s)
- Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yifan Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanming Ren
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
43
|
Comparison of Different Protein Emulsifiers on Physicochemical Properties of β-Carotene-Loaded Nanoemulsion: Effect on Formation, Stability, and In Vitro Digestion. NANOMATERIALS 2021; 11:nano11010167. [PMID: 33440816 PMCID: PMC7826833 DOI: 10.3390/nano11010167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022]
Abstract
In this study, β-carotene-loaded nanoemulsions are emulsified using four biomacromolecular proteins-peanut protein isolate (PPI), soy protein isolate (SPI), rice bran protein isolate (RBPI), and whey protein isolate (WPI)-in order to explore their emulsion stability and in vitro digestion characteristics. All four nanoemulsions attained high encapsulation levels (over 90%). During the three-stage in vitro digestion model (including oral, gastric, and small intestine digestion phases), the PPI-emulsified nanoemulsion showed the highest lipolysis rates (117.39%) and bioaccessibility (37.39%) among the four nanoemulsions. Moreover, the PPI-emulsified nanoemulsion (with the smallest droplet size) also demonstrated the highest stability during storage and centrifugation, while those for the RBPI-emulsified nanoemulsion (with the largest droplet size) were the lowest. In addition, all four nanoemulsions showed superior oxidation stability when compared with the blank control of corn oil. The oxidation rates of the PPI- and WPI-stabilized groups were slower than the other two groups.
Collapse
|
44
|
Wang J, Zheng H, Zhang S, Li J, Zhu X, Jin H, Xu J. Improvement of protein emulsion stability through glycosylated black bean protein covalent interaction with (-)-epigallocatechin-3-gallate. RSC Adv 2021; 11:2546-2555. [PMID: 35424159 PMCID: PMC8693753 DOI: 10.1039/d0ra08756d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/02/2021] [Indexed: 11/23/2022] Open
Abstract
This study investigated the effects of covalent conjugates combined by glycosylated black bean protein isolate (BBPI-G) and (−)-epigallocatechin-3-gallate (EGCG) on the emulsion stability. Fourier transform infrared (FTIR) spectroscopy showed that covalent binding of EGCG with BBPI-G made the protein molecule unfolded. Besides, the emulsifying properties of BBPI-G were increased after combined with EGCG. BBPI-G–EGCG emulsion had lower mean particle size and higher content of interfacial protein adsorption (AP), which resulted in thicker and more impact oil–water interface. Therefore, the stability of emulsions was significantly improved. Furthermore, the emulsions prepared by BBPI-G–EGCG compounds exhibited considerable stability in storage, oxidation, thermal treatments, freeze–thaw and freeze-dried powders resolubility. This study demonstrated that the covalent bond of glycosylated protein and polyphenols could advance the emulsifying performance of protein, and BBPI-G–EGCG covalent complex was an effective emulsifier for preparing high stability emulsions. Stability improvement of emulsions stabilized by covalent conjugation with glycosylated black bean protein and EGCG (BBPI-G–EGCG) was studied through structure changes of proteins and emulsion properties.![]()
Collapse
Affiliation(s)
- Jubing Wang
- College of Art and Science, Northeast Agricultural University 150030 Harbin Heilongjiang PR China
| | - Huanyu Zheng
- College of Food Science, Northeast Agricultural University Harbin 150030 Heilongjiang China .,Heilongjiang Green Food Science Research Institute Harbin 150028 Heilongjiang China.,National Research Center of Soybean Engineering and Technology Harbin 150028 Heilongjiang China
| | - Shenyi Zhang
- College of Art and Science, Northeast Agricultural University 150030 Harbin Heilongjiang PR China
| | - Jishu Li
- College of Art and Science, Northeast Agricultural University 150030 Harbin Heilongjiang PR China
| | - Xiuqing Zhu
- Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce Harbin 150076 China
| | - Hua Jin
- College of Art and Science, Northeast Agricultural University 150030 Harbin Heilongjiang PR China
| | - Jing Xu
- College of Art and Science, Northeast Agricultural University 150030 Harbin Heilongjiang PR China
| |
Collapse
|
45
|
Improved solubility and interface properties of pigskin gelatin by microwave irradiation. Int J Biol Macromol 2021; 171:1-9. [PMID: 33412193 DOI: 10.1016/j.ijbiomac.2020.12.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022]
Abstract
In this study, the microwave irradiation as a green approach was applied to improve the properties (mainly solubility and interface properties) of pigskin gelatin. The results showed that the solubility of pigskin gelatin was improved obviously at room temperature (25 °C) due to the destruction of polymer subunits. Furthermore, the exposure of more hydrophobic groups in microwave-irradiated gelatin increased its hydrophobicity, consequently improving the amphiphilic property and the interfacial properties of gelatin. The results of interface behavior showed that the interfacial tension of microwave-irradiated gelatin was reduced obviously with the extension of irradiation time (0-30 min), which is more beneficial to adsorption of gelatin molecules at the interface, thus resulting in a significant increase of adsorption rate (AP) from 56.13% (0 min) to 91.87% (30 min). Correspondingly, the foaming and emulsifying properties of gelatin were also improved significantly (p < 0.05). This study would promote the development of food-grade foam and emulsion based on pigskin gelatin by adjusting solubility and interface properties.
Collapse
|
46
|
Yang L, Jia J, Zhou X, Liu M, Zhang Q, Tian L, Tan W, Yang Y, Liu X, Duan X. Phosvitin-wheat gluten complex catalyzed by transglutaminase in the presence of Na 2SO 3: Formation, cross-link behavior and emulsifying properties. Food Chem 2020; 346:128903. [PMID: 33429299 DOI: 10.1016/j.foodchem.2020.128903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Phosvitin (PSV) is considered as a good emulsifier, although it has a low proportion of hydrophobic regions and steric hindrance. Wheat gluten (WG) possesses excellent hydrophobicity and macromolecular network structure. In this work, WG was subjected to a series of Na2SO3 solution, followed by cross-linking with PSV under transglutaminase (TGase) catalyzation. The results showed that Na2SO3 could break disulfide bonds of WG and increase its solubility from 7.33% to 42.82% with 1200 mg/L of Na2SO3. Correspondingly, the cross-linking degree was significantly enhanced. Compared to PSV, the cross-linked PSV-WG exhibited a higher surface hydrophobicity and thermal stability, with a lower zeta potential and apparent viscosity. The emulsifying activity of PSV-WG reached 17.42, 20.63 and 20.28 m2/g with Na2SO3 concentration of 300, 600 and 900 mg/L, which were all higher than that of PSV (15.19 m2/g). This work provided a novel strategy to elevate emulsifying properties of PSV by cross-link reaction.
Collapse
Affiliation(s)
- Lu Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xuefu Zhou
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Meichen Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Qinjun Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Liangjie Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Wen Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Yanjun Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
47
|
Jin H, Liu C, Zhang S, Guo Z, Li J, Zhao Q, Zhang Y, Xu J. Comparison of protein hydrolysates against their native counterparts in terms of structural and antioxidant properties, and when used as emulsifiers for curcumin nanoemulsions. Food Funct 2020; 11:10205-10218. [DOI: 10.1039/d0fo01830a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The stability and in vitro digestion of nanoemulsions stabilized by natural protein hydrolysates (PPI, SPI and WPI) are discussed.
Collapse
Affiliation(s)
- Hua Jin
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| | - Chang Liu
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| | - Shenyi Zhang
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| | - Zhuanzhuan Guo
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| | - Jishu Li
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| | - Qingshan Zhao
- Laboratory Management Office
- Northeast Agricultural University
- Harbin 150030
- China
| | - Yan Zhang
- Coastal Research and Extension Center
- Mississippi State University
- USA
| | - Jing Xu
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| |
Collapse
|