1
|
Benítez-González AM, Stinco CM, Rodríguez-Pulido FJ, Vicario IM, Meléndez-Martínez AJ. Towards more sustainable cooking practices to increase the bioaccessibility of colourless and provitamin A carotenoids in cooked carrots. Food Funct 2024; 15:8835-8847. [PMID: 39118544 DOI: 10.1039/d4fo02752c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The effect of different cooking methods (boiling, baking, steaming and microwaving) on the colour and texture of carrots, as well as on the bioaccessibility of carotenoids, was investigated in order to identify the more "sustainable cooking" methods. Cooking resulted in statistically significant increases in total carotenoid bioaccessibility, both with intensity and duration of treatments. In particular, significant increases in carotenoid bioaccessible content (CBC) were observed, ranging from 6.03-fold (microwave) to 8.90-fold (baking) for the most intense cooking conditions tested. Although the relative concentration of the colourless carotenoids (phytoene and phytofluene) in raw carrots is lower than that of provitamins A α- and β-carotene, the bioaccessible content of the colourless ones is much higher. From an energy consumption standpoint and considering samples with the same tenderness, the highest CBC values per kWh decreased in the order microwaving > baking > water cooking > steaming. Our findings are important to help combat vitamin A deficiency since increases of up to ∼40-fold and ∼70-fold in the CBCs of the vitamin A precursors α- and β-carotene, respectively, were observed. These results provide a basis for defining "sustainable cooking" as "cooking practices that optimize intensity, duration and other parameters leading to a more efficient use of energy to maximize the bioavailability of nutrients and other beneficial food components (such as bioactives) while ensuring food appeal and safety".
Collapse
Affiliation(s)
- Ana M Benítez-González
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Carla M Stinco
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | | | - Isabel M Vicario
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | | |
Collapse
|
2
|
Abliz A, Huang Y, Rouzi R, Xu D, Gao Y, Liu J. Effects of Emulsifiers on Physicochemical Properties and Carotenoids Bioaccessibility of Sea Buckthorn Juice. Foods 2024; 13:1972. [PMID: 38998478 PMCID: PMC11241759 DOI: 10.3390/foods13131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The need to improve the physicochemical properties of sea buckthorn juice and the bioavailability of carotenoids is a major challenge for the field. The effects of different natural emulsifiers, such as medium-chain triglycerides (MCTs), tea saponins (TSs) and rhamnolipids (Rha), on the physical and chemical indexes of sea buckthorn juice were studied. The particle size of sea buckthorn juice and the carotenoids content were used as indicators for evaluation. The effects of different addition levels of MCT, Rha and TS on the bioavailability of carotenoids in sea buckthorn juice were investigated by simulating human in vitro digestion tests. The results showed that those emulsifiers, MCT, Rha and TS, can significantly reduce the particle size and particle size distribution of sea buckthorn juice, improve the color, increase the soluble solids content, turbidity and physical stability and protect the carotenoids from degradation. When the addition amount of Rha was 1.5%, the total carotenoids content (TCC) of sea buckthorn juice increased by 45.20%; when the addition amount of TS was 1.5%, the total carotenoids content (TCC) of sea buckthorn juice increased by 37.95%. Furthermore, the bioaccessibility of carotenoids was increased from 36.90 ± 2.57% to 54.23 ± 4.17% and 61.51 ± 4.65% through in vitro digestion by Rha and TS addition, respectively. However, the total carotenoids content (TCC) of sea buckthorn juice and bioaccessibility were not significantly different with the addition of MCT. In conclusion, the findings of this study demonstrate the potential of natural emulsifiers, such as MCT, Rha and TS, to significantly enhance the physicochemical properties and bioavailability of carotenoids in sea buckthorn juice, offering promising opportunities for the development of functional beverages with improved nutritional benefits.
Collapse
Affiliation(s)
- Arzigül Abliz
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanan Huang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Reziwanguli Rouzi
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Duoxia Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfang Liu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
García-Chacón JM, Rodríguez-Pulido FJ, Heredia FJ, González-Miret ML, Osorio C. Characterization and bioaccessibility assessment of bioactive compounds from camu-camu (Myrciaria dubia) powders and their food applications. Food Res Int 2024; 176:113820. [PMID: 38163723 DOI: 10.1016/j.foodres.2023.113820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Camu-camu (Myrciaria dubia) is a tropical fruit known for its content of bioactive compounds. This study aimed to evaluate physicochemically, morphologically, andsensorialpowders from camu-camu obtained by spray-drying at two inlet temperatures (150 °C and 180 °C) with three encapsulating agents (maltodextrin, whey protein and a 50:50 mixture of both) and by freeze-drying of whole fruit. The use of maltodextrin protected bet anthocyanins (cyanidin-3-glucoside (C3G) and delphinidin-3-glucoside (D3G)), but whey protein showed a better protective effect on ascorbic and malic acids. These facts were confirmed during the storage stability test, finding that relative humidity is a critical variable in preserving the bioactive compounds of camu-camu powders. The powders with the highest content of bioactive compounds were added to a yogurt and a white grape juice, and then sensory evaluated. The bioaccessibility studies in gastric and intestinal phases showed better recovery percentages of bioactive compounds in camu-camu powders (up to 60.8 %) and beverages (up to 90 %) for C3G, D3G, ascorbic acid, and malic acid than in the fruit juice. Dehydration of camu-camu (M. dubia) is a strategy to increase the bioactive compounds stability, modulate the fruit sensory properties, and improve their bioavailability after incorporation in food matrices.
Collapse
Affiliation(s)
| | - Francisco J Rodríguez-Pulido
- Food Colour and Quality Laboratory, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Francisco J Heredia
- Food Colour and Quality Laboratory, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - M Lourdes González-Miret
- Food Colour and Quality Laboratory, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Coralia Osorio
- Departamento de Química, Universidad Nacional de Colombia, AA 14490 Bogotá, Colombia.
| |
Collapse
|
4
|
Bernabeu M, Gharibzahedi SMT, Ganaie AA, Macha MA, Dar BN, Castagnini JM, Garcia-Bonillo C, Meléndez-Martínez AJ, Altintas Z, Barba FJ. The potential modulation of gut microbiota and oxidative stress by dietary carotenoid pigments. Crit Rev Food Sci Nutr 2023; 64:12555-12573. [PMID: 37691412 DOI: 10.1080/10408398.2023.2254383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gut microbiota plays a crucial role in regulating the response to immune checkpoint therapy, therefore modulation of the microbiome with bioactive molecules like carotenoids might be a very effective strategy to reduce the risk of chronic diseases. This review highlights the bio-functional effect of carotenoids on Gut Microbiota modulation based on a bibliographic search of the different databases. The methodology given in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) has been employed for developing this review using papers published over two decades considering keywords related to carotenoids and gut microbiota. Moreover, studies related to the health-promoting properties of carotenoids and their utilization in the modulation of gut microbiota have been presented. Results showed that there can be quantitative changes in intestinal bacteria as a function of the type of carotenoid. Due to the dependency on several factors, gut microbiota continues to be a broad and complex study subject. Carotenoids are promising in the modulation of Gut Microbiota, which favored the appearance of beneficial bacteria, resulting in the protection of villi and intestinal permeability. In conclusion, it can be stated that carotenoids may help to protect the integrity of the intestinal epithelium from pathogens and activate immune cells.
Collapse
Affiliation(s)
- Manuel Bernabeu
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
- Vicerectorat de Recerca, Universitat de Barcelona (UB), Barcelona, Spain
| | - Seyed Mohammad Taghi Gharibzahedi
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Arsheed A Ganaie
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Muzafar A Macha
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| | | | | | - Zeynep Altintas
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| |
Collapse
|
5
|
Cejudo C, Díaz AB, Casas L, Martínez de la Ossa E, Mantell C. Supercritical CO 2 Processing of White Grape Must as a Strategy to Reduce the Addition of SO 2. Foods 2023; 12:3085. [PMID: 37628085 PMCID: PMC10453421 DOI: 10.3390/foods12163085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
In winemaking, sulfur dioxide addition is the most common procedure to prevent enzymatic and microbial alterations. However, the enological industry looks for safer alternatives to preserve enological products, and high-pressure treatments with supercritical CO2 are a suitable alternative. This study evaluates the effectiveness of this process in the stabilization and preservation of white grape must, studying the influence of time, pressure, and CO2 percentage on must characteristics. In spite of the percentage of CO2 turned out to be the variable that affects the most the process, no remarkable differences were observed in pH, acidity, and color intensity between untreated and treated musts. Moreover, this technique has proven to be very efficient in the reduction of aerobic mesophilic microorganisms as well as in the reduction of residual polyphenol oxidase activities, being lower than those obtained with SO2 addition (60 and 160 mg/L). Based on the results, the most convenient conditions were 100 bar and 10% CO2, for 10 min treatment.
Collapse
Affiliation(s)
| | - Ana Belén Díaz
- Chemical Engineering and Food Technology Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Puerto Real, 11519 Cadiz, Spain; (C.C.); (L.C.); (E.M.d.l.O.); (C.M.)
| | | | | | | |
Collapse
|
6
|
Andrade Barreto SM, Martins da Silva AB, Prudêncio Dutra MDC, Costa Bastos D, de Brito Araújo Carvalho AJ, Cardoso Viana A, Narain N, Dos Santos Lima M. Effect of commercial yeasts (Saccharomyces cerevisiae) on fermentation metabolites, phenolic compounds, and bioaccessibility of Brazilian fermented oranges. Food Chem 2023; 408:135121. [PMID: 36521294 DOI: 10.1016/j.foodchem.2022.135121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Brazil is the largest producer of oranges worldwide, as well as one of the largest producers of orange juice. Alcoholic fermented beverages have been considered a marketable alternative for oranges. In this study, four S. cerevisiae commercial yeasts were evaluated for metabolites generated during orange juice (cv. 'Pêra D9') fermentation. Alcohols, sugars, and organic acids were evaluated by HPLC-DAD-RID during fermentation, and phenolic compounds were analyzed in fermented orange. Orange juice and fermented oranges were also subjected to digestion simulations. The yeasts presented an adequate fermentation activity, based on sugar consumption, and high ethanol (>10.5%) and glycerol (4.8-5.5 g/L) contents. The yeast strains T-58 and US-05 produced high levels of lactic acid. Phenolic compounds and antioxidant activity did not differ amongst yeasts, presenting hesperidin levels between 115 and 127 mg/L, respectively. The fermented orange showed a >70% bioaccessibility, compared to juice, especially for catechin, epigallocatechin-gallate, procyanidin-B2, rutin, and procyanidin-B1.
Collapse
Affiliation(s)
| | - Ana Beatriz Martins da Silva
- Federal Institute of Sertão Pernambucano, Department of Food Technology, Liquid Chromatography Laboratory, Jardim São Paulo - CEP 56314-522, Petrolina, PE, Brazil
| | - Maria da Conceição Prudêncio Dutra
- Federal Institute of Sertão Pernambucano, Department of Food Technology, Liquid Chromatography Laboratory, Jardim São Paulo - CEP 56314-522, Petrolina, PE, Brazil
| | - Debora Costa Bastos
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Semiárido, Rodovia BR 428, Km 152, CP 23, CEP 56302-970, Petrolina, PE, Brazil
| | - Ana Júlia de Brito Araújo Carvalho
- Federal Institute of Sertão Pernambucano, Department of Food Technology, Liquid Chromatography Laboratory, Jardim São Paulo - CEP 56314-522, Petrolina, PE, Brazil
| | - Arão Cardoso Viana
- Federal Institute of Sertão Pernambucano, Department of Food Technology, Liquid Chromatography Laboratory, Jardim São Paulo - CEP 56314-522, Petrolina, PE, Brazil
| | - Narendra Narain
- Federal University of Sergipe, Department of Food Technology, PROCTA, São Cristóvão, SE, Brazil
| | - Marcos Dos Santos Lima
- Federal University of Sergipe, Department of Food Technology, PROCTA, São Cristóvão, SE, Brazil; Federal Institute of Sertão Pernambucano, Department of Food Technology, Liquid Chromatography Laboratory, Jardim São Paulo - CEP 56314-522, Petrolina, PE, Brazil.
| |
Collapse
|
7
|
Meléndez-Martínez AJ, Esquivel P, Rodriguez-Amaya DB. Comprehensive review on carotenoid composition: Transformations during processing and storage of foods. Food Res Int 2023; 169:112773. [DOI: 10.1016/j.foodres.2023.112773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
|
8
|
Influence of Cultivar and Turbidity on Physicochemical Properties, Functional Characteristics and Volatile Flavor Substances of Pomelo Juices. Foods 2023; 12:foods12051028. [PMID: 36900544 PMCID: PMC10000981 DOI: 10.3390/foods12051028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
In this study, the influences of pomelo cultivars on physicochemical properties, functional characteristics, and volatile compounds of juices were investigated. Among these six varieties, the highest juice yield (73.22%) was obtained in grapefruit. Sucrose and citric acid were the main sugar component and organic acid of pomelo juices, respectively. The results showed that the cv. Pingshanyu pomelo juice and grapefruit juice had the highest sucrose (87.14 g L-1, 97.69 g L-1) and citric acid content (14.49 g L-1, 13.7 g L-1), respectively. Moreover, the naringenin was the main flavonoid of pomelo juice. Additionally, the total phenolics, total flavonoids, and ascorbic acid concentrations of grapefruit and cv. Wendanyu pomelo juice were higher than those of other varieties of pomelo juices. Furthermore, 79 volatile substances were identified from the juices of six pomelo cultivars. Hydrocarbons were the predominant volatile substances, and the limonene was the characteristic hydrocarbon substance of pomelo juice. In addition, the pulp content of pomelo juice also presented great effects on its quality and volatile compounds composition. Compared to low pulp juice, the corresponding high pulp juice had higher sucrose, pH, total soluble solid, acetic acid, viscosity, bioactive substances and volatile substances. The effects of cultivars and variation in turbidity on juice are highlighted. It is useful for pomelo breeders, packers and processors to understand the quality of the pomelo they are working with. This work could provide valuable information on selecting suitable pomelo cultivars for juice processing.
Collapse
|
9
|
Marszałek K, Trych U, Bojarczuk A, Szczepańska J, Chen Z, Liu X, Bi J. Application of High-Pressure Homogenization for Apple Juice: An Assessment of Quality Attributes and Polyphenol Bioaccessibility. Antioxidants (Basel) 2023; 12:antiox12020451. [PMID: 36830008 PMCID: PMC9951998 DOI: 10.3390/antiox12020451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
In the current work, the influence of high-pressure homogenization (HPH) (200, 250, and 300 MPa) on pH, Brix, turbidity, viscosity, particle size distribution (PSD), zeta potential, color, polyphenol oxidase (PPO), peroxidase (POD), polyphenol profile and bioaccessibility of total phenolic compounds was studied. The results show no change in the apple juice's pH, TSS and density. In contrast, other physiochemical properties of apple juice treated with HPH were significantly changed. Besides total phenolic content (15% degradation) in the HPH-treated apple juice at 300 MPa, the PPO and POD activities were reduced by a maximum of 70 and 35%, respectively. Furthermore, among different digestion stages, various values corresponding to PSD and zeta potential were recorded; the total phenolic content was gradually reduced from the mouth to the intestine stage. The polyphenol bioaccessibility of HPH-treated apple juice was 17% higher compared to the untreated apple juice.
Collapse
Affiliation(s)
- Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 2D Zelwerowicza St., 35601 Rzeszow, Poland
- Correspondence:
| | - Urszula Trych
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Adrianna Bojarczuk
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Justyna Szczepańska
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Zhe Chen
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Xuan Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jinfeng Bi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
10
|
Juices and By-Products of Red-Fleshed Sweet Oranges: Assessment of Bioactive and Nutritional Compounds. Foods 2023; 12:foods12020400. [PMID: 36673492 PMCID: PMC9858198 DOI: 10.3390/foods12020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The content of nutrients and bioactive compounds, and antioxidant capacity were assessed in the juices from two red-fleshed oranges, Cara Cara and Kirkwood, and compared with that of a standard Navel orange. Two juice extraction procedures, hand-squeezing and industrial, and two treatments, pasteurization (85 °C/30 s) and high-pressure homogenization (HPH, 150 MPa/55 °C/1 min), were evaluated. For most of the nutrients and bioactive compounds, the hand and industrial juice squeezing rendered similar extraction efficiency. Individual composition of carotenoids in the juices were differentially affected by the extraction procedure and the treatments, but the red-fleshed orange juices contained between 3- to 6-times higher total carotenoids than the standard Navel juices, being phytoene and phytofluene the main carotenoids. The industrial and treated juices of both red-fleshed oranges contained 20-30% higher amounts of tocopherols but about 20% lower levels of vitamin C than Navel juices. Navel juices exhibited higher hydrophilic antioxidant capacity, while the red-fleshed orange juices showed an improved lipophilic antioxidant capacity. The main distinctive characteristic of the industrial juice by-product of the red-fleshed oranges was a higher content of carotenoids (×10) and singlet oxygen antioxidant capacity (×1.5-2) than the Navel by-product.
Collapse
|
11
|
Industry-Scale Microfluidizer: a Novel Technology to Improve Physiochemical Qualities and Volatile Flavor of Whole Mango Juice. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Sun X, Zhao Q, Yuan Q, Gao C, Ge Q, Li C, Liu X, Ma T. Thermosonication combined with ε-polylysine (TSε): A novel technology to control the microbial population and significantly improve the overall quality attributes of orange juice. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Gonçalves Santana M, Freitas-Silva O, Mariutti LRB, Teodoro AJ. A review of in vitro methods to evaluate the bioaccessibility of phenolic compounds in tropical fruits. Crit Rev Food Sci Nutr 2022; 64:1780-1790. [PMID: 36062814 DOI: 10.1080/10408398.2022.2119203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
International guidelines strongly advise about the frequent and varied intake of plant in diet. In this scenario, the consumption of fruits is closely related to health benefits due to the abundant presence of bioactive substances. Accordingly, the production of tropical fruits has stood out worldwide, reaching records since the past decade. However, to ensure that phenolic substances are indeed used by the body, they need to be accessible for absorption. For this purpose, several methods are used to assess the phenomenon of bioaccessibility. We provide information on i) in vitro methods for the evaluation of the bioaccessibility of phenolic compounds in tropical fruits, including their derivatives and by-products; ii) a study performed using a semi-dynamic in vitro digestion model; iii) simulated digestion with a dialysis membrane step, polyphenol transport/uptake using cell culture, and in vitro colonic fermentation process. Although standardized static and semi-dynamic in vitro digestion methods already exist, few studies use these protocols to assess the bioaccessibility of polyphenols in tropical fruits. To guarantee that in vitro digestion assays reproduce consistent results compared to in vivo reference methods, it is essential to universalize standardized methods that allow the comparison between results, enabling the validation of in vitro digestion methods.
Collapse
Affiliation(s)
| | - Otniel Freitas-Silva
- Embrapa Food Agroindustry, Brazilian Agricultural Research Corporation, Rio de Janeiro, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson Junger Teodoro
- Department of Nutrition and Dietetic, Faculty of Nutrition, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Wang Y, Yang F, Liu T, Zhao C, Gu F, Du H, Wang F, Zheng J, Xiao H. Carotenoid fates in plant foods: Chemical changes from farm to table and nutrition. Crit Rev Food Sci Nutr 2022; 64:1237-1255. [PMID: 36052655 DOI: 10.1080/10408398.2022.2115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids in plant foods are sources of pro-vitamin A and nutrients with several health benefits, including antioxidant and anticancer activities. However, humans cannot synthesize carotenoids de novo and must obtain them from the diet, typically via plant foods. We review the chemical changes of carotenoids in plant foods from farm to table and nutrition, including nutrient release and degradation during processing and metabolism in vivo. We also describe the influencing factors and proposals corresponding to enhancing the release, retention and utilization of carotenoids, thus benefiting human health. Processing methods influence the release and degradation of carotenoids, and nonthermal processing may optimize processing effects. The carotenoid profile, food matrix, and body status influence the digestion, absorption, and biotransformation of carotenoids in vivo; food design (diet and carotenoid delivery systems) can increase the bioavailability levels of carotenoids in the human body. In this review, the dynamic fate of carotenoids in plant foods is summarized systematically and deeply, focusing on changes in their chemical structure; identifying critical control points and influencing factors to facilitate carotenoid regulation; and suggesting multi-dimensional strategies based on the current state of food processing industries to achieve health benefits for consumers.
Collapse
Affiliation(s)
- Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feilong Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fengying Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
15
|
Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Adv Colloid Interface Sci 2022; 307:102734. [DOI: 10.1016/j.cis.2022.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
|
16
|
Dai T, McClements DJ, Niu X, Guo X, Sun J, He X, Liu C, Chen J. Whole tomato juice produced by a novel industrial-scale microfluidizer: Effect on physical properties and in vitro lycopene bioaccessibility. Food Res Int 2022; 159:111608. [DOI: 10.1016/j.foodres.2022.111608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
|
17
|
Improving the quality of mandarin juice using a combination of filtration and standard homogenization. Food Chem 2022; 383:132522. [PMID: 35413751 DOI: 10.1016/j.foodchem.2022.132522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Cloud loss and pulp precipitation are serious quality defects of mandarin juice (MJ) which brake on industrialization and need to be overcome by developing stabilization process. Therefore, filtration (FT) and standard homogenization (SH) on improving the cloud stability of MJ and minimizing the loss of major qualities were investigated. The FT-SH combined treatment effectively decreased the minimal particle size below 15 μm and sedimentation rate by 17.30%-74.40%, and increased the cloud value from 7.97% to 332.57%, results in more uniformity and cloud stability of MJ. Moreover, FT reduced the pectin methylesterase (PME) activity by 34.19%-50.96%, browning (ΔE∗ < 3), free and bound phenol contents (27.81% and 59.13%), and aroma intensity (p < 0.05). SH released the free phenols from bound phenols association with cloudiness. The optimum stabilization condition was considered as the 100-mesh + 20 MPa that was obviously improved the cloudiness and minimizing the color, polyphenol and aroma loss.
Collapse
|
18
|
Enhancement of the in vitro bioavailable carotenoid content of a citrus juice combining crossflow microfiltration and high-pressure treatments. Food Res Int 2022; 156:111134. [DOI: 10.1016/j.foodres.2022.111134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/08/2023]
|
19
|
Saini RK, Prasad P, Lokesh V, Shang X, Shin J, Keum YS, Lee JH. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits-A Review of Recent Advancements. Antioxidants (Basel) 2022; 11:795. [PMID: 35453480 PMCID: PMC9025559 DOI: 10.3390/antiox11040795] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023] Open
Abstract
Natural carotenoids (CARs), viz. β-carotene, lutein, astaxanthin, bixin, norbixin, capsanthin, lycopene, canthaxanthin, β-Apo-8-carotenal, zeaxanthin, and β-apo-8-carotenal-ester, are being studied as potential candidates in fields such as food, feed, nutraceuticals, and cosmeceuticals. CAR research is advancing in the following three major fields: (1) CAR production from natural sources and optimization of its downstream processing; (2) encapsulation for enhanced physical and chemical properties; and (3) preclinical, clinical, and epidemiological studies of CARs' health benefits. This review critically discusses the recent developments in studies of the chemistry and antioxidant activity, marketing trends, dietary sources, extraction, bioaccessibility and bioavailability, encapsulation methods, dietary intake, and health benefits of CARs. Preclinical, clinical, and epidemiological studies on cancer, obesity, type 2 diabetes (T2D), cardiovascular diseases (CVD), osteoporosis, neurodegenerative disease, mental health, eye, and skin health are also discussed.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Parchuri Prasad
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Veeresh Lokesh
- Biocontrol Laboratory, University of Horticultural Sciences, Bagalkote 587104, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Ji-Ho Lee
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| |
Collapse
|
20
|
Sun J, Li Q, Li J, Liu J, Xu F. Nutritional composition and antioxidant properties of the fruit of Berberis heteropoda Schrenk. PLoS One 2022; 17:e0262622. [PMID: 35390002 PMCID: PMC8989241 DOI: 10.1371/journal.pone.0262622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
Objective This study assessed the major nutrients and antioxidant properties of Berberis heteropoda Schrenk fruits collected from the Nanshan Mountain area of Urumqi City, Xinjiang Uygur Autonomous Region, China. Methods and materials We assessed the basic nutrients, including amino acids, minerals, and fatty acids, and determined the total phenol, flavonoid, and anthocyanin contents of the extracts. Results The analytical results revealed the average water (75.22 g/100 g), total fat (0.506 g/100 g), total protein (2.55 g/100 g), ash (1.31 g/100 g), and carbohydrate (17.72 g/100 g) contents in fresh B. heteropoda fruit, with total phenol, flavonoid, and anthocyanin contents of B. heteropoda fruits at 68.55 mg gallic acid equivalents/g, 108.42 mg quercetin equivalents/g, and 19.83 mg cyanidin-3-glucoside equivalent/g, respectively. Additionally, UPLC-Q-TOF-MSE analysis of polyphenols in B. heteropoda fruit revealed 32 compounds. Conclusion B. heteropoda fruits may have potential nutraceutical value and represent a potential source of nutrition and antioxidant phytochemicals in the human diet.
Collapse
Affiliation(s)
- Jixiang Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Qian Li
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jianguang Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- * E-mail:
| | - Jing Liu
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Fang Xu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
21
|
Lou X, Jin Y, Tian H, Yu H, Chen C, Hanna M, Lin Y, Yuan L, Wang J, Xu H. High-pressure and thermal processing of cloudy hawthorn berry (Crataegus pinnatifida) juice: Impact on microbial shelf-life, enzyme activity and quality-related attributes. Food Chem 2022; 372:131313. [PMID: 34655827 DOI: 10.1016/j.foodchem.2021.131313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/04/2022]
Abstract
The study aimed to evaluate the effect of high-pressure (HPP, 300/600 MPa for 2 and 6 min) and thermal processing (TP, 65 °C/30 min) on microbial shelf-life, enzyme-activity and quality-attributes of cloudy hawthorn berry juice (CHBJ) after processing and during storage (4 °C). The CHBJ shelf-life was at least 150 days when processed by HPP. No significant difference was observed in pH and titratable acidity (p > 0.05), while HPP significantly increased soluble sugar (p < 0.05) and simulated some fruity aroma compounds which improved the taste and flavor of CHBJ. However, HPP inhabited ineffectively enzyme-activity in comparison to TP, causing significant color changes (ΔE = 4.98 ± 0.03-5.10 ± 0.07) during 30-day storage (p < 0.05). Although particle size increased after HPP treatment, significant increases (68.76%-926.95%) were observed in viscosity (p < 0.05), due to enhanced extractability or modification of pectin induced by HPP, resulting in higher consistency of CHBJ. HPP is promising to extend shelf-life and improve quality-attributes of CHBJ.
Collapse
Affiliation(s)
- Xinman Lou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yu Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaixiang Tian
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haiyan Yu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Milford Hanna
- Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, NE 68588-6205, USA
| | - Yawen Lin
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Long Yuan
- Big Green (USA) Inc. and Bgreen Food Company, P.O. Box 8112, Rowland Heights, CA 91748, USA
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Atencio S, Verkempinck SHE, Bernaerts T, Reineke K, Hendrickx M, Van Loey A. Impact of processing on the production of a carotenoid-rich Cucurbita maxima cv. Hokkaido pumpkin juice. Food Chem 2022; 380:132191. [PMID: 35081478 DOI: 10.1016/j.foodchem.2022.132191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/08/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022]
Abstract
Pumpkin juice with high carotenoid content can be attractive natural alternative for artificial food colourants. We evaluated the impact of processing treatments on aqueous carotenoid extraction from pumpkins, aiming to enhance carotenoid transfer into the juice fraction. Crushed whole pumpkins were processed by high pressure homogenization (HPH) for mechanical cell disruption, by enzymatic treatment for cell wall polysaccharide degradation or by a pulsed electric field (PEF) treatment for cell membrane electroporation. Processed purees were separated into juice and pomace and carotenoids were quantified by HPLC-DAD. Whereas only 54-60% of the carotenoids in non-processed puree was transferred into the juice, HPH- and enzyme-assisted processing of purees significantly increased juice yields and total soluble solids, and consequently, carotenoid concentrations in these juices up to 90-98% and 72-90%, respectively. No significant improvement was observed for PEF-treated samples. Results obtained can be industrially useful in producing natural colouring plant concentrates as clean-label ingredients.
Collapse
Affiliation(s)
- Sharmaine Atencio
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium
| | - Tom Bernaerts
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium
| | - Kai Reineke
- GNT Europa GmbH, Kackertstrasse 22, 52072 Aachen, Germany
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| |
Collapse
|
23
|
Olmedilla-Alonso B, Benítez-González AM, Estévez-Santiago R, Mapelli-Brahm P, Stinco CM, Meléndez-Martínez AJ. Assessment of Food Sources and the Intake of the Colourless Carotenoids Phytoene and Phytofluene in Spain. Nutrients 2021; 13:nu13124436. [PMID: 34959988 PMCID: PMC8706092 DOI: 10.3390/nu13124436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022] Open
Abstract
Phytoene (PT) and phytofluene (PTF), colorless carotenoids, have largely been ignored in food science studies, food technology, and nutrition. However, they are present in commonly consumed foods and may have health-promotion effects and possible uses as cosmetics. The goal of this study is to assess the most important food sources of PT and PTF and their dietary intakes in a representative sample of the adult Spanish population. A total of 62 food samples were analyzed (58 fruit and vegetables; seven items with different varieties/color) and carotenoid data of four foods (three fruits and one processed food) were compiled. PT concentration was higher than that of PTF in all the foods analyzed. The highest PT content was found in carrot, apricot, commercial tomato juice, and orange (7.3, 2.8, 2.0, and 1.1 mg/100 g, respectively). The highest PTF level was detected in carrots, commercial tomato sauce and canned tomato, apricot, and orange juice (1.7, 1.2, 1.0, 0.6, and 0.04 mg/100 g, respectively). The daily intakes of PT and PTF were 1.89 and 0.47 mg/person/day, respectively. The major contributors to the dietary intake of PT (98%) and PTF (73%) were: carrot, tomato, orange/orange juice, apricot, and watermelon. PT and PTF are mainly supplied by vegetables (81% and 69%, respectively). Considering the color of the edible part of the foods analyzed (fruit, vegetables, sauces, and beverages), the major contributor to the daily intake of PT and PTF (about 98%) were of red/orange color.
Collapse
Affiliation(s)
- Begoña Olmedilla-Alonso
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
- Correspondence: (B.O.-A.); (A.J.M.-M.)
| | - Ana M. Benítez-González
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (A.M.B.-G.); (P.M.-B.); (C.M.S.)
| | | | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (A.M.B.-G.); (P.M.-B.); (C.M.S.)
| | - Carla M. Stinco
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (A.M.B.-G.); (P.M.-B.); (C.M.S.)
| | - Antonio J. Meléndez-Martínez
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (A.M.B.-G.); (P.M.-B.); (C.M.S.)
- Correspondence: (B.O.-A.); (A.J.M.-M.)
| |
Collapse
|
24
|
Arya SS, More PR, Terán Hilares R, Pereira B, Arantes V, Silva SS, Santos JC. Effect of thermally assisted hydrodynamic cavitation (HC) processing on physical, nutritional, microbial quality, and pectin methyl esterase (PME) inactivation kinetics in orange juice at different time and temperatures. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shalini S. Arya
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India
- Department of Biotechnology Engineering School of LorenaUniversity of São Paulo São Paulo Brazil
| | - Pavankumar R. More
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India
| | - Ruly Terán Hilares
- Laboratório de Materiales Universidad Católica de Santa María Urb. San José s/n, Umacollo Arequipa Peru
| | - Bárbara Pereira
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering University of São Paulo Lorena Brazil
| | - Valdeir Arantes
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering University of São Paulo Lorena Brazil
| | - Silvio S. Silva
- Department of Biotechnology Engineering School of LorenaUniversity of São Paulo São Paulo Brazil
| | - Júlio César Santos
- Department of Biotechnology Engineering School of LorenaUniversity of São Paulo São Paulo Brazil
| |
Collapse
|
25
|
Meléndez-Martínez AJ, Mapelli-Brahm P. The undercover colorless carotenoids phytoene and phytofluene: Importance in agro-food and health in the Green Deal era and possibilities for innovation. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Mapelli-Brahm P, Meléndez-Martínez AJ. The colourless carotenoids phytoene and phytofluene: sources, consumption, bioavailability and health effects. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
López-Gámez G, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R. Recent Advances toward the Application of Non-Thermal Technologies in Food Processing: An Insight on the Bioaccessibility of Health-Related Constituents in Plant-Based Products. Foods 2021; 10:foods10071538. [PMID: 34359408 PMCID: PMC8305460 DOI: 10.3390/foods10071538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
Fruits and vegetables are rich sources of bioactive compounds and micronutrients. Some of the most abundant are phenols and carotenoids, whose consumption contributes to preventing the occurrence of degenerative diseases. Recent research has shown the potential of non-thermal processing technologies, especially pulsed electric fields (PEF), ultrasounds (US), and high pressure processing (HPP), to trigger the accumulation of bioactive compounds through the induction of a plant stress response. Furthermore, these technologies together with high pressure homogenization (HPH) also cause microstructural changes in both vegetable tissues and plant-based beverages. These modifications could enhance carotenoids, phenolic compounds, vitamins and minerals extractability, and/or bioaccessibility, which is essential to exert their positive effects on health. Nevertheless, information explaining bioaccessibility changes after non-thermal technologies is limited. Therefore, further research on food processing strategies using non-thermal technologies offers prospects to develop plant-based products with enhanced bioaccessibility of their bioactive compounds and micronutrients. In this review, we attempt to provide updated information regarding the main effects of PEF, HPP, HPH, and US on health-related compounds bioaccessibility from different vegetable matrices and the causes underlying these changes. Additionally, we propose future research on the relationship between the bioaccessibility of bioactive compounds and micronutrients, matrix structure, and non-thermal processing.
Collapse
|
28
|
Peng C, Li R, Ni H, Li LJ, Li QB. The effects of α‐L‐rhamnosidase, β‐D‐glucosidase, and their combination on the quality of orange juice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Cheng Peng
- College of Food and Biological Engineering Jimei University Xiamen China
| | - Rui Li
- College of Food and Biological Engineering Jimei University Xiamen China
| | - Hui Ni
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Li Jun Li
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Qing Biao Li
- College of Food and Biological Engineering Jimei University Xiamen China
| |
Collapse
|
29
|
López-Gámez G, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R. Applying Pulsed Electric Fields to Whole Carrots Enhances the Bioaccessibility of Carotenoid and Phenolic Compounds in Derived Products. Foods 2021; 10:1321. [PMID: 34201315 PMCID: PMC8228035 DOI: 10.3390/foods10061321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
We propose the application of pulsed electric fields (PEF) to carrots to obtain derived products with increased phenolic and carotenoid bioaccessibility. For this purpose, juices, purees, and oil-added purees were obtained from whole PEF-treated carrots (five pulses of 3.5 kV cm-1; 0.61 kJ kg-1). In order to obtain shelf-stable products, the effect of a thermal treatment (70 °C for 10 min) was also studied. Carrot juices exhibited the highest carotenoid (43.4 mg/100 g fresh weight) and phenolic (322 mg kg-1 dry weight) contents. However, caffeic and coumaric acid derivatives were highly sensitive to PEF. The phenolic bioaccessibility reached 100% in purees obtained from the PEF-treated carrots, whereas the further thermally treated oil-added purees exhibited the greatest carotenoid bioaccessibility (7.8%). The increase in carotenoid bioaccessibility could be related to their better release and solubilization into micelles. The results suggest that food matrix aspects apart from particle size (e.g., pectin characteristics) are involved in phenolic bioaccessibility.
Collapse
Affiliation(s)
| | | | | | - Robert Soliva-Fortuny
- Department of Food Technology, University of Lleida, Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; (G.L.-G.); (P.E.-M.); (O.M.-B.)
| |
Collapse
|
30
|
Marques MC, Hacke A, Neto CAC, Mariutti LRB. Impact of phenolic compounds in the digestion and absorption of carotenoids. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Arilla E, García-Segovia P, Martínez-Monzó J, Codoñer-Franch P, Igual M. Effect of Adding Resistant Maltodextrin to Pasteurized Orange Juice on Bioactive Compounds and Their Bioaccessibility. Foods 2021; 10:1198. [PMID: 34073221 PMCID: PMC8230003 DOI: 10.3390/foods10061198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/19/2023] Open
Abstract
Resistant maltodextrin (RMD) is a water-soluble and fermentable functional fiber. RMD is a satiating prebiotic, reducer of glucose and triglycerides in the blood, and promoter of good gut health, and its addition to food is increasingly frequent. Therefore, it is necessary to study its potential effects on intrinsic bioactive compounds of food and their bioaccessibility. The aim of this study was to evaluate the effect of adding RMD on the bioactive compounds of pasteurized orange juice with and without pulp, and the bioaccessibility of such compounds. RMD was added at different concentrations: 0 (control sample), 2.5%, 5%, and 7.5%. Ascorbic acid (AA) and vitamin C were analyzed using HPLC, whereas total phenols, total carotenoids (TC), and antioxidant capacity were measured using spectrophotometry. After that, sample in vitro digestibility was assessed using the standardized static in vitro digestion method. The control orange juice with pulp presented significantly higher values of bioactive compounds and antioxidant capacity than the control orange juice without pulp (p < 0.05). RMD addition before the juice pasteurization process significantly protected all bioactive compounds, namely total phenols, TC, AA, and vitamin C, as well as the antioxidant capacity (AC) (p < 0.05). Moreover, this bioactive compound protective effect was higher when higher RMD concentrations were added. However, RMD addition improved phenols and vitamin C bioaccessibility but decreased TC and AA bioaccessibility. Therefore, the AC value of samples after gastrointestinal digestion was slightly decreased by RMD addition. Moreover, orange pulp presence decreased total phenols and TC bioaccessibility but increased AA and vitamin C bioaccessibility.
Collapse
Affiliation(s)
- Elías Arilla
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (E.A.); (J.M.-M.); (M.I.)
| | - Purificación García-Segovia
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (E.A.); (J.M.-M.); (M.I.)
| | - Javier Martínez-Monzó
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (E.A.); (J.M.-M.); (M.I.)
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of València, Avenida de Blasco Ibáñez, No. 15, 46010 València, Spain;
- Department of Pediatrics, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research un the Valencian Region (FISABIO), Avenida Gaspar Aguilar, No. 90, 46017 València, Spain
| | - Marta Igual
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (E.A.); (J.M.-M.); (M.I.)
| |
Collapse
|
32
|
Yu W, Cui J, Zhao S, Feng L, Wang Y, Liu J, Zheng J. Effects of High-Pressure Homogenization on Pectin Structure and Cloud Stability of Not-From-Concentrate Orange Juice. Front Nutr 2021; 8:647748. [PMID: 34026808 PMCID: PMC8131542 DOI: 10.3389/fnut.2021.647748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/07/2021] [Indexed: 01/31/2023] Open
Abstract
Not-from-concentrate (NFC) juice is popular with consumers due to its similarity to fresh fruit juice in taste, flavor, and beneficial nutrients. As a commonly used technology in fruit juice production, high-pressure homogenization (HPH) can enhance the commercial value of juice by improving the color, flavor, taste, and nutrient contents. In this study, the effects of HPH on the pectin structural properties and stability of NFC orange juice were investigated. The correlations between HPH-induced changes in the structure of pectin and the stability of orange juice were revealed. Compared with non-homogenized orange juice, HPH increased the galacturonic acid (GalA) content and the linearity of pectin, while decreasing the molecular weight (Mw), pectin branching, and rhamnogalacturonan (RG) contribution, and cracks and pores of different sizes formed on the surface of pectin, implying depolymerization. Meanwhile, with increasing pressure and number homogenization of passes, HPH effectively improved the stability of NFC orange juice. HPH can effectively prevent the stratification of orange juice, thereby promoting consumer acceptance and endowing a higher commercial value. The improvement of the stability of NFC orange juice by HPH was related to the structural properties of pectin. Turbidity was significantly (P < 0.01) positively correlated with GalA and pectin linearity, but was significantly (P < 0.01) negatively correlated with Mw, RG contribution, and pectin branching. Modification of pectin structure can improve the stability of NFC orange juice. In this work, the relationship between the pectin structure and stability of NFC orange juice is elucidated, providing a path toward improving consumer acceptance and enhancing the palatability and nutritional and functional qualities of orange juice. Manufacturers can use this relationship to modify pectin directionally and produce high-quality NFC orange juice beverages.
Collapse
Affiliation(s)
- Wantong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaojie Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Effect of Cryoconcentration Assisted by Centrifugation-Filtration on Bioactive Compounds and Microbiological Quality of Aqueous Maqui (Aristotelia chilensis (Mol.) Stuntz) and Calafate (Berberis microphylla G. Forst) Extracts Pretreated with High-Pressure Homogenization. Processes (Basel) 2021. [DOI: 10.3390/pr9040692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to evaluate the effect of cryoconcentration assisted by centrifugation-filtration on the bioactive compounds and the microbiological quality of aqueous maqui (Aristotelia chilensis (Mol.) Stuntz) and calafate (Berberis microphylla G. Forst) extracts pretreated with high-pressure homogenization (HPH). Aqueous extracts were prepared from fresh fruits which were treated with HPH (predefined pressure and number of passes). The best pretreatment was determined by aerobic mesophilic, fungal, and yeast counts. Treated extracts were frozen at −30 °C in special tubes and centrifuged at 4000 rpm for 10 min to obtain the cryoconcentrated product. The optimal pretreatment conditions for HPH were 200 MPa and one pass in which the extracts exhibited no microorganism counts. Cryoconcentration by freezing and subsequent centrifugation-filtration in a single cycle showed high process efficiency (>95%) in both soluble solids and bioactive compounds (total polyphenols and anthocyanins) and antioxidant capacity of the fresh fruits and extracts. The HPH treatment and subsequent cryoconcentration assisted by centrifugation-filtration is an efficient technology to obtain concentrates with good microbiological quality and a high content of bioactive compounds.
Collapse
|
34
|
A Brief Overview of Dietary Zeaxanthin Occurrence and Bioaccessibility. Molecules 2020; 25:molecules25184067. [PMID: 32899907 PMCID: PMC7570536 DOI: 10.3390/molecules25184067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
As it exhibits no provitamin A activity, the dietary intake of zeaxanthin is not considered essential. However, its contribution to ocular health has long been acknowledged. Numerous publications emphasize the importance of zeaxanthin alongside lutein in ocular diseases such as cataracts and age-related macular degeneration which constitute an important health concern, especially among the elderly. Considering that the average dietary ratio of lutein to zeaxanthin favors the first, more bioaccessible food sources of zeaxanthin that can hinder the development and progression of the above-mentioned disorders are of great interest. In this paper, a brief overview of the more recent state of knowledge as regards dietary sources together with their respective zeaxanthin bioaccessibility assessed through a standardized in vitro digestion method was provided.
Collapse
|